Electronically-Steerable, Coherent Laser Arrays

REALLY Small, Lightweight, High Power Lasers for DoD Applications

MTO Symposium Joseph Mangano, PM March 7, 2007

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 07 MAR 2007		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Electronically-Steerable, Coherent Laser Arrays REALLY Small, Lightweight, High Power Lasers for Do DApplications				5b. GRANT NUMBER		
Englishedging ingli i onci Lascis ioi Do DApplications				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	otes ems Technology Syn original document	-	•	on March 5	-7, 2007.	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	23	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Diode-Pumped, Solid-State Laser Systems

- Power Delivery Efficiency ~ $\frac{\eta_{LDA} \eta_{SSL} \eta_{BD}}{M^4}$
- Challenges
 - Power Scaling
 - Efficiency
 - Beam Quality
 - Size and Weight
 - Lifetime/Reliability
 - Electronically-steered, Conformal,
 Adaptive, Optical Phased Arrays

Technologies:

- Electronically-Steered, Optical Phased Arrays driven by:
 - Fiber Laser Amplifiers (APPLE)or directly by:
 - Coherent Laser Diode Arrays (COCHISE)

Challenge: Electronically-Steered 100 kW Laser System at 2 kg per kilowatt

APPLE Laser Beam Directors Adaptive Photonic Phase-Locked Elements

APPLE Beam Director Technology can provide:

- All-Electronic Beam Steering with 45° Field-of-Regard
- Power and Aperture Size Scaling through Coherent Beam Combining of Multiple Sub-apertures (2.5 - 5 cm dimension)
- Conformal to Most Military Platforms
 - replaces aerodynamically-challenged turret-mounted beam directors
- Near-Diffraction-Limited Beam Quality, Corrected for:
 - atmospheric turbulence $-r_o \sim 5$ mm/ BW_{atm} ~ 1 kHz
 - aero-optic effects $r_o \sim 5 \text{ cm} / \text{BW}_{\text{atm}} \sim 10 \text{ kHz}$

Fast, Electronically-Steered, Optical Phased Array adaptable to essentially all DoD Laser Applications

APPLE

Adaptive Photonic Phase-Locked Elements

APPLE Concept

Assembled APPLE Subaperture

Challenge: Coherent Array of APPLE Subapertures with Fast Adaptive Optics

Weapon Concepts Require Single-Mode, Narrowline, Kilowatt-Class Fiber Lasers

- **Need High Power Fiber Laser Amplifiers**
 - 2 kW
 - **Single Transverse Mode**
 - **Single Polarization**
 - < λ/20 Phase Noise No SBS/SRS Narrowline

These 2 kW Fiber Laser Amplifiers do not exist

200 watts Commercially Available

Challenge: Scale these Fiber Amplifiers to 2 kW and Beyond

Coherent, High Power Laser Diode Arrays

Why Coherent Diode Arrays?

Electrical Efficiency

- Thin Disk Lasers (HELLADS) 15%

- Fiber Lasers 25-30%

Coherent Laser Diode Arrays 30-50%

Increasing Risk

Three Approaches:

- Talbot Cavity Spatially-Coupled Oscillators in Supermode
- Phase-Locked Loops driven from a common seed beam
- Coherent Combining with SPGD Algorithm as in APPLE

Challenge: Coherently Combine Kilowatt Laser Diode Arrays

Slab-Coupled Optical Waveguide Laser (SCOWL)

- 1 watt
- **Single Mode**
- **Ultra-low Noise**

Individually drive Each Emitter in the Bar

Diffraction-Limited Bar

Talbot Cavity - Laser Diode Phased Array

Coherent Output Beam

Remove Multi-Mode, Unphaseable Rogue Emitters in 10s of nsec

Drive each Emitter in SCOWL Bar Independently

Independent Drivers for Each Emitter in a 10-Emitter Bar

Vertically-Coupled Large Area (VECLA) Laser

Challenge: 10 watt, low noise, single-mode emitters at 50% Efficiency

Design Features

- Low modal overlap to doped layers (<0.02)</p>
- Highly doped cladding layers (~10¹⁸ cm⁻³)
- Thin top cladding layer (~0.05μm)
- Large optical mode (~4 x 15 μm²)

Performance

- Very low optical internal loss (<0.2 cm⁻¹)
- Very low electrical resistance, but not too low
- Very low thermal resistance (~2°C/watt-mm)

APPLE Sub-aperture driven by a Confeitent Lassen Anioptefierray

Potential: 100 kW Laser Systems at 2 kilograms per kilowatt!

Additional Challenges and Areas of Interest

- Laser Diode Technology for pumping Thin Disk Lasers
 - Increase SHEDS Diode Bar Power to ≥ 100 watts/bar-cm
 - Efficiency ≥ 70%
 - Lifetime > 1000 hours
 - 1 cm bar with 1.5 mm pitch
 - Wavelength ~ 808nm (Nd:YLF or Nd:ceramic YAG Pump)
 - Thermal Resistance from Junction to Heat Sink is the limiting factor
- Fiber Laser Technology 100 kW
 - Explore Ultimate Fiber Amplifier Array Scaling Limits
 - Single-Mode (M² < 1.5)
 - Single-Polarization
 - Pump Diode Brightness is the limiting factor

Some of My Current Program Responsibilities

Posters

Briefed

Today

Existing Programs:

APPLE – Conformal Laser Beam Director

COCHISE – Coherent Combining of Laser Diodes
 ADHELS Single-Mode Laser Diode Development

Laser Diode Reliability and Lifetime

SHEDS – Laser Diode Efficiency

UltrabeamX-ray Lasers

Nanowriter
 E-Beam, Direct-Write, Maskless Lithography Tool

IM-VAC (DSO)
 Compact CT Imaging Technology for Battlefield Use

....so see Dr. John Zolper, Director of MTO now!!!
Get Recruited as a New MTO Program Manager

Back ups

APPLET Components

Fast Beam Steering Element

SPGD Algorithm implemented on FPGA

LiNO₃ Electric Field Controller

- Intensity
- Phase
- Polarization

Fiber Laser Amplifier

Tip/Tilt Compensator

Fiber

Phase-Locked Loop around a SCOWL Amplifier

Mach Zehnder Interferometer measures Phase for Feedback Control

Challenge: Coherent Array of High Power Laser Diode Amplifiers at 2 kW

COCHISE Diode Protection Technology Accelerated Diode Bar Lifetest

Fault Mode Frequency increases with Diode Bar Current

Eliminating Rogue Modes extends Diode Bar Lifetime by >10x
No Impact on Average Power or Efficiency

COCHISE

Revolutionizing Laser Diode Bar Technology

Efficiency

= **50% ⇒ 70% SHEDS**

Cochise Program Goals

Lifetime = 10 - 100 hours ⇒ >1000 hrs for HELLADS and SHEDs

High Power per Bar

= 85 watts/bar for HELLADS then >100 watts/bar

Diode Beam Quality = 35x Diffraction Limit ⇒ < 1.4x Diffraction Limit

Coherent Combination = No ⇒ Yes

Unique COCHISE Diode Protection Extends Diode Lifetime by >10x

Brightness and Coherence

Cochise will increase Power and Safe Operating Temperature of Laser Diode Bars

- In Year 2, COCHISE will Extend HELLADS Diode Bar Lifetime at Higher:
 - Diode Bar Power

85 Watts ⇒ >100 Watts

Inlet Coolant Temperatures 35°C

⇒ >50°C

- Reduce Laser Weapon System Size, Weight, and Cost
 - Impacts:
 - HELLADS Phase 4
 - DARPA Fiber Laser Program
 - All DoD Diode-Pumped Solid State Laser Programs

Challenge: 200 watts/bar-cm by Combining Diode Protection with Improved Bar Cooling Technology

Proposed Roadmap

Solid-State Laser Amplifiers

- Challenges
 - Scalability
 - Efficiency
 - Beam Quality/Coherence
 - Size, Weight, Power

- Programs
 - HELLADS (TTO)
 - HPFL (TTO)
 - ADHELS/COCHISE
- Technologies
 - Thin Disks
 - Fiber
 - Coherent Diode Arrays

Beam Directors

- Challenges
 - Efficient
 - All-Electronic Steering
 - Scalable to High Power and Aperture Size
 - Conformal to Platform
 - Minimum Size/Weight

- Program
 - APPLE

- Technologies
 - Conformal Phased Array
 - Risley Prisms
 - Gimballed

Diode-Pumped, Solid-State Laser **Systems**

Power Delivery Efficiency $\sim \frac{\eta_{LDA} \eta_{SSL} \eta_{BD}}{M4}$

Challenges

- Power
- Efficiency
- Beam Quality
- Size and Weight
- Lifetime/Reliability
- Electronically-steered, Conformal **Optical Phased Arrays with AO**

Beam C

Agenda: **Progr**

-AD

- APPLE Beam Directors **- 84E**
- AP **COCHISE Coherent Diode Arrays**
 - **Coherent Diode Arrays integrated with APPLE**
 - **Challenges**

ers