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Cycling the Representer Method 
with Nonlinear Models 

Hans E. Ngodock, Scott R. Smith and Gregg A. Jacobs 

Abstract Realistic dynamic systems are often strongly nonlinear, particularly those 
for the ocean and atmosphere. Applying variational data assimilation to these sys- 
tems requires the linearization of the nonlinear dynamics about a background state 
for the cost function minimization, except when the gradient of the cost function 
can be analytically or explicitly computed. Although there is no unique choice of 
linearization, the tangent linearization is to be preferred if it can be proven to be 
numerically stable and accurate. For time intervals extending beyond the scales of 
nonlinear event development, the tangent linearization cannot be expected to be suf- 
ficiently accurate. The variational assimilation would, therefore, not be able to yield 
a reliable and accurate solution. In this paper, the representer method is used to 
test this hypothesis with four different nonlinear models. The method can be im- 
plemented for successive cycles in order to solve the entire nonlinear problem. By 
cycling the representer method, it is possible to reduce the assimilation problem 
into intervals in which the linear theory is able to perform accurately. This study 
demonstrates that by cycling the representer method, the tangent linearization is 
sufficiently accurate once adequate assimilation accuracy is achieved in the early 
cycles. The outer loops that are usually required to contend with the linear assimi- 
lation of a nonlinear problem are not required beyond the early cycles because the 
tangent linear model is sufficiently accurate at this point. The combination of cy- 
cling the representer method and limiting the outer loops to one significantly lowers 
the cost of the overall assimilation problem. In addition, this study shows that weak 
constraint assimilation is capable of extending the assimilation period beyond the 
time range of the accuracy of the tangent linear model. That is, the weak constraint 
assimilation can correct the inaccuracies of the tangent linear model and clearly 
outperform the strong constraint method. 

HUB. Ngodock (a) 
The Naval Research Laboratory, Stennis Space Center, MS 39529, 
USA, e-mail: Hans.Ngodock@nrlssc.navy.mil 

S.K. Park, L. Xu, Data Assimilation for Atmospheric, Oceanic and Hydrologic 321 
Applications, DOI 10.1007/978-3-540-71056-1.17, 
© Springer-Verlag Berlin Heidelberg 2009 
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1 Introduction 

The representer method of Bennett (1992) is a 4D variational assimilation algorithm 
that relies on the adjoint of the dynamical model and expresses the analyzed solution 
as a first guess plus a finite linear combination of representer functions, one per 
datum. The explicit computation and storage of all the representer functions (direct 
method), however, is not required since the method can be implemented indirectly 
(Amodei, 1995; Egbert et al., 1994) using the conjugate gradient method (hereafter 
CGM). A description of the representer methodology is provided in the Appendix. 
The representer method has earned an established reputation as an advanced data 
assimilation technique within the past decade, and gained the attention of many 
potential operational users. Two primary issues, however, need to be addressed prior 
to implementing the representer method operationally. 

The first issue addressed in this paper is the stability and validity of the tan- 
gent linear model (hereafter TLM). When the representer method is applied to a 
nonlinear model, the model must be linearized, preferably using the 1st order ap- 
proximation of Taylor's expansion. Traditionally, the representer method has been 
implemented for the assimilation of all observations in the time window considered. 
As with every other variational data assimilation method with nonlinear dynamics, 
the representer method necessitates that the TLM and its adjoint be valid and/or sta- 
ble over the entire assimilation time window. The validity of the TLM is difficult to 
maintain over a long time period for strongly nonlinear models and complex regions. 

The second issue addressed in this paper is the cost of the representer method. 
The indirect representer method requires the integration of the adjoint and TLM 
within a CGM that determines the representer coefficients for the minimization of 
the cost function (see Appendix). This set of representer coefficients is then used 
to provide a correction to the background. The number of iterations of the CGM 
(this is referred to as the inner loop) is typically a small fraction of the total num- 
ber of measurements. For strongly nonlinear systems, outer loops are required. To 
initialize the outer loop, one would pick a first background solution around which 
the model is linearized. The best solution (corrected background) obtained from this 
assimilation would become the background for the next outer loop, and so on un- 
til formal convergence (Bennett et al., 1996; Ngodock et al., 2000; Bennett, 2002; 
Chua and Bennett, 2001; Muccino and Bennett, 2002). This outer loop exacerbates 
the computational cost of the representer method. In this study the background that 
serves for linearization is also taken as the first guess. 

These two issues have discouraged many potential users of the representer 
method for operational purposes. It is possible, however, to address these issues and 
implement the representer method at a reasonable cost for operational applications. 
Given a time window in which one desires to assimilate observations, it is possible 
to apply the representer method over cycles of subintervals. The name adopted for 
this approach is the "cycling representer method" (Xu and Daley, 2000), and its as- 
sociated solution is called the "cycling solution". The solution that is obtained by 
assimilating all the observations at once in the original time window will be called 
the "global solution". 
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By using the cycling representer method, the assimilation time window is con- 
strained to a period over which the TLM produces an accurate dynamical representa- 
tion of the nonlinear model. Doing this reduces the need for outer loops. Because the 
representer method solves a linear assimilation problem, the outer loop is designed 
to solve the nonlinear Euler-Lagrange conditions associated with the assimilation 
problem of the nonlinear model. In the global solution problem, the TLM may not 
be an accurate representation of the dynamical system, and the adjoint would not be 
an accurate estimate of the derivative of the state with respect to the control vari- 
ables. If the TLM is an accurate representation of the dynamics, the need for outer 
loops is removed. In the initial cycles of this assimilation approach, the first guess 
or background solution may not be accurate and thus outer loops may be required. 
Once the system is spun up and the TLM is an accurate approximation (thanks to 
improved background solutions), outer loops may no longer be necessary, thus low- 
ering the computational cost of the assimilation. However, there may be situations 
in real world applications where a few outer loops would be needed in the current 
cycle, even though a single outer loop sufficed in previous cycles. An example is 
a nonlinear ocean response (advection and mixing) to a sudden, stronger than nor- 
mal, atmospheric forcing, especially in coastal areas with complex bathymetry. The 
need for additional outer loops may be assessed by the discrepancy between the 
assimilated solution and the data. 

The idea of cycling the representer method was investigated by Xu and Daley 
(2000) using a ID linear transport model with synthetic data. In that study, the error 
co variance of the analyzed solution was updated at the end of each cycle and used as 
the initial error covariance in the next cycle. Another application of the cycling rep- 
resenter method was performed by Xu and Daley (2002) using a 2D linear unstable 
barotropic model with no dynamical errors. In this study, the covariance at the end 
of the cycle was not updated because its computation was too costly to be practical. 
Updating the covariance requires the evaluation and storage of the representer func- 
tions at the final time. These two studies found that updating the covariance at the 
end of each cycle produced significantly more accurate analyses. However, in these 
two applications of the cycling representer method, only linear models were used 
and thus there was no need for a TLM. Most realistic applications are nonlinear and 
their TLM may not be stable over the time window considered. It is in this context 
that this study applies the cycling representer method. 

There are three clear advantages that one can foresee in this approach: (i) a 
shorter assimilation window will limit the growth of errors in the TLM, (ii) the 
background for the next cycle will be improved and, (iii) the overall computational 
cost will be reduced. It is assumed that the assimilation in the current cycle will 
improve the estimate of the state at the final time. The ensuing forecast (the solu- 
tion of the nonlinear model propagated from the final state) is a better background 
for the next cycle than the corresponding portion of the background used in the 
global solution. This forecast uses the same forcing as the standalone nonlinear 
model, although the estimated model error could be ramped to the original ex- 
ternal forcing in order to minimize shocks in the model. The latter has not been 
tested yet. 
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A good candidate for testing assimilation methods for strongly nonlinear models 
is the acclaimed Lorenz attractor model (Lorenz, 1963). It has been used to study 
the behavior of assimilation methods based on sequential filtering and variational 
techniques: Gauthier (1992), Miller et al. (1994, 1999), Evensen (1997), Evensen 
and Fario (1997) and Evensen and Van Leeuwen (2000), to cite but a few. This is 
done with the intent that if an algorithm performs satisfactorily well with this model, 
then it may be applied to atmospheric and ocean models. This is a necessary but not 
a sufficient condition. 

Although being a strongly nonlinear model, the Lorenz attractor suffers from its 
low dimension; it has only three scalar prognostic variables. Assimilation experi- 
ments with the cycling representer method are presented for the Lorenz attractor 
(Ngodock et al. 2007a, b) in Sect. 2. Section 3 deals with the second model consid- 
ered in this study, the one proposed by Lorenz and Emanuel (1998). It is a strongly 
nonlinear model with 40 scalar prognostic variables. It is called "Lorenz-40" in this 
paper for the sake of convenience. In Sect. 4, we present the third model in this 
study: a nonlinear reduced gravity model for an idealized eddy shedding in the Gulf 
of Mexico by Hurlburt and Thompson (1980). The fourth model is presented in 
Sect. 5. It is the Navy coastal ocean model (NCOM), a 40-layer primitive equation 
general circulation model based on the hydrostatic and Boussinesq approximations 
with a hybrid (terrain-following and z-levels) vertical coordinate. Concluding re- 
marks follow in Sect. 6. 

One can clearly notice the progression in this study, as nonlinear models of in- 
creasing dimension are considered. In all four applications, the cycling representer 
method is applied using the full TLM (as opposed to simplified linearizations) and 
its exact adjoint. In the experiments presented here a significance test is not per- 
formed. This would turn the assimilation problem into a search for suitable prior 
assumptions about errors in the data, initial condition, and dynamical errors, and 
hence cloud the issue at hand. 

2 The Lorenz Model 

The Lorenz model is a coupled system of 3 nonlinear ordinary differential equations, 

dx        ,       .       . 
— = o(y-x)+qx, 

-^^px-y-xz + q", (1) 

where x, y and z are the dependent variables. The commonly used time invariant 
coefficients are o = 28, p = 10 and 0 = 8/3. The model errors are represented by 
<f, <? and (f. The initial conditions for Eq. (2) are, 
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x(0)=x0 + ix, 

y(0)=yo + iy, 

325 

(2) 

where xQ = 1.50887, y0 = —1.531271 and zo = 25.46091 are the first guess of the 
initial conditions. These are the same values that are used in the data assimilation 
studies by Miller et al. (1994), Evensen (1997), Evensen and Fario (1997), Miller 
et al. (1999), and Evensen and Van Leeuwen (2000). The initial condition errors 
are represented by r\ P and iz. By setting the model and initial condition errors 
in Eqs. (1) and (2) to zero, the solution to the Lorenz Attractor is computed for 
the time interval [0, 20] using the fourth-order Runge-Kutta (RK4) discretization 
scheme with a time step of dt = 1/600 (Fig. I). This solution is labeled as the 
true solution, since using time steps smaller than dt = I /600 does not significantly 
change the solution within the specified time period. 

The dimensionless time (t) in the Lorenz model is related to a simplified one- 
layer atmospheric model time (T) by t = Jt2H~2{\ + CI

2
)KT, where a2 = 0.5, H is 

the depth of the fluid and JC is the conductivity. For a fluid depth of 500m and a 
conductivity of 25 x 10_3m2s_1, a time unit in the Lorenz model corresponds to 

time 

Fig. 1 RMS misfits between (he data and the background (solid line) and assimilated (doited line) 
solutions for the first 7 time units of Fig. 4. This plot reveals that even though the TLM is only 
reliable for about 0.4 time units the assimilated solution is stable for about 7 time units and is 
correcting the background towards the data during this time period 
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7.818 days. The doubling time of the Lorenz attractor is about 1.1 time units, and 
the tangent linearization is not expected to be stable beyond this time range, which 
becomes a limiting factor for strong constraint assimilation. It is not so with the 
weak constraint. The latter is able to assimilate and fit the data beyond the time 
range of accuracy of the TLM, because the linear perturbation model is not solely 
driven by initial perturbation, but also by the estimated model error given by the 
adjoint model. 

In the time interval [0, 20] there is a set of M observations d G 91** such that 

d = H(jc,y,z) + e (3) 

where H is a linear measurement functional (an M x 3 matrix), e € <3iM is the vector 
of measurement errors, and M is the number of measurements. The data used for all 
assimilation experiments are sampled from the true solution with a frequency of 0.25 
time units. The measurement error is assumed to be £ = 0.002, and its covariance 
matrix is assumed to be diagonal. The initial condition error that is used to perturb 
Eq. (2) is specified to be 10% of the standard deviation of each state variable of 
the true solution (r1 = 0.784, P = 0.897, and ? = 0.870). The initial condition error 
covariance (C„) is simply a 3 x 3 diagonal matrix with values equal to the square of 
the RMS of these initial condition errors. The model error covariance is prescribed 
as a time correlation function exp [—{(t — t')/x) ] multiplied by a 3 x 3 stationary 
covariance matrix 

Cqq — 

1.36 x 10~5 5.99 x 10~7 -1.56 x 10~6 

5.99 x 10-7 1.36 x 10"5 -2.07 x 10~6 

1.56 x 10-6 -2.07 x 10~6  1.36 x 10~5 
(4) 

Even though the time frame of assimilation is far greater than the stability of the 
TLM, the global solution is able to track the data somewhat for about 7 time units. 
It can be seen from Fig. 1 that the global solution is able to reduce the prior misfits 
significantly (even beyond the time range of accuracy of the TLM) before loosing 
track of the data. Beyond 7 time units, the misfit between assimilated solutions and 
data grows rapidly and can be attributed to the increasing errors in the TLM ap- 
proximation. One can therefore conjecture that the error growth in the TLM can be 
limited by reducing the length of the assimilation window. 

The results in Fig. 2 show the RMS error between the truth and the assimilated 
solution with respect to time for cycle lengths of 1, 2, 5 and 10 time units. It is 
shown that the RMS error increases with the cycle length. This is to be expected 
since longer cycles violate the TLM accuracy criterion. In other words, the steady 
decrease of RMS error with respect to the cycle length indicate that as the latter ap- 
proaches the TLM accuracy time for the range of perturbations given by the adjoint 
model, the assimilation algorithm is better able to fit the data. 

Results in Fig. 2 are obtained with 4 outer loops in each cycle. However, results 
with similar accuracy were obtained with 4 outer loops in the first cycle and a single 
outer loop in subsequent cycles, Ngodock et al. (2007a, b). 
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Fig. 2 RMS of the misfit between assimilated and true solutions using different numbers of cycles: 
(a) 20, (b) 10, (c) S, and (d) 2 cycles. The cycle boundaries are depicted by vertical dashed lines. 
By increasing the number of cycles from 2 (d) to 20 (a), significant improvement in the assimilated 
solution is achieved 

The strong constraint solution (not shown here) is obtained by the same proce- 
dure as the weak, except that the model error covariance is set to zero. The weak 
constraint solution is not only more accurate, but also can afford longer cycles than 
the strong constraint The strong constraint is almost confined to the TLM validity 
time, and needs quite a few cycles to start matching the data. In the experiment with 
cycles of 2 time units, the weak constraint accurately fits the data after 3 cycles, but 
the strong constraint never does. When the cycle length is decreased to 1 time unit, 
the weak constraint fits the data in the second cycle and afterward (Fig. 2a), while 
the strong constraint starts fitting the data only in the 16th cycle. Strong constraint 
assimilations will not be carried out with subsequent models. 

2.1 The Cost 

One major reason why the representer method is not widely implemented is the per- 
ceived computational cost. The biggest reduction in cost is achieved by limiting the 
outer loops to one, as was mentioned above. Further gains in computational cost are 
obtained by cycling the representer method. Assume that the matrix inversion in the 
indirect method is performed with a cost of G (M log M) for computing M represen- 
ter coefficients, where M i s the number of measurements. The cycling approach total 
cost will be A^y x G {M^ log M^), where A^ is the number of cycles and M^ is the 
number of measurements within each cycle (assuming that the measurements are 
uniformly distributed in the assimilation interval). Although A^cy x M^ = M, log Mcy 

gets exponentially smaller with increasing Ncy, thus decreasing the computational 
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Table 1 Computational cost of the global and cycling solution using a single outer loop 

Global 2 cycles 4 cycles 5 cycles 10 cycles 20 cycles 

Time (sec) 21.37 9.33 4.49 3.59 1.90 1.09 

cost as illustrated in Table 1. However, there is a drawback to reducing the cycle 
length. The data influence is extended beyond the cycle interval only through an 
improved initial condition for the next cycle. Future data contained in subsequent 
cycles will not contribute to the assimilation in the current and past cycles. One 
should keep this in mind, as well as the time decorrelation scale of the model errors, 
in choosing the appropriate cycle length. 

3 The Lorenz-40 Model 

The Lorenz-40 model (Lorenz and Emanuel, 1998) is a system of 40 coupled non- 
linear ordinary differential equations designed to represent the time evolution of 
advection and diffusion of a scalar quantity in one space dimension with periodic 
boundaries. 

—± = (*,+] -Xi-2)xi-i -Xi + S + qt,     1 < i < 40. (5) 

The model is numerically solved with the 4th-order Runge-Kutta method us- 
ing a time step of At = 0.05, which corresponds to about 6hr for Atmospheric ap- 
plications. This model has an estimated fractal dimension of 27.1, and a doubling 
time of 0.42, given by the leading Lyapunov exponent. It has previously been used 
to test ensemble-based assimilation schemes by Anderson (2001), Whitaker and 
Hamill (2002), and Lawson and Hansen (2004). 

The assimilation window is [0, 1000]. The data are sampled from a reference 
solution at every other component and every time step with a variance of 10~2. 
The assimilation background uses perturbed initial conditions and forcing. Due to 
the long time window and the increased chaotic behavior of this model, there is no 
possibility of computing a global solution; both the TLM and adjoint are unstable. 
Two cycling assimilations are considered: the first uses 100 cycles of 10 time units 
and the second uses 10 cycles of 100 time units. Results in Fig. 4 show that the as- 
similation with a shorter cycle is significantly more accurate. The short-cycle errors 
decrease rapidly after the first few cycles and never grow again. In contrast, errors 
in the solution from the longer cycle persist over time, an indication that the global 
solution would have been unable to match the data. 

The cycle lengths of 10 and 100 time units are significantly longer than the dou- 
bling time of 0.42 given by the leading Lyapunov exponent. Thus the tangent lin- 
earization is not expected to be stable, much less accurate, for any of the cycles. A 
strong constraint assimilation would therefore fail to fit the data. However, the weak 
constraint approach is known to be able to fit the data beyond the time limit imposed 
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Fig. 3 The assimilated solution error from the short cycle {left) and the long cycle length (middle). 
The right panel shows the RMS of the background (black line) and the short cycle assimilated 
solution (red line) 

by the linearization stability (mostly because the assimilation is able to minimize the 
errors in the linearized model), and the results with the Lorenz-40 model shown here 
in Fig. 3 corroborate that facl. 

4 The Nonlinear Reduced Gravity Model 

A nonlinear reduced gravity (primitive equation) model is used to simulate an ide- 
alized eddy shedding off the Loop Current (hereafter LC) in the Gulf of Mexico 
(hereafter GOM). It is the same as the 1 1/2 layer version of the reduced gravity 
model introduced by Hurlbun and Thompson (1980). The dynamical equations are: 

dhu     duhu     duhv 
+ -      -+ — fhv + g h 

dhv 
~dT 

dx dy '<§H«( 
d2hu    d2hu 

2; 

^ 
+ T" - dragx. 

dvhu     dvhv , dh fd2hv     dlhv\      _     J (6) 

dh     dim dhv 

^y 
o. 

where u and v are the zonal and meridional components of velocity, h is the layer 
thickness,/is the Coriolis parameter (here a /3-plane is adopted), g is the accelera- 
tion due to gravity, g' is the reduced gravity. AM is the horizontal eddy diffusivity, 
computed based on the prescribed Reynolds number Re, the maximum inflow ve- 
locity and half the width of the inflow port. The model parameters are listed on 
Table 2. 

Hurlburt and Thompson (1980) showed that it is possible to simulate the eddy 
shedding by specifying time-invariant transport at the inflow and outflow open 
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Table 2 Table of model parameters 

J8                              /o g g7 Re 

2x lO-"m-|s-'           5xl0~5s-2 9.806 ms"2 0.03 ms 2 50.2 

boundaries (see the modeJ domain in Fig. 4). In this case the wind stress and the 
bottom drag are neglected. With a transport of 35Sv at inflow and outflow ports, we 
can simulate an eddy shedding with a period of about 4 months. 

The data are sampled from the reference solution according to 8 networks de- 
scribed in Ngodock et al. 2006 (hereafter NG06), with 5cm and 5cm/sec data error 
for SSH and velocity respectively. The networks are ordered with increasing obser- 
vation density, with network 8 yielding the most observations. Here the assimilation 
experiments are carried out for networks 3,2 and 1 using SSH and velocity data, and 
for network 3 with only SSH data. The assimilation window is 4 months. In network 
3, data are sampled from the reference solution every 200km in each spatial dimen- 
sion and every 10 days, while networks 2 and I sample the reference solution every 
300km (in both x and y directions) and every 5 and 10 days respectively. This pro- 
duces a data density that increases with the network number. The covariances for the 
data, model and initial errors are the same as in NG06: the data error covariance is 
assumed diagonal with a variance of 25 cm2 for SSH and 25cm2s"2 for both com- 
ponents of velocity; the model errors are allowed only in the momentum equations 
following Jacobs and Ngodock (2003), and have spatial correlation scales 100km 

ISO'N 

WN 

35 Sv 

»1'N 

tt'N 

Fig. 4 The model domain is an idealized Gulf of Mexico representation with inflow and outflow 
ports. The selected diagnostic locations of the assimilation solution are marked with bullets 
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in both x and y directions, a standard deviation I0~4 m2s~2 (obtained by accounting 
for a typical wind stress of 0.1 Nm-2 which in turn is divided by a typical density 
of 1000kg in 3), and a time correlation scale of 10 days. The results from the non- 
cycling assimilation experiments are available from the experiments reported in the 
same reference. Only the cycling assimilation experiments are carried out here and 
compared to the corresponding non-cycling solution obtained with 6 outer loops, ll 
should be noted that the initial error covariance at the beginning of a new cycle is not 
updated as the posterior error covariance from the previous cycle. This procedure is 
computationally expensive and is avoided here. The original initial error covariance 
is used in every cycle. A set of 5 diagnostic stations is used for evaluation in this 
study. The station locations are shown in Fig. 4. They are selected in such a way that 
they are common to all the sampling networks; locations 1-3 are distributed along 
the path of the LCE. location 4 is in the region where the LCE sheds, and location 5 
is north of (he LCE shedding region. 

The first cycling representer assimilation experiments are carried out for network 
1 using 4 cycles of 1 month each and 3 outer loops in each cycle. A cycle length of 
1 month is chosen to allow (i) a stable and accurate TJLM, (ii) time distributed data 
within each cycle (especially when the data is sampled every 10 days e.g. networks 
1 and 3), and (iii) the propagation of the data influence in time through the model 
dynamics and the model error covariance function. Figure 5 shows the difference 
between the reference and the assimilated solutions for both the non-cycling and 
the cycling at the end of each month. This figure shows that although both solutions 
have comparable discrepancies in velocity and sea surface height with the reference 
solution at the end of the first month, the discrepancies decrease rapidly in the cy- 
cling solution and by the end of the assimilation window they are greatly reduced 
relative to the non-cycling solution. It is not the case with the non-cycling solution; 
the discrepancies persist and are mostly located around the region where the LCE 
sheds from the LC, i.e. where advective nonlinearities are strongest. This indicates 
that the failure of the non-cycling solution is associated with an inaccurate TLM 
as suggested in NG06. It is also worth mentioning here that the cycling solution is 
obtained with 3 outer loops in each cycle, which is half the computational cost of 
the non-cycling solution computed with 6 outer loops as reported in NG06. 

In the second set of cycling representer experiments, data is assimilated for net- 
works 3, 2 and 1 using 4 I -month cycles in rwo cases: in the first case 3 outer loops 
are used in each cycle, and in the second case 3 outer loops are used only in the first 
cycle and 1 outer loop in the remaining cycles. Figure 6 shows the discrepancies 
to the reference solution computed for the non-cycling and die cycling solutions at 
the end of the third month for all networks, including an experiment where only 
SSH data from network 3 is assimilated. This figure shows that the errors in the 
non-cycling solution are consistent for all networks. One might have expected in- 
creasing errors as the data coverage decreases from network 3 to network 1. Such is 
the case for the non-cycling solution and not for the cycling. It can be hypothesized 
that the errors in the non-cycling solution are dominated by systematic errors in the 
TLM approximation. Fortunately, the cycling solution is able to fit the data properly 
because the growth of TLM errors are inhibited by a limited assimilation interval 
and a more accurate background provided by die previous cycle nonlinear forecast. 
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Fig. 5 The difference between the reference and die assimilated solutions obtained from the non- 
cycling Heft column) and the cycling (right column) rcprescntcr algorithms for network I. The 
differences are shown at the end the first month (top row), second month (second row), third month 
(third raw) and fourth month (fourth row). Arrows represent the velocity and the contour lines 
represent the sea surface height, with a contour line of 0.0) m (I cm) 

A final experiment is carried out with the assimilation of only SSH data from 
network 3. As in NG06 for the non-cycling solution, the ability of the cycling al- 
gorithm to infer the velocity field through the model dynamics by assimilating only 
SSH measurements is tested. The non-cycling and the cycling solutions accuracy is 
evaluated through the rms error to the reference solution at the selected locations. 
Results in Table 3 show that the non-cycling solution is able to accurately fit the 
SSH data at all locations (except for location 4 where the rms exceeds 2 standard 
deviations) and the velocity only at the first two locations. At the remaining and 
critical locations 3-5. the non-cycling solution miserably fails to correct the veloc- 
ity components with rms values sometimes exceeding 5-10 standard deviations. In 
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Fig. 6 Comparison or ihe difference between the reference and the assimilated solution using 
ihe non-cycling (left coltunn) and the cycling (right column) algorithms at the end of the third 
mamh for networks 3 (first row). 2 (second row). ) (third row) and network I with only SSH data 
assimilated (last row) 

Table 3 RMS error of the solutions at the five diagnostic locations for network 3 assimilating only 
SSH data 

Location SSH U V 

Non-cycling Cycling Non-cycling Cycling Non-cycling Cycling 

I 0.0I60 0.06I9 0.0871 0.0353 0.0307 0.0658 
2 0.0253 0.0330 0.0521 0.0211 0.0416 0.0670 
.3 0.0679 0.0173 01073 0.0164 0.4772 0.0170 
•i 0.1354 0.0060 0.1795 0.0094 0.3671 0.0212 
5 0.0963 0.0075 0.2926 00156 0.5844 0.0244 
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contrast, the cycling solution accurately fits the SSH data and the interred velocity 
accurately matches the non-assimilated velocity data within expected errors. 

5 The Navy Coastal Ocean Model (NCOM) 

NCOM is a free-surface ocean model based on the primitive equations and the hy- 
drostatic, Boussinesq, and incompressible approximations, solved on an Arakawa 
C-grid with leapfrog time stepping and an Asselin filter. An implicit lime stepping 
is used for the free-surface, and the vertical discretization uses both sigma coordi- 
nates (for the upper layers) and z-leveJ coordinates (for the lower layers). Further 
detailed specifications of NCOM can be found in Barron et al. (2006). 

The model domain is shown in Fig. 7 where the 30X34 black dots are spaced 
2.5 km apart and represent the center points of the Arakawa C-grid at which sea 
surface height (SSH), salinity and temperature are solved. This grid resolution re- 
quires a 4 minute time-step for numerical stability. In the vertical, there are 40 layers 
with 19 sigma layers in the upper 137m to resolve the shelf-break. The bathymetry 
is extracted from a Navy product called DBDB2, which is a global database with 
2-min resolution. All of the atmospheric forcing, including wind stress, atmospheric 
pressure, solar radiation, and surface heat flux, is interpolated from the Navy Oper- 
ational Global Atmospheric Prediction System (Hogan and Rosmond, 1991), which 
has a horizontal resolution of I degree and is saved in 3 hour increments. 

An array of 14 acoustic Doppler current profile (ADCP) moorings was deployed 
by the Naval Research Laboratory (NRL) for 1 year (May 2004-May 2005) along 

Fig. 7 The model domain for the Mississippi Bight nested NCOM 
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ihe shelf, shelf-break, and slope of the Mississippi Bight (about 100 miles south 
of Mobile, Alabama). These moorings were spaced about 10-20km apart and are 
identified in Fig. 7 as the numbered grey stars. During the time period of this study 
(the month of June, 2004), the filtered velocity data on the slope (moorings 7-14) 
exhibits a general transition of die flow field from being predominantly westward 
to eastward. AJso, the flow on the slope had a strong correlation with the wind 
stress (~0.8) and was fairly uniform in die along-shelf direction with a slight cross- 
shelf current towards the shore. In contrast, the circulation on the shelf (moorings 
1-6) exhibits a weaker correlation with wind stress (less than 0.6), strong menial 
oscillations with a period of about 24 hours, and a substantial velocity shear in 
the water column. Teague et al. (2006) provides an extensive presentation of this 
collected data set. The measurements are sampled every 3 hours and at 5 different 
depths for every mooring. The two velocity components are counted as 2 separate 
measurements. 

As a precursor to the cycling experiments, a long 10-day assimilation experiment 
was attempted, and the resulting solution misfit (red) is plotted in Fig. 8A. The 
background misfit (blue) is also plotted for comparison. These misfits are computed 
as die RMS of the difference between the data and the solution. The assimilation 

Background Mi«fit 
Solution Misfit 

3 3 S 4 4 s 5 
Days of Jun» 200-4 (DOOO GWlT) 

Fig. 8 RMS misfits of the assimilated solution (red) and the background (blue) for a 10-day (A) 
and 2-day cycling (B) assirrulauon experiments 
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Fig. 9 Same as Fig. 8. excepe for 12-hr (A) and 24-hr (B) cycling lengths 
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performs fairly well for the first day (which is about the range of TLM accuracy), 
then the assimilated solution begins to lose its skill, and by the third day it becomes 
unstable and its errors begin to increase exponentially. 

The first cycling experiment performed employs 2-day cycles. The misfit results 
are displayed in Fig. 8B and reveal that the first cycle did well, but the second cycle 
began to severely lose skill midway through the cycle. At the end of the second 
cycle the solution was too poor to provide a sufficient initial condition for the next 
background forecast (the forecast grew numerically unstable). The dashed black line 
in this figure represents the break in between cycles and the vertical portion of the 
blue line along this dashed line is a result of the background being reinitialized to 
the assimilated solution. It is apparent that a 2-day cycle time period is too long 
in order to ensure solution accuracy. This falls in line with the time frame of TLM 
stability. 

Two additional assimilation experiments are carried out for a period of 30 days, 
using 12-hr and 24-hr cycling lengths respectively. Results are shown in Fig. 9, 
where it is apparent that for the first 12 days of the experiment, the 1-day cycle 
experiment outperforms the 12-hour cycle experiment. From June 2 to June 14, the 
solution misfit in the 1-day experiment obtains lower values relative to the 12-hour 
cycle experiment and the general slope has a steeper downward trend. Also, in the 
1-day cycle experiment there is a significant improvement in the background misfit. 
This is signified by a steep downward trend starting at the middle of each cycle. It 
is believed that this drastic change in the background misfit is due to the inertial 
oscillations, which are relatively strong in this region. It appears that the longer 1- 
day cycles are able to better resolve the inertial oscillations and therefore produce 
a more accurate solution that better matches the observed flow held. This result 
illustrates the importance of choosing a cycle time period that is long enough to 
include the important dynamic features that are prevalent in the region and allow 
the data to influence as long of a time window as possible. 

6 Summary and Conclusions 

The cycling representer algorithm that was only tested on linear models when ini- 
tially proposed has now been applied to nonlinear models with increasing complex- 
ity and dimensions: the low-dimension Lorenz attractor, the 40-component strongly 
nonlinear model from Lorenz and Emanuel, the 2-dimension 1.5-layer reduced grav- 
ity nonlinear and the 3-dimension 40-layer NCOM models. In each of these models 
a global assimilation is impractical because the TLM is not stable over the entire 
assimilation time interval. One may argue that other linearization approaches may 
be more stable than the TLM. The cycling assimilation method could still be ap- 
plied should the chosen linearization fail to be stable over the assimilation window 
considered. 

However, the TLM is not the only factor guiding the decision for cycling. The 
cycled solution has proven to be more accurate than the non-cycling with the linear 
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models to which the algorithm was first applied. Even more so in the context of 
nonlinear models with limited TLM stability time range. One reason why the cy- 
cling algorithm improves the accuracy of the solution is the introduction of new 
constraints at the beginning of each cycle. These constraints are absent in the non- 
cycling solution, and thus the cycling solution is more weakly constrained than the 
non-cycling. Another reason is the immediate improvement of the background in 
subsequent cycles. This improvement reduces the magnitude of the innovations and 
thus enables the tangent linear approximation and the assimilation to be more accu- 
rate. In contrast, the non-cycling solution has to overcome larger innovations to fit 
the data, which will require more inner and outer iterations for the process to con- 
verge. Finally the computational cost associated with the cycling algorithm is sig- 
nificantly lower than the non-cycling, especially when outer iterations are dropped, 
as shown in previous studies. 
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Appendix: Solving the Linear EL System Using 
the Representer Method 

Given a background field xf, the linear EL to be solved is 

d¥(xf) 
dt 

\{T) = 0 

and 

dx 

T 
A.-HTw(d-Hx) 

(7) 

— = F(xf) + —~(i - xf) + C„ • X dt dx /       w ^ 

t(0)=Xo + CyyA(0) 

The representer expansion for uncoupling (7) and (8) is: 

M 
x(0 = xf(0+Xamr#n(r). (9) 

m=l 

Here the background (i.e. the trajectory around which the model is linearized) 
is also taken as the first guess (the solution that the assimilation will correct). The 
representer functions rm, m = 1,... M are computed from 
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-,T 

dt 
d¥{xf) 

dx 
Xm-HT8(t-tm) 

X(T)=0 

and 

dt dx   l*"'+ *-«•*« (I1) 

rm(0) = CuXm(0) 

It may be shown (e.g. Bennett, 2002) that the representer coefficients amm=\, 
... M in (9) are the solution of the linear system 

[Re-f-w-,]a = d-Hxf (12) 

where Re is the representer matrix, obtained by evaluating the representer functions 
at the measurements sites, i.e. the mth column of Re is Hrm. In practice, solving 
(12) does not require the computation of the entire representer matrix. An itera- 
tive method such as the conjugate gradient may be invoked, as long as the matrix- 
vector product on the left hand side of (12) can be computed for any vector in 
the data space. This is made possible through the indirect representer algorithm 
(Amodei (1995), Egbert et al. (1994)), which is also used to assemble the right hand 
side of (9) without the explicit computation and storage of the representer func- 
tions. Specifically, given a vector y in the data space, the product R'y is obtained 
by solving (10) and (11) with y replacing the Dirac delta in the right hand side of 
(10), then applying the observation operator H to the resulting r. Once the repre- 
senter coefficients a are obtained, the optimal residuals are computed by solving 
(10), where the single Dirac delta function is now replaced by the linear combina- 

u 
tion £ Om8(t - tm)- These residuals are then used in the right hand side of (11) to 

compute the optimal correction to the first guess xf. 
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