
TOWARDS AN AUTOMATED PIPELINE FOR THE TRANSLATION AND OPTIMIZATION

OF GEOSPATIAL DATA FOR VIRTUAL ENVIRONMENTS

Ryan McAlinden*1, Matt Bosack1, Adrian Macha1, Esau Vargas1, John Mann2, Tim Walker2, and Julio de la Cruz3

1Institute for Creative Technologies, University of Southern California

Marina del Rey, CA 90292

2Applied Research Associates, Inc.
Orlando, FL 32826

3U.S. Army Research, Development, and Engineering Command Simulation and Training Technology Center

Orlando, FL 32826

ABSTRACT

The infusion of commercial game technology into
U.S. Army training, simulation, and instructional domains
has resulted in more immersive and engaging experiences
for Soldiers to hone their skills. However, the influx of
such technology comes at a significant cost, specifically
in the creation of virtual environments in which these
skills are simulated and practiced. Today’s typical
commercial triple-A game title cost upwards of $40-
$60M and four to six years to develop, much of which is
spent on producing the digital assets used to populate the
scene (models, animations, etc). Additionally, this
content is often suited for a custom type of rendering
technology, and often cannot be reused without
significant manual modification. Unfortunately, the
Army has neither the financial or personnel resources
available to create such highly immersive, reusable virtual
content, nor the time to invest when current operations
call for training or simulation data in a matter of hours,
not months or years. In this paper, we discuss a research
initiative aimed at significantly reducing the time and cost
for converting, optimizing, and enhancing existing
geospatial data for today’s virtual environments. The
goal is a completely automated process for ingesting
existing military terrain data and outputting a technology-
agnostic representation in less than 24 hours.

1. MOTIVATION

The past five years has witnessed a significant
increase in the use of commercial game technology
adopted for the military training and simulation domains.
This technology has the capability to produce highly
immersive and detailed 3D environments. However, the
construction of these synthetic experiences (the terrain,
characters, and animations) often requires significant
investment by asset providers (artists, modelers) to create
and assemble the virtual landscape, which is often a very

arduous, time-consuming, and expensive process.
Additionally, as game technology increases support for
advanced rendering techniques (such as per-pixel shading,
high dynamic range imagery, and multitexturing), the cost
for creating these synthetic experiences continues to
increase at a rapid pace. The average commercial video
game today costs upwards of $20 - $50M to design and
produce (BBC, 2005), and a majority of the production
staff consists of modelers, animators, and texture artists to
create the assets seen by users. However, neither Army
nor Academia has such resources available to keep pace
with these technical advancements and user expectations,
and as a result many of the 3D visual representations seen
in today’s Army training systems are less than adequate
for many types of training and mission rehearsal.

Paradoxically, the U.S. Army has spent millions of
dollars developing runtime databases for the same
geographic areas, each time targeting different levels of
resolution and different data formats to meet individual
program requirements. The differences in processing
techniques for these databases have caused correlation
problems that make interoperability between simulation
federates difficult or impossible. Additionally, the terrain
database generation systems used to create these
databases are tailored to a specific project, often with no
attempt to provide a path for reuse by other projects. The
runtime databases produced by these systems have
particular features and attributes that meet only the
requirements of a specific program. Once the databases
are produced, additional manual processing is required to
make the database usable by runtime systems.

To address these myriad of challenges, the Research,
Development, and Engineering Command’s (RDECOM)
Simulation and Technology Training Center (STTC) has
initiated a research effort that is investigating and
developing a set of processes and tools for the rapid
conversion, manipulation, optimization, and enhancement
of military geospatial databases for use with the latest

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Towards An Automated Pipeline For The Translation And Optimization
Of Geospatial Data For Virtual Environments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Institute for Creative Technologies, University of Southern California
Marina del Rey, CA 90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002187. Proceedings of the Army Science Conference (26th) Held in Orlando, Florida on 1-4
December 2008, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

commercial game technology. Employing commercial
and government off-the-shelf (COTS/GOTS) software,
the Military Terrain for Games Pipeline (MTGP) aims to
significantly reduce the time and cost associated with
recreating geo-typical and geo-specific environments for
the virtual domain. This paper presents the MTGP
research effort, including details of the original military
geospatial data, how this data is converted/augmented for
use in a variety of real-time, game-based environments,
and finally results from dataset testing performed to-date.

Though the research goals of the MTGP center around
developing automated tools and techniques for reducing
the time and cost for creating datasets for an assortment of
game platforms, an indirect objective is to begin bridging
two disparate communities responsible for database
generation: 1) those dealing with strict geo-specificity,
correlation, and accuracy issues, and 2) those interested in
immersion and aesthetics. Often times, due to project and
program requirements, these two communities clash. The
correlation community requires data that is consistent and
correct, and is often created for constructive simulation
systems. The fidelity/aesthetics community requires data
that is fully-featured, dense, and realistic of an area of
interest. However, as immersive virtual environments
continue to infiltrate the DoD training and simulation
space, these mutually exclusive communities must partner
to form a common set of requirements and methods for
representing terrain in both the constructive and [game-
based] virtual environments.

2. RELATED WORK

Along with recent advances in hardware and
computer-generation imagery (CGI) content creation tools
used in movies and games, a heavy push towards
procedural generation of virtual urban environments can
be clearly observed in the game industry (Introversion,
2008). Currently there are many tools available to assist
in automating the production of large urban scenes,
ranging in capability from easy-to-use building designers
to full cityscape generators. CityEngine is one such tool
that uses shape grammars to procedurally generate large
cities via randomization of user-specified texturing and
architectural details (Procedural Inc., 2008). The result is
a realistic environment for a small fraction of the
production cost incurred when traditionally using a team
of artists and modelers. Although commercial tools such
as CityEngine are highly effective in producing realistic
scenery, they are primarily geared towards geo-typical
content. These tools usually are not capable of ingesting
standard military source data (ESRI Shape files, LIDAR,
etc), or for producing geo-specific environments for
training applications.

Fig. 1 CityEngine geo-typical cityscape

Even when such tools are adapted for this purpose, they
are incapable of producing many non-visual correlated
output formats such as compact terrain databases (CTDB)
and the OneSAF terrain format (OTF).

In addition to the efforts targeting terrain generation
and non-visual correlated output, there exists several
initiatives by the game industry to streamline the creation
of their virtual environments. Often the solution entails
designing and employing a formalized pipeline that
dramatically reduces the time and cost associated with
creating virtual content. This need has arisen from an
industry that must publish a single game title for up to
seven different platforms in three major North American
markets (Stanford, 2004). As a result, studios must take
measures to reduce the risk associated with producing
content for a game that may never be successful. Many
(if not all) of the Game Developer Conferences (GDCs) in
recent memory have included a panel or technical session
dedicated to the content pipeline, where leaders from
industry assemble to discuss the most effective tools and
techniques for streamlining the creation of virtual media.
Though the actual implementation of a pipeline by
individual studios often centers around custom
requirements and technologies (such as a particular 3d
authoring environment or game engine), attempts have
been made by the broader game community to adopt
techniques and standards for streamlining content
creation. One such standard is COLLADA, which defines
an interchange file format for interactive 3D applications
(COLLADA, 2008). Implemented as an open-source
XML schema, COLLADA data provides a lossless
mechanism for storing and sharing all facets of digital art
such as polygonal models, meshes, animations, physics,
and programmable shader effects. The standard has been
adopted by several leading commercial vendors, and as a
result COLLADA data can be imported and exported by
several application types. This includes Autodesk’s Maya
and 3dsMax, LightWave, Softimage/XSI, Houdini,

Blender, and SketchUp, all leading content creation tools
used in the game industry.

Unfortunately, despite the recent trend towards
interoperability standards such as COLLADA, many
current commercial and DoD terrain pipeline capabilities
are designed to operate within very narrow requirements
and technologies. For example, only a single game
engine may be supported for asset export (Gamebryo,
Unreal), or a single type of source data (DTED, DEM,
LIDAR) for import. However, these restrictions are only
partly due to the requirements of the program employing
the pipeline. Often times there exists significant disparity
between incoming source data, as well as with the
rendering techniques employed by different game
engines, which makes generalizing a set of pipeline
features overly difficult. For example, reusing an asset in
the Gamebryo game engine originally developed for the
Unreal game engine often requires a significant amount of
manual manipulation so it conforms with the underlying
Gamebryo renderer. This is the main research thrust of
the MTGP.

3. RESEARCH APPROACH

The research approach for generating game-ready
visual databases is broken into two sections below. The
Rapid Unified Generation of Urban Databases (RUGUD)
section discusses how varieties of source data are
ingested, manipulated, and correlated to produce a
standardized visual representation in COLLADA. The
MTGP section details how this COLLADA data is
manipulated, optimized, and enhanced to produce a game
engine-agnostic visual database for use in a variety of
commercial rendering platforms.

RUGUD

The Rapid Unified Generation of Urban Databases
(RUGUD) system was developed to address the
limitations of current terrain database generation systems
(Campbell et al., 2006). Rather than replace existing
systems, RUGUD was designed to leverage them,
integrating the features of multiple COTS, GOTS and
open source tools into a single framework to provide a
single processing pipeline (Fig. 2). By supporting
multiple tools, RUGUD is able to use best of breed
capabilities to automate individual parts of the terrain
generation process. From a user’s perspective, RUGUD
presents a single tool with individual processing
capabilities represented as drag and drop components in
the pipeline.

Fig. 2 The RUGUD processing pipeline

RUGUD addresses the problem of database reuse by
using a Master Urban Database (MUDB) to store source
data. The MUDB is based on a data model that contains a
superset of all terrain database content requirements.
Individual databases produced for different runtime
products pull data from the same database, but only use
the data they require. The process of using a master
database for all runtime databases ensures that the
databases produced are correlated. Road locations,
buildings, cultural features, and terrain heights match
between databases used for SAFs, image generators, and
game engines. One of the components RUGUD uses to
eliminate much of the manual processing required in
database production is the Urban and Underground Model
Generator (U2MG) (Mann and Eifert, 2006). U2MG takes
shape file footprints, building heights, and building types
as input and automatically generators 3D buildings with
interiors as output. RUGUD integrates these buildings
with the terrain surface to create a seamless urban
database.

Although RUGUD was initially funded as a GOTS
solution for the arduous task of constructing large urban
terrain databases for military training, it was
fundamentally designed as a general-purpose data
processing framework based on a plug-in architecture.
The framework is centered on the Master Urban Data
Model (MUDM), which defines the superset of attribution
and feature information required to ultimately convert sets
of source data into desired output formats. Plug-ins used
for importing, processing, and exporting of different data
sets can be written independently and registered with the
RUGUD pipeline to expand current capabilities. In this
fashion, support for game-related formats (COLLADA,
Maya, etc.) are easily implemented by developing a new
plug-in. Since the plug-ins all reference the same MUDM
attribution and are based on the same source data,
RUGUD can correlate the different database outputs to
the highest common fidelity shared between formats. The
RUGUD GUI provides a drag-and-drop mechanism to
create a custom processing pipeline that will include only
the source data and output formats desired (Fig. 3).

Fig. 3 RUGUD GUI with source data, plugins, and

pipeline views

Of course, in order to facilitate the production of
urban databases, a tool is needed to simplify the creation
of building models as well. U2MG fulfills this need by
automating the production of geo-typical buildings with
interiors that adhere to geo-specific footprints acquired
from source data. U2MG was designed as both a
standalone application and a plug-in to the RUGUD
framework, capable of directly converting source areals
and attribution (height, layout type, number of floors, etc.)
to building models with navigable interiors. Recently,
many new features were added to improve the geometry
of auto-generated buildings. These include support for
non-rectangular apertures, exterior columns (rectangular
and arc), arched ceilings, window ledges, and interior
layout generation based on exterior aperture placement.
In standalone mode, U2MG can also be used to generate
geo-specific interiors, using a simplified CAD-like
interface that requires no traditional modeling expertise.
U2MG-generated building models can be exported to
multiple visual and SAF formats and integrated into the
terrain database via the RUGUD pipeline.

Fig. 4 An auto-generated building in U2MG

 The RUGUD and U2MG programs have always
focused on easing the task of generating correlated, high-
resolution urban terrain databases, but initial users of
these tools were far more interested in support for SAF
terrain databases (CTDB, OTF, etc.) than in supporting
leading-edge correlated visuals. However, since the core
intent behind the development of RUGUD has always
been to establish a flexible data manipulation framework,

it eventually made sense to apply this infrastructure
towards production of the more impressive visual
databases used in gaming environments. Thus, within the
past couple of years, RUGUD and U2MG have
undergone efforts to enhance visual output capabilities
while maintaining desired SAF correlation wherever
possible. Enhancement tasks have included ongoing
support for the COLLADA interchange file format,
terrain database tiling, proper triangulation of building
geometry, more stylistic building facades, and
researching/developing export capabilities for modern
gaming engines (Half-life 2, Unreal, etc.).

MTGP

The MTGP begins with the ingestion and conversion
of correlated COLLADA data produced by RUGUD.
Once converted to COLLADA, the source data may be
exported directly to a rendering environment that supports
the interchange format (such as the Unreal 3 Engine
(Epic, 2008)), though the data often requires additional
manipulation before final rendering to optimize and
enhance the scene. This automated manipulation process
is performed inside of Maya, one of the leading content
creation tools used in the game industry. The decision to
employ Maya was threefold. First, because of its ubiquity
throughout the game industry, many of the leading game
engine technologies provide exporters directly from Maya
to their internal formats for final render (Unreal,
Gamebryo, Crysis, Ogre, Torque). Second, Maya
provides a game engine-agnostic format for representing
virtual terrain such that content created in Maya can be
reused across several engines (though there are several
caveats to this, discussed in detail below). Lastly, Maya
includes a powerful, robust programming language
(MELScript) for procedurally manipulating parts of the
scene. This is a critical feature as it allows us to
algorithmically alter the geometry, textures, and lighting
components of the data. Additionally, because the
original source data imported into RUGUD is often
procedurally generated, algorithmically manipulating
procedurally-created data proves to be much simpler than
interpreting the creative steps taken by an artist. These
algorithmic operations includes operations such as
duplicate edge removal, vertex-welding, normal
reassignment, and refactoring of the UV layout.

The result of our efforts is an automated process
(pipeline) for producing immersive 3-D environments.
The first step for automating the pipeline involves the use
of MELScripts to import the COLLADA data into a Maya
scene. Next, we are able to employ the use of
MELScripts and the Maya API to automate the
optimization and enhancement of the data. This is the
most critical part of the pipeline automation, because it
transforms the source data into a highly detailed and
complex virtual environment. An artist or modeler

typically bears this manually intensive job, and the tasks
involved can consume significant time and resources.
Lastly, the optimized data is then exported to a supported
game engine (see Fig. 5).

Fig. 5 Military Terrain for Games Pipeline

As mentioned, optimizing the data is paramount, and
in order to develop algorithms that, in a timely and cost-
effective manner, would output results that rival the
fidelity of what an artist would produce, the MTGP
pipeline utilizes the collaborative efforts of a research
programmer and an artist to determine which optimization
and enhancement steps can be automated. This
collaborative union has identified three major individual
areas of fully automated enhancement and improvement:

1. Scene cleanup: removing unnecessary geometry
such as duplicated edges or polygons, removing
invisible objects, and merging duplicate material
shaders.

2. Terrain texturing: applying high-resolution
textures such as ground textures, roads, grass,
etc. to the terrain skin.

3. Building texturing: applying assorted high-
resolution geo-typical textures to single and
multi-elevation structures in the scene.

Optimization tools were then developed to automate these
three typically arduous tasks. To begin optimizing the
scene, it is imperative to remove all meshes and objects
that are not necessary in order to save rendering resources
(i.e. scene cleanup). In this step, we check that level of
detail (LOD) functionality is properly specified within
Maya. The source data can contain up to hundreds of
buildings, each with individual levels of detail, producing
a immensly polygon-intensive scene. Furthermore,
buildings can have duplicate edges and polygons, or
unnecessary duplicate material shaders. To address this,
MELScripts have been created that recognize and correct
these issues in order to properly optimize the scene in

order to achieve better frame rates during real-time
render.

Terrain texturing is the next procedural enhancement,
though this can often be quite difficult as the source data
typically lacks any usable texture information or is
missing textures altogether. In such cases, it becomes
necessary to retexture the ground plane procedurally.
Performing this task entails generating custom UV maps.
We developed a plug-in for Maya to facilitate this process
instead of relying solely on MELScripts. This plug-in
utilizes the Maya API to maximize performance since the
algorithms to compute new UV maps are computationally
intensive. The algorithms to generate custom UV maps
and textures consist of three parts:

1. Analyzing the Terrain

• Distinguish between different types of
terrain (Wide roads, narrow roads,
square fields, rectangular fields)

• Search for outer edges for each type of
terrain

• Find parallel edges for streets

• Compute minimal bounding
parallelograms for rectangle shapes

2. Assigning new materials depending on the type of
the terrain

3. Computing three different types of UV maps for
streets, square shapes and rectangle shapes

Fig. 6 Original COLLADA data

Fig. 7 Procedural terrain texturing

The final process for building texturing requires an
algorithm to randomly identify material shaders and swap
the textures based on different parts of the building.
Using geometry normals to differentiate between different
parts of a structure (roof, walls), various texture maps are
applied to cover the façade (Figs. 6 and 7).

Fig. 8 Original COLLADA data

Fig. 9 Procedural terrain & building texturing

Once the data has been optimized and enhanced inside
of Maya, there is the option to embed in it more abstract-

level information that can be used by the artificial
intelligence (AI) or human user within the game
environment. Current modeling and simulation (M&S)
environments typically rely on primitive elements of the
terrain for an agent’s decisions, and often at a very low-
level such as used for path-planning and navigation.
These elements do not contain level of fidelity required
for representing complex and variable agent behavior
such as culture. Geometry, collision surfaces, ground
type, path nodes and pathing networks are well-suited for
basic mobility and physics calculations but fail to
accurately convey higher-level information that may be
useful to an agent in achieving its goals. Our approach is
to embed this contextual information (through annotations
and affordances) directly in the virtual environment (i.e.,
terrain) and have the AI use this information in its
decision making. Drawing upon other academic fields
(psychology, sociology, business/management,
healthcare, and security), a broad classification hierarchy
of cultural characteristics has been developed that is
derived from the types of models presented by researchers
like Triandis (1989) and Hofstede (2005). Embedding
this type of metadata in the virtual environment allows
agents to apply context to the objects around them and, as
a result, provide a more immersive and realistic
simulation experience.

Fig. 10 An annotated building

After the data has been procedurally optimized and
enhanced with metadata, it is then ready for export from
Maya to one of several rendering environments such as
Unreal, Gamebryo, OGRE, Delta3D, or VBS2. There is
also the capability to export back to COLLADA for
ingestion back into the RUGUD framework for creating
correlated constructive simulation databases, such as
OTFs. The export process is another manually intensive
task because each game engine has specific requirements
such as preferred image formats, LOD functionality, and
proper use of physics meshes. The time required to
complete such tasks range between hours to days to
weeks depending on scene complexity. However, we
have developed a set of automated exporters have reduced

the process to minutes. Employing the Maya exporters
provided for each game engine, each part of the scene is
exported to one of several native engine formats. These
importers/exporters are procedurally called using MEL
scripts, though they also utilize third-party software tools
such as Feeling Software’s COLLADA plugin.

5. CONCLUSIONS

To date, the MTGP has been tested and verified with
several RUGUD datasets to create high-fidelity terrain for
a variety of game technologies, including Gamebryo,
Unreal Tournament, Delta3D and most recently Ogre and
Half-Life 2. Analysis of the pipeline’s manipulation and
optimization process has shown an approximate 50% time
savings for creating an area of game-ready terrain from
existing source data (i.e., it would have taken a team of
artists approximately double the amount of time to create
the dataset had the MTGP not been used). The current
procedural manipulations being done by the MTGP allow
for a fully-automated export to one of the game engines
listed above in a matter of minutes. Should the incoming
source data (COLLADA) be deficient, or the manipulated
Maya data be unsatisfactory in some way (e.g. not enough
resolution), the option still exists for an artist to manually
manipulate parts of the scene, which will have already
been optimized in certain places.

Future work includes augmenting existing geo-
specific datasets with representative environmental (geo-
typical) features for an area of interest. Current geo-
specific rendering of terrain requires information about
both the geometry and photometry of an area. The
geometry comprises the polygonal elevation map and
above surface features that sit atop the terrain skin
(vegetation, buildings, infrastructure). The photometry
comprises the textured appearance of the geometry under
certain conditions (lighting, atmospherics). However, in
order for the modeled area to be truly accurate, a certain
level of fidelity is required that ensures relevant features
are included and represented correctly. For example,
DTED-4 has a post spacing of 3 meters, which means the
highest level of fidelity that can exist between vertices in
the polygonal model is ~10 ft. This is often less than
adequate for training the COE type of operations, which
frequently require interactions with sub-meter
environmental features (such as signage, utility poles, and
narrow pathways). Unfortunately, even DTED-5 (1m)
data for today’s rendering systems are not adequate for a
realistic representation of an area of interest.
Additionally, much of the source data used does not
contain the above surface features required for accurate
training and simulation. Academia has investigated such
feature placement and will be leveraged for future work
(Greuter et al., 2003, Danaher, 2002). Candidate
enhancement capabilities for inclusion in the MTGP
include:

- Elevation alteration – the ability to create and

modify the height map to produce terrain with
varying degrees of height (Schneider et al., 2006)

- Feature/Structure placement – the ability to populate
the terrain skin with structures and features that are
representative of the area of interest (Prager et al.,
2004)

- Texture application – the application of textures to
the terrain skin and features/structures that are
representative of the area of interest (Cohen et al.,
2003)

As the simulation and training communities continue
the shift towards procedural generation of game
environments, RDECOM-STTC will direct appropriate
enhancements for both RUGUD and U2MG. For
example, RUGUD extensions are currently being
performed for the Federal Law Enforcement Training
Center (FLETC), which has built a simulation center to
provide a multitude of simulation systems for law
enforcement training purposes. Tasks involved with the
FLETC effort include researching export capabilities for
the SWAT4 and VBS2 gaming engines, as well as
RUGUD pipeline improvements that facilitate ancillary
tasks (texture assignment for building models, etc.).

Additionally , future game-related efforts for RUGUD
and U2MG are likely to focus more on the commonalities
between multiple game engines, rather than on specific
formats. Research and implementation of industry-known
optimizations for geometry, texturing, and other modeling
aspects will be applied to the current pipeline
infrastructure to enhance future data sets. This may
include improvements to texture mapping, decaling,
triangulation algorithms, levels of detail, and other
methods meant to increase run-time performance.
Improvements are also planned with respect to asset
representation, such that we can derive an internal
common model format structured to simplify the
conversion process between SAF, visual, and gaming
formats of interest. This will enable us to explore
additional MTGP-related capabilities like the potential for
re-ingesting modified COLLADA assets back into the
RUGUD pipeline after they have been maniuplated by
artists.

ACKNOWLEDGMENTS

The project or effort described here has been
sponsored by the U.S. Army Research, Development, and
Engineering Command (RDECOM). Statements and
opinions expressed do not necessarily reflect the position
or the policy of the United States Government, and no
official endorsement should be inferred.

REFERENCES

BBC, 2005: Cost of making games set to soar, BBC

Online, November 17, 2005.

Campbell, C. Wertman, K. De la Cruz, J., 2006: A

Framework for Generating High-Fidelity,
Interoperable Urban Terrain Databases, Proceedings

of the Interservice/Industry Training, Simulation and

Education Conference.
Cohen, M., Shade, J., Hiller, S., and Deussen, O., 2003:

Want Tiles for Image and Texture Generation, ACM

Transactions on Graphics.
Epic Games, 2008: Unreal Engine 3, Unreal Wiki.

http://wiki.beyondunreal.com/Legacy:Unreal_Engine_
Versions/3.

Greuter, J., Parker, J., Stewart, N., and Leach, G., 2003:
Real-time Procedural Generation of ‘Pseudo-Infinite’
Cities, International Conference on Computer

Graphics and Interactive Techniques, Melbourne,
Australia, February 11 – 14.

Introversion Software, 2008: Procedural Content
Generation. http://www.gamecareerguide.com/
features/336/procedural_content_.php?page=2

Mann, J., Eifert, L., 2006” Easing the Pain of Urban
Modeling, Proceedings of the Interservice/Industry

Training, Simulation and Education Conference.
Prager, S., Cauble, K., Bakeman, D., Haes, S., and

Goodman, G., 2004: Malls, Sprawl and Clutter:
Realistic Terrain for Simulation of JUO, The

Interservice/Industry Training, Simulation &

Education Conference, Orlando, FL.
Procedural, Inc, 2008: CityEngine Main Website.

http://www.procedural.com/.
Schneider, J., Boldte, T., and Westermann, R., 2006:

Real-time Editing, Synthesis, and Rendering of
Infinite Landscapes on GPUs. Vision, Modeling, and

Visualization.
Stanford, 2004: The Reality of Video Games, Stanford

GSB News, April 2004.

