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ABSTRACT 

Data architectures in legacy systems employed 
proprietary solutions with tightly coupled software 
components. Point-to-point solutions enabled exchange 
between systems, but these solutions were costly to 
maintain. The current migration toward enterprise-wide, 
service-oriented architectures calls for the elimination of 
these “stovepipe” solutions and promotes the use of 
accepted standards and protocols for data exchange. The 
Data Mediation Service adopts these standards and 
protocols, and it employs semantic technology to 
increase its value in providing data mediation services. 

 
1. INTRODUCTION 

“The mission of the U.S. Army Communications-
Electronics Life Cycle Management Command (CECOM 
LCMC) Software Engineering Center (SEC) Army Net-
Centric Data Strategy (ANCDS) Center of Excellence 
(CoE), as chartered by the Army Office of the Chief 
Information Officer (CIO/G6), is to facilitate the 
execution of the Army’s Net Centric Data Strategy and 
provide users with common and overarching data 
products and services to promote interoperability and 
faster access, retrieval, analysis and utilization of data.” 

The ANCDS CoE is developing the Army Data 
Services Layer (ADSL), which is a virtual data tier that 
addresses data in a SOA environment. The Data 
Utilization layer builds composable applications from 
“atomic” data services. The Data Abstraction layers 
captures and manages metadata at the structural and 
semantic levels. The Data Access layer exposes 
interfaces to search, retrieve and manipulate data. The 
Data Management layer manages data “at rest” and 
provides persistence. Lastly, the Data Mediation layer 
makes data understandable and usable by bridging the 
gap between various data formats, vocabularies and 
semantics. (Dirner, et al., 2006) The paper focuses on 
this layer. 

 
 
 

2. DATA MEDIATION SERVICE 

The Data Mediation Service (DMS) is a web service 
that will integrate with the Army Enterprise SOA 
architecture. It receives a Simple Object Access Protocol 
(SOAP) message carrying an eXtensible Markup 
Language (XML) message payload that validates against 
an XML Schema. The DMS outputs an eXtensible 
Stylesheet Language Transformation (XSLT) document 
for a service consumer to effect an XML message 
transformation. Optionally, the DMS performs the 
transformation and outputs an XML message conforming 
to the target domain’s XML Schema. 

 
2.1 The Problem with XSLT 

An XSLT restructures an XML document into another 
one or into some other document format (eg, HTML, 
XHTML). XSLT template rules instruct an XSLT 
processor to locate XML elements and output them in 
some other form. If the target output is an XML document, 
then it must be well-formed XML. If the source & target 
XML documents validate against XML Schemas, then 
they are XML instance documents. 

The DMS will produce an XSLT document for some 
target XML structural form. As a web service, it fulfills a 
consumer request only if the source & target XML 
messages share concepts. Humans ascertain if vocabulary 
terms across domains convey the same meaning. This not 
only requires an understanding of target & source 
vocabularies, but it also requires knowledge of the context 
in which the terms appear. Stated differently, semantics 
communicate the meaning of vocabulary terms in a given 
domain. For example, one cannot determine in a machine-
readable way if the term “automobile” in one XML 
Schema means the same thing as “car” in another, solely 
based on the XML Schema language. In another example, 
two XML Schema definitions, “CarLot” & “JunkYard”, 
each contain the XML element “Car”, but the context for 
“Car” is markedly different for the two definitions. XML 
Schema carries no semantics; it is purely structural. 
Subject matter experts across domains must evaluate the 
terms and their usages before they agree those terms share 
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a common meaning. Therefore, humans must first 
semantically map XML Schema terms across domains 
for the DMS to generate an XSLT properly. 

Given these semantic mappings, creating XSLTs 
presently requires human intervention. Unfortunately, 
this process is both tedious and error-prone. An XSLT 
transformation is unidirectional, and a bi-directional 
transformation of the same XML message across two 
domains requires two XSLT documents. In fact, a 
message involved in a bi-directional exchange over (n-1) 
domains requires n(n-1) transformations – the n2 problem 
(Dirner, et al., 2006). Given the potential volume of 
XSLT documents, human effort is unwieldy at best, even 
when using software tools for creating XSLTs. 
Furthermore, a change to one XML Schema invalidates 
existing XSLT documents derived from that schema. In 
this case, every domain that interacts with the one 
changing its XML Schema (ie, potentially n–1 domains) 
must recreate XSLTs anew. An efficient solution to this 
problem establishes a means to semi-automate the 
process of XSLT generation. Note, semi-automation will 
not eliminate the n2 problem. Potentially, (n2–1) XSLT 
documents are required to transform an XML message 
from each domain to one in every other domain. Yet, it 
removes redundancy and human error from the equation. 
We will address “semi-automation” later. 

 
3. XML SCHEMA MAPPING PATTERNS 

The DMS initially considered defining XML 
Schema mapping patterns to establish repeatable 
relationships between elements within two disparate 
XML Schemas. (Petosa, et al., 2008) Simple XML 
element definitions form the basis of these relationships. 
A simple element refers to an XML instance document 
element containing literal data only. This differs from a 
complex element, which contains other elements, 
attributes and/or literal data. Simple XML element 
definitions form the building blocks of XML Schema 
mapping patterns. The first step in pattern development 
establishes relationships between vocabulary terms 
across domains. 

 
3.1 Mapping Types 

We define two types of mapping criteria for XML 
Schema mapping patterns: cardinality and hierarchy. 
Cardinality mapping occurs at the simple XML element 
level. It is a one-to-one, one-to-many or many-to-one 
relationship between simple elements across two XML 
Schemas. A hierarchy mapping derives from XML 
Schema structural constructs, which provide a context 
for the elements it contains. 

 
3.2 One-to-One Cardinality Mapping 

A simple XML element definition is the building 
block of XML Schema mapping patterns. It is atomic, 

since it only holds literal data and does not contain other 
XML structures. However, an XML element name has no 
inherent meaning; it requires human intervention to ascribe 
it meaning. Figure 3 shows a one-to-one cardinality 
mapping between two XML Schemas, each defining 
different representations for a simple XML element named 
“timeComponent”. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema 
 xmlns:xs=http://www.w3.org/2001/XMLSchema 
 elementFormDefault="qualified" 
 attributeFormDefault="unqualified"> 
 <xs:element name="timeComponent" 
  type="timeDecimalType" /> 
 <xs:simpleType name="timeDecimalType"> 
  <xs:restriction base="xs:decimal"> 
   <xs:minInclusive value="0.00" /> 
   <xs:maxInclusive value="23.99" /> 
   <xs:fractionDigits value="2" /> 
   <xs:totalDigits value="4" /> 
  </xs:restriction> 
 </xs:simpleType> 
</xs:schema> 

 
Figure 1: "timeComponent" XML Schema (ver 1) 
 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema 
 xmlns:xs=http://www.w3.org/2001/XMLSchema 
 elementFormDefault="qualified" 
 attributeFormDefault="unqualified"> 
 <xs:element name="timeComponent" 
  type="timePatternType" /> 
 <xs:simpleType name="timePatternType"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="[0-23]{2}:[0-59]{2}: 
    [0-59]{2}" /> 
  </xs:restriction> 
 </xs:simpleType> 
</xs:schema> 

 
Figure 2: "timeComponent" XML Schema (ver 2) 
 

 
 

Figure 3: A one-to-one cardinality mapping 
 

Suppose the XML Schemas provided in Figure 1 and 
Figure 2 represent two different domains, and domain 
experts agree each version describes the same concept – 
namely, a time representation. Although the data formats 
differ, they convey the same intent and both are simple 
XML elements. Therefore, they are viable candidates for a 
one-to-one cardinality mapping. 

timeComponent (v1) 
 (timeDecimalType) 

timeComponent (v2) 
 (timePatternType) 
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The following XML instance documents illustrate 
XML messages that validate against the two preceding 
XML Schemas, respectively, with the actual data 
highlighted for emphasis. 
<?xml version="1.0" encoding="UTF-8"?> 
<timeComponent 
 xsi:noNamespaceSchemaLocation= 
  "TimeComponent-One.xsd" 
 xmlns:xsi= "http://www.w3.org/2001/ 
  XMLSchema-instance">0.00</timeComponent> 

 
Figure 4: "timeComponent" XML instance document 
(ver 1) 
 
<?xml version="1.0" encoding="UTF-8"?> 
<timeComponent 
 xsi:noNamespaceSchemaLocation= 
  "TimeComponent-One_v2.xsd" 
 xmlns:xsi= "http://www.w3.org/2001/ 
  XMLSchema-instance"> 
  00:00:00</timeComponent> 

 
Figure 5: "timeComponent" XML instance document 
(ver 2) 
 
3.3 One-to-Many Cardinality Mapping 

One often finds simple XML elements packaged 
into a complex XML element. A one-to-many cardinality 
mapping is not concerned with the containership of the 
simple elements. Rather, it connotes a match from a 
simple XML element in one domain to two or more 
simple XML elements in a second domain. That is, 
subject matter experts for the domains agree that a 
single, simple XML element encompasses the meaning 
of two or more simple XML elements. Note, that a one-
to-many cardinality mapping can just as easily occur 
between a single, simple XML element matched to 
multiple, simple XML elements in another domain’s 
XML Schema. 

The XML Schema shown in Figure 6 builds on the 
“timeComponent” XML schemas presented earlier. In 
this example, the “many” side of the cardinality mapping 
presents an XML Schema with a complex type XML 
element containing the simple XML element components 
“hours”, “minutes” and “seconds”. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema 
 xmlns:xs=http://www.w3.org/2001/XMLSchema 
 elementFormDefault="qualified" 
 attributeFormDefault="unqualified"> 
 <xs:element name="timeComponent" 
  type="timeComponentType"/> 
 
(continued in next column) 
 

(continued from previous column) 
 
 <xs:complexType name="timeComponentType"> 
  <xs:all> 
   <xs:element name="hours"> 
    <xs:simpleType> 
     <xs:restriction base="xs:nonNegativeInteger"> 
      <xs:minInclusive value="0"/> 
      <xs:maxInclusive value="23"/> 
     </xs:restriction> 
    </xs:simpleType> 
   </xs:element> 
   <xs:element name="minutes"> 
    <xs:simpleType> 
     <xs:restriction base="xs:nonNegativeInteger"> 
      <xs:minInclusive value="0"/> 
      <xs:maxInclusive value="59"/> 
     </xs:restriction> 
    </xs:simpleType> 
   </xs:element> 
   <xs:element name="seconds"> 
    <xs:simpleType> 
     <xs:restriction base="xs:nonNegativeInteger"> 
      <xs:minInclusive value="0"/> 
      <xs:maxInclusive value="59"/> 
     </xs:restriction> 
    </xs:simpleType> 
   </xs:element> 
  </xs:all> 
 </xs:complexType> 
</xs:schema> 

 
Figure 6: "timeComponent" XML Schema (ver 3) 
 

Figure 7 conceptually illustrates the Figure 6 one-to-
many cardinality mapping. 

 
 
 
 
 
 
 
 
 
 
 

Figure 7: A one-to-many cardinality mapping 
 

3.4 Many-to-One Cardinality Mapping 

Alternatively, one may need to consider a one-to-
many cardinality mapping in reverse. The “many” side of 
the mapping collectively describes the same intent as the 
“one” side, as determined by the domains’ respective 
subject matter experts. 

 
 

timeComponent (v1) 
(timeDecimalType) 

timeComponent (v3) 
(timeComponentType) 

“hours” integer value

“minutes” integer value

“seconds” integer value

Single decimal value
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3.5 Cardinality Mapping Summary 

The preceding sections alert us to the following 
points. First, separate XSLTs are required to enable 
XML message translations in either direction of a 
cardinality mapping. This requirement applies for any 
type of cardinality mapping, but this is more apparent in 
a one-to-many/many-to-one cardinality mapping. 
Second, human beings define cardinality mappings. 
Third, a cardinality mapping only intends to show that 
the terms on either side of the mapping convey the same 
meaning across domains. Fourth, for simplicity’s sake, 
the one-to-one cardinality mapping example in Section 
3.3 uses identical vocabulary terms across two domains, 
but this is the exception and not the rule. In fact, a 
domain may express vocabulary terms in foreign 
languages or using proprietary internal codes as XML 
element names. The latter is anathema to human 
readability, but it is allowable. Furthermore, terms with 
identical spellings may convey radically different 
meanings across domains. Fifth, cardinality mapping 
addresses data mediation in terms of message 
transformations, but it does not speak to the data format 
conversion. In an earlier example, we expressed a 
“timeComponent” cardinality mapping using a decimal 
value in one domain and a string value patterned from a 
regular expression in a second domain. 

 
3.6 Hierarchy Mapping 

A hierarchy mapping examines the structural nature 
of XML Schema. Whereas a cardinality mapping occurs 
at the simple element level, a hierarchy mapping 
provides the context for a cardinality mapping. 
Therefore, a hierarchy mapping builds upon a cardinality 
mapping. An element map usually occurs between nested 
elements across disparate XML Schemas, so a 
cardinality mapping alone cannot adequately define a 
mapping. The exception is mapping two global, simple 
elements, since they have no nested structures. 

Suppose a vocabulary term qualifies for a cardinality 
mapping across various domains, and XML Schema 
definitions in various domains nest this term. How would 
one know if the root levels of two XML messages 
containing these terms convey the same meaning (ie, 
form a hierarchy mapping)? Once again, humans 
determine this knowledge. 

The following example represents XML Schema 
definitions from various domains. 

 

 

 
 
Figure 8: Hierarchy mapping example 
 

Subject matter experts for each domain agree that 
“TemperedGlass” conveys the same meaning across 
domains. Assuming “TemperedGlass” is a simple XML 
element, it is eligible for a cardinality mapping. The 
subject matter experts also agree that “Inventory”, 
“Catalog” & “StorageBin” convey similar meanings in that 
each generally describes a collection of things by a weak 
association. They determine that “Automobile” does not 
express a similar meaning as the preceding terms, since it 
is a collection of things having a strong association. That 
is, an “Automobile” must contain “Windshield” and 
“TemperedGlass” to be an “Automobile”. However, the 
various other items within the other domains are not 
inherently part of their top-level descriptions (ie, 
“Inventory”, “Catalog” & “StorageBin”). For example, an 
empty “StorageBin” is still a “StorageBin”. As a result, 
one establishes inter-domain hierarchy mappings between 
Domains 1-3. Domain #4 cannot participate in these 
mappings. 

Without the assistance of subject matter experts, how 
can one determine a hierarchy mapping in a machine-
readable way? We have already seen that a cardinality 
mapping requires subject matter experts to agree that terms 
involved in the mappings have the same meaning. 
Conceptually, the same problem arises for a hierarchy 
mapping. First, we establish containership using the XML 
Document Object Model. The XML DOM presents an 
XML document as a tree, and an XML parser can use the 
XML DOM to “walk the tree”. One can discover if an 
XML element defined in a cardinality mapping is 
contained within an element slated for a hierarchy 
mapping. Subject matter experts then use this information 
to vet the hierarchy mapping. 

 
3.7 Equivalency in a Hierarchy Mapping 

Unlike a cardinality mapping, a hierarchy mapping 
usually does not convey the same meaning; rather, it 
represents a similar (or equivalent) meaning. Equivalency 
establishes an additional criterion for a hierarchy mapping. 
For example, hierarchy mappings between “Inventory”, 
“Catalog” and “StorageBin” in  

Figure 8 are similar in that they all describe weak 
containership structures. However, the concepts are not 
identical. 

There needs to be some way to quantify the degree of 
equivalency to best match these terms in a hierarchy 
mapping. For example, is “Inventory” more similar to 
“Catalog” than it is to “StorageBin”? Perhaps one can 

Domain #1 
Inventory 
 Windows 
  PaneType 
   Plexiglass 
   TemperedGlass 

Domain #2 
Catalog 
 Products 
  TemperedGlass 

Domain #3 
StorageBin 
 Stuff 
  Glass 
   TemperedGlass 

Domain #4 
Automobile 
 Windshield 
  TemperedGlass 
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attach a numerical “weight” value to a hierarchy 
mapping, where a larger “weight” value correlates to a 
higher degree of equivalency. Still, this is highly 
arbitrary, and it requires subject matter experts to agree 
on the “weight” values. Consider the following “weight” 
values in various hierarchy mappings. In this example, 
“Inventory / Catalog” is the “most equivalent” hierarchy 
mapping amongst the terms “Inventory”, “Catalog” and 
“StorageBin”.  

 
Hierarchy Mapping Weight Value 
Inventory / Catalog 10 

Inventory / StorageBin 2 
Catalog / StorageBin 3 

 
Table 1: Hierarchy mapping weight values 

 
3.7 Hierarchy Mapping Summary 

A hierarchy mapping provides the context for a 
cardinality mapping in an XML document, but it requires 
domain experts to qualify it. Hierarchy mappings 
connote equivalent meanings between terms across 
domains, and weight values may provide a way to 
quantify the degree of similarity between terms. 

 
3.8 The Viability of XML Schema Mapping Patterns 

There is no inherent semantics built into the XML 
Schema language; it is purely structural. Thus far, we 
have seen that subject matter experts must play a role in 
mapping terms across domains. Therefore, it is 
impractical to develop XML Schema mapping patterns, 
since they are not machine-readable. Instead, we turn to 
semantic technologies to assist our mapping efforts. 

 
4. DMS USE OF SEMANTIC TECHNOLOGIES 

As noted earlier, the Data Mediation Service accepts 
an XML instance document and produces an XSLT 
document. A service consumer uses this XSLT document 
to transform the source XML instance document into a 
target XML instance document. The DMS semi-
automates the process of creating XSLT documents, and 
this is highly advantageous since it removes the necessity 
to create them manually. Removing the human element 
not only reduces the susceptibility for errors, but it also 
greatly increases the turnaround time to generate XSLT 
documents. Yet, the fact remains that the human element 
still plays a role, which is why the XSLT-generation 
process is semi-automatic. 

 
4.1 Creating XSLTs “semi-automatically” 

At this point, humans must initially agree upon 
which terms map across domains, since the XML 
Schema language cannot semantically express such 

mappings. Yet, the Data Mediation Service requires XML 
Schemas to generate XSLTs. While human-generated 
mappings form the basis of the XSLT-generation process, 
the rest of the process is machine-generated. Hence, the 
XSLT generation process is “semi-automated”. 
Subsequent sections discuss the machine-generated 
concept. 

 
4.2 The Web Ontology Language (OWL) and Related 

Languages 

“Ontology is a data structure that consists of concepts 
(such as things, events and ideas), relationships between 
these concepts, and the rules governing when these inter-
concept relationships hold and when they do not. These 
concepts, relationships and rules are used to define a 
particular domain of knowledge.” (Ganti, 2008) 

OWL is an ontology modeling language, and it is a 
World Wide Consortium (W3C) recommendation. It is 
human-readable, typically written in the language of 
RDF/XML. It also carries semantics and extends Resource 
Description Framework Vocabulary Description Language 
(aka, RDF Schema). To understand OWL, we must first 
look at RDF and RDFS, briefly discussed next. 

Resource Description Framework (RDF) provides a 
framework to identify resources on the World Wide Web, 
which is an application that runs on a distributed network 
(ie, the “Internet”). Each resource has a Uniform Resource 
Identifier (URI), described in terms of properties with 
values. The RDF model is a labeled, directed graph. 
However, like XML Schema, RDF carries no inherent 
semantics (RDF Primer, 2004), but it is possible to trace 
the location of a resource by “walking” a path in an RDF 
graph. 

RDFS extends RDF with language constructs that 
carry semantics describing “groups of related resources 
and the relationships between these resources.” One such 
construct is <rdfs:Class>. According to the literature, an 
RDF Class is a resource while “instances” refer to 
members of the class (RDF Schema, 2004). An RDF 
datatype is an example of an RDF Class, and it may derive 
from an XML Schema datatype (eg, <xs:integer>, 
<xs:string>, etc.). An RDF Class models a concept, 
whereas an instance describes it concretely. For example, 
suppose an RDF Class models an XML Schema 
“nonNegativeInteger” datatype. The set { 0, 1, 2, … n 
}describes all the possible instances of that class. This is 
an interesting concept but not especially useful. Yet, the 
value is evident when coupled with other RDFS language 
constructs, such as <rdfs:subClassOf>. As one may 
surmise, <rdfs:subClassOf> models a subset of 
<rdfs:Class>. Suppose the RDF Class, “music_genre”, 
describes the following instances: Baroque, Bebop, Rock, 
Trance, Sonata, Symphony, 12-Bar Blues, Concerto, and 
French Dance Suite. An RDF SubClass, “classical_music” 
(in its common usage) describes the following set of 
instances: Baroque, Sonata, Symphony, Concerto, and 
French Dance Suite. Here, we see that the first set of 
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instances completely contains the second set of instances 
(ie, the “classical_music” instance set is a subset of the 
“music_genre” instance set). 

RDFS provides language constructs that are useful 
in describing ontologies. As a declarative ontology 
language, it encodes domain knowledge. In other words, 
RDFS describes concepts, but it does not indicate how to 
implement these concepts (RDF Schema, 2004). The 
RDFS language also allows a reasoning engine to infer 
new knowledge from an existing knowledge base 
modeled as an RDFS document. 

In the example earlier, the RDF Class and RDF 
SubClass language concepts “music_genre” and 
“classical_music”, respectively, semantically describe a 
necessary but not sufficient relationship. That is, 
“classical_music” implies “music_genre”, but the reverse 
is not true. Practically speaking, one can infer that all 
“classical_music” instances (Set Z) are contained within 
“music_genre” instances (Set A), but not the reverse (see 
Figure 10). Stated differently, the “classical_music” 
instances are a subset of “music_genre” instances, but 
the “music_genre” instances are not a subset of 
“classical_music” instances. At least one element in Set 
A is not contained in Set Z. For example, Set A contains 
“Blues”; Set Z does not. Therefore, Set Z is a proper 
subset of Set A. 

Earlier, we touched upon OWL, but now there is 
enough background to expound upon it. Briefly, OWL is 
a declarative ontology language typically written in 
RDF/XML that semantically extends RDFS. One useful 
extension to RDFS is OWL’s <owl:Class>. An OWL 
class modifies the semantics of <rdfs:Class> to include 
class axioms that provide greater specificity for the 
concept it models. Another useful extension is the OWL 
language construct, <owl:equivalentClass>. 

Let us return to the prior example. Suppose some 
other domain models an OWL ontology that contains the 
OWL class, “types_of_music”, and this class 
independently describes a set of instances – “individuals” 
in OWL parlance – that are the same as the 
“music_genre” individuals. By virtue of the exact same 
members contained within each set, the “music_genre” 
and “types_of_music” OWL class concepts are 
“equivalent”. Again, in OWL parlance, the 
“music_genre” class extension is identical to the 
“types_of_music” class extension (OWL Guide, 2004). 
This scenario represents a necessary and sufficient 
relationship between OWL classes. Each class meets the 
definition that describes it as a subset of the other class 
and each subset is identical in content to its counterpart. 
In other words, the “music_genre” and “types_of_music” 
OWL classes each imply the other; they have a logical 
biconditional relationship. Figure 9 illustrates this 
relationship. Let us define “music_genre” as Set A and 
“types_of_music” as Set B. Therefore, 

 
 

(A ⊆ B) ≡ (B ⊆ A) 
 

, where A = { Baroque, Bebop, Rock, Trance, Sonata, 
Symphony, 12-Bar Blues, Concerto, French Dance Suite } and 

B = { Baroque, Bebop, Rock, Trance, Sonata, Symphony, 
12-Bar Blues, Concerto, French Dance Suite } 

 
Figure 9: A necessary and sufficient condition 

 
The following mathematically expresses the 

relationship between “music_genre” (Set A) and 
“classical_music” (Set Z). 

 
(Z ⊆ A) ≢ (A ⊆ Z) 

∴ (Z ⊊ A) 
 

, where A = { Baroque, Bebop, Rock, Trance, Sonata, 
Symphony, 12-Bar Blues, Concerto, French Dance Suite } and 

Z = { Baroque, Sonata, Symphony, Concerto, French Dance 
Suite } 

 
Figure 10: A necessary but not sufficient condition 

 
Although the “extensional” meaning of 

“music_genre” and “types_of_music” is the same (ie, each 
class extension is identical), the “intensional” meaning (ie, 
the abstract OWL class definition) is not necessarily the 
same. Let us modify the “music_genre” class to include 
the notion of composers, where a composer value is 
optional. For example, “Baroque” music and “Baroque” 
music “composed by Johannes Sebastian Bach” are valid 
extensional meanings of “music_genre”. It just so happens 
that the latter individual includes an optional composer 
value. If one exercises this option at least once in the 
“music_genre” class extension, then the “types_of_music” 
class extension described earlier is no longer identical to it. 
In this case, the “music_genre” and “types_of_music” 
OWL classes are no longer equivalent. In practice, a 
reasoning engine tests for “consistency” to ensure the 
individuals contained in an ontology adhere to the 
semantics described in the OWL language constructs. In 
the prior example, the reasoning engine deems the 
ontology “inconsistent”, because the class extensions are 
not identical for the OWL classes asserted to be 
equivalent. 

Recall the “music_genre” & “classical_music” 
concepts in one ontology and the “types_of_music” 
concept in a second ontology. We asserted 
“classical_music” is a subclasss of “music_genre” and the 
“music_genre” & “types_of_music” concepts are 
equivalent. We did not assert a relationship between 
“classical_music” and “types_of_music”. In applying a 
reasoning engine to the ontologies, the engine will infer 
that “classical_music” is a subclass of “types_of_music”. 
Hence, the reasoning engine acquires new knowledge from 
the existing knowledge base. Herein is in the real power of 
ontologies. 
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4.3 OWL Species 

The Data Mediation Service leverages OWL DL 
ontologies to semi-automate the process of creating 
XSLT documents. OWL is available in three species: 
OWL Lite, OWL DL and OWL Full. The Web Ontology 
Language Description Logic (OWL DL) and OWL Lite 
species utilize the decidable fragments of first-order 
logic for its logical formalism (Horrocks). Both language 
species are computationally complete, which guarantees 
that an inference engine can compute a result when 
querying an OWL DL/Lite ontology. However, OWL 
DL is more expressive than OWL Lite. For example, 
OWL Lite only defines an intersection set operation, 
while OWL DL also adds the union and complement set 
operations. What level of expressivity is necessary for a 
given problem? One common OWL DL (version 1.0) 
complaint is that it does not allow qualified cardinality 
restrictions. A cardinality restriction specifies the number 
of allowable values for a property, but it cannot address 
the type of value (Schreiber, 2004). OWL 2.0 proposes 
to allow qualified cardinality restrictions, which includes 
a type qualification on the cardinality restriction (OWL 
2, 2008). Figure 11 and Figure 12 show an example of 
unqualified & qualified cardinality restrictions, 
respectively, using Manchester OWL syntax. 

 
hasDigit exactly 5 

Figure 11: Unqualified cardinality restriction 
 

(hasDigit exactly 4 Finger) and (hasDigit exactly 1 Thumb) 

Figure 12: Qualified cardinality restriction 
 
Both describe a human hand, but the qualified 

cardinality restriction is more expressive. 
OWL 2.0 also intends to allow a more expressive 

data range by including facets. The following example 
(see Figure 13) restricts the “hasAge” property to 
teenage years (Knublauch, 2007). 

 
hasAge some xsd:int[>=13, <20]  

Figure 13: Data range facet 
 

Unfortunately, the trade-off for greater expressivity 
is intractability. At some point, an ontology language can 
become too expressive, to the point that computations on 
the model may require more time than is reasonably 
acceptable. 

The Data Mediation Service uses OWL DL (version 
1.0) in its present incarnation, although it may adopt 
OWL DL 2.0 in the future. 

 
4.3 Ontology Alignment in the DMS 

“Given two ontologies, aligning one ontology with 
another one means that for each entity (concept, relation, 

or instance) in the first ontology, we try to find a 
corresponding entity, which has the same intended 
meaning, in the second ontology. An alignment therefore 
is a one-to-one equality relation. Obviously, for some 
entities no corresponding entity might exist.” (Ehrig, 2005) 

This definition is similar to the one-to-one cardinality 
mapping discussed in Section 3.2. Conceptually, both 
ideas semantically align vocabulary terms across domains. 
Subject matter experts produce one-to-one cardinality 
mappings between XML elements. This is not always the 
case when aligning concepts across ontologies; not every 
ontology alignment requires human intervention. Given the 
inherent semantics built into an ontology, some alignments 
are later inferred. For example, consider the following 
concepts modeled in various domains’ ontologies (see 
Table 2). 

 
Domain Ontology Concept 

A Paper 
B Newspaper 
C WhitePaper 
D Wallpaper 
E ScholarlyWork 
F TechnicalAnalysis 

 
Table 2: Concepts used in OWL equivalencies 

 
A subject matter expert analysis determines that 

A:Paper conveys the same meaning as C:WhitePaper & 
F:TechnicalAnalysis. A second and independent subject 
matter expert analysis reveals that E:ScholarlyWork is 
semantically equivalent to A:Paper. Using these results, 
ontologists assert OWL DL equivalencies to align the 
preceding concepts. This process is similar to the one-to-
one cardinality mapping process, since they each require 
human intervention. However, given these asserted 
equivalencies, a DL-compliant inference engine discovers 
all the concepts are mutually equivalent. 

 
4.4 The Data Mediation Service Concept 

The DMS end goal is to produce an XSLT document 
that transforms an incoming XML message to one that 
validates against a target domain’s XML Schema. An 
external repository shared by various communities of 
interest stores the XSLT documents required by the DMS. 
Therefore, the first order of business is to query this 
repository for an XSLT document that meets a DMS 
service consumer request. If it finds one, the Data 
Mediation Service retrieves it from the repository and 
outputs the XSLT document. If not, it generates an XSLT 
document and saves it to the repository. 

The semantic component of the DMS establishes an 
ontology “core”, and it further models the core into an 
“inner core” and an “outer core of cores”. In its present 
incarnation, the DMS inner core ontologically models 
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concepts common to the communities of interest that will 
access the service. The primary reason for building an 
inner core is to address the cascading imports problem in 
OWL (version 1.0) ontologies. An OWL ontology may 
decide to import other OWL ontologies, much like an 
XML Schema may decide to include/import other XML 
Schemas. In fact, any OWL ontology can potentially 
import other OWL ontologies (ie, the cascading import 
problem). Since the inner core will focus on common 
inter-domain concepts, it is desirable to prevent 
cascading imports. As such, the DMS inner core will not 
import other OWL ontologies to ensure it does not add 
other concepts inadvertently. 

The “outer core of cores” intends to house several 
ontologies serving as “proxies” to the inner core. These 
may already be in common use, where one or more 
communities of interest reference them within their own 
ontologies. Therefore, they are excellent candidates for 
inclusion in the DMS outer core. Outer-core ontologies 
will proxy the DMS inner core concepts, while carrying 
additional concepts relevant to one or more communities 
of interest. Subject matter experts and ontologists 
evaluate these “outer-core” ontologies and may decide to 
align them to each other further. The extent of these 
alignments is yet to be determined. For example, future 
performance testing may define the outer-core alignment 
criteria. With the exception of inner-core concepts, it is 
likely that outer-core ontologies may share very few, if 
any, concepts. However, an inference engine may reveal 
unanticipated but desirable relationships between 
unaligned outer-core ontologies. 

The following demonstrates how the proxy concept 
works. The outer-core ontology imports the inner-core 
ontology. Suppose the inner core models “Hours”, 
“Minutes” and “Seconds” concepts and the outer core 
models a “TimeOfDay” concept. Suppose “TimeOfDay” 
is a military time concept that exactly contains the other 
concepts. The OWL DL “unionOf” language construct 
fits this scenario. An example is show in N3 (Notation3) 
format. 

 
:TimeOfDay 
  a  owl:Class ; 

owl:unionOf (IC:Hours IC:Minutes IC:Seconds) . 
 

Figure 14: A concept by proxy 
 
IC is a prefix that represents the DMS inner core. 

Since the unionOf operation exactly describes the 
TimeOfDay class extension, this operation forms an 
equivalency between TimeOfDay and an anonymous 
class containing the unionOf operation. In fact, any 
OWL set operation is a syntactic shortcut for describing 
an equivalency. In this example, “TimeOfDay” is acting 
as a proxy to the other three concepts. Conceptually, the 
DMS “hides” inner core concepts. In reality, OWL 
cannot prevent an ontology from directly using a concept 
imported from another ontology. An external ontology 

(ie, one not contained within the DMS core) approved for 
use with the DMS must use an outer-core ontology as a 
proxy to inner core concepts. The intent is to maintain a 
black-box approach for the DMS core. Any changes to the 
DMS core should not invalidate existing external ontology 
alignments to the core. 

In summary, “external” ontologies align to one or 
more outer-core ontologies. These, in turn, may possibly 
align to other outer-core ontologies. Ultimately, external 
ontologies align to the DMS inner-core ontology via outer-
core ontology proxies. This model provides the semantics 
the DMS requires, while preventing the addition of 
unanticipated concepts to the DMS inner core. 

On its own, the DMS semantic component cannot 
produce XSLTs, but it can determine how to generate an 
XSLT based upon ontological alignments. This requires 
DMS-approved ontologies to encode XML Schemas 
within them. An inference engine determines any 
equivalency alignments between the source and target 
ontologies. These alignments provide the semantics 
necessary for the DMS to extract the appropriate source 
and target XML Schema elements for building a source-to-
target XSLT document. 

 
CONCLUSIONS 

XML is a good first step toward making data widely 
understandable. It promotes net-centricity by providing a 
common language in place of point-to-point solutions to 
share data. XML Schema describes how to structure XML 
data, but the XML Schema language lacks semantics. Yet, 
XML technology is at the heart of service-oriented 
architecture implementations in terms of messages sent 
across services. The XSLT language specifies how to 
transform XML messages, but it also lacks semantics. 

Ontologies provide the missing semantic piece to this 
puzzle. Using OWL DL, a W3C-recommended ontology 
modeling language, the Data Mediation Service semi-
automates the process of generating the XSLTs needed to 
transform source XML messages to their target XML 
message structural format. Subject matter experts initially 
align ontologies across domains, but inference engines 
draw on the logical formalism behind OWL DL to gain 
newly acquired knowledge (ie, new alignments are 
discovered). The new knowledge enables the DMS to 
extract the relevant parts of source and target XML 
Schemas in order to create appropriate XSLT documents. 

The Data Mediation Service provides value to the 
warfighter in that it makes data more understandable 
across the entire Army enterprise and beyond. By 
removing the human element, the DMS not only eliminates 
the propensity for errors to creep into XSLT documents, 
but it also reduces the turnaround time, from requesting an 
XSLT to generating an XSLT, dramatically. A quicker 
flow of information provides value to the warfighter. 
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