
ARMY DATA SERVICES LAYER (ADSL) – DATA MEDIATION SERVICE (DMS)

Anthony Petosa
U.S. Army Communications-Electronics Command Life Cycle Management Command (CECOM LCMC)

Software Engineering Center (SEC)
Ft. Monmouth, NJ 07703

Narsim Ganti
Data Intelligence – LLC

Marlton, NJ 08053

William DeMasi
Atlantic Consulting Services, Inc.

Shrewsbury, NJ 07702

ABSTRACT

Data architectures in legacy systems employed
proprietary solutions with tightly coupled software
components. Point-to-point solutions enabled exchange
between systems, but these solutions were costly to
maintain. The current migration toward enterprise-wide,
service-oriented architectures calls for the elimination of
these “stovepipe” solutions and promotes the use of
accepted standards and protocols for data exchange. The
Data Mediation Service adopts these standards and
protocols, and it employs semantic technology to
increase its value in providing data mediation services.

1. INTRODUCTION

“The mission of the U.S. Army Communications-
Electronics Life Cycle Management Command (CECOM
LCMC) Software Engineering Center (SEC) Army Net-
Centric Data Strategy (ANCDS) Center of Excellence
(CoE), as chartered by the Army Office of the Chief
Information Officer (CIO/G6), is to facilitate the
execution of the Army’s Net Centric Data Strategy and
provide users with common and overarching data
products and services to promote interoperability and
faster access, retrieval, analysis and utilization of data.”

The ANCDS CoE is developing the Army Data
Services Layer (ADSL), which is a virtual data tier that
addresses data in a SOA environment. The Data
Utilization layer builds composable applications from
“atomic” data services. The Data Abstraction layers
captures and manages metadata at the structural and
semantic levels. The Data Access layer exposes
interfaces to search, retrieve and manipulate data. The
Data Management layer manages data “at rest” and
provides persistence. Lastly, the Data Mediation layer
makes data understandable and usable by bridging the
gap between various data formats, vocabularies and
semantics. (Dirner, et al., 2006) The paper focuses on
this layer.

2. DATA MEDIATION SERVICE

The Data Mediation Service (DMS) is a web service
that will integrate with the Army Enterprise SOA
architecture. It receives a Simple Object Access Protocol
(SOAP) message carrying an eXtensible Markup
Language (XML) message payload that validates against
an XML Schema. The DMS outputs an eXtensible
Stylesheet Language Transformation (XSLT) document
for a service consumer to effect an XML message
transformation. Optionally, the DMS performs the
transformation and outputs an XML message conforming
to the target domain’s XML Schema.

2.1 The Problem with XSLT

An XSLT restructures an XML document into another
one or into some other document format (eg, HTML,
XHTML). XSLT template rules instruct an XSLT
processor to locate XML elements and output them in
some other form. If the target output is an XML document,
then it must be well-formed XML. If the source & target
XML documents validate against XML Schemas, then
they are XML instance documents.

The DMS will produce an XSLT document for some
target XML structural form. As a web service, it fulfills a
consumer request only if the source & target XML
messages share concepts. Humans ascertain if vocabulary
terms across domains convey the same meaning. This not
only requires an understanding of target & source
vocabularies, but it also requires knowledge of the context
in which the terms appear. Stated differently, semantics
communicate the meaning of vocabulary terms in a given
domain. For example, one cannot determine in a machine-
readable way if the term “automobile” in one XML
Schema means the same thing as “car” in another, solely
based on the XML Schema language. In another example,
two XML Schema definitions, “CarLot” & “JunkYard”,
each contain the XML element “Car”, but the context for
“Car” is markedly different for the two definitions. XML
Schema carries no semantics; it is purely structural.
Subject matter experts across domains must evaluate the
terms and their usages before they agree those terms share

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 DEC 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Army Data Services Layer (ADSL) Data Mediation Service (DMS)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Applied Research, Telcordia Technologies, Inc. Piscataway, NJ 08854

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002187. Proceedings of the Army Science Conference (26th) Held in Orlando, Florida on 1-4
December 2008

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

a common meaning. Therefore, humans must first
semantically map XML Schema terms across domains
for the DMS to generate an XSLT properly.

Given these semantic mappings, creating XSLTs
presently requires human intervention. Unfortunately,
this process is both tedious and error-prone. An XSLT
transformation is unidirectional, and a bi-directional
transformation of the same XML message across two
domains requires two XSLT documents. In fact, a
message involved in a bi-directional exchange over (n-1)
domains requires n(n-1) transformations – the n2 problem
(Dirner, et al., 2006). Given the potential volume of
XSLT documents, human effort is unwieldy at best, even
when using software tools for creating XSLTs.
Furthermore, a change to one XML Schema invalidates
existing XSLT documents derived from that schema. In
this case, every domain that interacts with the one
changing its XML Schema (ie, potentially n–1 domains)
must recreate XSLTs anew. An efficient solution to this
problem establishes a means to semi-automate the
process of XSLT generation. Note, semi-automation will
not eliminate the n2 problem. Potentially, (n2–1) XSLT
documents are required to transform an XML message
from each domain to one in every other domain. Yet, it
removes redundancy and human error from the equation.
We will address “semi-automation” later.

3. XML SCHEMA MAPPING PATTERNS

The DMS initially considered defining XML
Schema mapping patterns to establish repeatable
relationships between elements within two disparate
XML Schemas. (Petosa, et al., 2008) Simple XML
element definitions form the basis of these relationships.
A simple element refers to an XML instance document
element containing literal data only. This differs from a
complex element, which contains other elements,
attributes and/or literal data. Simple XML element
definitions form the building blocks of XML Schema
mapping patterns. The first step in pattern development
establishes relationships between vocabulary terms
across domains.

3.1 Mapping Types

We define two types of mapping criteria for XML
Schema mapping patterns: cardinality and hierarchy.
Cardinality mapping occurs at the simple XML element
level. It is a one-to-one, one-to-many or many-to-one
relationship between simple elements across two XML
Schemas. A hierarchy mapping derives from XML
Schema structural constructs, which provide a context
for the elements it contains.

3.2 One-to-One Cardinality Mapping

A simple XML element definition is the building
block of XML Schema mapping patterns. It is atomic,

since it only holds literal data and does not contain other
XML structures. However, an XML element name has no
inherent meaning; it requires human intervention to ascribe
it meaning. Figure 3 shows a one-to-one cardinality
mapping between two XML Schemas, each defining
different representations for a simple XML element named
“timeComponent”.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs=http://www.w3.org/2001/XMLSchema
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="timeComponent"
 type="timeDecimalType" />
 <xs:simpleType name="timeDecimalType">
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="0.00" />
 <xs:maxInclusive value="23.99" />
 <xs:fractionDigits value="2" />
 <xs:totalDigits value="4" />
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

Figure 1: "timeComponent" XML Schema (ver 1)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs=http://www.w3.org/2001/XMLSchema
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="timeComponent"
 type="timePatternType" />
 <xs:simpleType name="timePatternType">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-23]{2}:[0-59]{2}:
 [0-59]{2}" />
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

Figure 2: "timeComponent" XML Schema (ver 2)

Figure 3: A one-to-one cardinality mapping

Suppose the XML Schemas provided in Figure 1 and
Figure 2 represent two different domains, and domain
experts agree each version describes the same concept –
namely, a time representation. Although the data formats
differ, they convey the same intent and both are simple
XML elements. Therefore, they are viable candidates for a
one-to-one cardinality mapping.

timeComponent (v1)
 (timeDecimalType)

timeComponent (v2)
 (timePatternType)

 3

The following XML instance documents illustrate
XML messages that validate against the two preceding
XML Schemas, respectively, with the actual data
highlighted for emphasis.
<?xml version="1.0" encoding="UTF-8"?>
<timeComponent
 xsi:noNamespaceSchemaLocation=
 "TimeComponent-One.xsd"
 xmlns:xsi= "http://www.w3.org/2001/
 XMLSchema-instance">0.00</timeComponent>

Figure 4: "timeComponent" XML instance document
(ver 1)

<?xml version="1.0" encoding="UTF-8"?>
<timeComponent
 xsi:noNamespaceSchemaLocation=
 "TimeComponent-One_v2.xsd"
 xmlns:xsi= "http://www.w3.org/2001/
 XMLSchema-instance">
 00:00:00</timeComponent>

Figure 5: "timeComponent" XML instance document
(ver 2)

3.3 One-to-Many Cardinality Mapping

One often finds simple XML elements packaged
into a complex XML element. A one-to-many cardinality
mapping is not concerned with the containership of the
simple elements. Rather, it connotes a match from a
simple XML element in one domain to two or more
simple XML elements in a second domain. That is,
subject matter experts for the domains agree that a
single, simple XML element encompasses the meaning
of two or more simple XML elements. Note, that a one-
to-many cardinality mapping can just as easily occur
between a single, simple XML element matched to
multiple, simple XML elements in another domain’s
XML Schema.

The XML Schema shown in Figure 6 builds on the
“timeComponent” XML schemas presented earlier. In
this example, the “many” side of the cardinality mapping
presents an XML Schema with a complex type XML
element containing the simple XML element components
“hours”, “minutes” and “seconds”.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs=http://www.w3.org/2001/XMLSchema
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="timeComponent"
 type="timeComponentType"/>

(continued in next column)

(continued from previous column)

 <xs:complexType name="timeComponentType">
 <xs:all>
 <xs:element name="hours">
 <xs:simpleType>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="23"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="minutes">
 <xs:simpleType>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="59"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="seconds">
 <xs:simpleType>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="59"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:all>
 </xs:complexType>
</xs:schema>

Figure 6: "timeComponent" XML Schema (ver 3)

Figure 7 conceptually illustrates the Figure 6 one-to-
many cardinality mapping.

Figure 7: A one-to-many cardinality mapping

3.4 Many-to-One Cardinality Mapping

Alternatively, one may need to consider a one-to-
many cardinality mapping in reverse. The “many” side of
the mapping collectively describes the same intent as the
“one” side, as determined by the domains’ respective
subject matter experts.

timeComponent (v1)
(timeDecimalType)

timeComponent (v3)
(timeComponentType)

“hours” integer value

“minutes” integer value

“seconds” integer value

Single decimal value

 4

3.5 Cardinality Mapping Summary

The preceding sections alert us to the following
points. First, separate XSLTs are required to enable
XML message translations in either direction of a
cardinality mapping. This requirement applies for any
type of cardinality mapping, but this is more apparent in
a one-to-many/many-to-one cardinality mapping.
Second, human beings define cardinality mappings.
Third, a cardinality mapping only intends to show that
the terms on either side of the mapping convey the same
meaning across domains. Fourth, for simplicity’s sake,
the one-to-one cardinality mapping example in Section
3.3 uses identical vocabulary terms across two domains,
but this is the exception and not the rule. In fact, a
domain may express vocabulary terms in foreign
languages or using proprietary internal codes as XML
element names. The latter is anathema to human
readability, but it is allowable. Furthermore, terms with
identical spellings may convey radically different
meanings across domains. Fifth, cardinality mapping
addresses data mediation in terms of message
transformations, but it does not speak to the data format
conversion. In an earlier example, we expressed a
“timeComponent” cardinality mapping using a decimal
value in one domain and a string value patterned from a
regular expression in a second domain.

3.6 Hierarchy Mapping

A hierarchy mapping examines the structural nature
of XML Schema. Whereas a cardinality mapping occurs
at the simple element level, a hierarchy mapping
provides the context for a cardinality mapping.
Therefore, a hierarchy mapping builds upon a cardinality
mapping. An element map usually occurs between nested
elements across disparate XML Schemas, so a
cardinality mapping alone cannot adequately define a
mapping. The exception is mapping two global, simple
elements, since they have no nested structures.

Suppose a vocabulary term qualifies for a cardinality
mapping across various domains, and XML Schema
definitions in various domains nest this term. How would
one know if the root levels of two XML messages
containing these terms convey the same meaning (ie,
form a hierarchy mapping)? Once again, humans
determine this knowledge.

The following example represents XML Schema
definitions from various domains.

Figure 8: Hierarchy mapping example

Subject matter experts for each domain agree that
“TemperedGlass” conveys the same meaning across
domains. Assuming “TemperedGlass” is a simple XML
element, it is eligible for a cardinality mapping. The
subject matter experts also agree that “Inventory”,
“Catalog” & “StorageBin” convey similar meanings in that
each generally describes a collection of things by a weak
association. They determine that “Automobile” does not
express a similar meaning as the preceding terms, since it
is a collection of things having a strong association. That
is, an “Automobile” must contain “Windshield” and
“TemperedGlass” to be an “Automobile”. However, the
various other items within the other domains are not
inherently part of their top-level descriptions (ie,
“Inventory”, “Catalog” & “StorageBin”). For example, an
empty “StorageBin” is still a “StorageBin”. As a result,
one establishes inter-domain hierarchy mappings between
Domains 1-3. Domain #4 cannot participate in these
mappings.

Without the assistance of subject matter experts, how
can one determine a hierarchy mapping in a machine-
readable way? We have already seen that a cardinality
mapping requires subject matter experts to agree that terms
involved in the mappings have the same meaning.
Conceptually, the same problem arises for a hierarchy
mapping. First, we establish containership using the XML
Document Object Model. The XML DOM presents an
XML document as a tree, and an XML parser can use the
XML DOM to “walk the tree”. One can discover if an
XML element defined in a cardinality mapping is
contained within an element slated for a hierarchy
mapping. Subject matter experts then use this information
to vet the hierarchy mapping.

3.7 Equivalency in a Hierarchy Mapping

Unlike a cardinality mapping, a hierarchy mapping
usually does not convey the same meaning; rather, it
represents a similar (or equivalent) meaning. Equivalency
establishes an additional criterion for a hierarchy mapping.
For example, hierarchy mappings between “Inventory”,
“Catalog” and “StorageBin” in

Figure 8 are similar in that they all describe weak
containership structures. However, the concepts are not
identical.

There needs to be some way to quantify the degree of
equivalency to best match these terms in a hierarchy
mapping. For example, is “Inventory” more similar to
“Catalog” than it is to “StorageBin”? Perhaps one can

Domain #1
Inventory
 Windows
 PaneType
 Plexiglass
 TemperedGlass

Domain #2
Catalog
 Products
 TemperedGlass

Domain #3
StorageBin
 Stuff
 Glass
 TemperedGlass

Domain #4
Automobile
 Windshield
 TemperedGlass

 5

attach a numerical “weight” value to a hierarchy
mapping, where a larger “weight” value correlates to a
higher degree of equivalency. Still, this is highly
arbitrary, and it requires subject matter experts to agree
on the “weight” values. Consider the following “weight”
values in various hierarchy mappings. In this example,
“Inventory / Catalog” is the “most equivalent” hierarchy
mapping amongst the terms “Inventory”, “Catalog” and
“StorageBin”.

Hierarchy Mapping Weight Value
Inventory / Catalog 10

Inventory / StorageBin 2
Catalog / StorageBin 3

Table 1: Hierarchy mapping weight values

3.7 Hierarchy Mapping Summary

A hierarchy mapping provides the context for a
cardinality mapping in an XML document, but it requires
domain experts to qualify it. Hierarchy mappings
connote equivalent meanings between terms across
domains, and weight values may provide a way to
quantify the degree of similarity between terms.

3.8 The Viability of XML Schema Mapping Patterns

There is no inherent semantics built into the XML
Schema language; it is purely structural. Thus far, we
have seen that subject matter experts must play a role in
mapping terms across domains. Therefore, it is
impractical to develop XML Schema mapping patterns,
since they are not machine-readable. Instead, we turn to
semantic technologies to assist our mapping efforts.

4. DMS USE OF SEMANTIC TECHNOLOGIES

As noted earlier, the Data Mediation Service accepts
an XML instance document and produces an XSLT
document. A service consumer uses this XSLT document
to transform the source XML instance document into a
target XML instance document. The DMS semi-
automates the process of creating XSLT documents, and
this is highly advantageous since it removes the necessity
to create them manually. Removing the human element
not only reduces the susceptibility for errors, but it also
greatly increases the turnaround time to generate XSLT
documents. Yet, the fact remains that the human element
still plays a role, which is why the XSLT-generation
process is semi-automatic.

4.1 Creating XSLTs “semi-automatically”

At this point, humans must initially agree upon
which terms map across domains, since the XML
Schema language cannot semantically express such

mappings. Yet, the Data Mediation Service requires XML
Schemas to generate XSLTs. While human-generated
mappings form the basis of the XSLT-generation process,
the rest of the process is machine-generated. Hence, the
XSLT generation process is “semi-automated”.
Subsequent sections discuss the machine-generated
concept.

4.2 The Web Ontology Language (OWL) and Related

Languages

“Ontology is a data structure that consists of concepts
(such as things, events and ideas), relationships between
these concepts, and the rules governing when these inter-
concept relationships hold and when they do not. These
concepts, relationships and rules are used to define a
particular domain of knowledge.” (Ganti, 2008)

OWL is an ontology modeling language, and it is a
World Wide Consortium (W3C) recommendation. It is
human-readable, typically written in the language of
RDF/XML. It also carries semantics and extends Resource
Description Framework Vocabulary Description Language
(aka, RDF Schema). To understand OWL, we must first
look at RDF and RDFS, briefly discussed next.

Resource Description Framework (RDF) provides a
framework to identify resources on the World Wide Web,
which is an application that runs on a distributed network
(ie, the “Internet”). Each resource has a Uniform Resource
Identifier (URI), described in terms of properties with
values. The RDF model is a labeled, directed graph.
However, like XML Schema, RDF carries no inherent
semantics (RDF Primer, 2004), but it is possible to trace
the location of a resource by “walking” a path in an RDF
graph.

RDFS extends RDF with language constructs that
carry semantics describing “groups of related resources
and the relationships between these resources.” One such
construct is <rdfs:Class>. According to the literature, an
RDF Class is a resource while “instances” refer to
members of the class (RDF Schema, 2004). An RDF
datatype is an example of an RDF Class, and it may derive
from an XML Schema datatype (eg, <xs:integer>,
<xs:string>, etc.). An RDF Class models a concept,
whereas an instance describes it concretely. For example,
suppose an RDF Class models an XML Schema
“nonNegativeInteger” datatype. The set { 0, 1, 2, … n
}describes all the possible instances of that class. This is
an interesting concept but not especially useful. Yet, the
value is evident when coupled with other RDFS language
constructs, such as <rdfs:subClassOf>. As one may
surmise, <rdfs:subClassOf> models a subset of
<rdfs:Class>. Suppose the RDF Class, “music_genre”,
describes the following instances: Baroque, Bebop, Rock,
Trance, Sonata, Symphony, 12-Bar Blues, Concerto, and
French Dance Suite. An RDF SubClass, “classical_music”
(in its common usage) describes the following set of
instances: Baroque, Sonata, Symphony, Concerto, and
French Dance Suite. Here, we see that the first set of

 6

instances completely contains the second set of instances
(ie, the “classical_music” instance set is a subset of the
“music_genre” instance set).

RDFS provides language constructs that are useful
in describing ontologies. As a declarative ontology
language, it encodes domain knowledge. In other words,
RDFS describes concepts, but it does not indicate how to
implement these concepts (RDF Schema, 2004). The
RDFS language also allows a reasoning engine to infer
new knowledge from an existing knowledge base
modeled as an RDFS document.

In the example earlier, the RDF Class and RDF
SubClass language concepts “music_genre” and
“classical_music”, respectively, semantically describe a
necessary but not sufficient relationship. That is,
“classical_music” implies “music_genre”, but the reverse
is not true. Practically speaking, one can infer that all
“classical_music” instances (Set Z) are contained within
“music_genre” instances (Set A), but not the reverse (see
Figure 10). Stated differently, the “classical_music”
instances are a subset of “music_genre” instances, but
the “music_genre” instances are not a subset of
“classical_music” instances. At least one element in Set
A is not contained in Set Z. For example, Set A contains
“Blues”; Set Z does not. Therefore, Set Z is a proper
subset of Set A.

Earlier, we touched upon OWL, but now there is
enough background to expound upon it. Briefly, OWL is
a declarative ontology language typically written in
RDF/XML that semantically extends RDFS. One useful
extension to RDFS is OWL’s <owl:Class>. An OWL
class modifies the semantics of <rdfs:Class> to include
class axioms that provide greater specificity for the
concept it models. Another useful extension is the OWL
language construct, <owl:equivalentClass>.

Let us return to the prior example. Suppose some
other domain models an OWL ontology that contains the
OWL class, “types_of_music”, and this class
independently describes a set of instances – “individuals”
in OWL parlance – that are the same as the
“music_genre” individuals. By virtue of the exact same
members contained within each set, the “music_genre”
and “types_of_music” OWL class concepts are
“equivalent”. Again, in OWL parlance, the
“music_genre” class extension is identical to the
“types_of_music” class extension (OWL Guide, 2004).
This scenario represents a necessary and sufficient
relationship between OWL classes. Each class meets the
definition that describes it as a subset of the other class
and each subset is identical in content to its counterpart.
In other words, the “music_genre” and “types_of_music”
OWL classes each imply the other; they have a logical
biconditional relationship. Figure 9 illustrates this
relationship. Let us define “music_genre” as Set A and
“types_of_music” as Set B. Therefore,

(A ⊆ B) ≡ (B ⊆ A)

, where A = { Baroque, Bebop, Rock, Trance, Sonata,
Symphony, 12-Bar Blues, Concerto, French Dance Suite } and

B = { Baroque, Bebop, Rock, Trance, Sonata, Symphony,
12-Bar Blues, Concerto, French Dance Suite }

Figure 9: A necessary and sufficient condition

The following mathematically expresses the

relationship between “music_genre” (Set A) and
“classical_music” (Set Z).

(Z ⊆ A) ≢ (A ⊆ Z)

∴ (Z ⊊ A)

, where A = { Baroque, Bebop, Rock, Trance, Sonata,
Symphony, 12-Bar Blues, Concerto, French Dance Suite } and

Z = { Baroque, Sonata, Symphony, Concerto, French Dance
Suite }

Figure 10: A necessary but not sufficient condition

Although the “extensional” meaning of

“music_genre” and “types_of_music” is the same (ie, each
class extension is identical), the “intensional” meaning (ie,
the abstract OWL class definition) is not necessarily the
same. Let us modify the “music_genre” class to include
the notion of composers, where a composer value is
optional. For example, “Baroque” music and “Baroque”
music “composed by Johannes Sebastian Bach” are valid
extensional meanings of “music_genre”. It just so happens
that the latter individual includes an optional composer
value. If one exercises this option at least once in the
“music_genre” class extension, then the “types_of_music”
class extension described earlier is no longer identical to it.
In this case, the “music_genre” and “types_of_music”
OWL classes are no longer equivalent. In practice, a
reasoning engine tests for “consistency” to ensure the
individuals contained in an ontology adhere to the
semantics described in the OWL language constructs. In
the prior example, the reasoning engine deems the
ontology “inconsistent”, because the class extensions are
not identical for the OWL classes asserted to be
equivalent.

Recall the “music_genre” & “classical_music”
concepts in one ontology and the “types_of_music”
concept in a second ontology. We asserted
“classical_music” is a subclasss of “music_genre” and the
“music_genre” & “types_of_music” concepts are
equivalent. We did not assert a relationship between
“classical_music” and “types_of_music”. In applying a
reasoning engine to the ontologies, the engine will infer
that “classical_music” is a subclass of “types_of_music”.
Hence, the reasoning engine acquires new knowledge from
the existing knowledge base. Herein is in the real power of
ontologies.

 7

4.3 OWL Species

The Data Mediation Service leverages OWL DL
ontologies to semi-automate the process of creating
XSLT documents. OWL is available in three species:
OWL Lite, OWL DL and OWL Full. The Web Ontology
Language Description Logic (OWL DL) and OWL Lite
species utilize the decidable fragments of first-order
logic for its logical formalism (Horrocks). Both language
species are computationally complete, which guarantees
that an inference engine can compute a result when
querying an OWL DL/Lite ontology. However, OWL
DL is more expressive than OWL Lite. For example,
OWL Lite only defines an intersection set operation,
while OWL DL also adds the union and complement set
operations. What level of expressivity is necessary for a
given problem? One common OWL DL (version 1.0)
complaint is that it does not allow qualified cardinality
restrictions. A cardinality restriction specifies the number
of allowable values for a property, but it cannot address
the type of value (Schreiber, 2004). OWL 2.0 proposes
to allow qualified cardinality restrictions, which includes
a type qualification on the cardinality restriction (OWL
2, 2008). Figure 11 and Figure 12 show an example of
unqualified & qualified cardinality restrictions,
respectively, using Manchester OWL syntax.

hasDigit exactly 5

Figure 11: Unqualified cardinality restriction

(hasDigit exactly 4 Finger) and (hasDigit exactly 1 Thumb)

Figure 12: Qualified cardinality restriction

Both describe a human hand, but the qualified

cardinality restriction is more expressive.
OWL 2.0 also intends to allow a more expressive

data range by including facets. The following example
(see Figure 13) restricts the “hasAge” property to
teenage years (Knublauch, 2007).

hasAge some xsd:int[>=13, <20]

Figure 13: Data range facet

Unfortunately, the trade-off for greater expressivity
is intractability. At some point, an ontology language can
become too expressive, to the point that computations on
the model may require more time than is reasonably
acceptable.

The Data Mediation Service uses OWL DL (version
1.0) in its present incarnation, although it may adopt
OWL DL 2.0 in the future.

4.3 Ontology Alignment in the DMS

“Given two ontologies, aligning one ontology with
another one means that for each entity (concept, relation,

or instance) in the first ontology, we try to find a
corresponding entity, which has the same intended
meaning, in the second ontology. An alignment therefore
is a one-to-one equality relation. Obviously, for some
entities no corresponding entity might exist.” (Ehrig, 2005)

This definition is similar to the one-to-one cardinality
mapping discussed in Section 3.2. Conceptually, both
ideas semantically align vocabulary terms across domains.
Subject matter experts produce one-to-one cardinality
mappings between XML elements. This is not always the
case when aligning concepts across ontologies; not every
ontology alignment requires human intervention. Given the
inherent semantics built into an ontology, some alignments
are later inferred. For example, consider the following
concepts modeled in various domains’ ontologies (see
Table 2).

Domain Ontology Concept

A Paper
B Newspaper
C WhitePaper
D Wallpaper
E ScholarlyWork
F TechnicalAnalysis

Table 2: Concepts used in OWL equivalencies

A subject matter expert analysis determines that

A:Paper conveys the same meaning as C:WhitePaper &
F:TechnicalAnalysis. A second and independent subject
matter expert analysis reveals that E:ScholarlyWork is
semantically equivalent to A:Paper. Using these results,
ontologists assert OWL DL equivalencies to align the
preceding concepts. This process is similar to the one-to-
one cardinality mapping process, since they each require
human intervention. However, given these asserted
equivalencies, a DL-compliant inference engine discovers
all the concepts are mutually equivalent.

4.4 The Data Mediation Service Concept

The DMS end goal is to produce an XSLT document
that transforms an incoming XML message to one that
validates against a target domain’s XML Schema. An
external repository shared by various communities of
interest stores the XSLT documents required by the DMS.
Therefore, the first order of business is to query this
repository for an XSLT document that meets a DMS
service consumer request. If it finds one, the Data
Mediation Service retrieves it from the repository and
outputs the XSLT document. If not, it generates an XSLT
document and saves it to the repository.

The semantic component of the DMS establishes an
ontology “core”, and it further models the core into an
“inner core” and an “outer core of cores”. In its present
incarnation, the DMS inner core ontologically models

 8

concepts common to the communities of interest that will
access the service. The primary reason for building an
inner core is to address the cascading imports problem in
OWL (version 1.0) ontologies. An OWL ontology may
decide to import other OWL ontologies, much like an
XML Schema may decide to include/import other XML
Schemas. In fact, any OWL ontology can potentially
import other OWL ontologies (ie, the cascading import
problem). Since the inner core will focus on common
inter-domain concepts, it is desirable to prevent
cascading imports. As such, the DMS inner core will not
import other OWL ontologies to ensure it does not add
other concepts inadvertently.

The “outer core of cores” intends to house several
ontologies serving as “proxies” to the inner core. These
may already be in common use, where one or more
communities of interest reference them within their own
ontologies. Therefore, they are excellent candidates for
inclusion in the DMS outer core. Outer-core ontologies
will proxy the DMS inner core concepts, while carrying
additional concepts relevant to one or more communities
of interest. Subject matter experts and ontologists
evaluate these “outer-core” ontologies and may decide to
align them to each other further. The extent of these
alignments is yet to be determined. For example, future
performance testing may define the outer-core alignment
criteria. With the exception of inner-core concepts, it is
likely that outer-core ontologies may share very few, if
any, concepts. However, an inference engine may reveal
unanticipated but desirable relationships between
unaligned outer-core ontologies.

The following demonstrates how the proxy concept
works. The outer-core ontology imports the inner-core
ontology. Suppose the inner core models “Hours”,
“Minutes” and “Seconds” concepts and the outer core
models a “TimeOfDay” concept. Suppose “TimeOfDay”
is a military time concept that exactly contains the other
concepts. The OWL DL “unionOf” language construct
fits this scenario. An example is show in N3 (Notation3)
format.

:TimeOfDay
 a owl:Class ;

owl:unionOf (IC:Hours IC:Minutes IC:Seconds) .

Figure 14: A concept by proxy

IC is a prefix that represents the DMS inner core.

Since the unionOf operation exactly describes the
TimeOfDay class extension, this operation forms an
equivalency between TimeOfDay and an anonymous
class containing the unionOf operation. In fact, any
OWL set operation is a syntactic shortcut for describing
an equivalency. In this example, “TimeOfDay” is acting
as a proxy to the other three concepts. Conceptually, the
DMS “hides” inner core concepts. In reality, OWL
cannot prevent an ontology from directly using a concept
imported from another ontology. An external ontology

(ie, one not contained within the DMS core) approved for
use with the DMS must use an outer-core ontology as a
proxy to inner core concepts. The intent is to maintain a
black-box approach for the DMS core. Any changes to the
DMS core should not invalidate existing external ontology
alignments to the core.

In summary, “external” ontologies align to one or
more outer-core ontologies. These, in turn, may possibly
align to other outer-core ontologies. Ultimately, external
ontologies align to the DMS inner-core ontology via outer-
core ontology proxies. This model provides the semantics
the DMS requires, while preventing the addition of
unanticipated concepts to the DMS inner core.

On its own, the DMS semantic component cannot
produce XSLTs, but it can determine how to generate an
XSLT based upon ontological alignments. This requires
DMS-approved ontologies to encode XML Schemas
within them. An inference engine determines any
equivalency alignments between the source and target
ontologies. These alignments provide the semantics
necessary for the DMS to extract the appropriate source
and target XML Schema elements for building a source-to-
target XSLT document.

CONCLUSIONS

XML is a good first step toward making data widely
understandable. It promotes net-centricity by providing a
common language in place of point-to-point solutions to
share data. XML Schema describes how to structure XML
data, but the XML Schema language lacks semantics. Yet,
XML technology is at the heart of service-oriented
architecture implementations in terms of messages sent
across services. The XSLT language specifies how to
transform XML messages, but it also lacks semantics.

Ontologies provide the missing semantic piece to this
puzzle. Using OWL DL, a W3C-recommended ontology
modeling language, the Data Mediation Service semi-
automates the process of generating the XSLTs needed to
transform source XML messages to their target XML
message structural format. Subject matter experts initially
align ontologies across domains, but inference engines
draw on the logical formalism behind OWL DL to gain
newly acquired knowledge (ie, new alignments are
discovered). The new knowledge enables the DMS to
extract the relevant parts of source and target XML
Schemas in order to create appropriate XSLT documents.

The Data Mediation Service provides value to the
warfighter in that it makes data more understandable
across the entire Army enterprise and beyond. By
removing the human element, the DMS not only eliminates
the propensity for errors to creep into XSLT documents,
but it also reduces the turnaround time, from requesting an
XSLT to generating an XSLT, dramatically. A quicker
flow of information provides value to the warfighter.

REFERENCES

Dirner, M., Mansell, M. and Wronko, M., 2006: Army Data Services Layer (ADSL) – Data Mediation Providing Data
Interoperability and Understanding in a SOA Environment, 4.

Ehrig, Marc, 2005: Ontology Alignment – Bridging the Semantic Gap, Springer Science+Business Media, LLC, 19.

Ganti, Narsim, 2008: Army Net-Centric Data Strategy Center of Excellence Semantic Technology Studies Ontology
Languages Analysis Report, 3.

Horrocks, Ian, OWL: A Description Logic Based Ontology Language,
http://www.cs.man.ac.uk/~horrocks/Slides/cisa06.ppt#831,1,OWL: A Description Logic Based Ontology
Language.

Knublauch, Holger, 2007: OWL 1.1 Support in TopBraid Composer 2.0, http://composing-the-semantic-
web.blogspot.com/2007/02/owl-11-support-in-topbraid-composer-20.html.

Petosa, A. and DeMasi, W., 2008: Data Harmonization Mapping Patterns, Part 1: XML Schema Language Alone is
Inadequate for Data Harmonization.

Schreiber, Guus, 2004: Qualified Cardinality Restrictions (QCRs): Constraining the Number of Property Values of a
Particular Type.

Various authors, 2004: RDF Primer: W3C Recommendation 10 February 2004, World Wide Web Consortium.

Various authors, 2004: RDF Vocabulary Description Language 1.0: RDF Schema: W3C Recommendation 10 February
2004, World Wide Web Consortium.

Various authors, 2008: OWL 2 Web Ontology Language: Primer, World Wide Web Consortium.

Various authors, 2004: OWL Web Ontology Language Guide: W3C Recommendation 10 February 2004, World Wide Web
Consortium.

