EXPEDITIOUS SPALL REPAIR METHODS AND
EQUIPMENT FOR AIRFIELD PAVEMENTS

Michael I. Hammons
Air Force Research Laboratory

Athar Saeed
Applied Research Associates
P.O. Box 40128
Tyndall Air Force Base, FL 32403

AUGUST 2009

Distribution Statement A:
Approved for public release; distribution unlimited.

This work has been submitted for publication at the 2010 Annual Transportation
Research Board (TRB), 10-14 January 2010. At least one of the authors is a U.S.
Government employee; therefore, the U.S. Government is joint owner of the work. If
published, the TRB may assert copyright. If so, the United States has for itself and
others acting on its behalf an unlimited, nonexclusive, irrevocable, paid-up, royalty-free
worldwide license to use for its purposes.
Selected equipment and procedures were evaluated to expeditiously prepare a spall for repair with rapid-setting materials. The objective of this research was to develop one or more methods to excavate and prepare a 2-foot-wide by 2-foot-long by 4-inch-deep spall for placement of a rapid-setting repair material in 15 minutes or less. A secondary objective was to correlate various excavation methods with a relative life expectancy of the repair. For five excavation methods, 2-foot-wide by 2-foot-long by 4-inch-deep spalls were excavated in triplicate. The spalls were subsequently repaired using a typical rapid-setting spall repair material. The efficacy of the repair methods and equipment were evaluated based upon petrographic examination of the substrate excavation, production rate, total production rate, in-situ tensile pull-off strength, direct shear bond strength, and performance under simulated F-15 wheel loading. Each of the methods evaluated had a significant improvement in production rate over the 30-pound jackhammer, the standard Department of Defense spall repair excavation method. The most efficient method was a cold planer, which, on average, was approximately 58 percent more efficient than the jackhammer. Of the methods evaluated, only the cold planer can meet the requirement of being able to excavate 2-foot square by 4-inch deep spall in no more than 15 minutes.
EXPEDIENT SPALL REPAIR METHODS AND EQUIPMENT
FOR AIRFIELD PAVEMENTS

Michael I. Hammons, PhD, PE (corresponding author)
Research Engineer
Air Force Research Laboratory
104 Research Road, #9742
Tyndall AFB, FL 32403
(850) 283-3605 (phone)
(850) 283-4932 (fax)
Michael.Hammons@tyndall.af.mil

Athar Saeed, PhD, PE
Contract Research Engineer, Air Force Research Laboratory
104 Research Road, #9742
Tyndall AFB, FL 32403
(850) 283-3718 (phone)
(850) 283-4932 (fax)
Athar.Saeed@ARA.com

Submitted
August 1, 2009

Words 4752
Figures (8 @ 250) 2000
Tables (1 @ 250) 250
Total 7002

A paper prepared for the 2010 Annual Meeting of the Transportation Research Board
Abstract

Selected equipment and procedures were evaluated to expedite repair of spalls with rapid-setting materials. The objective was to develop one or more methods to excavate and prepare a 2-foot-wide by 2-foot-long by 4-inch-deep spall for placement of a rapid-setting repair material in 15 minutes or less. A secondary objective was to correlate various excavation methods with a relative life expectancy of the repair. For five excavation methods, 2-foot-wide by 2-foot-long by 4-inch-deep spalls were excavated in triplicate. The spalls were subsequently repaired using a commonly-used rapid-setting cementitious repair material. The efficacy of the repair methods and equipment were evaluated based upon petrographic examination of the substrate excavation, production rate, total production rate, in-situ tensile pull-off strength, direct shear bond strength, and performance under simulated F-15 wheel loading. Each of the methods evaluated had a significant improvement in production rate over the 30-pound jackhammer, the standard Department of Defense spall repair excavation method. The most efficient method was a cold planer, which, on average, was approximately 58 percent more efficient than the jackhammer. Of the methods evaluated, only the cold planer can meet the requirement of being able to excavate 2-foot square by 4-inch deep spall in no more than 15 minutes.

Abstract: 201 words
BACKGROUND

A spall is described as cracking, breaking, chipping, or fraying of a concrete slab near a joint or crack. Spalls may be caused one of more of the following mechanisms:

- Durability issues such as D-cracking and alkali-silica reaction (ASR);
- Inadequate maintenance, e.g., allowing foreign matter to collect in the joints;
- Improper construction procedures and details such as misaligned dowel bars, sawing joints too late, not sawing joints to adequate depth, or excessive working of the fresh concrete leading to a paste-rich mix;
- Fatigue caused by repeated mechanical loading of the joint by high-pressure aircraft tires; or
- Damage from munitions.

Spalls may be partial depth or full depth. In the case of both full- and partial-depth spalls, foreign object debris (FOD) may be generated, and rough surfaces at the spall may damage aircraft tires. Full-depth spalls reduce the structural capacity of the slab and exacerbate fatigue failure under repeated loading (1).

The normal procedure for repairing a spall is outlined in Engineering Technical Letter (ETL) 07-8 as follows (2):

- Remove loose debris from the damaged area.
- Mark the outer edge of the repair (2 to 3 inches beyond the damaged area).
- Saw the edges of the repair to a depth of at least 2 inches (50 millimeters). Do not feather the repair.
- Make additional cuts within the bounds of the repair edges using a concrete saw.
- Make transverse cuts on each end 1.5 inches (38 millimeters) from the ends of the repair.
- Remove the remaining material using a small jackhammer (30 pounds or less).
- Remove loose debris from the repair area.
- Wash the repair area with a high-pressure washer or use water and a scrub brush.
- Remove any loose material or lodged debris from the joint or crack.
- Place a small bead of caulk over the joint or crack.
- If using a cement-based repair material, soak the repair and leave saturated surface dry (SSD).
- Place a compressible insert material over any joint or crack in the repair area.
- Mix the materials in accordance with manufacturers’ recommendations.
- A temperature gun (thermometer) should be used to check the temperature of the water and material before mixing, as well as the temperature of the material during mixing.
- Pour/place the material in the repair.
- Clean mixing and placement equipment immediately after use.
- When using cement repair materials, either wet cure or apply curing compound.
- Remove the compressible spacer insert after the repair has cured.
- Reseal the joint.
Because airfield operations are negatively impacted during the process of performing spall repairs, the time required to perform spall repairs is critical to maintaining the flying mission of the U.S. Air Force. The impact of the spall repair process on aircraft operations can vary by degree, ranging from an inconvenience to the complete suspension of flight operations.

The service life of a spall repair is dependent on many factors such as construction quality, repair material properties, and loading conditions. The most important factor is often the time required to construct a durable repair. As with any quick fix, there is often a tradeoff between expediency and quality. Expedient spall repairs are made when time, equipment, materials, and/or manpower are not available to perform a permanent repair. These extend the serviceability of a pavement using utilitarian methods, but durability and long-term performance may suffer as compared to permanent repair methods. Spall repairs at expeditionary locations have failed sooner than expected based upon accelerated pavement loading studies. Many of these repairs involve relatively non-uniformly shaped repairs that are loaded within a few hours after placement (3).

**RESEARCH OBJECTIVES AND SCOPE**

The objective of this research was to develop one or more methods that will allow field personnel to excavate and prepare a 2-foot-wide by 2-foot-long by 4-inch-deep spall for placement of a rapid-setting repair material in 15 minutes or less. A secondary objective was to correlate various excavation methods with a relative life expectancy of the repair.

Selected equipment and procedures were evaluated to expeditiously prepare the spall for repair with rapid-setting materials. For five excavation methods, 2-foot-wide by 2-foot-long by 4-inch-deep spalls were excavated in triplicate. The spalls were subsequently repaired using a typical rapid-setting spall repair material. The efficacy of the repair methods and equipment were evaluated based upon petrographic examination of the substrate excavation production rate, total production rate, in-situ tensile pull-off strength, direct shear bond strength, and performance under simulated F-15 wheel loading. An optimal method was identified, and recommendations procedures were proposed.

**EXPERIMENT DESCRIPTION**

A series of experiments were performed using five excavation methods (treatments) on nominal 2-foot-wide 2-foot-long by 4-inch-deep spalls:

- Saw cut and 30-pound jackhammer (baseline or current standard),
- Saw cut and a hydraulic breaker on a skid steer tractor,
- Multiple-blade gang saw with saw spacing at ¾ inch,
- Multiple-blade gang saw with saw spacing at 1½ inches, and
- Cold planer attachment for a skid steer loader.

After excavation, core samples were extracted from each treatment, and petrographic examinations were performed. Final preparation for each method consisted of pressure washing and excess water removal leaving the excavation clean and surface damp. The spalls were repaired with a self-leveling cementitious repair material. A series of 2-inch-diameter
cores were cut through the repair material and into the substrate. The cores were used to perform in-situ tensile pull-off tests to evaluate the bond between the repair material and the substrate. Also, a series of 4-inch diameters cores were cut, and direct shear tests were performed on the repair material/substrate interface. Finally, all spalls were trafficked for 1,500 passes using an F-15E load cart. The details of these experiments are presented in this chapter.

Substrate Description

All excavations were conducted on a jointed, unreinforced Portland cement concrete pavement at Tyndall AFB, FL. The pavement was approximately 20 years old at the time of the experiment. The pavement consisted of 10-ft square slabs approximately 12 inches thick. The slabs were supported by a dense-graded limestone subbase which overlies a poorly graded (beach) sand subgrade. The aggregate in the concrete was crushed siliceous river gravel, and the compressive strength of the concrete averaged 8260 psi.

Excavation Equipment and Methods

Each excavation method was conducted in triplicate. All spalls were required to have one (and only one) side along a joint.

30-lb Jackhammer

The common method to remove material from a spall repair is to use a portable pneumatic jackhammer. ACI RAP Bulletin 7 recommends that jackhammers larger than 30 lbs not be used, because they may cause damage to the surrounding concrete (4). For this experiment a 2 ft by 2 ft area was cut using a walk-behind saw to a depth of approximately 4 inches. The concrete inside the cut was removed with a 30-lb pneumatic jackhammer. A nail-point breaker tip was used to break up the concrete, and a spade tip was used to dress the repair area. Final clean up was performed by manually removing the rubble with a shovel, sweeping around the hole, and vacuuming the fines from the hole.

Hydraulic Breaker on Skid Steer Loader

The spall was prepared using a hydraulic percussion breaker fitted to a wheeled skid steer loader as shown in FIGURE 1. The breaker was powered by the auxiliary hydraulic system on the loader. The breaker had an operating weight of 736 lbs and produced 1310 blows per minute at a hydraulic flow rate of 17.2 gallons per minute yielding approximately 300 ft-lbs of impact energy. The diameter of the nail-type breaker probe was 2.56 inches. Final clean up was performed with a shovel, broom, and shop vacuum.
FIGURE 1 Hydraulic Breaker.

Cold Planer

Another set of holes was excavated using a Caterpillar Model PC206 Cold Planer powered by a CAT 257B high flow skid steer loader as shown in FIGURE 2. The hydraulic system on the loader was operated at the high setting (26 gallons per minute at 3,335 psi). The cold planer, designed for restoration of asphalt and concrete surfaces for small paving jobs, has a drum width of 24 inches. The drum featured 60 carbide-tipped conical bits. The skid steer loader moves backwards while lowering the drum into the concrete. During the course of the excavation the cold planer depth adjustment was set to 4½ inches, because it appeared that the milling debris was precluding the planer from achieving its desired depth of 4 inches. Final clean up was performed with a shovel, broom, and shop vacuum.
The final sets of excavations were performed using a prototype multiple-blade (gang) saw developed by Diamond Products. The total width of the saw blades was 24 inches. The saw consisted of a blade shaft with multiple 18-inch-diameter diamond-tipped saw blades as shown in FIGURE 3. The blade shaft was hydraulically driven by a Diamond Products CC8000 rider saw powered by a 78-hp diesel engine. The distance between the saw blades was variable, and two center-to-center spacings were employed (¾ inch and 1½ inches) for this research.

The saw was employed twice at right angles to produce an orthogonal grid of saw cuts. Three holes each were prepared with the saw blades spaced at ¾ inch or 1½ inches. After the cuts were made, the material was removed with a 30-lb pneumatic jackhammer, and final clean up was performed with a shovel, broom, and shop vacuum.
FIGURE 3 Gang Saw.

Measures of Merit

Production Rate

The data recorded for each spall excavation were time to complete the excavation, time to complete clean out, and the volume of material removed. The volume of material removed was estimated by carefully measuring the volume of water required to fill the excavation.

Two measures of production rate were employed: 1) excavation production rate and 2) total production rate. The **excavation production rate** is defined as the time required to excavate the spall using the equipment and method evaluated. The **total production rate** is defined as the time required excavating 1 cu ft of spall, removing rubble, and preparing the spall repair for placement of rapid-setting repair material.

Petrographic Examination

One 6-inch-diameter core sample was removed from the interior of one excavation from each treatment (leaving two excavations from each treatment intact). Additionally, one 6-inch-diameter core was extracted from the undamaged concrete around the excavation areas as a control. These samples were sent to the U. S. Army Engineer Research and Development Center (ERDC) at Vicksburg, Mississippi, where a petrographic exam was conducted to quantify any damage done to the substrate by the excavation method/equipment.
Ultrasonic reflection imaging (URI) was conducted on samples cored from the 
substrate materials after the excavation of the spalls was completed. The objective of the URI 
was to qualitatively identify levels of damage caused by various excavation techniques and to 
relate that to performance observed from the various mechanical testing results. 
URI is a new technique for imaging concrete that focuses on the mechanical 
characteristics of the concrete paste and aggregate. It is particularly sensitive to locating 
damaged or weak aggregates, entrapped and/or entrained air, or failure between various 
interfaces. URI relies on a laboratory immersion scanning system to collect data from either 
smooth cored or cut concrete surfaces.

**In-Situ Bond Strength**

The in-situ tensile pull off test is described by the International Concrete Repair Guideline 
No. 03739 (5). This protocol, which is based upon ASTM D4541 (6), allows the user to 
evaluate the in-situ tensile bond strength. A core bit was used to drill through the repair 
material and into the substrate. A rigid disc was attached to the top of the drilled core using a 
high-strength adhesive. A testing device applied a tensile force to the rigid disc at a constant 
rate until fracture occurred. The tensile force and location of the fracture (at the adhesive, at 
the bond interface, within the repair material, or within the substrate) were recorded.

**Direct Shear Strength**

An AFRL-developed testing protocol was employed to measure the direct shear strength of 
the bond interface on 4-inch diameter cores extracted from the spall repairs. A direct shear 
test apparatus was fabricated in the shops at AFRL. The apparatus consisted of two clamping 
yokes designed to secure the core to a base plate. A third yoke (or loading yoke) was 
positioned near the end of the core to transmit the shearing force to the core. Leather shims 
were employed to insure uniform contact between the core and the yokes at all contact areas. 
The apparatus and core were placed in a Forney Model LT-920-D2 universal testing machine 
capable of a maximum compressive force of 400,000 lbs, and the test was conducted at a 
loading rate of approximately 500 lbs/min. The load at fracture was recorded, and the 
shearing force at failure was calculated at the load at fracture divided by the cross-sectional 
area of the core.

**Performance under Simulated Aircraft Trafficking**

The spall repairs were evaluated under 1,500 passes of AFRL’s F-15E load cart. A single-lane 
trafficking pattern was used in which all tire loads were applied to the center of the spall 
repair area. One traverse of the spall field was defined as two passes (one pass up and one 
pass back). The wheel loading was 35,200 lbs. At 25, 50, 75,100, and every 100 passes 
thereafter trafficking was paused, and the spall repairs were inspected and photographed. No 
active sensors or instrumentation were employed.

**Spall Repair Material**

A rapid-set spall repair material that has been tested at AFRL/RXQ for a related research 
project was selected for this study. It is a blend of propriety cements, ASTM concrete grade
sand, air entrainment agent, and a high-range water reducer. The manufacturer recommends its use for neat applications from ½ to 4 inches thick. The results of material properties tests conducted by AFRL on the spall repair material are shown in TABLE 1.

<table>
<thead>
<tr>
<th>Age, hrs</th>
<th>Compressive Strength by ASTM C39, psi</th>
<th>Flexural Strength by ASTM C78, psi</th>
<th>Slant Shear Bond Strength by ASTM C 882, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>N/A</td>
<td>705</td>
<td>1120</td>
</tr>
<tr>
<td>3</td>
<td>4480</td>
<td>635</td>
<td>1170</td>
</tr>
<tr>
<td>24</td>
<td>6070</td>
<td>550</td>
<td>1220</td>
</tr>
</tbody>
</table>

6 EXPERIMENTAL RESULTS

7 Production Rate

The times required to perform critical operations in spall repair preparations were observed and recorded for each trial and excavation method. As previously described, two measures of production rate were employed: 1) excavation production rate and 2) total production rate. The volume of each excavation was also documented by recording the volume of water required to rapidly fill each excavation. The production rate was then calculated by forming the ratio of the time required to the volume of the excavation in cubic feet, yielding a production rate in units of minutes/cubic feet. The timing of operations started when the equipment first touched the pavement. The total production time included the time required to remove all debris and blow the area clean of any residual fine materials using compressed air.

FIGURE 4 presents the results of the excavation rate measurements. The mean value of excavation rate is represented by the small squares, and the whisker bars represent ±95 percent confidence intervals on the mean. There was considerable scatter in the data, as indicated by the magnitude of the confidence intervals. Comparing only mean values of excavation rate revealed that the 30-lb jackhammer, the typical method of excavating spall repairs, was the least efficient method. The most efficient method was the cold planer, which, on average, was approximately 58 percent more efficient than the jackhammer. The second most efficient method was the hydraulic breaker, followed by gang saw with spacing at 1½ inches and ¾ inch.

A pair wise t-test procedure was used to compare the means to determine if the observed differences in the mean value were statistically significant given the large scatter of the data. Using these analyses, we observed that the production rates for the 30-lb jackhammer are statistically different from those of the cold planer, hydraulic breaker, and the gang saw at 1½-inch spacing. We conclude that each of these methods is a significant improvement in production rate over the 30-lb jackhammer.
A similar analysis was performed for total production rate. The results were similar to that for excavation rate, except that the difference between the mean values for jackhammer method and the hydraulic breaker were significant in this case.

![Excavation Test Results](image)

**FIGURE 4  Excavation Test Results.**

**Pre-Trafficking In-Situ Pull-Off Experiments**

At the outset of the experiments, as many of the 2-inch-diameter cores were drilled as possible within the area allowed. A number of the cores were broken or debonded during the coring process; therefore, number of replicates varied from spall-to-spall.

The results of the pre-trafficking in-situ pull-off experiments are summarized in the plot shown in FIGURE 5. The greatest observed mean pull-off strength was for the cold planer, followed, in order, by the jackhammer, gang saw at 1½ inches spacing, gang saw at ¾ inch spacing, and finally the hydraulic breaker. However, the scatter in the data is quite large, and statistical analysis was required to evaluate the significance in the observed means. Pair wise t-tests were conducted on each of the observed treatments, and the they indicated that only the differences in the means between the hydraulic breaker and cold planer and hydraulic breaker and jackhammer were statistically significant at the 95 percent confidence level; thus we could not statistically distinguish between the means of the other treatments at the 95 percent confidence level.
Pre-Trafficking Direct Shear Experiments

The experiment plan was to obtain 4 replicates from each spall; however, some cores broke or became debonded during the coring operation. Most spalls produced three or four cores which could be evaluated in direct shear experiments.

The results of the pre-trafficking in-situ pull-off experiments are summarized in the plot shown in FIGURE 6. The greatest observed mean direct shear strength was for the cold planer, followed, in order, by the jackhammer, gang saw at 1½ inches spacing, gang saw at ¾ inch spacing, and finally the hydraulic breaker. However, once again, the scatter in the data is quite large, and statistical analysis was required to evaluate the significance in the observed means. For these experiments, the t-tests indicated that only the differences in the means between the hydraulic breaker and jackhammer and gang saw were statistically significant at the 95 percent confidence level.

A regression analysis was performed to determine the strength of the correlation between these two indications of bond strength. This analysis indicated that the two metrics of bond strength are positively correlated with a correlation coefficient \((R^2)\) of 0.66. These results indicated that both the in-situ tension pull-off test and direct shear test are indicators of the bond strength, with additional testing and numerical analysis required to improve the correlation between the two test methods.

FIGURE 5 Pre-trafficking In-situ Direct Pull-off Results.
Because the direct shear strength test is not an accepted test method per ASTM, the results of the direct shear strength tests were not be used to draw conclusions concerning the efficacy of the methods until further development and analysis of this testing methodology is conducted.

![FIGURE 6 Pre-trafficking In-situ Direct Shear Results.]

**FIGURE 6 Pre-trafficking In-situ Direct Shear Results.**

**Simulated Aircraft Trafficking**

Each of the replicates and treatments were subjected 1,500 passes of simulated F-15E tire traffic using AFRL’s F-15 load cart. Some environmental cracking (postulated to be shrinkage and/or thermal cracking) was observed prior to commencement of the trafficking experiment. However, during the conduct of the trafficking experiment, these cracks remained tight, and no FOD-creating distresses were observed.

**Post-Trafficking In-Situ Pull-Off Experiments**

The results of the post-trafficking in-situ pull-off experiments are summarized in the plot shown in FIGURE 7. For all treatments the pull-off strength was non-zero, indicating that the bond was not broken during the trafficking of the spall repairs. The highest post-trafficking in-situ bond strength was observed for the cold planer, with the other methods having bond strengths approximately one-half that of the cold planer. A pair wise t-test analysis indicated
that the observed difference in mean value between the cold planer all the other four methods were statistically significant at the 95 percent confidence level.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{Post-trafficking In-situ Pull-off Results.}
\end{figure}

**Post-Trafficking Direct Shear Experiments**

The results of the post-trafficking direct shear experiments are summarized in the plot shown in FIGURE 8. The greatest observed mean pull-off strength was for the gang saw at ¾ inch spacing, followed, in order, by the gang saw at 1½ inches spacing, jackhammer, cold planer, and finally the hydraulic breaker. However, only the hydraulic breaker was statistically significant.
Petrographic Examination Results

The results of the URI scans were compared with scans from control cores (i.e., core extracted from virgin areas adjacent to the spall repairs). The control cores contained a number of small cracks in the paste which appeared to initiate at or be related to intrinsically cracked aggregate. The only damage observed to significantly penetrate the surface was observed in cores from the area excavated by the hydraulic breaker. In this case, large aggregates near the surface were highly cracked. Thus, the results of the petrographic examination revealed that only the hydraulic breaker produced significant subsurface damage of the rock or paste at depths of up to ½ inch.

Summary of Significant Results

Production Rate

Each of the methods tested had a significant improvement in production rate over the 30-pound jackhammer. The most efficient method was the cold planer, which, on average, was approximately 58 percent more efficient than the jackhammer. It was the only method
investigated expected to consistently meet the research objective of excavating a nominal 2-foot square by 4-inch deep spall in 15 minutes or less. The second most efficient method was the multiple blade (gang) saw. The 1½-inch blade spacing was significantly more efficient than the ¾-inch blade spacing. The hydraulic breaker (excavator) was more efficient than the control case (manual jackhammer), but it causes significant damage to the upper ½-inch or so of the substrate materials.

Bond Strength

Pre-traffic bond strength data (in-situ direct tension tests and direct shear tests) indicated that only the hydraulic breaker had significantly lower bond strength prior to trafficking with 1,500 passes of simulated F-15 load.

The post-trafficking bond strength data indicated that the cold planer method resulted in significantly greater bond strength after 1,500 passes of simulated F-15 traffic. This is evidence of significantly greater performance for this method of preparing a spall for placement of rapid setting material.

Petrographic Examination

Petrographic examinations indicated that none of the methods investigated produced any significant damage of the aggregate or paste below the surface with the exception of the hydraulic breaker, which produced cracking the matrix and fractured aggregates up to ½ inch below the top surface.

Performance under Traffic

Each of the replicates and treatments were subjected 1,500 passes of simulated F-15E traffic. During the conduct of the testing, no cracking, spalling, or any other type FOD-creating distresses were observed.

Some environmental cracking (postulated to be shrinkage and/or thermal cracking) was observed prior to commencement of the trafficking experiment. However, during the conduct of the trafficking experiment, these cracks remained tight, and no FOD-creating distresses were observed.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Excavation Methods

Five excavation methods (treatments) were used to prepare a nominal 2-foot-wide 2-foot-long by 4-inch-deep spalls:

- Saw cut and 30-pound jackhammer (baseline or current standard),
- Saw cut and a hydraulic breaker on a skid steer tractor,
- Multiple-blade gang saw with saw spacing at ¾ inch,
• Multiple-blade gang saw with saw spacing at 1½ inches, and
• Cold planer attachment for a skid steer loader.

The control case was the 30-pound jackhammer. Each of the four methods tested had a significant improvement in production rate over the 30-pound jackhammer. The most efficient method was the cold planer, which, on average, was approximately 58 percent more efficient than the jackhammer. The second most efficient method was the gang saw at 1½ inch spacing, followed by the hydraulic breaker, followed by gang saw with spacing at ¾ inch spacing. Only the cold planer can meet the requirement of being able to excavate 2-foot square by 4-inch deep spall in no more than 15 minutes.

Simulated Aircraft Trafficking

Each of the replicates and treatments were subjected to 1,500 passes of simulated F-15E. During the conduct of the testing, no load-related cracking, spalling, or any other type FOD-creating distresses were observed.

In-Situ Bond Strength

In-situ bond tests were performed both prior to and after simulated aircraft trafficking. Pre-trafficking, the greatest observed mean pull-off strength was for the cold planer, followed, in order, by the jackhammer, gang saw at 1½ inches spacing, gang saw at ¾ inch spacing, and finally the hydraulic breaker. However, only the differences in the means between the hydraulic breaker and cold planer and hydraulic breaker and jackhammer were statistically significant at the 95 percent confidence level, and one cannot statistically distinguish between the means of the other treatments at the 95 percent confidence level.

The highest post-trafficking in-situ bond strength was observed for the cold planer, with the other methods having bond strengths approximately one-half that of the cold planer. The observed difference in mean value between the cold planer all the other four methods were statistically significant at the 95 percent confidence level.

Direct Shear Strength

Analysis of the correlation between the in-situ tensile pull-off strength and the direct shear strength experiments indicated that the two metrics of bond strength are positively correlated with a correlation coefficient ($R^2$) of 0.66. However, the statistical significance of the direct shear strength results was not as powerful as those of the in-situ direct pull off strengths. Because the direct shear strength test is not an accepted test method per ASTM, it was concluded that the results of the direct shear strength tests should not be used to draw conclusions concerning the efficacy of the methods until further development and analysis of this methodology is conducted.

Petrographic Examination

Petrographic examinations indicated that only the hydraulic breaker produced significant subsurface damage of the rock or paste at depths of up to ½ inch.
Recommendations

The cold planer method should be adopted as a standard method of preparing spalls for placement of a rapid-setting spall repair material. The cold planer equipment can be purchased as an attachment to skid-steer loader. While the time to prepare a spall depends upon the characteristics of the spall and the skill of the operator, use of this equipment requires about half the time to prepare the spall as compared to the control case of a manual jackhammer. The cold planer equipment, under the control of an experienced operator, can prepare a two foot square by 4 inch deep spall for placement of rapid-setting material in less than 15 minutes. Furthermore, spalls prepared with this method retain superior bond strength after aircraft trafficking and are expected to provide superior performance compared to those prepared with other conventional and experimental methods evaluated in the study.

REFERENCES