

Normative Interaction Specifications for C2: A Comprehensive Type of Rule
Models for Use in the Model Driven Architecture Framework

Francisco Loaiza, Ph.D., J.D.
Steve Wartik, Ph.D.

Institute for Defense Analyses
floaiza@ida.org / swartik@ida.org

Abstract
Modeling languages such as UML and IDEF1-X

provide only partial coverage for the relations and
constraints that apply to information within a given
domain of interest. In most cases additional textual
narratives are required to capture the full set of
pertinent business rules. The "Semantics of Business
Vocabulary and Business Rules Specification" (SBVR),
an OMG adopted specification, offers an alternative to
traditional information modeling with vastly more
powerful capabilities and the potential for use within
the context of the Model Driven Architecture (MDA)
framework. This paper presents our recent work done
within the Multilateral Interoperability Programme
(MIP) where an initial formalization of the model
usage and data integrity rules for the Joint
Consultation Command and Control Information
Exchange Model (JC3IEDM) using the Object
Constraint Language (OCL) has been completed. We
discuss next the possibility of extending the OCL
formalization to FOL-type of rules following the SBVR
specifications, and hypothesize how this in turn could
be the basis for an all-inclusive NIS, a normative
specification of all the relevant rules that control how
information interacts within an enterprise. We
conclude the paper with a brief discussion on the
potential uses of NIS in the context of MDA, as well as
the possibility of applying automated theorem proving
methods to enhance the quality of the rule models.

1. Introduction

In the area of C2 one of the most mature
specifications is the Joint Consultation Command and
Control Information Exchange Data Model
(JC3IEDM) [1]. This model is in the form of an RDBMS
specification and has been created and is maintained

using the modeling language IDEF1-X [2]. Except
for validation rules for enumerated domains, all its
data quality and integrity rules, as well as additional
model usage rules, have been until recently expressed
only in textual form.1

It is a well-known fact that most information
modeling languages used to develop databases, e.g.,
IDEF1-X, UML [3], provide only partial
graphical depiction capabilities when it comes to
expressing constraints and applicable rules
controlling the creation, use and maintenance of the
data that is being modeled. Most CASE
tools provide a way to document model
constraints in the form of textual narratives. One
obvious disadvantage herewith is that the content of
the rules expressed thusly is not readily machine-
processable. Coupled to this is the high degree of
ambiguity in natural languages, which cannot be
easily removed.

A step in the right direction has been undertaken by
the Object Management Group (OMG) with the
release in 2006 of the updated specifications of the
Object Constraint Language (OCL 2.0) [4].
Statements written in OCL can be linked to any of
the objects modeled in a given UML diagram.
Because of the formal character of OCL the degree
of ambiguity can be substantially reduced or
completely eliminated.

Given the above our team undertook as part of the
work in support of the U.S. Army as member of the
MIP an assessment of the applicability of OCL as a
means to capture in a formal way the JC3IEDM
business rules. Section 2 below describes how we have
proceeded to convert the IDEF1-X specifications of
the JC3IEDM into UML. Section 3 discusses how

1 The current release of the JC3IEDM uses tables in the MIP
Information Resource Dictionary (MIRD) database to capture some
of the rules.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
21 MAY 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Normative Interaction Specifications for C2: A Comprehensive Type of
Rule Models for Use in the Model Driven Architecture Framework

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Institute for Defense Analyses

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
AFCEA-GMU C4I Center Symposium "Critical Issues In C4I" 20-21 May 2008, George Mason
University, Fairfax, Virginia Campus, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

24

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

once the former entities are expressed as UML data
classes and class properties the pertinent OCL rules
can be generated and linked to them. Section 4
addresses the possibility of leveraging the Semantics of
Business Vocabulary and Business Rules (SBVR)
specification, which permits the use of first-order logic
(FOL) statements using structured English, to expand
the scope of the original OCL rule model described in
Section 3 into a Normative Interactions Specification
(NIS), a normative specification of all the relevant
rules that control the information interactions within an
enterprise. Section 5 concludes the paper with a
discussion of how once all pertinent rules are in the
form of FOL statements one can begin to use other
techniques such as automated theorem proving to
analyze and improve a given NIS by, for example,
identifying and eliminating internal inconsistencies
that would be very hard to detect by manual
inspection.

2. Migration from IDEF1-X to UML

The methodology for transforming into UML an
entity-relationship (ER) model written in IDEF1-X is
fully documented elsewhere [5]. The process consists
of basically four steps:
1. Converting the names of the ER entities and

attributes to the commonly used object-oriented
naming conventions, i.e., UpperCamel and
lowerCamel.

2. Generating a UML class model out of the ER
model.2

3. Generating the UML profiles needed to recast the
original UML classes from step (2) above into a
form that removes all the entity-relational baggage
contained in the original IDEF1-X specification.

4. Applying the UML profiles from step (3) to the
UML classes and verifying the consistency of the
results.

3. Generation of the OCL Rules

As noted above IDEF1-X has some inherent
modeling limitations. For example, IDEF1-X cannot
capture attribute interrelationships. Thus the IDEF1-X
specification of JC3IEDM can express the one-to-
many relationship between an entity such as ObjectType

2 This conversion is mechanical, i.e., entities to classes, attributes to
class properties, relations to associations. For our work we use the
XMI exporting capability offered by ER Modeler 7 (ERwin) from
Computer Associates.

and ObjectItemType, but cannot restrict the value of
airframeDesignCode in the class AircraftType based on the
values of the categoryCode.

The JC3IEDM specification makes up for this
deficiency by capturing the business rules in the form
of textual narratives and tabular expressions contained
in annexes. Annex G1 contains model use rules stated
using natural language. Annex G2 contains rules that
are conveniently expressed as tables. Rules in Annex
G2 are also captured in the MIRD. 3

There are essentially four types of JC3IEDM
business rules:
1. Intra-table business rules.
2. Inter-table subtyping consistency business rules.
3. Attribute-specific constraints.
4. Implication constraints.

In the following paragraphs we discuss:
• The nature of rules in each category.
• General approaches for expressing rules of the

category in OCL.
The overarching approach to representing rules,

common to all categories, is the use of OCL invariants.
An invariant states a condition that must always hold
for the context in which it exists. The condition is a
Boolean expression. Translating a JC3IEDM business
rule to OCL is, therefore, a matter of casting that rule
as a Boolean expression that uses the operators and
functions of OCL.

3.1. Intra-Table Business Rules
The simplest kind of JC3IEDM business rule is the

intra-table business rule. The rule ensures data
integrity by limiting attribute values to combinations
that make sense. A typical example is where the values
of a categoryCode in a class restrict the possible values
that its subcategoryCode can have. The JC3IEDM
applies these kinds of business rules to coded domain
attributes. Intra-table business rules appear both in
tabular form (Annex G2) and in the MIRD.

An intra-table business rule expresses a constraint
that applies to a single table. Furthermore, a constraint
violation is detectable and fixable on a per-row basis.

For example, the categoryCode attribute of the class
AircraftType has 6 possible values, and the
airframeDesignCode attribute has 12 (including the NULL
value), so in theory there are 72 possible value
combinations. However, a JC3IEDM business rule
(Annex G2, Table G2-1) specifies that only 22 of these

3 The reader is encouraged to visit the URL listed below and
download the HTML Browser for the JC3IEDM. The Annexes G1
and G2 have the hyperlinks to all the OCL rules.
https://trac.fkie.fgan.de/JC3XML/wiki

2

combinations are valid. For example, if the value of the
categoryCode is fixed wing, then the airframeDesignCode
must take a value that makes sense for a fixed wing
aircraft; it cannot be a Balloon or a Helicopter.

3.1.1. Specification in OCL
Formally, each table in Annex G2 that expresses

intra-table business rules specifies a disjunction of
conjunctions. Each row corresponds to a conjunction.
Each conjunction term is an equality or set inclusion
specification that denotes a legal set of values for an
attribute. For example, Table G2-1 states that:

categoryCode =’Fixed wing’ and (airframeDesignCode
∈{‘Bomber’, ‘Fighter’, ‘Glider’, ‘Transport’, ‘Not known’,
‘Not otherwise specified’} or airframeDesignCode is null)

or categoryCode =’Lighter than air’ and
(airframeDesignCode ∈{‘Balloon’, ‘Dirigible’, ‘Not
otherwise specified’} or airframeDesignCode is null)

or categoryCode =’Rotary wing’ and
(airframeDesignCode ∈{‘Balloon’, ‘Dirigible’, ‘Not
otherwise specified’} or airframeDesignCode is null)

or categoryCode =’Space vehicle’ and
(airframeDesignCode ∈{‘Satellite’, ‘Not otherwise
specified’} or airframeDesignCode is null)

or categoryCode =’Not known’ and airframeDesignCode
is null

or categoryCode =’Not otherwise specified’ and
airframeDesignCode is null

Such an expression maps directly to an OCL
expression. The translation is syntactical. It maps:
• A set literal to the OCL Set { … } operator.
• A set inclusion test to the OCL includes(expr)

operator.
• A test for a null attribute to the OCL oclIsUndefined(

) function.
Thus the expression above translates to the

following OCL expression:
context AircraftType
inv:

(categoryCode=’Fixed wing’ and (
Set {‘Bomber’, ‘Fighter’, ‘Glider’, ‘Transport’,

‘Not known’, ‘Not otherwise specified’}
->includes(airframeDesignCode)

or airframeDesignCode.oclIsUndefined()
))

or (categoryCode=’Lighter than air’ and (
Set {‘Balloon’, ‘Dirigible’, ‘Not otherwise specified’}

->includes(airframeDesignCode)
or airframeDesignCode.oclIsUndefined()

))
or (categoryCode=’Rotary wing’ and (

Set {‘Balloon’, ‘Dirigible’, ‘Not otherwise specified’}
->includes(airframeDesignCode)

or airframeDesignCode.oclIsUndefined()
))

or (categoryCode=’Space vehicle’ and (
Set {‘Satellite’, ‘Not otherwise specified’}

->includes(airframeDesignCode)
or airframeDesignCode.oclIsUndefined()

))
or (Set {‘Not known’, ‘Not otherwise specified’}

->includes(categoryCode) and
airframeDesignCode.oclIsUndefined())

However, this kind of translation is only suited to
the smaller tables in Annex G2. It becomes unwieldy
on the larger tables, some of which span multiple
printed pages. It is also difficult to employ. Assume it
is used in an MDA-based approach for the generation
of an application such that the application makes a run-
time test to ensure that a data set conforms to the
invariant. If the test fails, how is the application to
determine precisely which clause is violated so as to
present the user with a meaningful diagnostic
message? (Just listing the entire failed invariant would
be unenlightening.) This problem is not intractable, but
its solution based on the style described above involves
considerable programming effort.

A better approach to OCL translation takes
advantage of the analytical effort that has gone into the
creation of the tabular representation of these rules as
described in Annex G2 of the JC3IEDM
documentation. Inspection of said tables shows the
following characteristics:
1. Some attributes must always have a value, while

others can be NULL. The former can never take the
value NULL.

2. An attribute that must have a value always has a
single value in each row. An attribute that can be
NULL has one or more values, possibly including the
NULL value.

3. Each row has a unique combination of attributes
that must have a value (i.e., that cannot be NULL).

Attributes that must always have a non-NULL value
therefore form the antecedent of an implication, and
attributes that can be NULL form the consequent. More
precisely, each row of a table in Annex G2 is a single
implication whose antecedent is the conjunction of
tests that the non-NULL attributes equal the values in
their respective columns, and whose consequent is the
conjunction of tests that each attribute that can be NULL
either has a value from a subset of its possible values
or is NULL. Each table row corresponds to one OCL
invariant. Table G2-1 of Annex G2 translates to:

context AircraftType
inv:

categoryCode=’Fixed wing’ implies
Set {‘Bomber’, ‘Fighter’, ‘Glider’, ‘Transport’, ‘Not known’,

‘Not otherwise specified’}
->includes(airframeDesignCode)

or airframeDesignCode.oclIsUndefined()

3

inv:
categoryCode=’Lighter than air’ implies

Set {‘Balloon’, ‘Dirigible’, ‘Not otherwise specified’}
->includes(airframeDesignCode)

or airframeDesignCode.oclIsUndefined()
inv:

categoryCode=’Rotary wing’ implies
Set {‘Autogyro’, ‘Helicopter’, ‘Transport’,

‘Not known’, ‘Not otherwise specified’}
->includes(airframeDesignCode)

or airframeDesignCode.oclIsUndefined()
inv:

categoryCode=’Space vehicle’ implies
Set {‘Satellite’, ‘Not otherwise specified’}

->includes(airframeDesignCode)
or airframeDesignCode.oclIsUndefined()

inv:
Set {‘Not known’, ‘Not otherwise specified’}

->includes(categoryCode) implies
airframeDesignCode.oclIsUndefined()

Although most applications can ensure data
integrity with just the previous set of rules, it may also
be important to capture the converse invariants. The
following exemplifies the converse invariants:

context AircraftType
inv:

Set {‘Bomber’, ‘Fighter’, ‘Glider’}
->includes(airframeDesignCode)
implies categoryCode=’Fixed wing’

inv:
Set {‘Balloon’, ‘Dirigible’}->includes(airframeDesignCode)

implies categoryCode=’Lighter than air’
inv:

Set {‘Autogyro’, ‘Helicopter’}
->includes(airframeDesignCode)
implies categoryCode=’Rotary wing’

inv:
airframeDesignCode=’Satellite’

implies categoryCode=’Space vehicle’
inv:

airframeDesignCode=’Transport’
implies Set{‘Fixed wing’, Rotary wing’}

->includes(categoryCode)
The implication form is easier for humans to

understand and maintain than is the conjunctive form.
This ease extends to users as well as to developers. If
an application detects violation of an implication-based
invariant, it can present its user with a succinct set of

currently has only one such set of rules. It is presented
in Table G2-19. It “enforce[s] the consistency of
subtyping” for an ObjectItem and its associated
ObjectType. In other words, it ensures that the type of
an ObjectItem is sensible. An Airfield should not be typed
as an OrganizationType.

There are two possible kinds of association between
an ObjectItem and an ObjectType. One denotes the
classification of an ObjectItem. The other describes the
holdings of an ObjectItem. Although Annex G2 does
not say so, Table G2-19 denotes classification, not
holdings.

3.2.1. Specification in OCL
Translating a rule from Table G2-19 to OCL is

more complex than translating an intra-table business
rule. An intra-table business rule focuses on a single
class. An inter-table subtyping consistency rule
focuses on multiple classes and the relationships
between them. Furthermore, the OCL must account for
the UML model’s class hierarchy. Checking
conformance to a rule involves determining the class
of an ObjectType instance. Depending on the rule, it
may also involve constraints on a categoryCode
attribute.

The general form of a business rule from Table G2-
19 is an implication:

context ObjectItem
inv: self.oclIsKindOf(ObjectItemSubtype)

implies self.is_classified_as->forAll(ot:ObjectType |
ot.oclIsKindOf(ObjectTypeSubtype))

Or, if the business rule involves an attribute test:
context ObjectItem
inv: self.oclIsKindOf(ObjectItemSubtype)

implies self.is_classified_as->forAll(ot: ObjectType |
ot.oclIsKindOf(ObjectTypeSubtype) and
ot.oclAsType(ObjectItemSubtype).categoryCode = value

)
For example, the two invariants below state the

business rules constraining subtypes of instances of
DryDock and Bridge, respectively:

context ObjectItem
inv: self.oclIsKindOf(DryDock)

implies self.is_classified_as->forAll(ot: ObjectType |
ot.oclIsKindOf(FacilityType) and
ot.oclAsType(FacilityType).categoryCode = ‘Dry-dock’

valid choices. By contrast, determining the offending
clause of a conjunctive form could entail considerable
effort if the conjunction is large.

3.2. Inter-Table Subtyping Consistency
Business Rules

An inter-table subtyping consistency business rule
is a JC3IEDM rule that concerns two or more
attributes in two or more tables. Although this is
potentially a broad rule category, the JC3IEDM

)
inv: self.oclIsKindOf(Bridge)

implies self.is_classified_as->forAll(ot: ObjectType |
ot.oclIsKindOf(BridgeType))

There is no need to specify a categoryCode value for
BridgeType: BridgeType has no categoryCode attribute.

Table G2-19 has several rows that necessitate
extending this general form. These rows constrain the
consequent category code to a set of values. As with
intra-table business rules, sets can be handled through

4

the OCL includes operator. However, some rows
specify the allowed values by stating what values the
categoryCode attribute cannot have (e.g., the row for
Facility). There are two ways to handle these rows. One
is by using the expression:

not Set { … } -> includes(categoryCode)
where the ellipses represent the forbidden values.

The other way is to determine the values the attribute
can have (by examining all possible values and
removing the forbidden ones), then using the
expression:

Set { … }->includes(categoryCode)
(where the ellipses represent the values determined

to be permitted) as is done in OCL invariants above.
Either way is acceptable. It is best to choose the

form that uses fewer set literals, because doing so
increases an invariant’s readability. This is especially
true for category codes that have a large range of
values.

The inter-table business rules in Table G2-19 can
also be associated directly with the class of the
antecedent instead of with ObjectItem. That is,

context ObjectItem
inv: self.oclIsKindOf(Bridge)

implies self.is_classified_as->forAll(ot: ObjectType |
ot.oclIsKindOf(BridgeType))

is equivalent to:
context Bridge <!-- Note the different context -->
inv: self.is_classified_as->forAll(ot: ObjectType |

ot.oclIsKindOf(BridgeType))
The latter form is a simpler expression, and it

associates the business rule directly with the class
concerned rather than with an ancestor. Its
disadvantage is that it splits the business rules. Annex
G2’s concise presentation of inter-table subtyping
consistency rules in a single place is lost.

In the UML implementation of the JC3IEDM we
use the first form, associating all inter-table subtyping
consistency business rules with class ObjectItem. The
business rules in Table G2-19 were automatically
translated to OCL from information in the MIRD,
information that was most easily translated to the first
form.

It’s worth noting that the lost information can be
recovered. The simplest way is to name invariants. For
example, if all inter-table subtyping consistency rules
could be named “itsc”, then the above rule would be
written as follows:

context Bridge
inv itsc: self.is_classified_as->forAll(ot: ObjectType |

ot.oclIsKindOf(BridgeType))
With this convention, the set of inter-table

subtyping consistency rules can be recovered by
searching the UML model of the JC3IEDM for all
OCL rules named itsc. An automated tool can also

analyze each rule, looking for those that fit a general
pattern:

context C1
inv: self.assoc->forAll(ot: C2 | ot.oclIsKindOf(C2-subtype))

where the italicized items denote replaceable items
in the pattern. Implementing this approach, however, is
more work.

3.3. Attribute-Specific Constraints
The business rules in Sections 3.1 and 3.2 above are

from JC3IEDM Annex G2, which amalgamates
business rules for coded domains into tabular forms.
The other rules, those listed in Annex G1, express
interoperability constraints textually. These constraints
do not exhibit patterns as specific as those in Annex
G2. Techniques for expressing them in OCL are more
ad hoc.

The business rules in Annex G1 can be categorized
by whether they apply to a single attribute or to
multiple attributes. If they apply to a single attribute,
they can be further categorized in ways that help to
define approaches for converting them to OCL. This
section therefore covers rules that apply to a single
attribute. Section 3.3.1.3 discusses the remaining rules
from Annex G1, those that do not fit into any pattern-
based category.

Some JC3IEDM constraints apply to individual
attributes. These constraints may be grouped into the
following categories:
1. Domain constraints on types. For example, the

IDEF1-X representation of the JC3IEDM states that
the attribute egressDirectionAngle of the entity
ActionAircraftEmployment is to be represented in a
database by the type NUMBER(7,4). It further states
that egressDirectionAngle’s domain is angle-optional,
constraining the attribute’s value to at least 0 and
less than 360 degrees.

2. Size constraints on associations.4 For example,
Table G1-8 specifies that MaterielType and
OrganisationType must have at least one affiliation.
This is equivalent to stating situations under which
the is_ascribed_to association between ObjectType
and Affiliation must have non-zero cardinality.

3. Miscellaneous constraints. These tend to be rules
stated textually in Annex G1. An example is rule
G1.2.1, which forbids changing category codes in
the ObjectType hierarchy.
Note that Annex G does not list all these rules.

Annex G is concerned with textually stated rules and
with rules on coded domains. Domain constraints on

4 These are attribute-specific constraints because associations are
implemented through so-called migrated or foreign keys in an
IDEF1-X model.

5

types do not fall into either category. They are,
however, in the MIRD.

3.3.1. Specification in OCL
The approach to specifying an attribute-specific

constraint in OCL depends on its category. This
section will discuss each category in turn.

3.3.1.1 Specifying Domain Constraints on
Types in OCL

The JC3IEDM specifies 558 domains, of which 533
are application-level domains. Of these 533, 472 are
coded domains. Coded domains are expressed in UML
as OCL invariants stating that an attribute’s value must
be drawn from a set of strings (Section 4.3.3). For
example, attribute decoyIndicatorCode of entity
ObjectType can assume values YES and NO. This
translates to the OCL expression:

context ObjectItem
inv: Set { ‘NO’, ‘YES’ }->includes(self.decoyIndicatorCode)

Of the remaining 61 domains, 21 concern
JC3IEDM attributes used as database identifiers or
primary keys (e.g., action-id). Annex G does not define
any rules that reference these domains. The only
restrictions on them specify type and length (e.g.,
action-id is a 64-bit integer whose SQL datatype is
NUMBER(20) in Oracle). Because the UML model
eliminates the primary keys, these domains are not
used in the class model and appear in no OCL
expressions.5

Of the remaining 40 domains, 19 express numeric
boundary constraints. The representation of the domain
uses a data type broader than is logical for the domain.
(For example, domain temperature is represented as
type Real but can never be less than -273.15° Celsius.)
Of these, 15 can be grouped into triples in which one
member categorizes the triple, one member denotes a
mandatory value, and one denotes an optional value
(e.g., angle, angle-mandatory, and angle-optional,
respectively). No JC3IEDM attribute’s domain is a
member that characterizes a triple; these domains are
simply a grouping mechanism in the IDEF1-X model.

The general form for an OCL rule that expresses a
domain constraint on an attribute is a conjunction of
inequalities. For example, the constraint for entity
FanArea’s sectorSizeAngle attribute takes the following
form in OCL:

5 A domain’s type and length (e.g., a 20-digit integer for action-id)
must be known when transforming the UML version of the
JC3IEDM to a relational database schema. The details are outside the
scope of this paper, but it suffices to know that the current approach
relies on the JC3IEDM standards for database key representation.

context FanArea
inv: self.sectorSizeAngle >= 0 and

self.sectorSIzeAngle <= 359.9999
The sectorSizeAngle attribute’s domain is angle-

mandatory. If the domain indicates that the attribute is
optional, the invariant must test for that possibility:

context ActionAircraftEmployment
inv: self.egressDirectionAngle.oclIsUndefined() or

(self.egressDirectionAngle >= 0 and
self.egressDirectionAngle <= 359.9999)

It is worth noting that the UML version of the
JC3IEDM does not always use OCL to specify domain
constraints. JC3IEDM textual domains have a
maximum length. This fact could be captured through
an OCL invariant, e.g.:

context Action
inv: self.nameText.size() <= 50

For technical reasons we don't use this approach in
the UML version of the JC3IEDM. For example, the
OCL invariants generally represent conditions that
must be checked dynamically. By contrast, an SQL
database schema specifies the maximum length of a
text field at the time the database is created.

The decision to specify maximum string length
using tags thus reflects the JC3IEDM’s heritage.
Modern programming languages, as well as knowledge
bases, do not generally impose a maximum length on a
string, so any length testing must be done dynamically.

3.3.1.2 Size Constraints on Associations
A JC3IEDM size constraint on an association can

be expressed in OCL using the built-in size() operator.
For example:

context MaterielType
inv: is_ascribed_to->size() >= 1

requires a MaterielType instance to have at least one
affiliation, as per Table G1-8.

Creating these expressions requires examining the
JC3IEDM to determine the name of the association.
Annex G1 does not specifically state that is_ascribed_to
is the association linking MaterielType to Affiliation.
However, a quick check of the JC3IEDM reveals
is_ascribed_to to be the only logical candidate.

3.3.1.3 Miscellaneous Constraints
Some JC3IEDM constraints on attributes have

nothing in common with other constraints. These
constraints must be dealt with individually.

The only such business rule that has been identified
in Annex G1 is rule G1.2.1, which states that:

Category codes in the ObjectType hierarchy are not to
be changed. New instances of ObjectType must be
created with the appropriate category codes in the
ObjectType hierarchy.

6

These two sentences impose two distinct business
rules. The second sentence is a conjunction of
implications: if an instance is of type AirfieldType,
BridgeType, HarbourType, or MilitaryObstacleType, then
the categoryCode attribute of the FacilityType superclass
must be FA; if an instance is of type RouteType, then
the categoryCode attribute of the ControlFeatureType
superclass must be RTETYP and the categoryCode
attribute of the FeatureType superclass must be CF; and
so on. As rule G1.2.1 is only stated textually and not in
the MIRD, it must be translated manually.

The first sentence is more interesting. It cannot be
expressed in the UML version of the JC3IEDM as
currently formulated. It deals with a change of state,
and the UML representation of the JC3IEDM does not
express state. Modeling the first sentence therefore
requires making a design decision on how to express
state in the converted model. There are two ways:

1. The ObjectType hierarchy of the UML model could
be changed such that:
1. categoryCode elements are query operators

rather than attributes.
2. Classes have constructors that require

necessary categoryCode values. The necessary
value is that for the class being instantiated,
not for any of its superclasses; superclass
values can be inferred.

This approach uses UML class model features, not
OCL, to enforce the business rule.

2. The second approach would be to add state
models to the UML version of the JC3IEDM. In
these models, there would be explicit statements
that the value of a categoryCode in the ObjectType
hierarchy does not change. These statements can
be effected through OCL’s @pre construct.

The first approach seems better. It encapsulates the
business rule, placing it entirely within the ObjectType
hierarchy. The second approach potentially requires
restating the business rule each time a new state model
is added to the JC3IEDM. The first approach has the
disadvantage of modeling one hierarchy inconsistently
from all others, using operators instead of attributes.

3.4. Implication Constraints
JC3IEDM Annex G1 contains rules that are similar

to stating an implication: The existence in a JC3IEDM
data set of some combination of rows, column values,
or associations implies the existence of some other
combination. These rules can be distinguished from
those involving coded domains (Sections 3.1 and 3.2
above) in that, quite simply, they don’t necessary
involve coded domains. Their antecedents and
consequents can be arbitrary Boolean expressions. For
example, rule G1.3.1 states that:

For the instances where the Minefield is a MinefieldLand,
then the destructionDateTime is filled only where
persistenceCode is “Remote activated destruction” or
“timed automatic destruction”.

which can be rewritten as the implications:
If the persistenceCode of a MinefieldLand is neither
“Remote activated destruction” nor “timed automatic
destruction”, then its destructionDateTime is null.
If the persistenceCode of a MinefieldLand is either
“Remote activated destruction” or “timed automatic
destruction”, then its destructionDateTime is not null.

(OCL has no Boolean equivalence operator.)
By definition, an implication constraint fits into the

OCL form:
context K
inv: antecedent implies consequent

Implication constraints have arbitrary expressions in
their antecedents and consequents, so no other general
rules can be defined to cover how they can be
expressed in OCL. That said, several OCL operators
appear in many of the invariants. This probably
reflects the kinds of business rules that characterize an
IEDM, so it is worth briefly discussing these operators.
• The oclIsKindOf() operator is often used to determine

whether an instance of some class is also an
instance of some subclass. In cases where the
operator appears in the antecedent, the use of
oclIsKindOf() usually reflects a design decision on
how to translate business rules. For instance, rule
G1.4.1 contains the invariant:

context ObjectItem
inv: (self.oclIsKindOf(GeographicFeature) or
self.oclIsKindOf(MeteorologicFeature)) implies
self.has_affiliation->size() = 0

(As noted above, this rule could be rewritten as:
context GeographicFeature
inv: has_affiliation->size() = 0
context MeteorologicFeature
inv: has_affiliation->size() = 0

The same advantages and disadvantages apply.)
• The forAll iterator is often used to test a condition

about an instance’s associations. For example, rule
G1.4.2.3:

The attribute operationalStatusModeCode in
MaterielStatus applies only to instances of Materiel
that are classified as EquipmentType.

translates to the OCL expression:
context ObjectItem
inv: not (self.oclIsKindOf(Materiel) and

self.is_classified_as
->forAll(oclIsKindOf(EquipmentType))

implies self.has->select(oclIsKindOf(ObjectItemStatus))
->forAll(

s | s.oclIsKindOf(MaterielStatus) implies
s.operationalStatusModeCode.oclIsUndefined()

)

7

In the antecedent, the forAll iterator ensures that
instances in question are restricted to Materiel
classified as EquipmentType.

• The select iterator is often used to narrow associated
instances according to some characteristic. The
previous OCL expression filtered instances of
ObjectItemStatus to account for the use of multiple
associations named has that emanate from
ObjectItem.

• The exists iterator appears in expressions both to
verify that an instance has one kind of association,
and that it has no associations of a particular kind.
As an example of the latter rule type, rule G1.10.2a
states that:

If Context B is a sub-context of Context A, then
Context A cannot be a sub-context of B.

This translates to the OCL expression:
context Context

inv: not self.is_the_subject_of->exists (
c | c.is_the_subject_of->includes(self))

Implication constraint business rules can be simple
and short, as are the examples shown in this section.
They can also be much larger. Some contain
conjunctions and disjunctions of many terms. Others
nest iterators to three levels. A few handle
subexpressions using let clauses. This complexity is to
be expected in formalized complex rules. Its
implications for automated translation to an
implementation have not been explored by the authors.

4. From OCL to SBVR and NIS

A quick review of the results presented in Section 3
above shows how essentially all the model use and
data integrity rules of the JC3IEDM can be expressed
in OCL.6 In addition it shows that these rules are
formally equivalent to first order logic (FOL)
statements that concern either the behavior of sets
produced by set-traversal operators; the values of class
properties within a given class; or the values of class
properties from different classes in the form of if-then
implications.

This is a very important realization because the
business rule community has been actively pursuing
the standardization of a rule language which is also
based on FOL type of statements, namely, SBVR
[6]. What makes this development important to
C2 information modelers is that this language supports
not only all the types of logical operators that OCL
has,

6 The only type of rule that is not amenable to capture via OCL is
the one that requires the use of operators not available in OCL. In
the JC3IEDM this means some rules that require the use of
trigonometric functions.

but also a variety of operators not present in OCL such
as deontic and alethic operators.

4.1. Structured English Expressions in SBVR
As described in Annex C of the SBVR specification

all business rules are expressible as some kind of
logical formulation involving one or more operators.
The types of operators are:
• Quantification operators, e.g., each, some, at least

one.
• Logical operators, e.g., not, and, or, if-then

implication, nand, nor, whether-or-not.
• Modal operators, e.g., is obligatory that, is

prohibited that, is necessary that, is impossible that,
it is permitted that.
Thus, besides data constraints one can also state

doctrinal rules that are now very hard or impossible to
express using OCL unless one extends the C2
information models to contain additional UML
diagrams.

And while OCL is a very powerful means for
capturing constraints, it is not only bound to the classes
of a given UML model, but it is also hard to read
without special training. In contrast to this, SBVR is
designed to express all rules via structured English, a
subset of regular English with a controlled vocabulary
and syntactic templates, which, unlike OCL, is readily
understandable.

This permits subject matter experts to capture
rapidly and precisely the operational constraints that
may apply for some type of C2 process without a need
to have formal training in a modeling language, while
at the same time providing in an unambiguous form the
C2 information modelers require to derive data classes
and other important artifacts.

Rewriting some of Section 3’s OCL business rules
in SBVR will help demonstrate SBVR’s increased
clarity. Consider rule G.1.4.1, as expressed by two
OCL invariants:

context GeographicFeature
inv: has_affilication->size() = 0
context MeteorologicFeature
inv: has_affiliation->size() = 0

In SBVR’s structured English, these rules are
expressed as follows:

Each «GeographicFeature» must not have an «Affiliation».
Each «MeteorologicFeature» must not have an «Affiliation».

The SBVR statements would be understandable to
anyone who can read English as restrictions on
GeographicFeature and MeteorologicFeature, which as
specializations of class ObjectItem inherit an association
with class Affiliation.

This seemingly normal English is in fact highly
specialized and easily parsed. This specialization is

8

more easily seen by rewriting one of the examples
using SBVR’s recommendations for font styles:

Each GeographicFeature must not have Affiliations
In this sentence:

• Words in the keyword color are SBVR keywords,
with precise meaning, and also with predefined
context. In this example:
• “Each” represents universal quantification over

the following thing, here a GeographicFeature.
• “Must not” introduces an obligation: something

that must be true (more precisely, the negation
of which must be true) in any acceptable
instance of a JC3IEDM data set.

• Underlined words are terms that designate a noun
concept drawn from a specified vocabulary.
Generally the specified vocabulary maps to the
classes and attributes of the model in question, i.e.,
JC3IEDM class and attribute names.

• Double underlined words represent individual
concepts, i.e., instances of a concept.

• Italicized words are verbs or verb phrases, and
designate fact types. They derive from JC3IEDM
association names. They are fact types in the sense
that an association instance is a fact, which is
typical in FOL.
Therefore, the sentence translates, unambiguously,

to the following first-order logic expression:

are legal are those built into SBVR (e.g., “must”) and
those that are defined to derive from the JC3IEDM
associations in which ObjectItem participates. To make
use of a verb in all possible SBVR contexts, it is
generally necessary to specify singular and plural
forms (the examples use both has and have), as well as
the infinitive. It is also necessary to specify singular
and plural forms of concepts. A JC3IEDM vocabulary
developed for SBVR would describe “Affiliation” as a
concept deriving from the JC3IEDM Affiliation class,
and list “Affiliations” as its plural. Note that
vocabulary terms need not be identical to their
JC3IEDM counterparts in the class model. The noun
concept “Geographic Feature” could be used if it is
judged to improve readability.

Consider the following example. It states one of the
rules from Table G2-1 (see Section 3.1.1) in SBVR:

If the category code of an Aircraft Type is Fixed Wing then
the airframe design code is Bomber or Fighter or Glider or
Transport or Not Known or Not Otherwise Specified or is
undefined.

As noted above, double-underlined words are
individual concepts – i.e., instances of a concept. An
individual concept is also known as a name.

This example uses an if-then formulation to express
a business rule. The verb phrase “of” is used to
reference an attribute in its parent class. The verb
phrase “is” establishes an equality test between an

(∀g ∈ GeographicFeature)(¬∃a ∈ Affiliation)(has_affiliation(g, a)) attribute and a name. These are not inherent SBVR
Despite its precise structure, SBVR’s syntax is

flexible and amenable to variations. The example rule
may also be written as:

It is prohibited that each GeographicFeature has Affiliations
because “must not” and “it is prohibited that”

express equivalent semantics. This flexibility is not
unlimited. The statement:

Each GeographicFeature never has Affiliations
has a different, incorrect meaning. It states that it is

not possible to create a JC3IEDM data set in which a
GeographicFeature has an association to an Affiliation, as
opposed to claiming that the existence of this
association makes the data set invalid. This difference
arises from how SBVR defines “must not” and
“never”. Thorough knowledge of SBVR is a
prerequisite to writing SBVR rules, even if rules, once
written, are fairly readable.

It was mentioned above that noun concepts are
drawn from a vocabulary. So are most fact types. A
full and precise vocabulary is necessary to parse SBVR
sentences. This can be seen by analyzing the simple
examples presented so far. How, exactly, is “has” to be
interpreted? The answer is that it must be linked to the
JC3IEDM has_affiliation association that exists between
ObjectItem and Affiliation. That is, in the context of a
GeographicFeature, the only verbs and verb phrases that

semantics. They must be defined in a vocabulary.
SBVR is smart enough to permit elision, which is

very helpful in the repeated equality tests. It’s not
necessary to write “airframe design code is Bomber or
airframe design code is Fighter or …”. However,
SBVR doesn’t understand punctuation, so the
following form, though shorter and closer to common
English usage, is invalid:

airframe design code is Bomber, Fighter, … or Not Otherwise
Specified.

These simple forms and principles let SBVR
express surprisingly complex rules. The JC3IEDM
business rule contained in G1.4.2.3 (see Section 3.4
above) is:

If it is not the case that an ObjectItem is a Materiel and
always is classified as an EquipmentType then each
ObjectItemStatus of the ObjectItem that is a MaterielStatus
must have an optionalStatusModeCode that is undefined.

which, especially when rendered without font
embellishments, is indisputably less technical than its
OCL counterpart, and will be understood by a much
broader audience.

SBVR can also be used more effectively than OCL
to express business rules that deal with operational use
of a JC3IEDM data set (SBVR terms these “operative”

9

as opposed to “structural” rules). Consider rule
G.1.8.1c:

Some uses of a line entail a preferred side, such as
forward line of own troops where the symbology calls
for dragon teeth on one side. When side has meaning
for a line, the left-hand side is interpreted according to
the direction of the line as determined from an
ascending numeration of the points of the line….
This rule does not constrain a JC3IEDM data set. It

specifies how users are to interpret a data set. It is
incompletely stated. For one thing, it never specifies
the relationship between left-hand side and direction.
An SBVR statement of (a part of) the rule might be:

If a Line has South-to-North direction then a user must
interpret the left hand side of the Line as West.

This statement explicitly mentions the user, tying
his behavior to operative intent. Unlike an OCL
invariant, it instructs how to use a JC3IEDM-based
system.

In fact, SBVR was devised more to model these
kinds of rules than to model the examples previously
given, which are structural. This does not imply that
SBVR cannot be used, or even should not be used, to
model structural rules. The best modeling language
should be chosen based on many factors, and if
readability is a prime consideration then SBVR may be
preferable to OCL. Even if readability is not
paramount, OCL is weaker than SBVR (recall SBVR’s
distinction between “must” and “always”; OCL offers
only “must”).

4.2. A Normative Interactions Specification
The term "normative" is understood as pertaining to

giving directives or rules, or prescribing an
authoritative standard. Specifically, in the context of
interactions these norms prescribe the expected
characteristics and values of the relationships that are
binding upon the objects that participate in the
interactions. In that respect the norms serve to guide,
control, or regulate proper and acceptable behavior.

The term "specification" is understood in the sense
of being a complete, precise, and verifiable
documentation of the norms applicable to the
interactions considered.

For every relationship among components specified
in an information model there are one or more
applicable norms. These norms state the expected
acceptable values that are characteristic of the
relationships. For example, the relationship between
an information element corresponding to the location
of a military unit in the battlefield and the system that
generates and broadcasts it to the pertinent C2 nodes
can have characteristics such as refresh rate, latency,
and validity. In a given information model the norm

applicable may state that the refresh rate is "once every
five minutes". Similarly, values for each of the other
characteristics may be stated in that norm.

From the above it is clear that the NIS underlying
an information model provides a sufficient baseline for
the derivation of most of the traditional descriptions of
the domain being modeled. The difference between
them and the NIS is that the former have more
specialized perspectives. In other words, the NIS for a
given information model is the most complete
representation of the domain because it is comprised of
all the objects of the domain, as well as all their
pertinent interactions, which themselves are fully
characterized and may have, where applicable, metrics
and expected values. Things such as the information
model data dictionary, as well as the data requirements
needed to support the interactions can be derived from
the NIS because the norms are written in terms of the
objects of the domain, and they assert the
characteristics expected for the relationships.

5. MDA, Formal Proof Methods, and NIS

Section 4.2 above intimates that a finalized NIS for
C2 would constitute a full representation of the rules
that govern all the objects in the domain.

It would, therefore, be theoretically possible to use
it as a form of extended Platform Independent Model
(PIM) as defined in the context of MDA. This is in
fact already noted in Annex A of the SBVR
specification, although the guidance for how to convert
business models written in SBVR into either
intermediate PIMs or directly into PSMs is something
that will have to be worked out. Nevertheless, it is
clear from the substantial progress that has been made
in the use of the MDA framework over the past couple
of years, that once the required level of specificity is
present in a formalized representation it will be
feasible to write the needed applications that can
transform its content into any desired format.

Similarly, the rapid advances in automated theorem
proving7 suggest that one of the possible benefits of
formulating a C2 information model such as the
JC3IEDM in the form of a NIS would be that one can
apply to it these formal proof techniques to verify that
there are no internal inconsistencies or contradictions.
At present the review of even the rules that control
data integrity in the JC3IEDM is quite a laborious
undertaking, and is error-prone due to the size of some
of the enumerated domains or the sheer complexity of
the relationships. Automation is in this case quite
appropriate as a means to minimize human error.

7 For a recent review of some of the tools available see
http://www.dwheeler.com/essays/high-assurance-floss.html

10

Two approaches to formal, automated proofs based
on a JC3IEDM PIM have been explored. The first uses
OWL-DL, the description logics variant of the Web
Ontology Language.8 The second uses prover9, an
automated theorem prover for first-order logic.9 These
approaches are now briefly discussed.

In both approaches, the underlying idea is that most
of the JC3IEDM’s business rules can be expressed
using set-theoretic operators. Section 4.1 gave an
example of how a business rule could be stated using
FOL notation:

The limitations of description logics are by design.
Many first-order logic problems require
non-polynomial time to solve. First-order logic is not
usually considered applicable to real-time or near-real-
time problem-solving. This limits its utility in a net-
centric environment.

Its slowness notwithstanding, first-order logic has
an important role to play. Each new release of a model
like the JC3IEDM incorporates changes that might
make it self-contradictory. There is a strong need for
validation of the model. Validation is not a net-centric

(∀g ∈ GeographicFeature)(¬∃a ∈ Affiliation)(has_affiliation(g, a)) exercise. It can be conducted over a prolonged period
In general this kind of formulation is possible for

any OCL rule. The rule thus defines a constraint on a
set, in the above rule the set of all things that are
geographic features.

Suppose someone (erroneously) defines the
following business rule elsewhere in the JCIEDM:

of time (it certainly is currently, considering that it’s
done manually). In such circumstances it makes sense
to bring the full expressiveness of first-order logic to
bear. Analyzing a FOL representation of the JC3IEDM
has the potential to reveal more mistakes than
analyzing a OWL-DL representation.

(∀g ∈ GeographicFeature)(∃a ∈ Affiliation)(has_affiliation(g, a))
Together with the last rule, the implication is that a

GeographicFeature both must and must not have an
Affiliation. This is a logical contradiction. Nothing can
be a GeographicFeature; or, in UML terminology, the
class GeographicFeature cannot be instantiated.
Although UML doesn’t explicitly forbid creating such
a class, it’s of no use in a real-world model, and ought
to be a clue that something is wrong.

The automated proof approach identifies these
logical contradictions. An OWL-DL model can be
used as input to a reasoner, such as Pellet.10 The
reasoner is requested to “classify” the model. The
result of the operation is (among other things) a list of
classes that can have no members. This achieves the
goal of identifying logical inconsistencies in the
business rules.

Description logics is being promoted as the best
kind of logic to use in semantic web technologies.
Description logics reasoning is fast and predictable, a
huge advantage when dealing with large, distributed
models. It appears that description logics can be used
to evaluate the potential for interoperability between
two models. Contradictions would imply that that
interoperability cannot occur.

However, description logics is not as expressive as
first-order logic. It deliberately omits some first-order
logic operators. Practically speaking, these omissions
are not critical. Most JC3IEDM business rules can be
expressed using description logics. Nevertheless, it
remains true that first-order logic is required to provide
a full, formal specification of the JC3IEDM.

6. Conclusions

The recent work in MIP where the JC3IEDM
specifications have been migrated to UML has opened
the door to the formalization via OCL of all the current
rules controlling the use of the model and the integrity
of the data sets.

The development of a more expressive language for
capturing business rules, namely, SBVR, suggests that
at a minimum the OCL formulation of the rules should
be transformed into SBVR structured English, and that
potentially all C2 information interactions could be
also formally captured to provide a more robust and
stable specification from which one can create through
appropriate transformations the required PSMs.

As a bonus, with a NIS written in structured
English one could also take advantage of some recent
development in automated theorem proofing, many of
which accept as input FOL statements.

7. References

[1] http://www.mip-site.org/
[2] http://www.idef.com/IDEF1X.html
[3] http://www.omg.org/technology/documents/modelin

g_spec_catalog.htm
[4] http://www.omg.org/technology/documents/formal/o

cl.htm
[5] IDA Paper P-4274 – Loaiza, Wartik, A Model

Driven Architecture Approach for Migrating
Information Models from IDEF1-X to UML.
UNCLASS. 2007. An electronic copy of the paper
is also available at
https://trac.fkie.fgan.de/JC3XML/wiki.

[6] http://www.omg.org/technology/documents/bms_sp
ec_catalog.htm

8 See http://www.w3.org/2004/OWL/.
9 See http://www.cs.unm.edu/~mccune/mace4/.
10 See http://pellet.owldl.org/.

11

1

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Rule Models as Semantic Models
for Command and Control

Francisco Loaiza
Steven Wartik

Institute for Defense Analyses

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

TOC

• Background
• JC3IEDM
• Business Rules In C2
• Beyond OCL
• Conclusions

2

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Background

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

State of the Art

• Most information modeling languages used to
develop databases, e.g., IDEF1-X, UML, provide only
partial graphical depiction capabilities when it comes
to expressing constraints and applicable business
rules controlling the creation, use and maintenance of
the data that is being modeled

• UML extends its modeling capabilities for constraints
and business rules via the Object Constraint
Language (OCL)

3

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Consequences for C2

• To take advantage of OCL the models must be recast
in UML

• Our Approach
Convert our test C2 Model from IDEF1-X to UML
Rewrite ‘constraints’ and Business Rules as OCL
Statements
Assess the applicability of more powerful ‘rule languages’
(e.g., SBVR)

JC3IEDM

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

What is the JC3IEDM?

4

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

JC3IEDM

• Defines the objects in the universe of discourse
(Facilities, Features, Materiel, Organizations, Persons)

• Describes the state of the universe: past, present,
and future

• Records observed events
• Plans to use what you have to achieve objectives
• Monitors the execution of planned activity

The Joint Consultation, Command, and Control
Information Exchange Data Model

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

JC3IEDM Information Exchange

JC3IEDM

Common Interface

Local Implementation

IEMIEM

JC3IEDM

Common understanding

Information Transfer

Shared Picture

Effective C2 For Operations

System
Database

System
Database

Staff Staff

Commander Commander

JC3IEDMJC3IEDM

Common Interface

Local Implementation

IEMIEMIEMIEM

JC3IEDMJC3IEDM

Common understanding

Information Transfer

Shared Picture

Effective C2 For Operations

System
Database

System
Database

Staff Staff

Commander Commander

5

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

JC3IEDM: Basic Design

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Business Rules in C2

6

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Taxonomy of JC3IEDM Business Rules

Business Rules

Data
Integrity/Quality

Rules
Model Use

Rules
Doctrinal

Rules

JC3IDEM Annex G1
JC3IEDM Annex G2

explicitly documented
From Engineering
WG Documentation

From Operational
WG Documentation

future work
Intra-Class BRs
Inter-Class Subtyping Consistency BRs
Other Inter-Class Business Rules
Textual BRs

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Intra-Class Business Rules

When AircraftType.categoryCode = ‘Fixed wing’ the
AircraftType.airframeDesignCode must be a value in the set {‘Bomber’,
‘Fighter’, ‘Glider’, ‘Transport’, ‘Not known’, ‘Not otherwise specified’} or
be NULL

context AircraftType
inv:

categoryCode=’Fixed wing’ implies
Set {‘Bomber’, ‘Fighter’, ‘Glider’, ‘Transport’, ‘Not known’,

‘Not otherwise specified’}
->includes(airframeDesignCode)

or airframeDesignCode.oclIsUndefined()

OCL

7

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

OCL

Inter-Class Subtyping Consistency
Business Rules

context ObjectItem
inv: self.oclIsKindOf(DryDock)

implies is_classified_as->forAll(ot: ObjectType |
ot.oclIsKindOf(FacilityType)
and ot.oclAsType(FacilityType).categoryCode = ‘Dry-dock’

)

When instances of DryDock, a specialization of ObjectItem, are created, the
appropriate corresponding instance of FacilityType, a specialization of
ObjectType, must be instantiated with the value of categoryCode set to ‘Dry-
dock’

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Other Inter-Class Business Rules

OCL

context ObjectItemAssociation
inv: is_the_subject_of.oclIsKindOf(ControlFeature) and is_the_subject_of.is_classified_as->

forAll(oclIsKindOf(RouteType) and oclAsType(RouteType).categoryCode = 'QROUTE')
and is_the_object_of.oclIsKindOf(ControlFeature) and is_the_object_of.is_classified_as->

forAll(oclIsKindOf(ControlFeatureType)
and oclAsType(ControlFeatureType).categoryCode = 'QZONE')

implies categoryCode = 'ISPART' and is_the_subject_of.is_the_object_of->size() = 1

Instances of ControlFeature that constitute elements in the definition of Q-
routes entail restrictive associations to conform to the concept of Q-routes.

2 or moreIs part ofQ-routeWay point
1Is part ofQ-zoneQ-route

Number of
Permissible

Associations

ObjectItemAssociation::
categoryCode

Value

Object
ControlFeature

Typed As

Subject
ControlFeature

Typed As

8

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Textual Business Rules

For the instances where the Minefield is a MinefieldLand, then the
destructionDatetime is filled only where persistenceCode is “Remote activated
destruction” or “timed automatic destruction”.

OCL
context MinefieldLand
inv: Set { ‘Remote activated destruction’, ‘Timed automatic destruction’ }

->includes(persistenceCode)
implies not destructionDatetime.oclIsUndefined()

inv: not Set { ‘Remote activated destruction’, ‘Timed automatic destruction’ }
->includes(persistenceCode)

implies destructionDatetime.oclIsUndefined()

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Assessment of OCL Capability

• Almost all the use and data integrity rules of the
JC3IEDM can be expressed in OCL

• The only type of rule that is not amenable to capture
via OCL is the one that requires the use of operators
not available in OCL. In the JC3IEDM this means
those rules that require the use of trigonometric
functions

• OCL rules are formally equivalent to first order logic
(FOL) statements that concern either the behavior of
sets produced by set-traversal operators; the values
of class properties within a given class; or the values
of class properties from different classes in the form
of if-then implications.

9

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Beyond OCL

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Can We Do Better?

• Shortcomings of OCL
OCL rules are always written against the classes defined in
a specific UML model
OCL does not support mathematical operators
Not suited to technophobes:

• Syntax is non-intuitive
• Somewhat cumbersome

10

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

SBVR

• Semantics of Business Vocabulary and Business
Rules

• Rules can be written in Structured English
• Language supports:

Quantification operators, e.g., each, some, at least one
Logical operators, e.g., not, and, or, if-then, nand, nor,
whether-or-not
Modal operators, e.g., is obligatory that, is prohibited that,
is necessary that, is impossible that, it is permitted that

• Models written in SBVR also support MDA approach
• SBVR rules are FOL statements

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

SBVR as a Superset of OCL(1)

context GeographicFeature
inv: has_affilication->size() = 0
context MeteorologicFeature
inv: has_affiliation->size() = 0

Each «GeographicFeature» must not have an «Affiliation»
Each «MeteorologicFeature» must not have an «Affiliation»

SBVR

OCL

11

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

SBVR

SBVR as a Superset of OCL(2)

When side has meaning for a line, the left-hand side is interpreted
according to the direction of the line as determined from an ascending
numeration of the points of the line….

If a Line has South-to-North direction then a user must interpret
the left hand side of the Line as West.

SBVR explicitly mentions user and ties his behavior to operative intent.
This capability is not supported in OCL.

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Normative Interactions Specification (NIS)

• A complete, precise, and verifiable documentation of
the directives or rules that prescribe the expected
characteristics and values of the relationships that
are binding upon the objects that participate in the
interactions

• In that respect the norms serve to guide, control, or
regulate proper and acceptable behavior

12

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

NIS Completeness
SBVR

Each a Action must have a name
The name of an Action must be written using ISO-93884 encoding
The name of an Action cannot exceed 50 characters
Each a Action must have a categoryCode
The categoryCode of an Action cannot exceed 6 characters
.
.

logical
physical

NIS as a PIM

«PIM-to-PSM*»

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Automated Consistency
Checking

formulas(assumptions).
GeographicFeature(G) -> exists A has_affiliation(G,A).
GeographicFeature(G) -> -(exists A has_affiliation(G,A)).
(exists G GeographicFeature(G)).

end_of_list.

Contradiction

Prover9 Input

{1} GeographicFeature(G) ->
exists A has_affiliation(G,A)

{2} GeographicFeature(G) ->
¬(exists A has_affiliation(G,A))

{3} (exists G GeographicFeature(G))

Actual rule

{4} GeographicFeature(c1){5} -GeographicFeature(A)
| has_affiliation(A,f1(A))

{6} -GeographicFeature(A)
| ¬has_affiliation(A,B)

{7} ¬has_affiliation(c1, A){8} has_affiliation(c1, f1(c1))

{9} False

13

I N F O R M A T I O N T E C H N O L O G Y & S Y S T E M S D I V I S I O N

Conclusions

• The recent work in MIP where the JC3IEDM specifications
have been migrated to UML has opened the door to the
formalization via OCL of all the current rules controlling the
use of the model and the integrity of the data sets

• The development of a more expressive language for
capturing business rules, namely, SBVR, suggests that at a
minimum the OCL formulation of the rules should be
transformed into SBVR structured English, and that
potentially all C2 information interactions could be also
formally captured to provide a more robust and stable
specification from which one can create through
appropriate transformations the required PSMs

• As a bonus, with a NIS written in structured English one
could also take advantage of some recent development in
automated theorem proofing, many of which accept as
input FOL statements

	30. 6_Loaiza
	Loaiza-slides

