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ABSTRACT 

The infusion of commercial game technology into 
U.S. Army training, simulation, and instructional domains 
has resulted in more immersive and engaging experiences 
for Soldiers to hone their skills.  However, the influx of 
such technology comes at a significant cost, specifically 
in the creation of virtual environments in which these 
skills are simulated and practiced.  Today’s typical 
commercial triple-A game title cost upwards of $40-
$60M and four to six years to develop, much of which is 
spent on producing the digital assets used to populate the 
scene (models, animations, etc).  Additionally, this 
content is often suited for a custom type of rendering 
technology, and often cannot be reused without 
significant manual modification.  Unfortunately, the 
Army has neither the financial or personnel resources 
available to create such highly immersive, reusable virtual 
content, nor the time to invest when current operations 
call for training or simulation data in a matter of hours, 
not months or years.  In this paper, we discuss a research 
initiative aimed at significantly reducing the time and cost 
for converting, optimizing, and enhancing existing 
geospatial data for today’s virtual environments.  The 
goal is a completely automated process for ingesting 
existing military terrain data and outputting a technology-
agnostic representation in less than 24 hours. 

1. MOTIVATION 

The past five years has witnessed a significant 
increase in the use of commercial game technology 
adopted for the military training and simulation domains.  
This technology has the capability to produce highly 
immersive and detailed 3D environments. However, the 
construction of these synthetic experiences (the terrain, 
characters, and animations) often requires significant 
investment by asset providers (artists, modelers) to create 
and assemble the virtual landscape, which is often a very 

arduous, time-consuming, and expensive process.  
Additionally, as game technology increases support for 
advanced rendering techniques (such as per-pixel shading, 
high dynamic range imagery, and multitexturing), the cost 
for creating these synthetic experiences continues to 
increase at a rapid pace.  The average commercial video 
game today costs upwards of $20 - $50M to design and 
produce (BBC, 2005), and a majority of the production 
staff consists of modelers, animators, and texture artists to 
create the assets seen by users.  However, neither Army 
nor Academia has such resources available to keep pace 
with these technical advancements and user expectations, 
and as a result many of the 3D visual representations seen 
in today’s Army training systems are less than adequate 
for many types of training and mission rehearsal.  

Paradoxically, the U.S. Army has spent millions of 
dollars developing runtime databases for the same 
geographic areas, each time targeting different levels of 
resolution and different data formats to meet individual 
program requirements. The differences in processing 
techniques for these databases have caused correlation 
problems that make interoperability between simulation 
federates difficult or impossible.   Additionally, the terrain 
database generation systems used to create these 
databases are tailored to a specific project, often with no 
attempt to provide a path for reuse by other projects. The 
runtime databases produced by these systems have 
particular features and attributes that meet only the 
requirements of a specific program. Once the databases 
are produced, additional manual processing is required to 
make the database usable by runtime systems.  

To address these myriad of challenges, the Research, 
Development, and Engineering Command’s (RDECOM) 
Simulation and Technology Training Center (STTC) has 
initiated a research effort that is investigating and 
developing a set of processes and tools for the rapid 
conversion, manipulation, optimization, and enhancement 
of military geospatial databases for use with the latest 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
DEC 2008 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Towards An Automated Pipeline For The Translation And Optimization
Of Geospatial Data For Virtual Environments 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Institute for Creative Technologies, University of Southern California
Marina del Rey, CA 90292 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM002187. Proceedings of the Army Science Conference (26th) Held in Orlando, Florida on 1-4
December 2008, The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

11 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



commercial game technology.  Employing commercial 
and government off-the-shelf (COTS/GOTS) software, 
the Military Terrain for Games Pipeline (MTGP) aims to 
significantly reduce the time and cost associated with 
recreating geo-typical and geo-specific environments for 
the virtual domain.  This paper presents the MTGP 
research effort, including details of the original military 
geospatial data, how this data is converted/augmented for 
use in a variety of real-time, game-based environments, 
and finally results from dataset testing performed to-date. 

Though the research goals of the MTGP center around 
developing automated tools and techniques for reducing 
the time and cost for creating datasets for an assortment of 
game platforms, an indirect objective is to begin bridging 
two disparate communities responsible for database 
generation: 1) those dealing with strict geo-specificity, 
correlation, and accuracy issues, and 2) those interested in 
immersion and aesthetics.  Often times, due to project and 
program requirements, these two communities clash.  The 
correlation community requires data that is consistent and 
correct, and is often created for constructive simulation 
systems.  The fidelity/aesthetics community requires data 
that is fully-featured, dense, and realistic of an area of 
interest.  However, as immersive virtual environments 
continue to infiltrate the DoD training and simulation 
space, these mutually exclusive communities must partner 
to form a common set of requirements and methods for 
representing terrain in both the constructive and [game-
based] virtual environments. 

2. RELATED WORK 

Along with recent advances in hardware and 
computer-generation imagery (CGI) content creation tools 
used in movies and games, a heavy push towards 
procedural generation of virtual urban environments can 
be clearly observed in the game industry (Introversion, 
2008).  Currently there are many tools available to assist 
in automating the production of large urban scenes, 
ranging in capability from easy-to-use building designers 
to full cityscape generators.  CityEngine is one such tool 
that uses shape grammars to procedurally generate large 
cities via randomization of user-specified texturing and 
architectural details (Procedural Inc., 2008).  The result is 
a realistic environment for a small fraction of the 
production cost incurred when traditionally using a team 
of artists and modelers.  Although commercial tools such 
as CityEngine are highly effective in producing realistic 
scenery, they are primarily geared towards geo-typical 
content.  These tools usually are not capable of ingesting 
standard military source data (ESRI Shape files, LIDAR, 
etc), or for producing geo-specific environments for 
training applications.   

   

 
Fig. 1  CityEngine geo-typical cityscape 

Even when such tools are adapted for this purpose, they 
are incapable of producing many non-visual correlated 
output formats such as compact terrain databases (CTDB) 
and the OneSAF terrain format (OTF).   

In addition to the efforts targeting terrain generation 
and non-visual correlated output, there exists several 
initiatives by the game industry to streamline the creation 
of their virtual environments.  Often the solution entails 
designing and employing a formalized pipeline that 
dramatically reduces the time and cost associated with 
creating virtual content.  This need has arisen from an 
industry that must publish a single game title for up to 
seven different platforms in three major North American 
markets (Stanford, 2004).  As a result, studios must take 
measures to reduce the risk associated with producing 
content for a game that may never be successful.  Many 
(if not all) of the Game Developer Conferences (GDCs) in 
recent memory have included a panel or technical session 
dedicated to the content pipeline, where leaders from 
industry assemble to discuss the most effective tools and 
techniques for streamlining the creation of virtual media.  
Though the actual implementation of a pipeline by 
individual studios often centers around custom 
requirements and technologies (such as a particular 3d 
authoring environment or game engine), attempts have 
been made by the broader game community to adopt 
techniques and standards for streamlining content 
creation.  One such standard is COLLADA, which defines 
an interchange file format for interactive 3D applications 
(COLLADA, 2008).  Implemented as an open-source 
XML schema, COLLADA data provides a lossless 
mechanism for storing and sharing all facets of digital art 
such as polygonal models, meshes, animations, physics, 
and programmable shader effects.  The standard has been 
adopted by several leading commercial vendors, and as a 
result COLLADA data can be imported and exported by 
several application types.  This includes Autodesk’s Maya 
and 3dsMax, LightWave, Softimage/XSI, Houdini, 



Blender, and SketchUp, all leading content creation tools 
used in the game industry. 

Unfortunately, despite the recent trend towards 
interoperability standards such as COLLADA, many 
current commercial and DoD terrain pipeline capabilities 
are designed to operate within very narrow requirements 
and technologies.  For example, only a single game 
engine may be supported for asset export (Gamebryo, 
Unreal), or a single type of source data (DTED, DEM, 
LIDAR) for import.  However, these restrictions are only 
partly due to the requirements of the program employing 
the pipeline.  Often times there exists significant disparity 
between incoming source data, as well as with the 
rendering techniques employed by different game 
engines, which makes generalizing a set of pipeline 
features overly difficult.  For example, reusing an asset in 
the Gamebryo game engine originally developed for the 
Unreal game engine often requires a significant amount of 
manual manipulation so it conforms with the underlying 
Gamebryo renderer.  This is the main research thrust of 
the MTGP. 

3. RESEARCH APPROACH 

The research approach for generating game-ready 
visual databases is broken into two sections below.  The 
Rapid Unified Generation of Urban Databases (RUGUD) 
section discusses how varieties of source data are 
ingested, manipulated, and correlated to produce a 
standardized visual representation in COLLADA.  The 
MTGP section details how this COLLADA data is 
manipulated, optimized, and enhanced to produce a game 
engine-agnostic visual database for use in a variety of 
commercial rendering platforms. 

RUGUD 

The Rapid Unified Generation of Urban Databases 
(RUGUD) system was developed to address the 
limitations of current terrain database generation systems 
(Campbell et al., 2006). Rather than replace existing 
systems, RUGUD was designed to leverage them, 
integrating the features of multiple COTS, GOTS and 
open source tools into a single framework to provide a 
single processing pipeline (Fig. 2). By supporting 
multiple tools, RUGUD is able to use best of breed 
capabilities to automate individual parts of the terrain 
generation process. From a user’s perspective, RUGUD 
presents a single tool with individual processing 
capabilities represented as drag and drop components in 
the pipeline. 

 
 

Fig. 2 The RUGUD processing pipeline 

RUGUD addresses the problem of database reuse by 
using a Master Urban Database (MUDB) to store source 
data. The MUDB is based on a data model that contains a 
superset of all terrain database content requirements. 
Individual databases produced for different runtime 
products pull data from the same database, but only use 
the data they require. The process of using a master 
database for all runtime databases ensures that the 
databases produced are correlated. Road locations, 
buildings, cultural features, and terrain heights match 
between databases used for SAFs, image generators, and 
game engines. One of the components RUGUD uses to 
eliminate much of the manual processing required in 
database production is the Urban and Underground Model 
Generator (U2MG) (Mann and Eifert, 2006). U2MG takes 
shape file footprints, building heights, and building types 
as input and automatically generators 3D buildings with 
interiors as output. RUGUD integrates these buildings 
with the terrain surface to create a seamless urban 
database.  

Although RUGUD was initially funded as a GOTS 
solution for the arduous task of constructing large urban 
terrain databases for military training, it was 
fundamentally designed as a general-purpose data 
processing framework based on a plug-in architecture.  
The framework is centered on the Master Urban Data 
Model (MUDM), which defines the superset of attribution 
and feature information required to ultimately convert sets 
of source data into desired output formats.  Plug-ins used 
for importing, processing, and exporting of different data 
sets can be written independently and registered with the 
RUGUD pipeline to expand current capabilities.  In this 
fashion, support for game-related formats (COLLADA, 
Maya, etc.) are easily implemented by developing a new 
plug-in.  Since the plug-ins all reference the same MUDM 
attribution and are based on the same source data, 
RUGUD can correlate the different database outputs to 
the highest common fidelity shared between formats.  The 
RUGUD GUI provides a drag-and-drop mechanism to 
create a custom processing pipeline that will include only 
the source data and output formats desired (Fig. 3). 



 
 

Fig. 3 RUGUD GUI with source data, plugins, and 

pipeline views 

Of course, in order to facilitate the production of 
urban databases, a tool is needed to simplify the creation 
of building models as well.  U2MG fulfills this need by 
automating the production of geo-typical buildings with 
interiors that adhere to geo-specific footprints acquired 
from source data.  U2MG was designed as both a 
standalone application and a plug-in to the RUGUD 
framework, capable of directly converting source areals 
and attribution (height, layout type, number of floors, etc.) 
to building models with navigable interiors.  Recently, 
many new features were added to improve the geometry 
of auto-generated buildings.  These include support for 
non-rectangular apertures, exterior columns (rectangular 
and arc), arched ceilings, window ledges, and interior 
layout generation based on exterior aperture placement.  
In standalone mode, U2MG can also be used to generate 
geo-specific interiors, using a simplified CAD-like 
interface that requires no traditional modeling expertise. 
U2MG-generated building models can be exported to 
multiple visual and SAF formats and integrated into the 
terrain database via the RUGUD pipeline.   

 
Fig. 4  An auto-generated building in U2MG 

 The RUGUD and U2MG programs have always 
focused on easing the task of generating correlated, high-
resolution urban terrain databases, but initial users of 
these tools were far more interested in support for SAF 
terrain databases (CTDB, OTF, etc.) than in supporting 
leading-edge correlated visuals.  However, since the core 
intent behind the development of RUGUD has always 
been to establish a flexible data manipulation framework, 

it eventually made sense to apply this infrastructure 
towards production of the more impressive visual 
databases used in gaming environments.  Thus, within the 
past couple of years, RUGUD and U2MG have 
undergone efforts to enhance visual output capabilities 
while maintaining desired SAF correlation wherever 
possible.  Enhancement tasks have included ongoing 
support for the COLLADA interchange file format, 
terrain database tiling, proper triangulation of building 
geometry, more stylistic building facades, and 
researching/developing export capabilities for modern 
gaming engines (Half-life 2, Unreal, etc.).  

MTGP 

The MTGP begins with the ingestion and conversion 
of correlated COLLADA data produced by RUGUD.  
Once converted to COLLADA, the source data may be 
exported directly to a rendering environment that supports 
the interchange format (such as the Unreal 3 Engine 
(Epic, 2008)), though the data often requires additional 
manipulation before final rendering to optimize and 
enhance the scene.  This automated manipulation process 
is performed inside of Maya, one of the leading content 
creation tools used in the game industry.  The decision to 
employ Maya was threefold.  First, because of its ubiquity 
throughout the game industry, many of the leading game 
engine technologies provide exporters directly from Maya 
to their internal formats for final render (Unreal, 
Gamebryo, Crysis, Ogre, Torque).  Second, Maya 
provides a game engine-agnostic format for representing 
virtual terrain such that content created in Maya can be 
reused across several engines (though there are several 
caveats to this, discussed in detail below).  Lastly, Maya 
includes a powerful, robust programming language 
(MELScript) for procedurally manipulating parts of the 
scene.  This is a critical feature as it allows us to 
algorithmically alter the geometry, textures, and lighting 
components of the data.  Additionally, because the 
original source data imported into RUGUD is often 
procedurally generated, algorithmically manipulating 
procedurally-created data proves to be much simpler than 
interpreting the creative steps taken by an artist.  These 
algorithmic operations includes operations such as 
duplicate edge removal, vertex-welding, normal 
reassignment, and refactoring of the UV layout.   

The result of our efforts is an automated process 
(pipeline) for producing immersive 3-D environments.  
The first step for automating the pipeline involves the use 
of MELScripts to import the COLLADA data into a Maya 
scene.  Next, we are able to employ the use of 
MELScripts and the Maya API to automate the 
optimization and enhancement of the data. This is the 
most critical part of the pipeline automation, because it 
transforms the source data into a highly detailed and 
complex virtual environment. An artist or modeler 



typically bears this manually intensive job, and the tasks 
involved can consume significant time and resources.  
Lastly, the optimized data is then exported to a supported 
game engine (see Fig. 5). 

 

Fig. 5 Military Terrain for Games Pipeline 

As mentioned, optimizing the data is paramount, and 
in order to develop algorithms that, in a timely and cost-
effective manner, would output results that rival the 
fidelity of what an artist would produce, the MTGP 
pipeline utilizes the collaborative efforts of a research 
programmer and an artist to determine which optimization 
and enhancement steps can be automated. This 
collaborative union has identified three major individual 
areas of fully automated enhancement and improvement:  

1. Scene cleanup: removing unnecessary geometry 
such as duplicated edges or polygons, removing 
invisible objects, and merging duplicate material 
shaders. 

2. Terrain texturing: applying high-resolution 
textures such as ground textures, roads, grass, 
etc. to the terrain skin. 

3. Building texturing: applying assorted high-
resolution geo-typical textures to single and 
multi-elevation structures in the scene. 

Optimization tools were then developed to automate these 
three typically arduous tasks. To begin optimizing the 
scene, it is imperative to remove all meshes and objects 
that are not necessary in order to save rendering resources 
(i.e. scene cleanup). In this step, we check that level of 
detail (LOD) functionality is properly specified within 
Maya. The source data can contain up to hundreds of 
buildings, each with individual levels of detail, producing 
a immensly polygon-intensive scene. Furthermore, 
buildings can have duplicate edges and polygons, or 
unnecessary duplicate material shaders.  To address this, 
MELScripts have been created that recognize and correct 
these issues in order to properly optimize the scene in 

order to achieve better frame rates during real-time 
render. 

Terrain texturing is the next procedural enhancement, 
though this can often be quite difficult as the source data 
typically lacks any usable texture information or is 
missing textures altogether. In such cases, it becomes 
necessary to retexture the ground plane procedurally.  
Performing this task entails generating custom UV maps. 
We developed a plug-in for Maya to facilitate this process 
instead of relying solely on MELScripts. This plug-in 
utilizes the Maya API to maximize performance since the 
algorithms to compute new UV maps are computationally 
intensive. The algorithms to generate custom UV maps 
and textures consist of three parts: 

 
1. Analyzing the Terrain 

• Distinguish between different types of 
terrain (Wide roads, narrow roads, 
square fields, rectangular fields) 

• Search for outer edges for each type of 
terrain 

• Find parallel edges for streets 

• Compute minimal bounding 
parallelograms for rectangle shapes 

2. Assigning new materials depending on the type of 
the terrain 

3. Computing three different types of UV maps for 
streets, square shapes and rectangle shapes 

  
 

 
 

Fig. 6 Original COLLADA data 



 
 

Fig. 7 Procedural terrain texturing 

 
The final process for building texturing requires an 
algorithm to randomly identify material shaders and swap 
the textures based on different parts of the building.  
Using geometry normals to differentiate between different 
parts of a structure (roof, walls), various texture maps are 
applied to cover the façade (Figs. 6 and 7). 

 

Fig. 8 Original COLLADA data 

 

Fig. 9 Procedural terrain & building texturing 

Once the data has been optimized and enhanced inside 
of Maya, there is the option to embed in it more abstract-

level information that can be used by the artificial 
intelligence (AI) or human user within the game 
environment.  Current modeling and simulation (M&S) 
environments typically rely on primitive elements of the 
terrain for an agent’s decisions, and often at a very low-
level such as used for path-planning and navigation.  
These elements do not contain level of fidelity required 
for representing complex and variable agent behavior 
such as culture.  Geometry, collision surfaces, ground 
type, path nodes and pathing networks are well-suited for 
basic mobility and physics calculations but fail to 
accurately convey higher-level information that may be 
useful to an agent in achieving its goals.  Our approach is 
to embed this contextual information (through annotations 
and affordances) directly in the virtual environment (i.e., 
terrain) and have the AI use this information in its 
decision making.  Drawing upon other academic fields 
(psychology, sociology, business/management, 
healthcare, and security), a broad classification hierarchy 
of cultural characteristics has been developed that is 
derived from the types of models presented by researchers 
like Triandis (1989) and Hofstede (2005).  Embedding 
this type of metadata in the virtual environment allows 
agents to apply context to the objects around them and, as 
a result, provide a more immersive and realistic 
simulation experience.   

 

Fig. 10 An annotated building 

After the data has been procedurally optimized and 
enhanced with metadata, it is then ready for export from 
Maya to one of several rendering environments such as 
Unreal, Gamebryo, OGRE, Delta3D, or VBS2.  There is 
also the capability to export back to COLLADA for 
ingestion back into the RUGUD framework for creating 
correlated constructive simulation databases, such as 
OTFs.   The export process is another manually intensive 
task because each game engine has specific requirements 
such as preferred image formats, LOD functionality, and 
proper use of physics meshes. The time required to 
complete such tasks range between hours to days to 
weeks depending on scene complexity.  However, we 
have developed a set of automated exporters have reduced 



the process to minutes.  Employing the Maya exporters 
provided for each game engine, each part of the scene is 
exported to one of several native engine formats.   These 
importers/exporters are procedurally called using MEL 
scripts, though they also utilize third-party software tools 
such as Feeling Software’s  COLLADA plugin. 

5. CONCLUSIONS 

To date, the MTGP has been tested and verified with 
several RUGUD datasets to create high-fidelity terrain for 
a variety of game technologies, including Gamebryo, 
Unreal Tournament, Delta3D and most recently Ogre and 
Half-Life 2.   Analysis of the pipeline’s manipulation and 
optimization process has shown an approximate 50% time 
savings for creating an area of game-ready terrain from 
existing source data (i.e., it would have taken a team of 
artists approximately double the amount of time to create 
the dataset had the MTGP not been used).  The current 
procedural manipulations being done by the MTGP allow 
for a fully-automated export to one of the game engines 
listed above in a matter of minutes.  Should the incoming 
source data (COLLADA) be deficient, or the manipulated 
Maya data be unsatisfactory in some way (e.g. not enough 
resolution), the option still exists for an artist to manually 
manipulate parts of the scene, which will have already 
been optimized in certain places. 

Future work includes augmenting existing geo-
specific datasets with representative environmental (geo-
typical) features for an area of interest.   Current geo-
specific rendering of terrain requires information about 
both the geometry and photometry of an area.  The 
geometry comprises the polygonal elevation map and 
above surface features that sit atop the terrain skin 
(vegetation, buildings, infrastructure).  The photometry 
comprises the textured appearance of the geometry under 
certain conditions (lighting, atmospherics).  However, in 
order for the modeled area to be truly accurate, a certain 
level of fidelity is required that ensures relevant features 
are included and represented correctly.  For example, 
DTED-4 has a post spacing of 3 meters, which means the 
highest level of fidelity that can exist between vertices in 
the polygonal model is ~10 ft.  This is often less than 
adequate for training the COE type of operations, which 
frequently require interactions with sub-meter 
environmental features (such as signage, utility poles, and 
narrow pathways).  Unfortunately, even DTED-5 (1m) 
data for today’s rendering systems are not adequate for a 
realistic representation of an area of interest.  
Additionally, much of the source data used does not 
contain the above surface features required for accurate 
training and simulation.  Academia has investigated such 
feature placement and will be leveraged for future work 
(Greuter et al., 2003, Danaher, 2002).  Candidate 
enhancement capabilities for inclusion in the MTGP 
include: 

 
- Elevation alteration – the ability to create and 

modify the height map to produce terrain with 
varying degrees of height (Schneider et al., 2006) 

- Feature/Structure placement – the ability to populate 
the terrain skin with structures and features that are 
representative of the area of interest (Prager et al., 
2004) 

- Texture application – the application of textures to 
the terrain skin and features/structures that are 
representative of the area of interest (Cohen et al., 
2003) 

As the simulation and training communities continue 
the shift towards procedural generation of game 
environments, RDECOM-STTC will direct appropriate 
enhancements for both RUGUD and U2MG.  For 
example, RUGUD extensions are currently being 
performed for the Federal Law Enforcement Training 
Center (FLETC), which has built a simulation center to 
provide a multitude of simulation systems for law 
enforcement training purposes.  Tasks involved with the 
FLETC effort include researching export capabilities for 
the SWAT4 and VBS2 gaming engines, as well as 
RUGUD pipeline improvements that facilitate ancillary 
tasks (texture assignment for building models, etc.).   

Additionally , future game-related efforts for RUGUD 
and U2MG are likely to focus more on the commonalities 
between multiple game engines, rather than on specific 
formats.  Research and implementation of industry-known 
optimizations for geometry, texturing, and other modeling 
aspects will be applied to the current pipeline 
infrastructure to enhance future data sets.  This may 
include improvements to texture mapping, decaling, 
triangulation algorithms, levels of detail, and other 
methods meant to increase run-time performance.  
Improvements are also planned with respect to asset 
representation, such that we can derive an internal 
common model format structured to simplify the 
conversion process between SAF, visual, and gaming 
formats of interest.  This will enable us to explore 
additional MTGP-related capabilities like the potential for 
re-ingesting modified COLLADA assets back into the 
RUGUD pipeline after they have been maniuplated by 
artists. 
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