

1

 Orchestrating BMD Control in Extended BPEL

Thomas S. Cook
Computer Science Department

Naval Postgraduate School
Monterey, CA, USA

tscoo1@nps.edu

Duminda Wijesekera
Computer Science Department

George Mason University
Fairfax, VA, USA

dwijesek@gmu.edu

Bret Michael
Computer Science

Department
Naval Postgraduate School

Monterey, CA, USA
bmichael@nps.edu

Man-Tak Shing
Computer Science

Department
Naval Postgraduate School

Monterey, CA, USA
shing@nps.edu

Abstract – We specify duty cycles of a Ballistic Missile
Defense (BMD) command and control application by
decorating the Business Process Execution Language
(BPEL) with Quality of Service (QoS), Measures of
Performance (MoP), Measures of Effectiveness (MoE)
and Measures of Merit (MoM) metrics.

Key Phrases: Web Services, Business Process Execution
Language (BPEL), service-oriented architecture,
Command, Control, Communication, Intelligence,
Surveillance, and Reconnaissance (C4ISR), Quality of
Service (QoS), MoE, MoP.

1 Introduction
Command, Control, Communication, Intelligence,
Surveillance, and Reconnaissance (C4ISR) applications
require making decisions based on situational awareness
created by fusing sensory information collected from
independently maintained sources. Having a command and
control (C2) structure that respects the autonomy of basic
services facilitates the flexibility to dynamically negotiate
and adjust to changes in the battle space while maintaining
the continuity of the overall operations and deployment
readiness. In this paper we develop such a framework to
thwart threats from ballistic missiles by using a three-tiered
C2 structure. This sits well with the U.S. DoD’s objective
of adopting Service Oriented Architecture (SOA) in which
the master orchestrator provides a service by composing
the services of the autonomously functioning sub-services.
The continuity of orchestrated operations is modeled by
duty cycles, with each duty cycle reacting to
environmental changes. The orchestrator provides the
required quality of service (QoS) – which includes
timeliness as one aspect [1]. As shown in this paper, a
flexible QoS-sensitive SOA suffices to specify and
implement stated C4ISR requirements.

The DoD mandated the basic web services (WS)
framework standards for use in Enterprise Resource
Planning (ERP) software packages, but has not mandated
the standards for use in the Global Information Grid (GIG)
as the standards fall short in meeting GIG security and
authorization requirements [2]. The basic WS framework
standards include what are commonly referred to as the

core web service development standards; Web Services
Description Language (WSDL), SOAP, and Universal
Description, Discovery and Integration (UDDI). Although
the core WS have been applied successfully by industry in
business systems, as Birman et al. claim [3], they fall short
of C4ISR needs due to the lack of support for time-critical
events. Consequently, in this study we decorate BPEL
specified duty cycles with QoS, specifically timeliness
attributes, MoP and MoE specifications, with the hope that
a SOA satisfying the need articulated by Birman et al. can
implement our design. The rest of the paper is organized as
follows. Section 2 specifies use cases for a ballistic missile
defense system. Section 3 presents an overview of
conventional C2 and possible execution using WS and
specifies a C2 family of WS using WSDL, and Section 4
presents their process integration using BPEL. Section 5
discusses the evolution of the Operations Order. Section 6
concludes the paper.

2 BMD C2
The objective of the Missile Defense Agency’s (MDA)
Advanced Battle Manager (ABM) of the Ballistic Missile
Defense System (BMDS) [5] is to provide an integrated,
layered defense from ballistic missiles of all ranges in all
phases of their flight. At a high level, the BMDS consists
of an integrated C2, Battle Management (BM), and
Communications (collectively known as C2BMC), and
weapons and sensors. Weapons and sensors are capable of
engaging and sensing many different threat missiles
through different phases of their flight: boost, mid-course
and terminal. The C2 component is responsible for
creating and distributing the operations orders (OPORD),
that essentially provides initial weapons, and sensor
locations, their orientations, and their responsibilities
within the plan while the BM executes the battle according
to the OPORD and the responses from sensory inputs.

Wijesekera, Michael and Nerode [4] use three kinds of
agents to model BMDS C2: the strategic commander
agent (SCA), regional commander agent (RCA), and the
tactical commander agent (TCA). Each battle manager
assumes one of these roles. A hierarchical command
structure in [4] consists of SCAs at the top of the C2
structure that share information horizontally between them.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
21 MAY 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Orchestrating BMD Control in Extended BPEL

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Department Naval Postgraduate School Monterey,
CA, USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
AFCEA-GMU C4I Center Symposium "Critical Issues In C4I" 20-21 May 2008, George Mason
University, Fairfax, Virginia Campus

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Each SCA manages vertically down the chain to its
assigned RCA’s and with any assigned sensors and
weapons in the sensors and weapons nets. Continuing
down the C2 structure the individual RCA’s manage and
communicate with their assigned TCAs and any assigned
weapons and sensors in the weapons and sensors nets.
Finally, each TCA manages and communicates with its
assigned weapons and sensors within the sensors and
weapons nets. While information travels up and down the
C2 structure, most down-flows are commands and most
up-flows are status reports.

2.1 Assumptions

1. Operations Orders (OPORDs) have been issued by all
agents and each agent has established its defenses.
This implies that all weapon and sensor systems for the
entire BMDS are positioned to defend against the most
likely threat missile attack according to the OPORD
intelligence estimate; weapon systems have specific
orientations ready to launch and sensors are in
surveillance mode.

2. Given that the threat attacks according to the OPORD
intelligence estimate, we assume the weapon and
sensor systems execute the plan autonomously with
little or no interference from the command agents.

3. In our scenario the threat does not attack according to
the intelligence estimate and SCA1, RCA2 and
assigned TCAs must manage the initial attack to defeat
the threats.

2.2 Scenario execution

Our scenario shown in Figure 1 proceeds as follows.
RCA2’s organic sensor and BM determine that three
separate threat missiles are inbound and predicted to hit a
high-priority asset on its Prioritized Defended Asset List
(PDAL). According to the OPORD the terminal-defense
mission for the asset being attacked is assigned to TCA22
and the midcourse defense of the asset is assigned to
TCA21. However, based on the OPORD Intel annex most
resources in SCA1’s area of operation are oriented on the
enemy’s likely air avenue of attack, depicted by the large
dotted arrow and labeled as such in the figure. Therefore,
reorienting of resources within RCA2’s area of operation
is necessary to negate the threats. RCA2 concurrently
sends a contact message to SCA1 requesting permission to
reorient resources and engage the threats, in addition to
sending a be-prepared-to-launch order to TCA21 and
TCA22.

FBX

TCA21

GMD
SCA1

SR1000

SR1000

MR2700
RCA2

TCA22

ABLABL

PATRIOT

Intel Estimate
Likely Missile

Avenue
of Attack

AEGIS

THAADTHAAD

Legend
Chain of

Command
Weapon /Sensor

Control

100 km2

LegendLegend
Chain of

Command
Weapon /Sensor

Control

100 km2

Figure 1 BMDS Scenario

The messages being exchanged include the individual
threat tracks and values for specific QoS attributes, MOP,
and MOE necessary to ensure the threats are engaged prior
to reaching their keep-out ranges. In this scenario RCA2
has two MOEs associated with it: (i) survivability, defined
as the fraction of defended assets that survive the attack
and (ii) the probability that the interceptor kills the threat
target given that it arrives in time. The MOP associated
with RCA2 is Time-on-Target; the time remaining for any
weapon system to launch an interceptor. This is included
to give subordinates an upper bound on time to engage
with the appropriate shot doctrine.

TCA21 receives the be-prepared order (to launch) and
steps into the kill chain cycle at the assign weapon task.
Using the track information from RCA2, TCA21
determines the appropriate weapon systems with which to
engage the threat missiles, builds an engagement plan, and
issues a be-prepared order to the appropriate weapons and
sensors. Likewise, TCA22 receives its be-prepared order
to launch, but its launch is contingent on the threat
reaching the keep-out range. TCA22 also steps into the
kill chain cycle at the assign weapons task and issues be-
prepared missions to its associated weapons and sensors.

Upon receiving SCA1’s response message to launch,
RCA2 issues a message to the TCAs to execute the be-
prepared missions sent earlier. TCAs 21 and 22 use the
MOEs and MOP from RCA2 to guide the selection of the
services required to complete the weapons assignment,
engagement, and assess kill tasks of the kill chain. We
show this in detail in subsequent sections, but first we
describe the scenario for each of the agents: SCA1, RCA2,
and TCAs 21 and 22. We show, in use case (a technique
for describing how to achieve a goal or task) format, the
kill chain tasks performed by each agent in our scenario.
Figure 2 shows the process logic a BM executes upon
receiving a track list

3

Use Case 1: Detect
Goal in Context: Identify threats from a list of reported
sensor tracks
 Scope & Level: A primary task of the battle Manager
Preconditions: Battle manager has been initialized
Success End Condition: Correctly identify threat object.
Failed End Condition: Fails to identify threat missile.
Primary Actor: Battle Manager
Trigger: Receive track list from a sensor
MAIN SUCCESS SCENARIO
1. Receive Track List message
2. Verifies source of message
3. Validate request parameters
4. Associates Track List
5. Correlates Track List
6. Returns a threat list

Receive
Track List

Track
Association

Track
Correlation Return

Receive
Track List

Track
Association

Track
Correlation Return

Figure 2: Detect

Figure 3 shows the execution logic of a BM upon receipt
of a track list from a sensor in its C2 structure.

Use Case 2: Track
Goal in Context: Return a launch quality threat track
Scope & Level: A primary task of the battle Manager
Preconditions: Detect Task complete
Success End Condition: Produces fire quality tracks
Failed End Condition: Fails to produce fire quality track
Primary Actor: Battle Manager
Trigger: Receive a threat list
MAIN SUCCESS SCENARIO
1. Receive Threat List message
2. Verifies source of message
3. Validate request parameters
4. Fuse threat List
5. Calculate IPP for threats
6. Calculate Aim Point for threats
7. Calculate time available to kill threats
8. Calculate QoS, MOP, MOE requirements
9. Returns a threat list, QoS, MOP, MOE

Receive
Threat List

Track
Fusion

Impact
Point

Prediction

Return

Aim Point
Predictor

Receive
Threat List

Track
Fusion

Impact
Point

Prediction

Return

Aim Point
Predictor

Figure 3: Track

Figure 4 shows the process logic a BM executes upon
receiving a threat track list.

Use Case 3: Assign Weapon
Goal in Context: Identify the best weapon system to
destroy the threat
 Scope & Level: A primary task of a BM
Preconditions: Detect and track tasks in the kill chain has
successfully completed
Success End Condition: Identify weapon to destroy the
identified threat missiles.
Failed End Condition: A weapon system is not identified
Primary Actor: BM
Trigger: Receive a weapons assignment message
MAIN SUCCESS SCENARIO
1. Receive Launch message
2. Verifies source of message
3. Validate request parameters
4. Monitor QoS requirements
5. Identify available resources
6. Target weapon pairing
7. Return result

Receive
Track List

Target
Weapon
Pairing

Return

Receive
Track List

Target
Weapon
Pairing

Return

Figure 4: Assign Weapon

Figure 5 shows the process logic a BM executes upon
receiving a threat track list with weapons assignment
solution.

Use Case 4: Engage
Goal in Context: Assigned weapon launches interceptor
 Scope & Level: This is a primary task of the TCA
Preconditions: TCA has been initialized
Success End Condition: TCA assigns Launch to
appropriate (based on message) weapon or responds to
caller that no weapon is available

4

Failed End Condition: TCA fails to assign weapon or
report that there is a problem in launching to caller
Primary Actor: TCA
Trigger: Receive Launch from superior
MAIN SUCCESS SCENARIO
1. Receive Launch message
2. Verifies source of message
3. Validate request parameters
4. Monitor QoS Requirements
5. Build engagement plan
6. Send plan
7. Monitor QoS Requirements

Receive
Track List

Build
Engage

Plan

Return

Receive
Track List

Build
Engage

Plan

Return

Figure 5: Engage

Figure 6 shows the process logic a BM executes upon
receiving an assess kill message. Figure 7 shows the
process logic a BM executes upon first receiving an
initialization message followed some time later by an
assign weapon message.

Conventional battle managers follow a duty cycle
commonly referred to as a kill chain [5] consisting of the
following tasks: detect, track, assign weapon, engage, and
assess kill. The kill chain begins when a sensor reports an
object to a BM agent. The agent continues to track the
object while determining if the object poses a threat, and if
the object does pose a threat, assigns an available
interceptor to destroy it. After the firing of the interceptor,
the BM agent continues to monitor and assess the
engagement; if the initial interceptor fails to destroy the
threat missile and the shot doctrine used dictates a second
shot (e.g. shoot-look-shoot policy) the weapon system re-
engages the threat with updated target information.

Use Case 5: Assess Kill
Goal in Context: Determine correctly the result of an
engagement.
Scope & Level: A primary task of the TCA
Preconditions: TCA has been initialized
Success End Condition: TCA returns a correct
assessment of an engagement
Failed End Condition: TCA fails to return a correct
assessment of an engagement
Primary Actor: TCA
Trigger: Receive Launch from superior

MAIN SUCCESS SCENARIO
1. Receive Launch message
2. Verifies source of message
3. Validate request parameters
4. Monitor QoS Requirements
5. Report engagement result
6. Return result to caller

Receive
Track List

Assess
Kill

Return

Receive
Track List

Assess
Kill

Return

Figure 6: Asses Kill

In addition to the possibility of a weapons system missing
a target there exists the possibility that a BM has no
weapons systems available for assignment. In this
situation the BM alerts its superior so that an alternative
BM can be chosen for the mission; it is customary in
military operations to have this built in to the plan and
therefore the engage task would have planned to have a
number of weapons systems and BM’s on stand-by (be
prepared mission) for these type of circumstances. After
completion of the kill assessment the duty cycle repeats.

Assign
Local TWP

Result

PICK

Receive
killchainMsg PICK

Detect EngageAssign
WeaponTrack Assess

Kill

Invoke local Target
Weapon Pairing

service

Start AW
Monitor service

Record Monitor
Service Results

Invoke Remote
TWP

On AlarmOn Alarm On MessageOn Message Assign
Remote TWP

Result

Stop AW
Monitor service Invoke Engage

Flow

Flow

Figure 7: Assign Weapon Process

3 Web Services for battle management
 We now specify a conventional BM as a service in a
SOA by specifying the kill chain as a periodic process that
is the main orchestrator of a BPEL process decorated with
QoS, MOE, and MOP extensions specified in [14].
Selecting the participating partner services of the main kill
chain is based on the client QoS and MOE parameters.

5

1. Target Association Service (TA): Begins the kill
chain when it receives a list of potential tracks of the threat
missile from the sensor net as reported by radars, using a
track association algorithm to identify the track objects
reported by these sensors.
2. Track Correlation Service (TC): Uses a correlation
algorithm to compare the reduced track list against a
known threat database to classify the missile. If the track
object does not match, but observed measurements (e.g. its
velocity is in the range of a ballistic missile) makes it
suspicious, it is marked suspicious and assigned to
additional sensors for observation. All others are logged
for offline analysis.
3. Track Fusion Service (TF): Track objects gathered
thus far are used to create an enhanced description.
4. Impact Prediction Point Service (IPP): Predicts the
impact point of the threat missile.
5. Aim Point Predictor Service (APP): Computes an
aiming point for each track object.
6. Target Weapon Pairing Service (TWP): Computes
the most appropriate weapons systems to engage the
threats.
7. Engagement Planner Service (EP): Output from
TWP and information from the Operations Plan (OPLAN)
is used by EP to design, issue, and notify all parties of the
plan to destroy the threat missiles.
8. Assess Kill Service (AK): Assess battle damage using
the sensor net to complete the entire kill chain cycle.

The detect task is composed of the TA and TC services.
The track task is composed of TF, IPP, and APP services.
The assign weapons task is composed of TWP service.
Engage task is composed of an EP service and the assess
kill task consists of the AK service. We list the QoS, MoP
and MoE parameters of each of the eight services and the
five tasks in Table 1. Figure 9 shows the detect task as a
composition of the selected TA service and the TC service.

<portType name="DetectPT">
 <operation name="DetectProcess">
 <mopList>
 <mop name="ExecutionTime" value="12sec"/>
 <mop name="Accuracy" value=".998"/>
 </mopList>
 <moeList>
 <moe name="DetectTargetInBOOST" value="null"/>
 </moeList>
 <input message="tns:DetectMsgRequest"/>
 <output message="tns:DetectMsgResponse"/>
 <operation>
</portType>

Figure 8: Detect Composition WSDL

Task/Servic
e

QoS MoP MoE

Kill Chain Availability
Reliability

Execution
Time

Kill threat
prior keep

Accuracy out range
Detect Availability

Reliability
Execution
Time
Accuracy

Detect target
in boost

Track Availability
Reliability

Execution
Time
Accuracy

Monitor track
without loss
of contact

Assign
Weapon

Availability
Reliability

Execution
Time
Accuracy

Assign best
weapon
available

Engage Availability
Reliability

Execution
Time
Accuracy

Create best
mission to
destroy threat
and monitor
BDA

Assess Kill Availability
Reliability

Execution
Time
Accuracy

Assign best
sensor to
conduct BDA

Track
Association
(TA)

Availability
Reliability

Execution
Time
Accuracy

Identify and
assoc correct
number of
tracks with
its source

Track
Correlation
(TC)

Availability
Reliability

Execution
Time
Accuracy

ID track
Objects as
threat

Track Fusion
(TF)

Availability
Reliability

Execution
Time
Accuracy

Enhance
threat object
by fusing
data from
multiple
sensors

Impact Point
Prediction
(IPP)

Availability
Reliability

Execution
Time
Accuracy

Determine
IPP within 10
m2

Aim Point
Prediction
(APP)

Availability
Reliability

Execution
Time
Accuracy

Determine
Aim Point
within 100
cm2

Target
Weapon
Pairing (TWP)

Availability
Reliability

Execution
Time
Accuracy

Best weapon
to kill target

Engage
Planner
(EPS)

Availability
Reliability

Execution
Time
Accuracy

Best plan to
destroy target
prior to keep
out range

Assess
 Kill
(AK)

Availability
Reliability

Execution
Time
Accuracy

Best sensor
to conduct
BDA

Table 1: QoS, MOP, MOE

<portType name="TrackAssocPT">
 <operation name="AssocTrackList">
 <mopList>
 <mop name="ExecutionTime" value="5sec"/>
 <mop name="Accuracy" value=".999"/>
 </mopList>
 <moeList>
 <moe name="AssocTrackToSource" value="null"/>
 </moeList>

6

 <input message="tns:TrackAssocMsgRequest"/>
 <output message="tns:TrackAssocMsgResponse"/>
 <operation>
</portType>

Figure 9: Track Association WSDL

<portType name="TrackCorrPT">
 <operation name="CorrTrackList">
 <mopList>
 <mop name="ExecutionTime" value="5sec"/>
 <mop name="Accuracy" value=".999"/>
 </mopList>
 <moeList>
 <moe name="IDThreatGivenThreat" value="NULL"/>
 </moeList>
 <input message="tns:TrackCorrMsgRequest"/>
 <output message="tns:TrackCorrMsgResponse"/>
 <operation>
</portType>

Figure 10: Track Correlation WSDL

Finally, we show the WSDL of a complete kill chain that
is composed of the higher level tasks detect, track, assign
weapon, engage, and assess kill which are themselves
composed of the atomic level services described earlier.

<portType name="KillChainPT">
 <operation name="killThreat">
 <mopList>
 <mop name="ExecutionTime" value="27sec"/>
 <mop name="Accuracy" value=".95870"/>
 </mopList>
 <moeList>
 <moe name="Defend_Asset" value="NULL"/>
 </moeList>
 <input message="tns:KillChainMsgRequest"/>
 <output message="tns:KillChainMsgResponse"/>
 <fault name="Fail" message="FailNotice:"/>
 <operation>
</portType>

Figure 11: Kill Chain WSDL

In each composition instance execution time was the MOP
used to select a service.

One of the two extensions necessary to orchestrate C4ISR
is the need for QoS sensitivity, for which we use the
lightweight Q-WSDL extension in [13]. In particular, we
use the Operational Latency class where execution times
of every operation are specified. The second is the use of
the shadow pattern of [11] that specifies exception
handling. We use message types, messages and services
with the standard notations of ‘*’ for zero or more
repetitions, ‘?’ for zero or one repetitions, and ‘+’ for one
or more repetitions.

3.1 Message Types

Tables 2 and 3 list sample basic and complex WSDL data
types [9] used in exchanged messages.

Type Name Primitive Example
myId Long Int 123456789245
sensorID Long Int 454656736363
Availability Boolean Yes/No
weaponName String THHAD, AEGIS, …
sensorName String FBX, SBX, …
ammoStatus String Green, Red, Yellow
timeToEngage Duration P0y0m0dt0h0m3s
dateTimeGroup DateTime 2007-05-

31T13:20:00-05:00
Hostile Boolean Yes/No
Latitude Long Int 765468642222
Longitude Long Int 367463823982
Velocity Long Int 645646455467
Acceleration Long Int 832678326864

Table 2: Basic types of message elements

Type Name Type Structure Example
OPORD xmlns:OPORD="http://swe

.nps.edu/BMDS/OPORD
opord20080
129

Track XmlNS=URI#trackType Track
Structure

Weapon XmlNS=URI#weaponType Weapon
structure

Sensor XmlNS=URI#sensorType Sensors
structure

Sca XmlNS=URI#scaType sca structure
Tca XmlNS=URI#tcaType tca structure
QoS XMlNS=URI#qwsdl:opera

tionType [13]
QoS
Structure

Bond XmlNS=URI#Time $3.5 Cred 1
Turing test Image 10101..01

Table 3: Complex types of message elements

3.2 Messages
A sample, assignWeaponMsg, is shown in Listing 1. Other
domain-specific messages are listed in Table 4 below with
their definitions. Similarly Listings 2 and 3 show other
control messages. Finally, Tables 5 and 6 describe some
services provided by the TCA and other third parties.

1. <message name="AssignWeaponMsg">
2. <part name="ID" element="message ID"/>
3. <part name="Track" element="string"/>
4. <part name=”OPORD” element=”OPORD”/>
5. <part name="DATE" element="Time"/>
6. <part name="QOS" element="QoSType"/>
7. <part name=”surety” element=”Bond”/>
8. <part name=”Ack” element=”wantAck”/>
9. <part name=”Sign” element=”PKISignature/>*
10. <part name=”RTT reply” element=”Turing test

7

11. </message>

Listing 1: WSDL AssignWeaponMsg

Message Type Utility
detectMsg Kill chain task to associate

tracks with a source and
determine if the track is a
threat

trackMsg Kill chain task to fuse track
information, determine the
threat impact point, and
calculate an aim point

assignWeaponMsg Kill chain task to assign
the most appropriate
weapon to negate a know
threat

engageMsg Kill chain task to build an
engagement plan to defeat
a threat

assessKillMsg Kill chain task to monitor
engagement and report
Battle Damage Assessment

launchInterceptorMsg Command to Launch an
interceptor

cancelLaunchMsg Command to cancel a
previous launch command

weaponHSMsg Command to return the
health and status of all
weapons

Table 4: Types of Messages

1. <message name="initializeBMMsg">
2. <part name="id" element="long"/>
3. <part name=”OPORD0129312008”

element=”OPORD”
4. </message>
5. <message name="deRequisitionMsg">
6. <part name="ID" element="long"/>
7. </message>

Listing 2: WSDL Application Data

1. <message name="FailNotice">
2. <part name="Date" element="dateTime"/>
3. <part name="ID" element="long"/>
4. <part name="ERROR" element="string"/>
5. <part name="Sign_PKI" element="string"/>
6. </message>
7. <message name="LaunchInterceptorReciept">
8. <part name="DATE" element="dateTime"/>
9. <part name="ID" element="long"/>
10. <part name="comment" element="string"/>
11. <part name="Sign_PKI" element="string"/>
12. </message>

Listing 3: WSDL Control Data

1. <portType name="assignWeaponPT">
2. <operation name="assignWeapon">
3. <input message="tns:assignWeaponMsg"/>
4. <output message="tns:assignWeaponReciept"/>
5. <faultname="faultassignWeapon "message="tns:FailNotice" / >
6. </operation>
7. </portType>

Table 5: WSDL Port Type Specs for BM services

1. <portType name="monitorServicePT">
2. <operation name="monitor">
3. <input message="tns:startMsg"/>
4. <output message="tns:StartNotificationMsg"/>
5. <fault name="monitorfault"
6. message="tns:FailNotice"/>
7. </operation>
8. </portType>
9. <portType name="timerPT">
10. <operation name="startTimer">
11. <:input message="tns:startMsg"/>
12. </operation>
13. </portType>

Table 6: WSDL Port Type for C2 Third Party Services

3.3 Operations Order (OPORD)
An OPORD is, “a directive issued by a commander to
subordinate commanders for the purpose of effecting the
coordinated execution of an operation” [16]. The OPORD
is a vital document in ballistic missile defense as it
explains in detail the responsibilities of all systems. The
OPORD, at a minimum, contains unit task organization
and the five paragraphs of (1) Situation (2) Mission (3)
Execution (4) and Service Support (5) Command and
Signal.

In traditional land warfare combat commanders issue their
orders to subordinate commanders who in turn prepare and
issue orders to their subordinates until each combatant in
every unit knows his or her mission and the mission of
those two levels up the chain of command. The initial
OPORD of nearly all campaigns are routinely more
detailed and well thought out than subsequent OPORDs.
This tendency is a direct reflection of the amount of time
available to plan prior to hostilities beginning. For the
initial order, units may have days, weeks, and even months
to plan and issue the orders. Once hostilities begin, the
time to plan generally decreases and makes the
development, issuance and coordination of plans more
difficult, in addition to reducing timelines to days or hours.

In missile defense the timelines are significantly shorter
than traditional land warfare combat scenarios discussed
above. In the missile defense domain timelines can be in
the range of several minutes to as little as 30 seconds.

8

With such short timelines we look to perform autonomous
execution of missile defense engagements where we
remove the human from the loop. For this reason the
OPORD must be designed to be read and “understood” by
computers; we accomplish this in our case study by
constructing our OPORDs using the Resource Description
Framework (RDF)[15]. RDF is a W3C Recommendation
for describing Web resources and is designed to be read by
computers. We show in Table 7 below our OPORD
written in RDF/XML for the scenario described above and
pictured in Figure 1. The RDF provides the means to
describe the complex structure of the OPORD so that it
can be understood by the participating BMs. In Table 7,
lines 40, 44, 48, 52, and 56 show the five minimum
essential paragraphs of an OPORD as defined in [16].
Each of the five paragraphs is a property that has a
reference to a resource containing information about the
particular property. As an example we show at line 47 the
property OPORD:MISSION has a reference to a resource
containing information about the TCA’s MISSION; the
text of an actual mission for TCA22 is in bold. It is certain
that some of the other paragraphs have sub-graphs and
each of those can be defined by a value or as in the case of
the OPORD MISSION a reference to another resource.

1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf=
3. "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:rdfs="http://www.w3.org/2000/01/rdf-

schema#"
5. xmlns:OPORD="http://swe.nps.edu/BMDS/OPORD

#">
//The rdf description element that describes our
resource
// OPORD
6. <rdf:Description rdf:about=
7. "http://swe.nps.edu/BMDS/OPORD/opord20080129

">
8. <OPORD:classification>
9. <rdf:Alt>
10. <rdf:li>UNCLASS</rdf:li>
11. </rdf:Alt>
12. </OPORD:classification>
13. <OPORD:CopyNumOfNumCopies>1 of 100
14. </OPORD:CopyNumOfNumCopies>
15. <OPORD:issuingHQ>TCA21</OPORD:issuingHQ

>
16. <OPORD:placeofIssue>452143</OPORD:placeofIs

sue>
17. <OPORD:DTGSignature>012920080100
18. </OPORD:DTGSignature>
19. <OPORD:MsgRefNum>012920080245
20. </OPORD:MsgRefNum>
21. <OPORD:OrderNumber>01292008-45
22. </OPORD:OrderNumber>
23. <OPORD:codeName>Butkus</OPORD:codeName>

24. <OPORD:references>
25. <rdf:Seq>
//Reference to the SCA’s Initiating OPORD Code
Name Lambert
26. <rdf:li rdf:resource=
27. "http://swe.nps.edu/BMDS/documents/OPORD/Lam

bert">
28. </rdf:li>
//Reference to the RCA2’s Initiating OPORD Code
Name HAM
29. <rdf:li rdf:resource=
30. "http://swe.nps.edu/BMDS/documents/OPORD/Ham

">
31. </rdf:li>
32. </rdf:Seq>
33. </OPORD:references>
34. <OPORD:timeZoneUsed>ZULU
35. </OPORD:timeZoneUsed>
//Task Organization is defined by the resource URI
below
36. <OPORD:taskOrginization
37. rdf:resource=
38. "http://swe.nps.edu/BMDS/OPORD/opord20080129
39. /AnnexATaskO"></OPORD:taskOrginization>
//The first of the minimum essetial elements of the
five
//Paragraph operations order; SITUATION
40. <OPORD:SITUATION
41. rdf:resource=
42. "http://swe.nps.edu/BMDS/OPORD/opord20080129
43. /Situation"></OPORD:SITUATION>
//The second of the minimum essetial elements of the
five
//Paragraph operations order; MISSION
44. <OPORD:MISSION
// The URI at line 46 is a reference to the document
that
//contains the following mission statement for this
OPORD
//MISSION: 060004282008 (Z) TCA22 forces Defend
//assets according to the Priority Defended Assets
List
//(PDAL) against anticipated ballistic missile attacks
//within region.
45. rdf:resource=
46. "http://swe.nps.edu/BMDS/OPORD/opord200801

29
// The URI at line 48 is a reference to the document
that
//contains the next Higher level of commands (RCA2
in
this scenario) mission statement for this OPORD
//MISSION: 060004282008 (Z) RCA2 forces Defend
//assets according to the Priority Defended Assets
List

9

//(PDAL) against anticipated ballistic missile attacks
//within region.
47. <OPORD:HIGHERMISSION
48. rdf:resource= " http://swe.nps.edu/BMDS/documents
/OPORD/Ham.MISSION
//The third of the minimum essetial elements of the
five
//Paragraph operations order; EXECUTION
49. <OPORD:EXECUTION
50. rdf:resource=
51. "http://swe.nps.edu/BMDS/OPORD/opord20080129
52. /Execution"></OPORD:EXECUTION>
//The fourth of the minimum essetial elements of the
five
//Paragraph operations order; SERVICE
SSUPPORT
53. <OPORD:SERVICESUPPORT
54. rdf:resource="http://swe.nps.edu/BMDS/OPORD
55. /opord20080129/ServiceSupport">
56. </OPORD:SERVICESUPPORT>
//The fifth of the minimum essetial elements of the
five
//Paragraph operations order;
COMMANDANDSIGNAL
57. <OPORD:CMDSIGNAL
58. rdf:resource="http://swe.nps.edu/BMDS/OPORD
59. /opord20080129/CommandSignal">
60. </OPORD:CMDSIGNAL>
61. <OPORD:CDRSNAMERANK>COOKGEN
62. </OPORD:CDRSNAMERANK>
63. <OPORD:AUTHENNAMEPOS>PULFORD2IC
64. </OPORD:AUTHENNAMEPOS>
//ANNEXES A-Z OF THE OPORD EACH IS A RDF
//RESOURCE WHOS DESCRIPTION IS FOUND
AT
//THE APPROPRIATE URI
65. <OPORD:ANNEXES>
66. <rdf:Seq>
67. <rdf:li

rdf:resource="http://swe.nps.edu/BMDS/OP
ORD

68. /opord20080129/AnnexATaskO"></rdf:li>
69. …<rdf:li

rdf:resource="http://swe.nps.edu/BMDS/OP
ORD

70. /opord20080129/AnnexZDistro"></rdf:li>
71. </rdf:Seq>
72. </OPORD:ANNEXES>
73. <OPORD:DISTROrdf:resource="http://swe.nps.edu
74. /BMDS/OPORD/opord20080129/AnnexZDistro">
75. </OPORD:DISTRO>
76. </rdf:Description>
</rdf:RDF>

Table 7: Operations Order

4 BPEL Orchestration of BM
In this section, we specify the TCA using BPEL [10],
where the TCA Assign Weapon Process invokes necessary
local and remote services. In Table 8, TCA is activated
upon receiving an initialization message, which includes
an operations order shown in Table 7, from the RCA, to
establish the organizational structure thereby creating the
chain of command for the SCA, RCA, TCA and weapons
and sensors nets. Once the TCA process completes
initialization it blocks waiting for one of the predefined
messages detect, track, assign weapon, engage, assess kill,
cancel launch, switch mode, or other commands from its
RCA. In our scenario TCA21 receives the assign weapon
message from RCA2 line numbers 47-49 of Table 8.

As specified in lines 50-67, in response to an assign
weapon message, the TCA invokes a local monitoring
service, to record information on the executing services
and the assign weapons task in its entirety and the remote
target weapon pairing (RTWP) service algorithm. At line
110 the process invokes a local synchronous Local Target
Weapon Pairing (LTWP). This service acts as a shadow
[11] to the RTWP service.

If the assign weapon process does not receive a result from
the RTWP within 10 seconds, an alarm is triggered in line
40 alerting the process to use the result from the LTWP
service for the rest of the task.

Upon receiving the TWP result the process invokes the
Engage task line 148 with the result and waits 10 seconds
for a callback, line 156, signaling that the engage task has
been initiated after which the process invokes the stop
monitor and records the QoS, MOP, and MOE results.
Finally, if the process does not receive the callback
message from the engage task it invokes the warning
callback line 136 to the calling client signaling that the
task completed, but there is no evidence that the engage
task received the results or has begun execution.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <:process
3. xmlns:AW="http://swe.nps.edu/bmds/services/AW"
4. :ENG="http://swe.nps.edu/bmds/services/ENGAGE"
5. ...
6. <import importType="http://schemas.xmlsoap.org/wsdl/"

location="WSDL/AwMonitor.wsdl"
ns="http://swe.nps.edu/BMDS/service/awonitor/">

7. …<partnerLinks>
8. <:partnerLink myRole=
9. "awService" name="assignWeapon"

partnerLinkType="AW:awLT"
partnerRole="AwCustomer"/>

10. …</:partnerLinks>
11. <:variables>
12. <:variable messageType="AW:AWMsg"

10

name="AWMsg"/>
13. …</:variables>
14. <:flow>
15. <:links>
16. …</:links>
// lines 17 – 19 Receive Assign Weapon from RCA2
// execute the targetWeaponPairing operation
17. <:receive createInstance="yes"
18. name="ReceiveAWMsg"
19. operation="targetWeaponPairing"

partnerLink="assignWeapon"
portType="AW:assignWeaponPT" variable="AWMsg">

20. <:sources>
21. <:source linkName="L3"/>
22. </:sources>
23. </:receive>
24. <:pick name="PickLocalOrRemoteResult">
25. <:targets>
26. <:target linkName="L9"/>
27. </:targets>
28. <:sources>
29. <:source linkName="L4"/>
30. </:sources>
// line 31-35 if receive the callback message assign the
// results to engageMsg1
31. <:onMessage operation="TwpCallback"

partnerLink="remoteTwpLT"
portType="rtwp:TwpCallbackPT"
variable="remoteTwpResponseMessage">

32. <:assign name="AssignRemoteTWPResult">
33. <:copy>
34. <:from part="result"

variable="remoteTwpResponseMessage"/>
35. <:to part="awResult" variable="engageMsg1"/>
36. </:copy>
37. </:assign>
38. </:onMessage>
39. <:onAlarm>
40. <:for>PT10S</:for>
41. <:assign name="AssignLocalTWPResult">
42. <:copy>
43. <:from part="result"
44. variable="localTWPResponseMessage"/>
45. <:to part="awResult" variable="engageMsg1"/>
46. </:copy>
47. </:assign>
48. </:onAlarm>
49. </:pick>
// lines 50-67 CONCURENTLY Call the remote target
// weapon pairing algorithms and the moitoring service
50. <:flow name="FlowStartMon_RemoteTWP">
51. <:targets>
52. <:target linkName="L3"/>
53. </:targets>
54. <:sources>
55. <:source linkName="L5"/>
56. </:sources>

57. <:links>
58. <:link name="L1"/>
59. <:link name="L2"/>
60. </:links>
61. <:invoke inputVariable="startMonitorRequestMessage"

name="InvokeAWMonitorService"
operation="startMonitor" partnerLink="monitorLT"
portType="awmon:startMonitorPT">

62. <:targets>
63. <:target linkName="L1"/>
64. </:targets>
65. </:invoke>
66. <:invoke inputVariable="remoteTwpRequestMessage"

name="InvokeRemoteTWP" operation="Twp"
partnerLink="remoteTwpLT"
portType="rtwp:remoteTwprequestPT">

67. <:targets>
68. <:target linkName="L2"/>
69. </:targets>
70. </:invoke>
71. <:assign name="AssignMonitorParams">
72. <:sources>
73. <:source linkName="L1"/>
74. </:sources>
75. <:copy>
76. <:from>
77. <:literal>start</:literal>
78. </:from>
79. <:to part="start"

variable="remoteTwpRequestMessage"/>
80. </:copy>
81. </:assign>
82. <:assign name="PassTrackList">
83. <:sources>
84. <:source linkName="L2"/>
85. </:sources>
86. <:copy>
87. <:from>
88. <:literal>tracklist</:literal>
89. </:from>
90. <:to part="start"
91. variable="remoteTwpRequestMessage"/>
92. </:copy>
93. </:assign>
94. </:flow>
95. <:sequence name="SequenceLocalTWP">
96. <:targets>
97. <:target linkName="L5"/>
98. </:targets>
99. <:sources>
100. <:source linkName="L6"/>
101. </:sources>
102. <:assign name="PassTrackList">
103. <:copy>
104. <:from>
105. <:literal>start</:literal>
106. </:from>

11

107. <:to part="start" variable="localTWPRequestMessage"/>
108. </:copy>
109. </:assign>
// line 110 synchronous call to the local target weapon
// paring algorithm
110. <:invoke inputVariable="localTWPRequestMessage"

name="InvokeLocalTWP" operation="localTWP"
outputVariable="localTWPResponseMessage"
partnerLink="localTWPLT"

111. portType="ltwp:localTWPPT"/>
112. </:sequence>
113. <:pick name="Wait10SecForCallback">
114. <:targets>
115. <:target linkName="L8"/>
116. </:targets>
// line 117 waiting for callback from the Engage task that
// is invoked after Assign weapon completes its task.
117. <:onMessage operation="callback"

partnerLink="Engage"
portType="ENG:engageCallBackPT"
variable="callBackMsg">

118. <:flow>
119. <:links>
120. <:link name="L10"/>
121. </:links>
// line 122 – 127 Stop the monitor and record the results
122. <:invoke inputVariable="stopMonitorRequestMessage"

name="InvokeStopMonitor" operation="stopMonitor"
partnerLink="StopMonitorLT"
portType="awmon:stopMonitorPT">

123. <:sources>
124. <:source linkName="L10"/>
125. </:sources>
126. </:invoke>
127. <:receive name="RecordMonitorResponseResults"

operation="monitorCallback" partnerLink="monitorLT"
portType="awmon:monitorCallbackPT"
variable="monitorResponseMessage">

128. <:targets>
129. <:target linkName="L10"/>
130. </:targets>
131. </:receive>
132. </:flow>
133. </:onMessage>
134. <:onAlarm>
135. <:until>P10S</:until>
// line 136 invokes callback alerting the client that while
// assign weapon completed its task it has not received
// confirmation from the engage task
136. <:invoke inputVariable="WarningMsg"

name="InvokeWarningCallback"
137. operation="warningCallback"

partnerLink="assignWeapon"
portType="AW:WarningPT"/>

138. </:onAlarm>
139. </:pick>
// Line 140 Receive the results from the remote target

// weapon pairing algorithm
140. <:receive name="ReceiveRemoteTWPcallback"

operation="TwpCallback" partnerLink="remoteTwpLT"
portType="rtwp:TwpCallbackPT"
variable="remoteTwpResponseMessage">

141. <:targets>
142. <:target linkName="L6"/>
143. </:targets>
144. <:sources>
145. <:source linkName="L9"/>
146. </:sources>
147. </:receive>
// line 148 invoke the Engage task of the kill chain
148. <:invoke inputVariable="engageMsg1"

name="InvokeEngage" operation="engage"
partnerLink="Engage" portType="ENG:engagePT">

149. <:targets>
150. <:target linkName="L4"/>
151. </:targets>
152. <:sources>
153. <:source linkName="L7"/>
154. </:sources>
155. </:invoke>
//156 receive a callback from the engage task alerting the
// client that task handoff is complete
156. <:receive name="ReceiveEngageCallback"

operation="callback" partnerLink="Engage"
portType="ENG:engageCallBackPT"
variable="callBackMsg">

157. <:targets>
158. <:target linkName="L7"/>
159. </:targets>
160. <:sources>
161. <:source linkName="L8"/>
162. </:sources>
163. </:receive>
164. </:flow>
165. </:process>

Table 8 The TCA Process

5 Evolution of OPORDS
As discussed in Section 3.3 above the OPORD provides
the Mission of two higher levels of command and tasks to
subordinates. Once the initial order is received the
commander must delete the higher level commands
mission and add his own. In addition, the commander
must remove the tasks to the subordinates and provide
tasks to his subordinates. Typical information in the tasks
might be things such as the defended sector assignment
and orientation of weapons systems and asset to be
defended in sector (e.g. from the PDAL).

The initial OPORD would have been sent during
initialization prior to any of the messages received in Table
8 above. However, in our scenario the threat ballistic

12

missiles do not attack according to the intelligence
estimate sent out in the initial OPORD and RCA issues a
FRAGMENTARY ORDER (FRAGO) as part of the
AssignWeaponMsg to its subordinate TCAs to be prepared
to reorient weapons systems and sensors in line 17. The
AssignWeaponMSG would contain those parts of the
OPORD that had change; for instance the mission is the
same, but the execution paragraph would task sensors and
weapons to reorient in the general direction of the
incoming target so that the weapons systems could engage
at the earliest opportunity.

6 Conclusions
We show how the BPEL with appropriate extensions for
MoPs, MoEs and QoS parameters can be used to specify
command, control, and battle management needs of
Ballistic Missile Control. In follow on work we intend on
showing a much more rigorous and complete design of the
BM for the scenario proposed in this paper.

Acknowledgement
The research is funded in part by a grant from the U.S.
Missile Defense Agency. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the U.S.
Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright annotations thereon.

References
[1] Raymond Paul, Jaideep Srivastava and Duminda

Wijesekera, Information Quality Based
(Computer/Distributed) System Evaluation, in
International Journal of Testing and Evaluation, June
2000, pages 41-52.

[2] Transformation Focus - Situational Awareness SOA in
The DOD
http://www.army.mil/armybtkc/focus/sa/soa-dod.htm

[3] Ken Birman, Robert Hillman, Stefan Pleisch.
Building Net-Centric Military Applications over
Service Oriented Architectures. SPIE Defense and
Security Symposium 2005. March 29-31, 2005.
Orlando, Florida.
http://www.cs.cornell.edu/projects/quicksilver/.

[4] Duminda Wijesekera, James B. Michael, and Anil
Nerode. BMD Agents: An Agent-Based Framework
to Model Ballistic Missile Defense Strategies. In
Proc. 6th Int. Workshop on Policies for Distributed
Systems and Networks, IEEE (Stockholm, Sweden,
June 2005), pp. 115-118.

[5] Dale Scott Caffall. Developing Dependable Software
for A System-Of-Systems. Ph. D. Dissertation, Naval
Postgraduate School, Monterey, CA. March 2005.

[6] Missile Defense Agency. Global Ballistic Missile
Defense: A Layered Integrated Defense. BMDS
Booklet, fourth Edition
www.mda.mil/mdalink/pdf/bmdsbook.pdf

[7] Alistair Cockburn, Use Case Template
http://alistair.cockburn.us/index.php/Basic_use_case_t
emplate.

[8] S. Kaushik, D. Wijesekera and P. Amman, BPEL
Orchestration of secure WebMail, Technical Report
ISE-TR-06-08, George Mason University, Fairfax,
VA, August 2006.

[9] E. Christensen, F. Curbera, G. Meredith and S.
Weerawarana, Web Services Description Language
(WSDL) 1.1, 2001.

[10] A. Alves, et el., Business Process Execution
Language, OASIS Standard, 11 April, 2007.

[11] T. W. Otani, M. Auguston, T. S. Cook, D. Drusinsky,
J. B. Michael, and M. Shing, "A design pattern for
using non-developmental items in real-time Java",
Proceedings of the 5th international workshop on Java
technologies for real-time and embedded systems
(JTRES 2007), Vienna, Austria, September 26 - 28,
2007, pp. 135-143.

[12] Matthias Kloppmann, Et el. WS-BPEL Extension for
People – BPEL4People, July 2005

[13] Andrea D’Ambbrogio, A Model-driven WSDL
Extension for Describing the QoS of Web Services,
International Conference on Web Services
(ICWS’06), Chicago, USA, September 18-22, 0-
7695-2669-1/06, IEEE, Computer Society

[14] U.S. Department of Defense. Department of Defense
Dictionary of Military and Associated Terms. Joint
Pub. 1-02, Apr. 12, 2001 (as amended through May
23, 2003).

[15] Dave Beckett, RDF/XML Syntax Specification
(Revised) W3C Recommendation 10 February 2004,
http://www.w3.org/TR/rdf-syntax-grammar/

[16] Headquarters Department of the Army, FM 5-0, Army
Planning and Orders Production, Washington D.C.,
20 January 2005,
http://www.army.mil/usapa/doctrine/Active_FM.html

13

Thomas S. Cook is a Lieutenant Colonel in the US Army
and a PhD candidate at the Naval Postgraduate School in
Monterey California.

Duminda Wijesekera is an associate professor in the
Department of Information and Software Engineering at
George Mason University, Fairfax, Virginia. During
various times, he has contributed to research in security,
multimedia, networks, systems, avionics and theoretical
computer science. These span topics such as applying
logical methods to access and dissemination control,
securing circuit switched (SS7) and IP based
telecommunication (VoIP) systems, multimedia, security
requirements processing during the early phases of the
software life cycle, WWW security, railroad signaling
security, SCADA security, communicating honeynet
farms, and engineering Ballistic Missiles. His pre-GMU
work has been in quality of service issues in multimedia,
avionics control and specifying and verifying concurrent
systems using logical methods.

He holds courtesy appointments at the Center for Secure
Information Systems (CSIS) and the Center for Command,
Control and Coordination (C4I) at George Mason
University, The Computer Science Department at the
Naval Postgraduate School, NIST, and is an fellow at the
Potomac Institute of Policy Studies in Arlington, VA. He
is also the director of liaisons at Aeolus Systems, an
engineering services provider based in Clearwater, Florida
and Nashua, New Hampshire.

Prior to joining GMU as an assistant professor in 1999, he
was a senior systems engineer at Honeywell Space
Systems in Clearwater, Florida. He has been a visiting
post-doctoral fellow at the Army High Performance
Research Center at the University of Minnesota, and an
assistant professor of Mathematics at the University of
Wisconsin. Wijesekera received a PhD in Computer
Science from the University of Minnesota in 1997 under
Professor Jaideep Srivastava and a PhD in Mathematical
Logic from Cornell University in 1990 under Professor
Anil Nerode.

James Bret Michael is a professor of computer science
and electrical & computer engineering at the Naval
Postgraduate School. His primary areas of research areas
are engineering distributed and trustworthy systems. Prior
to joining NPS, he conducted research at the University of
California at Berkeley. He is the chair of the IEEE
Technical Committee on Safety of Systems, a member of
the Advisory Board for IEEE Software, an associate
editor-in-chief of IEEE Security & Privacy, and an
associate editor of the IEEE Systems Journal. He received
his PhD in information technology from George Mason
University. He is a senior member of the IEEE.

Man-Tak Shing is an associate professor of computer
science at the Naval Postgraduate School. His research
interests include software engineering, modeling and
design of real-time and distributed systems, and the
specification, validation, and runtime monitoring of
temporal assertions. He is on the program committees of
several conferences dedicated to software engineering and
is a member of the Steering Committee of the IEEE
International Rapid System Symposium. He was the
program co-chair for the IEEE Rapid System Prototyping
Workshop in 2004 prior to being the general co-chair for
the symposium in 2008. He received his PhD in computer
science from the University of California, San Diego. He
is a senior member of the IEEE.

