
 1

Abstract— To achieve the potential of network centric
warfare the Army must securely share information across US
operational units and with coalition partners while at the same
time denying our enemies access to sensitive information.
The sheer number of configuration parameters necessary to
achieve such secure interoperability and optimal data sharing
creates the opportunity for human error and slows the
deployment process. Furthermore, the underlying security
policies may be dynamic due to changing missions, changing
coalition partner relationships and compromise of devices.
Finally, the MANET environment is often bandwidth limited,
links are sometimes intermittent and end-to-end connectivity
is not always possible.

Index Terms—security policy, natural language, automation,
Ponder,

I. INTRODUCTION
ecurity policy is complex, error prone and time
consuming.
 This impacts the development instantiation and update of

policy with coalition partners. Broad challenges include:

― Deconfliction and validation require an understanding of

policy interaction and device capability.
― Policy instantiation often involves imprecise or

inconsistent interpretations on the path to device
configuration.

― The MANET environment is dynamic and lacks much of
the infrastructure typically found in wired enterprise
environments.

The impact on the warfighter is that errors and delays create
situations in which the data is not available to those who need
it in a timely manner. Errors can also lead to the compromise
of sensitive information.

This paper describes the technical approach being developed
by the International Technology Alliance1 to address these

challenges. The ITA approach is to create a layered model
which allows successive refinement, validation, distribution
and update of policy. This approach
― Reduces complexity by allowing specification of policy

using constrained natural language
― Reduces errors by applying formal methods and

automated reasoning to identify conflicts,
inconsistencies, ambiguity and gaps in device policy
enforcement capability.

― Eliminates errors associated with human interpretation
by automating the policy refinement and device
configuration steps.

― Reduces delays by automating both the policy
processing and distribution of policy updates and
associated status.

Layered Model Overview – Figure 1 below shows the
concept of the layered model. The major layers and their
functions are:
― The Policy Specification Layer consists of constrained

natural language grammars that are conducive to the
specification of security policies, tools to support the
authoring of syntactically-correct policies and tools and
ontologies to enable the transformation of natural
language polices into abstract policies.

― The Abstract Policy Layer automatically analyzes sets
of abstract policies for semantic correctness and
consistency through a number of formal methods.

― The Concrete Policy Layer automatically transforms
correct and consistent abstract policy sets into concrete
policy sets that must be upheld by the different
components of the distributed system to meet the policy
goals.

― The Executable Policy Layer transforms and distributes
concrete policy sets to specific devices before and during

1 Research was sponsored by US Army Research laboratory and the UK

Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the US Army Research
Laboratory, the U.S. Government, the UK Ministry of Defense, or the UK
Government. The US and UK Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

Security Policy Automation –
from Specification to Device Configuration

Kirk Schloegel, Tom Markham, Walt Heimerdinger
Honeywell Laboratories, 1985 Douglas Dr, Golden Valley, MN 55422, USA

Alberto Schaeffer-Filho, Morris Sloman, Emil Lupu
Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK

Seraphin B. Calo, and Jorge Lobo
IBM Research, 19 Skyline Drive, Hawthorne, NY 10530

S

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 DEC 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Security Policy Automation from Specification to Device Configuration

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Honeywell Laboratories, 1985 Douglas Dr, Golden Valley, MN 55422,
USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002187. Proceedings of the Army Science Conference (26th) Held in Orlando, Florida on 1-4
December 2008, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

deployment and provides status reporting. The policy
infrastructure at this layer determines when policy
conditions are met. This layer also reports device
discovery information back up to the Concrete Policy
Layer.

Policy Specification
In Natural Language
Subclasses (NLS)

In a Formal Language (FL)

Algorithms & Tools

Author NL policies

Convert NL policies to FL policies

Author FL policies

Convert FL policies to NL policies

Abstract Policy ModelsPrivacy / Security Ontologies

Abstract to concrete
Transformation

Policy Synchronization

Goals, High Level Policies
In System Context

Concrete Policy Sets

Executable Policies

Information
Control Flow

Policy Ratification

Policy Authoring

Status driven updates

Distributed databases, policy
agents, XML and DMTF service

providers

Policy distribution

DMTF translation

Access control & Audit
Policies

Figure 1 The four layers and functions within the policy
model
The value to the warfighter is that these layers are being
integrated so that instead of islands of research there will be a
top to bottom integrated policy system. Each of the layers is
discussed below.

II. NATURAL LANGUAGE

There are a number of methods that might be used to enable
usable policy creation. We have adopted one approach using
constrained natural language.

Figure 2 Policy Specification, Editing & Analysis provides an
overview of the architecture for a generalized policy creation
utility. Such a utility is focused on creating the technical
capabilities for organizations to specify understandable
security policies, and link the authored policies with their
implementations across their IT configuration.

Research has shown that organizational policies are authored
by individuals with a range of skills. Some policy authors
have a legal and/or business background while others have
more technical backgrounds. In order to support users with a
variety of skills, the authoring tool has been designed with
two methods for specifying policies.

Policy authors can write policy rules in natural language using
a rule guide or they can import existing text policies and tailor
them using the rule guide. The tool then transforms the
natural language into a structured format. Alternatively, policy

authors can use a structured format directly to define the
elements and rule relationships. The tool will generate the
corresponding natural language versions for rules created
using this method. Authors can use either method exclusively
or move between the two methods and the tool will keep the
two formats synchronized. Once the policy is in the
structured format, visualizations of the policy are provided to
assist the policy creators in ensuring that the policy coverage
is what was intended. Also, analysis capabilities are provided
to identify conflicts and redundancies among policy rules
within a policy and between policies. Finally, when the policy
author is satisfied with the policy, the tool generates the policy
rule in the desired format (e.g., XACML, ACPL, CIM-SPL,
Ponder), based on the structured natural language. The
following paragraphs provide some details about the use of
the tool for authoring and viewing policies.

Figure 2 Policy Specification, Editing & Analysis

When a user logs onto the authoring tool, the Policy Selection
page is displayed. Here the author can select an existing
policy to modify, upload an existing text file, or create a new
policy file. The user enters a policy name and selects the
policy domain. Once the policy is selected the author will be
taken to the natural language policy authoring page. The area
at the top of the page shows the policy name, description,
domain, and the date it was first created and last modified.
The rule guide that is shown above the policy text editing area
has two purposes. First it reminds authors of what elements
are needed in an implementable policy rule. We define an
implementable policy rule as a rule that can be defined for
automated enforcement through technology. Second, the guide
defines the order in which elements in a policy rule must be
placed so that the natural language parsing technology can
identify them with as high a degree of accuracy as possible.
Security policies have been found to be structured in the
following manner: [User Category(ies)] can perform
[Action(s)] on [Data Category(ies)] for [Purpose(s)] if
[(optional) Condition(s)] with [(optional) Obligations].

Policy
Repository

Natural
Language

Policy
Data Store

Author
Policy

Transform
Policy

Visualization
Of Policy

Generalized Policy Creation

Domain
Based

Grammar

 Natural Language
Parsing
Module

Machine
Readable
Policies
(Local
Store)

Policy Management
Tool

 3

The author can edit text in the policy text editing area or can
cut and paste text from other files so long as the rules conform
to the rule guide. However, the author does not have to use
the exact wordings shown in the guide. It simply increases the
accuracy of the parsing to do so. When parsing has completed,
the user proceeds to the Structured Policy Authoring Method
page to see the structured format of the policy.

When a policy rule is parsed, its elements are saved (i.e., user
categories, actions, data categories, purposes, conditions and
obligations). The elements are reconstructed into sentences
and shown next to radio buttons in a list. While the accuracy
of the parser is very high, it is not perfect so it is important for
the user to compare the text of the parsed rules with the
original rule text. Additionally, all of the rule elements in the
selected rule are shown in rule element lists that appear below
the reconstructed rules on the page. Rule element lists are:
initially populated with domain defaults (e.g., typical terms for
the domain of the policies); extended as new elements are
found in natural language rules during parsing; and, explicitly
added to by the author using input fields provided.

If the user wishes to change a rule, it can be selected by
clicking on the radio button next to it, then the elements of the
rule can be selected from the policy element lists, and the
changes will take effect when the “Modify Rule” button is
clicked. A single rule or all the rules in the policy can be
created using this method. If the user returns to the authoring
page, all the changes that have been made on the structured
policy authoring method page will be reflected in the text.
When the policy author is satisfied with the policy they can
generate an XACML version of it by clicking on the “Save as
XACML” (or “Save as ACPL”, etc.) button at the bottom of
the page.

One of the unique capabilities of the tool is its use of natural
language parsing. To provide this functionality the tool
employs a shallow parser to identify the expected elements of
the policy. Shallow parsing identifies linguistic structures in
natural language, but does not identify the semantic meaning
of the text. The shallow parser used in the tool iteratively
processes text in a number of stages by inserting meta-tags
into the text to identify first parts of speech and then more
application specific text items. The beginning stages operate
with limited linguistic knowledge to identify syntactic
structures such as nouns, noun phrases, verbs, verb groups,
and modifying phrases. Using these first tags, the shallow
parser then uses one or more grammars to identify the desired
text in a document based on patterns of parts of speech. As
part of this research, grammars were designed to identify five
policy element types in the policy rules. These include user
categories / roles, actions, data categories, purposes, and
condition / obligations. These element types were chosen
because they define the elements that are specified by security
policies.

The analysis of natural language is a very difficult task even
in a limited domain. In order to employ natural language with
a high enough degree of accuracy to make the functionality
useful and usable, the tool was designed to analyze
constrained natural language rather than full natural language.

Two constraints are placed on the policy rules. First, each
policy rule must be contained in a single sentence. This
allows the parser to easily identify the beginning and end of
each rule. Second, policy rule elements are expected to be in
one of two possible orderings. The first ordering follows the
guide, and the second ordering has the user category and data
category reversed to support a passive voice form of the rules.
Improving the accuracy and generality of the grammars is an
ongoing research effort.

Policy rules can be checked for correctness at a variety of
levels. For example, a single policy rule can be marked as in
error if the authoring component detects a syntax error. It is
possible to carry out the analysis on high level policies (e.g.,
to detect on the parsed syntactic level in natural language
policies that a purpose is missing), or on policies refined into
formal representations which include semantic detail for the
objects and actions in the policy rule (e.g., to detect that an
object in an XACML policy is not of the proper type or class).

In a similar fashion, policy sets can be analyzed to determine
whether the policy rules in the set are in conflict in a number
of ways. At the syntactic level, we can carry out limited
checks for redundancies and conflicts. At more formal levels
of representation, the semantic information associated with the
policy rule can be used to carry out additional analysis, such
as examining policy coverage over a space of possible values
or investigating conflict at a more detailed level of analysis.
We believe that there are a wide range of analysis algorithms
that might be developed and implemented for security
policies, and that these can be made useful for policy authors.

Architecturally, we believe that it is useful to think of analysis
as potentially applying to policies at different levels of
abstraction (i.e., not just to high or low level policies). Thus,
in a policy management framework which includes authoring
and refinement through implementation, policy analysis can
occur at any level. Furthermore, our experience suggests that
analysis at the high level of abstraction is useful even if it is
not complete. That is, even though we can not detect all
conflicts that might be in a policy by analyzing just syntactic
elements, it can be valuable to authors to indicate those
problems we can find as early as possible, before a great deal
of time has been invested in mapping policy elements to
configuration objects.

At the specification level, if policies are written in natural
language, there must exist a mapping from terms in the policy
specification to structures in the abstract model. For example,
if a policy refers to encryption mechanisms, the formal model
must be able to determine what encryption is and what
encryption mechanisms exist in order to be able to rule out as
invalid a policy that tries to enforce an encryption mechanism
that is not supported by the concrete layers below. Validation
continues to happen at the lower layers because policies get
transformed and can possibly be split into multiple policies
that may be enforced by different end devices or elements.
Some mechanisms may be supported by some but not all end
devices, and from the specification, it might be difficult to
detect how the policy will be transformed and what devices

 4

will be affected to be able to decide if the policy will be valid
at the execution level.

III. ABSTRACT POLICY
Natural language policies are converted to an abstract
language for analysis. To be able to capture both the dynamic
aspect of the system where policies are enforced and the
policies themselves we have used logic based action
description languages for planning as the basis for policy
description at the abstract layer. The main two advantages of
such a language are first that we can use logic programming to
provide formal semantics to policies – a requirement for
analysis, and second that we can use all the tools develop for
logic programs to study and analyze policies.

Space limitations prevent us to present the full language. We
will present a couple of examples so that reader can get a
general overview of the language. Let us start with following
example:

Alice can delete classified data files from her device if she
sends a notification to the supplier of the data 10 minutes in
advance

There are two operations or actions mentioned in the policy:
notify and delete. We appeal to the reader’s intuition for the
attributes of the terms and operations that will be used
through the examples. The subject of the authorization is
alice. The target is alice’s device where the file resides. To
specify authorization policies we will make use of the
following domain independent terms:

1) req(Subject, Target, Action, Time)
2) do(Subject, Target, Action, Time)
3) deny(Subject, Target, Action, Time)
4) permitted(Subject, Target, Action, Time)
5) denied(Subject, Target, Action, Time)
req is an input term that will come as a request from the
environment, do and deny will be the responses of the policy
systems to requests, permitted and denied will be defined by
the policies. Intuitively the time argument in all the terms can
be interpreted as the point in the execution where the term is
being evaluated. The example makes use of another group of
subjects: Suppliers of data. The following is a domain
dependent predicate needed for the specification:

filedesc(Supplier,Name, Type, Time)

The policy can be (partially) described by the following
rules:

do(alice, S, notify(delete(F)), T0) & filedesc(S, F, class, T0) &
not reqInBetween(S, F, retain(F), T0, T1) & T1 = T0 + 10mins

 permitted(alice, device, delete(F), T1)

req(Sub, Tar, Act, Tm) & Tl ≤ Tm ≤ T
 reqInBtween(Sub, Tar, Act, Tl, T)

The second rule check for request between the time interval
[Tl,T]. For availability we need to make sure that if the
request to execute an action appears in the trace of a system

and the subject making the request is permitted to execute the
action the action is executed. We achieve that by adding the
following domain independent rule to our policies:

req(Sub, Tar, Act, T) & permitted(Sub, Tar, Act, T)
do(Sub, Tar, Act, T)

Similar rules can be written to describe denied policies. This
type of policies is called (positive/negative) authorization
policies. In addition the abstract language also has
obligations, e.g. policies that impose the obligation to execute
an operation to some entity in the system. An example of
obligation is:

A connecting node must provide a second identification
within 5 minutes of establishing a connection

Standard components of an obligation are: the Subject being
acquiring the obligation (e.g. the connecting node); target of
the action of the obligation (e.g. the device where the node is
connecting to); the action of the obligation (e.g. provide
second id); and event that triggers the obligation (e.g.
establishing the connection). The terms used in obligations
are:
1) obl(Subject, Target, Action, T1, T2, Time)
2) fulfilled(Subject, Target, Action, Time)
3) violated(Subject, Target, Action, Time)
The obligation can be encoded with the rule:

node(U, T) & do(U, server, connect(U, server), T)
 obl(U, server, submit2ID(U, server), T, T + 5min, T)

The rules for fulfilled and violated are:

obl(Subject, Target, Action, T1, T2, T) & do(Subject, Target,
Action, T) & T1 ≤ T ≤ T2 fulfilled(Subject, Target,Action, T)

obl(Subject, Target,Action, T1, T2, T) & T2 < T
violated(Subject, Target,Action, T)

The abstract language for policies is sufficiently expressive
that many different formalisms (e.g. Ponder2 [RDD07],
XACML [OAS05], Cassandra [BS04,BN07]) can
automatically be translated into it. Automated translation
algorithms have been developed for a large class of Ponder2
described in the next section.
We are able to do application dependent and independent
analysis of policies such as:

– Modality conflicts such as the acquisition of an obligation
without the permissions necessary for its fulfillment.
– Separation of duty clashes, including static separation of
duty, dynamic, and many other classes.
– Coverage gaps, where no policy exists to dictate what the
correct response to a request should be.
– Policy comparison, including the question of whether two
policies are equivalent or one is contained in the other.
– Behavioral simulation, where specific sequences of
requests and events in the policy-regulated system are
entered, to see the policy decisions which arise during the
run.

We use abductive, constraint logic programming (ACLP)
systems as the basis of our analysis algorithms and

 5

implementation, and the Event Calculus (EC) [KS86] to
describe how events and actions occurring in the system
affect the system states. The EC allows us to specify how
actions and events change system state, leading to
circumstances in which a given policy rule is applicable. This
information is an output of the analysis. The reader can find
details of the analysis and the language in [CL08].

IV. CONCRETE POLICY
The output of the abstract language analysis is transformed to
a concrete policy language with an associated framework for
representing physical devices. This section presents an
overview of the Ponder22 policy framework, and the
PonderTalk language used to specify policies in the concrete
layer and to interact with Ponder2 interpreters. In addition to
the types of policies supported and the overall functioning of
Ponder2, this section focuses on two distinguishing aspects of
the framework, which are highly relevant to a MANET
environment: (a) the ability to support management policies
written for an extensible array of resources (through adapter
objects), and (b) the flexibility to load on demand all the code
needed by these policies (through factory objects).

A. Types of Policies

Policies are written in a high-level language called
PonderTalk, more generally used to control and to send
commands to the Ponder2 interpreter. Ponder2 caters for two
types of policies: obligations and authorisations.

Obligation policies are event-condition-action (ECA) rules
that define the management actions that must be performed in
response to events, provided a set of conditions is fulfilled.
These policies cater for the adaptative behaviour of resources.
Obligations are of the form:

 on <event> do

2 http://www.ponder2.net

 if <conditions> then
 <target> <action>

To simplify notation an obligation policy can have a list of
target-action pairs, all evaluated when the event occurs and
the condition holds true. Implicitly, the Ponder2 interpreter
enforcing this policy is called the subject of the obligation,
and the action is invoked on a target resource.

Authorisation policies specify what actions a subject is
allowed (positive authorisation) or forbidden (negative
authorisation) to invoke on a target resource or service.
Authorisations are of the form:

 auth[+/-] <subject> if <condition> then
 <target> <action>

While obligations are enforced by the (implicit) subject of the
policy, authorisation decisions are typically enforced by the
target of the policy, as we assume target resources protect
themselves against unauthorised access.

Ponder2 policies are interpreted, meaning they can be easily
changed without shutting down or recoding components.
These policies are instantiated by the local Ponder2
interpreter, or loaded remotely in the form of missions from
other Ponder2 instances [LD08].

B. Adapter Objects

In order to provide a uniform interface for policy
specification, Ponder2 maintains adapter objects for each of
the components on which management actions can be
performed. Adapter objects abstract the specific
communication protocol and the interface used when
interacting with heterogeneous resources. We have used
adapter objects to enact management policies on remote BSN
nodes using IEEE 802.15.4 radio, and on remote services
using Java RMI and SOAP, for example. Adapter objects to
remote resources may be held transparently in a Ponder2

Figure 3 - Ponder2 domain containing management policies, adapters and factory objects

 6

instance, thereby facilitating the deployment of management
policies across distributed resources.

Adapter objects (also called managed objects) are grouped in
a domain structure that implements a hierarchical namespace,
where managed objects are addressed using path expressions.
Policies may specify management actions to be executed on
individual objects, or on entire domains, in which case the
policies will apply to all managed objects inside that particular
domain.

Policies are also treated as managed objects on which actions
can be performed. Thus events may trigger obligation policies
that perform actions on other policies (e.g. an obligation
policy triggered by a “code red” event may disable a subset
of the current security policies, while enabling a replacement
group of policies). This mechanism allows policies to be
dynamically added, removed, enabled and disabled to change
the behaviour of the Ponder2 instance (or the device running
it) without interrupting its functioning.

C. Factory Objects

Ponder2 has the ability to load all the code needed on demand
through the use of factory objects. Factories provide a high
degree of flexibility to Ponder2, in that adapter objects for
remote devices may be dynamically created or even new types
of policies can be defined (e.g. delegation, filtering, etc) by
providing and dynamically loading the corresponding factory.

This makes Ponder2 suitable for a wide variety of applications
and devices with different capabilities, as only those factories
that are necessary in each device need to be loaded. This is
particularly important when deploying Ponder2 in constrained
resources, typical of MANETs, such as small portable devices
carried by foot soldiers, unmanned vehicles or robots in
general (a description of our experiments in using Ponder2 in
this type of resources can be found in [FL08]).

When started, Ponder2 has a reference to its root domain only
and simply recognises the import command, which is used to
load new classes. Typically, the classes loaded are factories
that permit the creation of new objects in domains. Factory
objects are thus used to create policies and adapters for the
various resources and devices to which the policies apply,
thereby allowing the policy interpreter to communicate with
such resources.

The overall architecture of the Ponder2 framework is shown
in Figure 3. The domain structure of a Ponder2 instance
contains management policies and organizes adapter objects
to which the policies apply. Such adapter objects are created
via factory objects, which can be loaded dynamically into the
domain.

V. EXECUTABLE POLICY

The executable layer addresses the refinement of concrete
policy into a common information model supporting a very
wide ranges of devices. This allows the function of the adapter
objects to be scaled up. The four key tasks required of the
executable layer are:

1. Receive Ponder policy from the concrete layer and
distribute it to policy agents within the MANET.

2. Translate the policy from Ponder to the Distributed
Management task Force (DMTF) Common
Information Model (CIM) as an intermediate device
independent specification of security mechanisms

3. Interpret the CIM to create device specific
configuration data and automatically configure the
associated devices.

4. Communicate device and policy implementation
status back up to the concrete layer to provide the
concrete layer policy subsystem with situational
awareness.

The major components within this layer are shown in Figure
4.

Figure 4 Major components of the executable layer

The yellow boxes highlight the 4 sources of security
information used to configure the device.
― Device static: These are properties specific to the device

itself which cannot be changed by policy. For example,
the protocols (SSL, IPSEC) and cryptographic
algorithms implemented in a device are device static data
which influence the policies the device can implement.

― Profile: The profile represents security configuration
information the organization has determined prior to
deployment. The line between policy and the profile is
fuzzy. However, the profile typically includes relatively
static interoperability related data such as the asymmetric
key parameters which will be used or the minimum key
lengths which are acceptable. This information is loaded
into the device prior to deployment.

Ponder Policy via the concrete layer

Policy Agent

Profile

DMTF CIM - Methods

CIM IPSEC Provider:
Device-specific
implementation of
method calls and
security
mechanisms

Device
static

System
Dynamic

 7

― Ponder policy: This is the dynamic policy which is
pushed down through the policy model and passed to the
executable policy agent via the concrete to executable
layer interface. This policy may change multiple times
during a deployment. The policy provides information to
complement the device static and profile information in
order to create the device configuration.

― System dynamic: This represents information generated
dynamically by the device itself during operation or
derived from the environment. Examples include the IP
address assigned to a device by a DHCP server or the
IPSEC Security Parameters Index (SPI) generated by a
device and associated with a security association.

An example shows how these pieces of information are
combined. Assume that the organization has two devices. The
device static properties indicate that the devices are IPSEC
capable. The profile loaded into the device contains data
values determined by the organization such as the minimum
lifetime of a security association and the elliptic curve group
to be used during Internet Key Exchange negotiations. The
Ponder policy then provides information obligating device x
to use IPSEC to communicate with device y. Finally the
system dynamic information provides the locally generated
security parameters index for the security association between
device x and y.

One challenge is creating a mapping from the concrete policy
specified by Ponder to the DMTF Common Information
Model client parameters in order to provide complete,
unambiguous policy specification. The mapping between the
Ponder tools and the DMTF CIM for IPSEC, shown in Figure
5, highlights the need for more complete policy specification.
A key research challenge is to develop a general framework
which supports automated mapping of any policy specified in
Ponder to the security mechanisms as represented in the
DMTF CIM.

Looking at this from the device perspective the concrete
policy should be able to specify any reasonable policy which
can be modeled in the DMTF CIM. The DMTF CIM
currently provides abstractions of common security
mechanisms and services. This work must be extended to
address the services and mechanisms unique to a military
environment (e.g., low probability of intercept/TRANSEC
keying).

Each of these abstract mechanisms and services will then be
mapped upward in the layered policy model to identify the
data (events, actions, targets and conditions) which must be
specified implicitly or explicitly. Ambiguities and

Figure 5 Common information model for IPSEC

 8

assumptions within the policy model can lead to inconsistent
or insecure policy transformations.

Once the data has been identified it will be associated with the
appropriate function in the layered model (e.g., where within
the policy model is the public key infrastructure fully
specified to provide security and interoperability).

When dealing with security, including security policy, the
devil is in the details. As the DMTF CIM is mapped upward
into the policy model we expect to identify the need for
additional specifications to ensure completeness as well as
new algorithms to perform validation and deconfliction at
multiple layers.

VI. BENEFIT TO THE WARFIGHTER

The benefits of these technologies to a warfighter operating
within a MANET are:
― Rapid deployment and reconfiguration is achieved by
eliminating the time required to manually configure
equipment and confirm interoperability;
― Mistakes by humans translating policy to machine
configuration are eliminated;
― The distribution of policy is robust against poor network
connectivity because the policy is validated first then
distributed via a system of delay tolerant policy agents; and,
― The advanced policy specification, distribution and
implementation tools reduce the need for highly trained
network administrators on the battlefield.

VII. CONCLUSION

The objectives for the ITA security policy work are to:

• Specify coalition policy within the context of a
layered policy model

• Automatically transform platform-independent
policies into platform-specific configurations

• Perform real time analysis and resolution of conflicts
involving aggregation and composition of policies

• Develop protocols for automated policy negotiation
• Do all of the above in a dynamic, power constrained,

bandwidth limited, mobile wireless network.

The approach described here addresses the challenges by
breaking the policy refinement problem into functional layers
which allow independent technology development within each
layer. Preliminary demonstrations within the 4 layers have
been performed. Future work includes:
- Creating a complete top to bottom demonstration of all 4

layers interoperating.
- Expanding the range of policies which can be processed

from top to bottom.
- Enhancing the technology within each layer to address

limitations specific to each layer.

VIII. REFERENCES
 [LD08] E. Lupu, N. Dulay, M. Sloman, J. Sventek, S.
Heeps, S. Strowes, K. Twidle, S.-L. Keoh, A. Schaeffer-Filho.
"AMUSE: autonomic management of ubiquitous e-Health
systems", Concurrency and Computation: Practice and
Experience, vol 20, issue 3. John Wiley & Sons, Ltd., 2008,
pp. 277-295.

 [FL08] A. Schaeffer-Filho, E. Lupu, M. Sloman, S. L. Keoh,
J. Lobo, S. Calo, “A Role-Based Infrastructure for the
Management of Dynamic Communities”, in Proceedings of
the 2nd International Conference on Autonomous
Infrastructure, Management and Security (AIMS). LNCS, vol.
5127. Springer, 2008, pp. 1-14.

[RDD07] Giovanni Rusello, Changyu Dong, and Naranker
Dulay. Authorisation and conflict resolution for hierarchical
domains. In Proc. of Int. Workshop on Policies for Distributed
Systems and Networks, June 2007.

[OAS05] OASIS XACML TC. extensible access control

markup language (XACML) v2.0, 2005.

[BS04] Moritz Y. Becker and Peter Sewell. Cassandra:

Flexible trust management, applied to electronic health
records. In CSFW, pages 139–154. IEEE Computer Society,
2004.

[BN07] Moritz Y. Becker and Sebastian Nanz. A logic for

state-modifying authorization policies. In Joachim Biskup and
Javier Lopez, editors, ESORICS, volume 4734 of Lecture
Notes in Computer Science, pages 203–218. Springer, 2007.

[KS86] R.A. Kowalski and M.J. Sergot. A logic-based

calculus of events. New Generation Computing, 4:67–95,
1986.

[CL08] Craven, R., Lobo, J., Lupu, E., Ma, J., Russo, A.,

Sloman, M., Bandara, A.: A formal framework for policy
analysis. Technical Report, Department of Computing,
Imperial College London (2008)

