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Chapter 1 

Project description 

1.1 Objectives 

This project deals with radar remote sensing problems, including foliage- 
penetrating synthetic-aperture radar (SAR), radar systems involving multi- 
ple transmitters and receivers, and the identification of targets in a complex 
environment. 

1.2 Personnel supported on this contract 

1.2.1 Faculty 

Margaret Cheney (Principal Investigator) 

1.2.2 Postdoc 

One month of support was charged to this contract for our postdoc Trond 
Varslot, who had been working with us for more than a year on a DARPA 
project. He is now at the Australian National University. 

1.2.3 Consultant 

Liz Rachele was paid $5k as a consultant. She has a math Ph.D. from the 
University of Washington (advisor Gunther Uhlmann) and was an assistant 



professor at Tufts for a few years. She is now living in the area for personal 
reasons and is working with us on these projects. 

1.2.4    Graduate students 

• Hector Morales , citizen of Mexico, Ph.D. December 2008. Thesis title: 
"Synthetic-Aperture Radar Imaging and Waveform Design for Disper- 
sive Media". Stipend and tuition were charged to this contract for two 
years; in the last year only stipend and registration-in-absentia fees 
were charged. 

• Yi Fang, citizen of China, Ph.D. December 2008. Thesis title: "Imaging 
from Sparse Measurements". One year of stipend and registration-in- 
absentia fees were charged to this contract. 

• Heather Palmeri's stipend and tuition for the spring of 2009 are being 
charged to this contract. Heather (a U.S. citizen) is in our accelerated 
B.S./Ph.D. program. 

1.3    Other members of our RPI research group 

The following were NOT supported under this contract, but were involved 
in some of the work. 

• Prof. Birsen Yazici, Electrical, Computer, and Systems Engineering 
Dept. 

• Graduate student supported by SMART fellowship: Matt Ferrara, 
Ph.D. May 2006, now in RYAT. Thesis title: "Radar Signal Process- 
ing". 

• Postdoc supported by China Scholarship Council: Dr. Ling Wang 

• Postdoc funded by Prof. Yazici: Dr. Venky Krishnan. He is a former 
student of Gunther Uhlmann's and wrote a dissertation on microlocal 
analysis. After a postdoc at Tufts, he took a postdoctoral position here 
at RPI and is funded by Birsen Yazici. 

• Other Math graduate students 



- Analee Miranda, a US citizen, is currently funded on a fellowship 
from RPI. We are seeking funding for her to finish her degree. 

- Kaitlyn Voccola, a US citizen, is supported by ATR Center grant 
from AFRL. 

• Current undergraduate student 

- Tegan Webster, a US citizen, joined us in Spring 2009 



Chapter 2 

Interactions/Transitions 

2.1 National Research Council Fellowship 

I received a fellowship from the National Research Council to spend time at 
AFRL, and spent the first 6 months of 2007 at Wright-Patterson. I renewed 
the fellowship for a 3-month period during the summer of 2008, which I split 
between RYRT in Rome and RYAT in Wright-Patterson. 

2.2 Other Visits to AFRL 

In addition to the NRC-supported time I spent at Rome and Wright-Patterson, 
I have also been stopping in for several shorter visits to both labs and have 
also visited Richard Albanese a half-dozen times at Brooks. For some of the 
latter visits, I have brought with me Birsen Yazici, Liz Rachele, and/or Matt 
Ferrara. 

2.3 Summer jobs for students 

• As part of his SMART fellowship, Matt Ferrara spent the summer of 
2006 in RYAT at Wright-Patterson, where he remained in the fall to 
finish his dissertation and where he has remained since. 

• For the summer of 2008, I arranged for Analee Miranda to work at 
Science, Engineering, and Technology (SET) Corp.   She worked on 



the Counterbomber project, a Doppler system for detecting explosive 
carried by pedestrians. 

• I arranged for Heather Palmeri to spend the summer of 2008 at AFRL 
(Rome) in RYRT. She helped to troubleshoot the indoor radar tomog- 
raphy system. 

• Katie Voccola spent the summer of 2008 at RYAT as part of her ATR 
Center work. She worked on statistical approaches to identifying lines 
from SAR data. 

• I helped arrange an offer from MITRE for Dan Erceg for the summer 
of 2008; he went instead to the NSA and is now teaching high school 
in the Kingston (NY) area. 

2.4 Efforts to bring the math community to- 
gether with the radar signal-processing 
community 

2.4.1 Organization of the SIAM Imaging Science con- 
ference 2008 

In 2006,1 was elected Program Director of the SIAM imaging Science Activity 
Group, which meant that I was responsible for organizing the 2008 Imaging 
Science conference. I chose as co-organizer Gary Hewer, of the Naval Air 
Warfare Center Weapons Division. The conference took place in San Diego in 
July of 2008, and included a plenary talk on radar imaging, a minisymposium 
on the same topic, sessions organized by the National Geospatial Agency, and 
panels of program managers. Participants seemed to be generally very happy 
with the conference. 

2.4.2 CBMS Lecture Series and Monograph 

Tuncay Aktosun (University of Texas at Arlington) received a grant from the 
Conference Board on the Mathematical Sciences for me to give a series of 10 
lectures on radar imaging during May of 2008. Part of CBMS arrangement 



is that the lectures should be written up as a short monograph; the final 
version has been delivered to SIAM for publication. 

2.4.3 Plenary talk at the International Congress of In- 
dustrial and Applied Mathematics 

In July of 2007, I gave a plenary talk on radar imaging at ICIAM in Zurich. 
It was well-received. 

2.4.4 Ten-Lecture Tutorial at the IMA 

In September 2005, I gave a 10-hour series of tutorial lectures on Radar 
Imaging at the Institute for Mathematics and Its Applications, Minneapolis. 

2.4.5 Other talks and conference participation 

Invited talks 

• October 28, 2008, "Radar Imaging with Temporal, Spectral, and Spa- 
tial Diversity", Forty-Second Asilomar Conference on Signals, Systems, 
and Computers, Asilomar, CA. 

• June 11, 2008, "Radar Imaging with Temporal, Spectral, and Spatial 
Diversity", Mathematical Methods in Wave Propagation, Vaxjo, Swe- 
den. 

• February 19, 2008, "Radar Imaging", math colloquium, Brigham-Young 
University. 

• January 31, 2008, "Waveform Design for Radar Detection and Imag- 
ing" , SAMSI Workshop on Imaging Problems, Research Triangle Park, 
NC. 

• December 13, 2007, "Waveform Preconditioning for Clutter Rejection", 
Computational Advances in Multi-Sensor Adaptive Processing, St. Thomas, 
U.S. Virgin Islands. 

• December 6, 2007, "Waveform Design for Radar Detection and Imag- 
ing", Technology Service Corporation, Silver Spring, Maryland. 



• August 20, 2007, "Imaging Moving Targets from Scattered Waves", 
Unifying Framework Workshop, Gordon Center for Subsurface Sensing 
&; Imaging Systems, Northeastern Univ., Boston. 

• March 11, 2007, "Synthetic-aperture radar imaging", Air Force Insti- 
tute of Technology, Wright-Patterson AFB, Dayton, OH 

• February 8, 2007, "Overview of my radar research", Sensors directorate, 
Wright-Patterson AFB, Dayton, OH 

• December 18-20, 2006, two lectures: "Radar imaging: Synthetic-Aperture 
Radar", and "Waveform Design for Radar Detection and Imaging", 
Workshop on Sensors, Signals, and Scheduling, Adelaide/Melbourne, 
Australia 

• July 25, 2006, "Microlocal analysis and radar imaging", at Unifying 
Framework Workshop, Gordon Center for Subsurface Sensing & Imag- 
ing Systems, Northeastern University, Boston. 

• May 17, 2006, "Resolution issues in radar and x-ray CT", SIAM Imag- 
ing Science meeting, Minneapolis 

• May 16, 2006, "Doppler-only synthetic-aperture imaging", SIAM Imag- 
ing Science meeting, Minneapolis 

• May 16, 2006, Minitutorial: "Introduction to Radar Imaging: In- 
verse Synthetic Aperture Radar", SIAM Imaging Science meeting, Min- 
neapolis 

• May 12, 2006, "Radar imaging and waveform design", EE Dept., Ari- 
zona State 

• March 24, 2006, "Radar imaging and Waveform design", Workshop on 
Time Domain Analytic Methods, Wright-Patterson AFB, Dayton, OH. 

• January 14, 2006, "Imaging that exploits multipath scattering", Com- 
bined Mathematics Meetings, San Antonio, Texas. 

• January 13, 2006, "Doppler-only Synthetic Aperture Imaging", Com- 
bined Mathematics Meetings, San Antonio, Texas. 

• December 13, 2005, "Radar Imaging", Honeywell, Minneapolis. 



• October 27, 2005, "Radar Imaging", Applied Mathematics Seminar, 
University of Minnesota. 

Other conference participation 

• Attended AFRL/RYAT Industry Day, Dayton, OH, Dec. 3, 2008. 

• Attended DARPA workshop on urban wave propagation, Arlington, 
VA, July 15-16, 2008. 

• Attended EUSAR conference, June 2-5, 2008, Friedrichshafen, Ger- 
many. 

• Contributed lecture: "Imaging that exploits spatial, temporal, and 
spectral aspects of far-field radar data", March 18, 2008, SPIE Defense 
& Security Conference, Orlando, FL. 

• Participant: Sensors Technology Algorithm Research (STAR) Work- 
shop, July 25-26, 2007, Wright-Patterson Air Force Laboratory, Day- 
ton, OH. 

• Invited Poster: "Microlocal Methods in Inverse Synthetic Aperture 
Radar", ATR Center kickoff meeting, Jan. 7, 2007, Dayton, OH. 

• Participant: Surface Surveillance Technology, October 23, 2007, Lin- 
coln Laboratory, Boston. 

• Invited poster: Defense Applications of Signal Processing, Dec. 11-14, 
2006, Fraser Island, Australia. 

• Industry Day, Automatic Target Recognition Directorate, Wright-Patterson 
AFB, Nov. 29, 2006. 

• Invited particpation: DARPA Urban Wave Propagation workshop, 
Oct. 4-5, 2006, San Diego, CA 

• Poster: "Waveform design for SAR", Adaptive Signal Array Process- 
ing, June 6-7, 2006, Lincoln Labs, Lexington, MA 

• Poster: "Microlocal ISAR for low singal-to-noise environments", IEEE 
Radar conference, April 24-26, 2006, Verona, NY. 
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2.4.6    Editorial work 

• 2004 - 2007: Member of AMS Editorial Boards Committee 

• 1998 - present: Member of editorial board for Inverse Problems 

• 2006 - present: Member of editorial board for new AIMS journal Inverse 
Problems and Imaging 

• 2007 - present:  Member of editorial board for new SIAM Journal on 
Imaging Science 

• 2008 - present: Member of editorial board for IEEE Transactions on 
Image Processing 

11 



Chapter 3 

Technical Results 

3.1    Publications 

3.1.1 Book manuscript submitted 

"Fundamentals of Radar Imaging", M. Cheney and B. Borden, SIAM. 
This book explains the fundamentals of radar imaging to a mathematical 

audience. We hope that this book will enable mathematicians to begin work 
in radar imaging. 

3.1.2 Journal Papers 

1. "Synthetic-aperture imaging from high-Doppler-resolution measurements", 
B. Borden and M. Cheney, Inverse Problems 21 (2005) 1-11. 

This paper develops an alternative SAR-like image formation process 
requiring that only a single frequency be transmitted from a moving 
antenna. 

2. "Enhanced angular resolution from multiply scattered waves", C.J. 
Nolan, M. Cheney, T. Dowling, and R. Gaburro, Inverse Problems 22 
(2006) 1817-1834. 

This paper addresses SAR in the case of a target near a vertical wall 
that is causing multipath scattering. The analysis unfortunately re- 
quires narrow beams that either undergo multipath scattering or un- 
dergo only direct scattering, but not a combination of both. In other 
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words, the antenna beam cannot illuminate the corner where the ver- 
tical wall meets the ground. 

3. "Synthetic Aperture Inversion in the Presence of Noise and Clutter", 
B. Yazici, M. Cheney, and C.E. Yarman, Inverse Problems 22 (2006) 
1705-1729. 

This paper develops the theory needed for explicitly addressing noise 
and clutter in the imaging process. This is one of the first papers to 
combine statistics and microlocal analysis. 

4. "A variational approach to waveform design for synthetic aperture 
imaging", T. Varslot, C.E. Yarman, M. Cheney, B. Yazici, Inverse 
Problems and Imaging, 1 (2007) 577-592. 

This paper applies the statistical/microlocal theory of item 3 to the 
problem of designing waveforms to suppress clutter. 

5. "Wideband pulse-echo imaging with distributed apertures in multi- 
path environments", T. Varslot, B. Yazici, and M. Cheney, Inverse 
Problems 24 (2008) 045013. 

This paper develops a Hilbert-space approach to multistatic radar imag- 
ing. One advantage of this approach is that multiple sensors can trans- 
mit simultaneously. Another advantage is that the method lends itself 
to distributed computation and efficient communication between sen- 
sors. 

6. "Bistatic Synthetic Aperture Radar Imaging for Arbitrary Flight Tra- 
jectories", C.E. Yarman, B. Yazici, and M. Cheney, IEEE Trans. Image 
Processing, Vol. 17 (2008) No: 1, pp: 84-93. 

The theory of bistatic radar imaging is a straightforward extension of 
our microlocal approach to monostatic SAR. 

7. "Imaging Moving Targets from Scattered Waves", M. Cheney and B. 
Borden, Inverse Problems 24 (2008) 035005. 

This paper shows how to combine the temporal (time delay), spectral 
(Doppler), and spatial aspects of radar data. It shows how it may be. 
possible to form images of moving targets. 

L3 



This paper was posted in early April 2008. In late April this paper 
was selected for inclusion in IoP Select; this selection is based on the 
criteria 

• Substantial advances or significant breakthroughs 

• A high degree of novelty 

• Significant impact on future research 

By the end of May, this article had been downloaded 250 times. (Across 
all IoP journals, only 10% of articles were downloaded over 250 times 
during the first quarter of 2008.) As of Dec. 1, it had been downloaded 
500 times. (Across all IOP journals, only 3% of articles were accessed 
over 500 times in 2008.) 

3.1.3    Journal Papers submitted 

• "Multistage Radar Imaging of Moving Targets", L. Wang, M. Cheney, 
B. Borden, submitted to IEEE Trans. Aerospace & Electronic Systems, 
Dec. 2008. 

This paper shows simulations corresponding to the theory developed 
in item 7 above. Surprisingly, it shows that for certain geometries, it 
may be possible to simultaneously determine location and velocity of a 
distribution of moving targets. 

• "Time-reversal Waveform Preconditioning for Clutter Rejection us- 
ing Distributed Apertures in Multi-path Environment", T. Varslot, B. 
Yazici, M. Cheney, submitted to special MIMO issue of IEEE Journal 
of Selected Topics in Signal Processing, February 2009. 

This paper shows how a time-reversal process can be used to adaptively 
determine clutter-rejecting waveforms. 

• "Identification of Multiple-Scattering Events from 3D GTD-Based Para- 
metric Scattering Models" by Matthew Ferrara, Margaret Cheney, and 
Gregory Arnold, submitted to IEEE Trans. Aerospace & Electronic 
Systems, March 2008. 

This was work from Matt Ferrara's dissertation. 
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3.1.4    Conference Proceedings and Book Chapters 

• "Microlocal analysis of GTD-based SAR models", M. Cheney and B. 
Borden, in Algorithms for Synthetic Aperture Radar Imagery XII, ed. 
E.G. Zelnio and F.D. Garber, SPIE Proceedings series vol. 5808 (SPIE, 
Bellingham, WA, 2005), pp. 15-23. 

• 

• 

"Doppler-only imaging of stationary targets", B. Borden and M. Ch- 
eney, in Algorithms for Synthetic Aperture Radar Imagery XII, ed. 
E.G. Zelnio and F.D. Garber, SPIE Proceedings series vol. 5808 (SPIE, 
Bellingham, WA, 2005), pp. 132-141. 

"Imaging that exploits multipath scattering from point scatterers", M. 
Cheney and R.J. Bonneau, in Algorithms for Synthetic Aperture Radar 
Imagery XII, ed. E.G. Zelnio and F.D. Garber, SPIE Proceedings series 
vol. 5808 (SPIE, Bellingham, WA, 2005), pp. 142-155. 

"Microlocal ISAR for low signal-to-noise environments", M. Cheney 
and B. Borden, Proceedings of 2006 IEEE Radar conference, Verona, 
NY. 

• Clutter rejecting waveforms for synthetic aperture radar traversing ar- 
bitrary flight path", B. Yazici, C.E. Yarman, and M. Cheney, IEEE 
Waveform Diversity 2006, Hawaii, January 2006. 

• "Radar imaging with independently moving transmitters and receivers", 
M. Cheney and B. Yazici, Defense Applications of Signal Processing, 
December 10-15, 2006, Fraser Island, Australia. 

• "Bistatic synthetic aperture hitchhiker imaging", C.E. Yarman, B. Yazici, 
M. Cheney, ICASSP 2007. 

• "Synthetic Aperture Imaging using Sources of Opportunity", C.E. Yarman, 
B. Yazici, and M. Cheney, SPIE Defense & Security Conference 2007. 

• "Radar detection using sparsely distributed apertures in urban envi- 
ronments", I.-Y. Son, T. Varslot, C.E. Yarman, A. Pezeshki, B. Yazici, 
and M. Cheney, SPIE Defense & Security Conference 2007 

• "Waveform preconditioning for clutter rejection", T. Varslot, B. Yazici, 
C.E. Yarman, M. Cheney, L. Scharf, SPIE Defense & Security Confer- 
ence 2007. 

15 



• "Identification of multiple-scattering events from 3D GTD-based para- 
metric scattering models", M. Ferrara, M. Cheney, and G. Arnold, 
SPIE Defense & Security Conference 2007. 

• "Two joint time-frequency transforms for velocity separation of mov- 
ing target radar data", M. Ferrara, G. Arnold, and M. Cheney, SPIE 
Defense &; Security Conference 2007. 

• "Radar Imaging", M. Cheney, in proceedings of ICIAM 2007. 

• "Imaging that exploits spatial, temporal, and spectral aspects of far- 
field radar data", M. Cheney and B. Borden, Algorithms for Synthetic 
Aperture Radar Imagery XV, ed. E.G. Zelnio and F.D. Garber, Pro- 
ceedings of SPIE Defense & Security Conference, vol. 6970 (2008) 6970 
01 doi: 10.1117/12.777416. 

• "Waveform Preconditioning for Clutter Rejection in Multipath for Sparse 
Distributed Apertures, T. Varslot, B. Yazici, C.E. Yarman, M. Cheney, 
L. Sharf,Proceedings of The Second International Workshop on Com- 
putational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 
pp. 181-184, December 2007. 

• "Wideband pulse-echo imaging using distributed apertures in multi- 
path, T. Vaslot, B. Yazici, M. Cheney, SPIE Defense and Security 
Conference, April, 2008, Orlando, FL. 

• "Wideband pulse-echo imaging using distributed apertures in multi- 
path," T. Vaslot, B. Yazici, M. Cheney, IEEE Radar Conference, May, 
2008, Rome, Italy. 

• Time-reversal Waveform Preconditioning for Clutter Rejection" T. Varslot, 
B. Yazici, E. Yarman, M. Cheney, L. Scharf, to appear in Applications 
and Methods of Waveform Diversity, SciTech Publishing, Inc., 2009. 

3.2    Dissertations supervised 

3.2.1    Matt Ferrara's Thesis 

Ph.D. dissertation "Radar Signal Processing", Matt Ferrara, December 2006. 
Matt Ferrara addressed three problems in his dissertation. 
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The first problem dealt with binary sequences whose autocorrelations 
have low sidelobes. Matt used state-of-the-art optimization software to find 
desirable binary sequences that were previously unknown. 

The second and third problems dealt with a group-theoretic method orig- 
inally developed by Mark Stuff to find the configuration of scattering centers 
undergoing complex rigid-body rotation. First, Matt found an alternative 
approach to the time-frequency analysis step. This alternative approach 
later led to dramatic reductions in the computational time needed for the 
algorithm. 

Next, Matt developed a method for identifying multiple scattering events 
in the data. 

3.2.2    Imaging from sparse measurements 

Ph.D. dissertation "Imaging from Sparse Measurements", Yi Fang, Decem- 
ber 2008. It is available at 
http://eaton.math.rpi.edu/faculty/Cheney/theses/YiFangThesis.pdf 

This dissertation considers the inverse problem for the scalar wave equa- 
tion with sparse and non-equally spaced sources and receivers. We develop 
a method to weight different parts of the data differently to compensate for 
nonuniform sampling. 

We use the single-scattering (Born) approximation and an inversion for- 
mula based on a filtered version of the adjoint operator of the forward model. 
We study the point-spread function to determine the resolution of the recon- 
struction. For sparsely positioned sources and receivers, the point-spread 
function can be approximated by a weighted sum of oscillatory functions. 
A regularized least-squares method can be formulated to determine weights 
that make the point-spread function as close as possible to the Dirac delta 
function. Once the weights are determined, the same set of weights can be 
applied to form an image from measured data. 

We test our minimization scheme with different regularization parame- 
ters. The sensitivity of the reconstruction with respect to noise and posi- 
tioning error is tested. We can choose regularization parameters properly to 
improve resolution and gain stability at the same time. 

We show examples of point-spread functions constructed with weights cor- 
responding to three different types of source-receiver geometry with different 
frequency bands.  These results not only show that using the right weights 

17 



improves the resolution relative to reconstructions with constant weights, 
but also illustrate the relation between resolution and the source-receiver 
geometry and bandwidth. 

3.2.3    SAR through a dispersive medium 

Ph.D. dissertation "Synthetic-Aperture Radar Imaging and Waveform De- 
sign for Dispersive Media", Jose Hector Morales Barcenas, December 2008. 
It is available at 
http://eaton.math.rpi.edu/faculty/Cheney/theses/HectorMoralesThesis.pdf 

This dissertation develops a method for synthetic-aperture radar (SAR) 
imaging through a dispersive medium and we provide a method to obtain 
the optimal waveform design for imaging. 

We consider the case when the sensor and scatterers are embedded in a 
homogeneous dispersive material, and the scene to be imaged lies on a known 
surface. We use a linearized (Born) scalar scattering model, and allow the 
flight path of the radar antenna to be an arbitrary smooth curve. 

We formulate our filtered back-projection imaging algorithm in a statisti- 
cal framework where the measurements are polluted with thermal noise. We 
assume that we have prior knowledge about the power-spectral densities of 
the scene and the noise. 

We test our algorithms when the scene consists of point-like scatterers 
located on the ground. The position of the targets is well resolved when the 
target-to-noise ratio is relatively small. For relatively large noise levels, the 
position of the targets are still well resolved employing the optimal waveform 
as an input signal in the reconstruction algorithm. 

We show the results of simulations in which the dispersive material is 
modeled with the Fung-Ulaby equations for leafy vegetation. However, the 
method is also applicable to other dielectric materials where the dispersion 
is considered relevant in a frequency range of the transmitted signals. 

18 



Chapter 4 

Current Status of Effort 

Work is ongoing to finish up a number of projects. 

• Brett Borden and I are working to finish a paper showing how to com- 
bine temporal, spatial, and spectral aspects of monostatic SAR data. 
This paper will probably go to Inverse Problems. 

• I am working with my student Yi Fang to finish the paper on his dis- 
sertation. This paper is "Imaging from sparse measurements, Y. Fang, 
M. Cheney, S. Roecker, to be submitted to the Journal of Geophysical 
Research. 

• I am working with Hector Morales and Trond Varslot to finish two pa- 
pers from Hector's disseration. The first is "Synthetic-aperture imag- 
ing through a dispersive medium, T. Varslot, H. Morales, M. Cheney, 
which we plan to submit to Inverse Problems soon. The second is on 
waveform design for this problem. 

• I worked out a simple model for polarimetric scattering from a dipole. 
I am working with Katie Voccola, Matt Ferrara, and Birsen Yazici to 
use this to develop an approach for exploiting polarimetric radar data 
to identify lines and curves in a scene. We periodically update Richard 
Albanese on our progress. 

• Birsen Yazici and Ling Wang are working to finish up work motivated 
by our DARPA project that ended in the spring of 2007. The cur- 
rent manuscript, namely "Radar detection using sparsely distributed 

19 



apertures in urban environments", Ling Wang, II-Young Son, Trond 
Varslot, C. Evren Yarman, AH Pezeshki, Birsen Yazici, M. Cheney, 
and R. Bonneau, is currently being split into two shorter papers. At 
this time, my involvement on this is only peripheral. 

I have also made a start on a number of new projects. 

• Brett Borden, Matt Ferrara, and I have plans to combine the work that 
Brett and I have been doing with tracking ideas. 

• I believe I can also use ideas from my joint work with Brett to address 
the problem of materials identification from SAR data. I have worked 
out a mathematical model for the data, and have some ideas for how 
to form an image that contains information about material properties. 
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Manuscripts Under Review 
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Multistatic Radar Imaging of Moving Targets 

Margaret Cheney, Member, IEEE, Brett Borden, and Ling Wang 

Abstract 

We develop a linearized imaging theory that combines the spatial, temporal, and spectral aspects 

of scattered waves. We consider the case of fixed sensors and a general distribution of objects, each 

undergoing linear motion; thus the theory deals with imaging distributions in phase space. We derive a 

model for the data that is appropriate for narrowband waveforms in the case when the targets are moving 

slowly relative to the speed of light. From this model, we develop a phase-space imaging formula that 

can be interpreted in terms of filtered backprojection or matched filtering. For this imaging approach, 

we derive the corresponding phase-space point-spread function. We show plots of the phase-space point- 

spread function for various geometries. We also show that in special cases, the theory reduces to: a) 

Range-Doppler imaging, b) Inverse Synthetic Aperture Radar (ISAR), c) Synthetic Aperture Radar (SAR), 

d) Doppler SAR, and e) Tomography of Moving Targets. In particular, we note that the theory gives a 

new SAR-like imaging algorithm for waveforms with arbitrary ridge-like ambiguity functions. 

Index Terms 

multistatic radar, MIMO radar, ambiguity function 

I. INTRODUCTION 

The well-known techniques of Synthetic-Aperture Radar (SAR) [11], [25], [27] and Inverse 

Synthetic-Aperture Radar (ISAR) imaging [3], [4] typically use high range-resolution waveforms 

to measure the range to target scatterers. During the measurement process, the relative locations 

of target and sensors change in a way that is assumed to be known; these changes in relative 

position create a "synthetic aperture" that allows an image to be formed by a tomographic process. 

When the assumptions about the relative motion between target and sensors are incorrect, the 
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reconstructed image suffers from unwanted artifacts. For example, most SAR processing assumes 

that the target scene is stationary, and consequently moving targets are typically either mis- 

positioned or appear as streaks in the image [10]. 

For an imaging region containing moving objects, on the other hand, it is well-known that 

measurements of the Doppler shift can be used to obtain information about velocities. This 

principle is the foundation of some police radar systems and Moving Target Indicator (MTI) 

radar systems. Classical "radar ambiguity" theory [28], [9], [16] for monostatic radar shows that 

measurement accuracy of Doppler shift and time delay depends on the transmitted waveform. 

There are similar results for the bistatic case in which the transmitter and receiver are at different 

locations [28], [26], [27]. Some recent work [6] develops a way to combine range and Doppler 

information measured at multiple receivers in order to maximize the probability of detection. 

In recent years there have been a number of attempts to develop imaging techniques that can 

handle moving objects. Space-Time Adaptive Processing (STAP) [15] uses a moving multiple- 

element array together with a real-aperture imaging technique to produce Ground Moving Target 

Indicator (GMTI) image information. Velocity Synthetic Aperture Radar (VSAR) [12] also uses 

a moving multiple-element array to form a complex-valued SAR image from each element of 

the array; then, from a comparison of image phases, the system deduces target motion. The 

approach proposed in [21] uses a separate transmitter and reciever together with sequential pulses 

to estimate target motion from multiple looks. Another technique [22] uses backscattering data 

from a single sensor to identify rigid-body target motion, which is then used to form a three- 

dimensional image. Other work [14], [17] estimates target velocity by finding an along-track 

relative velocity that causes moving-target streak image artifacts to focus. All of these techniques 

make use of the so-called "start-stop approximation," in which a target in motion is assumed to 

be momentarily stationary while it is being interrogated by a radar pulse. In other words, these 

systems do not actually measure the Doppler shift. 

Imaging techniques that rely on Doppler data are generally real-aperture systems and provide 

spatial information with very low resolution. A SAR-like imaging method that uses only Doppler 

data from a moving sensor and stationary scene was developed in [5]. Another approach [13] 

uses multiple transmitters and receivers (together with matched-filter processing) to both form 

an image and estimate the target velocity. 

A notional diagram of these theories appears in Fig. 1. It appears that these methods are 
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special cases of a more general — though, as yet poorly understood — theory that handles 

all three imaging schemes and which would be located in the center of Fig. 1. Such a theory 

was proposed in [8]. This work showed how to fuze the spatial, temporal, and spectral aspects 

of scattered-field-based imaging in the context of fixed distributed sensors and multiple moving 

targets. The present work more fully develops the special cases that are of interest to radar-based 

imaging. 

spatial 

iy 
SAR and 

ISAR 

temporal 
(range) 

spectral 
(Doppler) 

Fig. 1.    A diagram of various theories that combine spatial, spectral, and temporal aspects of scattered waves. 

In section 2, we develop a physics-based mathematical model that incorporates not only the 

waveform and wave propagation effects due to moving scatterers, but also the effects of spatial 

diversity of transmitters and receivers. In section 3, we show how a matched-filtering technique 

produces images that depend on target velocity, and we relate the resulting point-spread function 

to the classical radar ambiguity function. We show 4-dimensional plots of the point-spread 

function for three different geometries. Finally, in section 4, we note that the general theory 

of section 3 reduces to familiar results, including classical ambiguity theory, ISAR, SAR, and 

Doppler SAR. We also show that the theory provides a new imaging algorithm for certain 

waveforms. 
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II. MODEL FOR DATA 

We model wave propagation and scattering by the scalar wave equation for the wavefield 

rl>(t,x) due to a source waveform s(t,x): 

[V2 - c-2(t,x)dfMt,x) = S(t,x). (1) 

For example, a single isotropic source located at y transmitting the waveform s(t) starting at 

time t = —Ty could be modeled as s(t, x) — 5(x - y)sy(t + Ty), where the subscript y reminds 

us that different transmitters could transmit different waveforms. For simplicity, in this discussion 

we consider only localized isotropic sources; the work can easily be extended to more realistic 

antenna models [18]. 

A single scatterer moving at velocity v corresponds to an index-of-refraction distribution 

n2(x — vt): 

c~2(t,x) = Co2[1 + n2(x - vi)], (2) 

where c0 denotes the speed of light in vacuum. We write qv(x — vt) = c^2n2(x — vt). To 

model multiple moving scatterers, we let qv(x - vt)d3xd3v be the corresponding quantity for 

the scatterers in the volume d3xd3w centered at (x, v). Thus qv is the distribution, at time t = 0, 

of scatterers moving with velocity v. Consequently, the scatterers in the spatial volume d3x (at 

x) give rise to 

c~2(t,x) = Co2+ [ qv{x-vt)d3v. (3) 

We note that the physical interpretation of qv involves a choice of time origin. The choice 

that is particularly appropriate, in view of our assumption about linear target velocities, is a time 

during which the wave is interacting with targets of interest. This implies that the activation of 

the antenna at y takes place at a negative time which we denote by — Tv; we write s(t, x) = 

sy(t + Ty)S(x - y). The wave equation corresponding to (3) is then 

V2 - Co2<92 - Jqv(x - vt) d3vd2 if){t,x) = sy(t + Ty)S{x - y). (4) 

In the absence of scatterers, the field from the antenna is 

^(t,*,y) = -Sy(' + V'V'/c) 
47r|x — y\ 

(5) 
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We write ip = ipin + ipsc and neglect multiple scattering (i.e., use the weak-scatterer model) 

to obtain the expression for the scattered field ipsc: 

W+*\      r8(t-*-\*-*\/c) (_,_       .,, .3T, R2 sv(t' + Tv-\x- y\/c)   3 *   (t'z)=V 4^7^] Jav(x-vt)dvdt, i^-^ dxdt.   (6) 

Many radar systems use a narrowband waveform, which in our case is defined by 

sy(t,y) = ay(t,y)e-i"»t (7) 

where av(t) is s/ow/y varying, as a function of t, in comparison with exp(-iu>y£), where ojy 

is the carrier frequency for the transmitter at position y. For such waveforms, the second time 

derivative of sy obeys sy(t) « — ivysv(t). 

In equation (6), we make the change of variables x *-* x' = x - vt', (i.e., change the frame 

of reference to one in which the scatterer qv is fixed) to obtain 

6(t -if- |as' + vt' - z\/c)  f qv(x') 

^••/^'•r/ 47r|cc'+ ui'- a| 7 47r|x'+ ui'- y| 

x  wjsv(t' + Ttf - \x' + vt! - y\/c) d3x' d3u dt'. (8) 

The physical interpretation of (8) is as follows: The wave that emanates from y at time — Tv 

encounters a target at time t'\ this target, during the time interval [0, £'], has moved from x to 

x + vt'; the wave scatters with strength qv(x), and then propagates from position x + vt' to z, 

arriving at time t. Henceforth we will drop the primes on x. 

Next we assume that the target is slowly moving. More specifically, we assume that \v\t and 

k\v\2t2 are much less than \x - z\ and \x — y\, where k — u>max/c, with u;max the (effective) 

maximum angular frequency of all the signals sy. In this case, expanding \z — (x +vt)\ around 

t = 0, yields 

|z-(aj + t>0| ~ R*,z + R*,* • vt (9) 

where R^z - x - z, R^^ = \Ras^z\, and Rxz = R^^/Rx^. 

We can carry out the t' integration in (8) as follows: we make the change of variables 

t" = t-t'-{RXyZ + Rn,z.vt')/c (10) 

which has the corresponding Jacobian 

dt' 
dt" \dt"/dt'\      l+R^.v/c 
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We denote the denominator of this Jacobian as px<v. The argument of the delta function in (8) 

contributes only when t" = 0; using (10), this can which can be solved for t' to yield 

1 + i^^ • v/c 
(11) 

The argument of s in equation (8) is then 

t' + Ty-
lx + V*-y^t> + Ty-(^ + ^f^t' 

1 — Rx,y ' v/c (,       Rx,z \        Rx,y 

1 + Rx,z * V/C 

where we have used (9) and (11). The quantity 

1 - Rn^y • v/c 

t- + T„ 

^a^.tj  ~~ 1  -   {Rx,y + RxlZ)  • V/C 

(12) 

(13) 
1 + Rx,z • v/c 

is the Doppler scale factor. If we write the Doppler scale factor (13) as aXiV s=s 1 + f3m<v, where 

Px,v = ~{Rx,v + Rx,z) • V/c (14) 

then the quantity uyfix<v is the (angular) Doppler shift. We note that the Doppler shift depends 

on the bistatic bisector vector RxV + Rm>M (see Fig. 2). 

Rx:y + Rx,z 

Fig. 2.    The bistatic range is the sum of the distances R*,, and #»,„, and the bistatic bisector is the vector it„,y + Rm,,. 

With (12) and the notation of equation (13), equation (8) becomes 

rc(t,z,y) = -uljSy {a^ {t~ .R2*'/Cl ~ ^/C + T*] qv(x) d3x d*v (15) 
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We use (7) to write 

Sy K,» (* - R*,z/c) ~ RX)y/c + Ty] W ay[t - R^z/c - Ra,,y/c + Ty] 

e-i<Jv[(l+/3a,,„)(t-fla!,,/c)-flal,v/c+Ty] /jgx 

where we have used the fact that ay is slowly varying to replace axv by 1. With equation (16), 

equation (15) becomes 

"p     p H (t + Ty- (JJ... + fl.ltf)/c)qv(x) d3xd3v       (17) 

Here we have collected the time-independent terms in the exponent into the quantity 

where ky = UJV/C. 

We recognize (17) as the familiar superposition of time-delayed and Doppler-shifted copies 

of the transmitted waveform. 

III. IMAGING 

We now address the question of extracting information from the scattered waveform described 

by equation (15). 

Our image formation algorithm depends on the data we have available. In general, we will 

form a (coherent) image as a filtered adjoint [18], but the variables we integrate over depend 

on whether we have multiple transmitters, multiple receivers, and/or multiple frequencies. The 

number of variables we integrate over, in turn, determines how many image dimensions we 

can hope to reconstruct. If our data depend on two variables, for example, then we can hope 

to reconstruct a two-dimensional scene; in this case the scene is commonly assumed to lie 

on a known surface. If, in addition, we want to reconstruct two-dimensional velocities, then 

we are seeking a four-dimensional image and thus we will require data depending on at least 

four variables. More generally, the problem of determining a distribution of positions in space 

and the corresponding three-dimensional velocities means that we seek to form an image in a 

six-dimensional phase space. 
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A. Imaging Formula 

We form an image Iu{p) of the objects with velocity u that, at time t = 0, were located at 

position p. Thus Iu{p) is constructed to be an approximation to qu{p). 

We form an image by matched filtering: 

Up) = {4irf J B-^-e^a^tRVttRp<yfig,u 

xal{t + Tv-(RPit + RPiV)/c)iir:(t,z,y)Jdtdnzdmy (19) 

where J is a geometry-dependent weighting function that can be inserted to improve the image 

[18]. Here we take n = 1,2 or 3, depending on the receiver configuration, and m = 1,2, or 

3, depending on the transmitter configuration. For a limited number of discrete receivers (or 

transmitters), the integral over z (or y) in (19) reduces to a sum. 

In allowing the imaging operation (19) to depend on the transmitter y, we are implicitly 

assuming that, at the receiver located at z, we can identify the part of the signal ip3C(t,z,y) 

that is due to the transmitter at y. In the case of multiple transmitters, this identification can be 

accomplished, for example, by having different transmitters operate at different frequencies or, 

possibly, by quasi-orthogonal pulse-coding schemes. We are also assuming a coherent system, 

i.e., that a common time clock is available to all sensors. 

The operation (19) amounts to geometry-corrected and phase-corrected matched filtering with 

a time-delayed, Doppler-shifted version of the transmitted waveform, where the Doppler shift is 

defined in terms of (14). 

B. Image Analysis 

We substitute equation (17) into equation (19), obtaining 

IM = J K(P>«; =c. v) qv(x) d3x d3v (20) 

where K, the point-spread function (PSF) is 

K(p, u; x, t;) = - J u2
ya*y (t + Tv- (Rp,t + RPtV)/c) eH!*.«-*..<•]« 

x ay (t + Ty - {Rx<z + Rx^/c) exp (i[<px,v - <pp>u]) 

rtp,zftp,yl-l'z,i 

jtas,z-'tx,I/M«,v 
Jdtdnzdmy (21) 
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In the second exponential of equation (21) we use (18) to write 

fa:,v ~ Vp,u = by [Rx,y ~ ly + (.'• + Px,v)Rx,z\ 

-ky[RPiy-Ty + (l + Pp<u)Rv<z}} 

— nil, CL\Ty<z T Px,v*Uc,z       Hp,u^p,z 

where 

cATVtZ = [Rp,z + -ftp,!/] - [Rx,z + Rx,y] 

(22) 

(23) 

is the difference in bistatic ranges for the points x and p. If in (21) we make the change of 

variables t' — t + Ty — (RXiZ + RXtV)/c and use (25), then we obtain 

K(p, u; x, v) = - j uyAy (wv[/?p,u - /?*,„], ArViZ) exp (iww[/3Pltl - /?*,„][i^.y/c - Ty]) 
(24) 

(25) 

where 

Ay(cD, r) = e-"^ | ay(* - r) ay(*) ei<:* di . 

is the radar ambiguity function. Equation (24) says the following. 

The multistatic phase-space point-spread function is a weighted coherent sum of radar 

ambiguity functions evaluated at appropriate bistatic ranges and bistatic velocities. 

We note that the bistatic ambiguity function of (24) depends on the difference of bistatic 

ranges (23) and on the difference between the velocity projections onto the bistatic bisectors 

PP,U ~ P*,v = (-R*,i, + -Rx,*) • v/c - {Rpty + RpiZ) • u/c. 

For the case of a single transmitter and single receiver (a case for which J = 1) and a point 

target [which enables us to choose Tv so that the exponential in the top line of (24) vanishes], 

and leaving aside the magnitude and phase corrections, equation (24) reduces to a coordinate- 

independent version of the ambiguity function of [24], 

C. Examples of the Point-Spread Function 

The point-spread function contains all the information about the performance of the imaging 

system. Unfortunately it is difficult to visualize this PSF because it depends on so many variables. 

In the case when the positions and velocities are restricted to a known plane, the PSF is a function 

of four variables. 
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We would like to know whether we can find both the position and velocity of moving targets. 

Ideally, the point-spread function is delta-like, and so we can obtain both position and velocity. 

If, however, the PSF is ridge-like, then there will be uncertainty in some directions or in some 

combination of positions and velocities. 

In order to look for possible ridge-like behavior, we write the PSF as 

K(p,u;x,v) — if (r(cos0,sin0),s(cos0,sin0),:E,t;). (26) 

We plot the PSF for a fixed target position x and target velocity v. We then sample 6 and cp 

at intervals of TT/4, and for each choice of 8 and <f>, we plot r versus s. This process results in 

9 x 9 = 81 plots of r versus s. Finally, to show the entire four-dimensional space at a glance, 

we display all the 81 plots simultaneously on a grid, arranged as shown in Fig. 3. 

Fig. 3.    This shows how Figures 4 - 6 display the four-dimensional point-spread function (26). 

1) Simulation Parameters: Our strategy in the simulations is to use a delta-like ambiguity 

function, and investigate the effect of geometry on the overall point-spread function. In all cases, 

we use a transmit time of Tv = 0. 

a) Waveform: In the simulations, we use a high-Doppler-resolution, linearly-frequency- 

modulated (LFM) pulse train. The ambiguity function of this pulse train has a "bed-of-nails" 

appearance [16], with a delta-like central peak that has good velocity resolution and coarse range 

resolution. We assume that the extraneous peaks of the ambiguity function occur in a region of 

space and velocity where no targets are present. 

In our simulations, we choose the duration of each pulse to be Tp — 10 x 1(T6 s, the pulse 

period to be TR = 10"4 s, and take N = 50 pulses in the pulse train so that the duration of the 

entire pulse train is T = NTR = 5 x 10~3 s. The bandwidth B of the pulse train is chosen to 
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be5 = 3x 106Hz. The FM rate is B/Tp. We take the center frequency to be 30GHz, which 

corresponds to a wavelength of A = 0.01m. 

The ambiguity function of this pulse train has the following properties. 

. The Doppler resolution is 1/T = 200 s"*1, which in the ordinary monostatic case would 

correspond to down-range velocity resolution of AV = A/(2T) = 1 m/s. 

. The first ambiguous Doppler value is 1/TR = 104 s_1, which would correspond to a 

monostatic velocity ambiguity of AVmax = A/(2TR) = 50 m/s. 

. The delay resolution is 1/5 «.3x 10~6 s, which would correspond to a monostatic range 

resolution of Ar = c/(2B) = 50 m. 

« The first ambiguous delay is TR = 10~4 s, which corresponds to an ambiguous (monostatic) 

range of Armax = CTR/2 = 1.5 x 104 m. This would be the maximum measurable unique 

range. 

b) Area of Interest: The area of interest is a circular region with radius of 1000 m; points 

within this region differ by no more than 2000m, which is well within the unambiguous range 

of 15000 m. We assume that there are no scatterers outside the region of interest. The location 

of every point in the region is denoted by the vector p = r(cos#, sin#). The directions 6 are 

sampled at intervals of 7r/4, while the lengths r are sampled at intervals of 25 m. 

c) Velocities of Interest: The velocities are written u = s(cos <f>, sin <fr). We consider velocity 

magnitudes in the interval [0,30] m/s. The magnitudes s are sampled at intervals of 0.5 m/sec 

and the directions <j> are sampled at intervals of n/4. 

2) Examples: 

a) Single transmitter, two receivers: The point-spread function for a single transmitter and 

two receivers is shown in Figure 4. Here the transmitter is located at y = (0, -10000) m, the 

receivers are located at z\ — (10000,0) m and z<i = (-10000,0) m, the scene of interest is a 

disk centered at the origin with radius 1000 m, the target location is 225(cos45°,sin45°) m and 

the target velocity is 20(cos0,sin0) m/s. 

We see that for this geometry, the point-spread function is indeed ridge-like. 

b) Circular geometry: Figure 5 shows the point-spread function for a circular arrangement 

of 8 transmitters and 10 receivers. The transmitters are equally spaced around a circle of radius 

10000 m; the receivers are equally spaced around a circle of radius 9000 m. The scene of interest 

has radius 1000 m. The true target location is 225(cos 180°, sin 180°) m and the true velocity is 
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ITx 2Rx ThaM-45 PI»-0 

RJL- 

Velocity 

Fig. 4.   This shows the geometry (not to scale) for one transmitter and two receivers, together with the the combined point-spread 

function. 

20(cos 180°,sin 180°) m/s. For this geometry, there appear to be no ambiguities. 

c) Linear array: Figure 6 shows the point-spread function for a linear array of 11 trans- 

mitters and a single receiver. In this case, the transmitters are equally spaced along the line 

-5000m < x < 5000m, y = 10000m; the receiver is located at (0,10000)m; the true target 

location is 225(cosl35°,sinl35°) m and the target velocity is 20(cos45°,sin45°) m/s. 

IV. REDUCTION TO FAMILIAR SPECIAL CASES 

The formula (24) reduces correctly to a variety of special cases. More details can be found 

in [8]. 
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Fig. 5.    This shows the geometry (not to scale) for 8 transmitters and 10 receivers arranged in a circle and the corresponding 

combined point-spread function. 

A. Range-Doppler Imaging 

In classical range-Doppler imaging, the range and velocity of a moving target are estimated 

from measurements made by a single transmitter and coincident receiver. Thus we take z = 

y, J = 1, and remove the integrals in (24) to show that the point-spread function is simply 

proportional to the classical ambiguity function. 

I) Range-Doppler Imaging of a Rotating Target: If the target is rotating about a point, then 

we can use the connection between position and velocity to form a range-Doppler target image. 

For the case of turntable geometry, where for a point (xuX2,0), the range is x\ and the down- 

range velocity is u>09x2, with u>0 the center frequency and 6 the target rotation rate, (24) reduces 
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Fig. 6.    This shows the geometry (not to scale) for a linear array 11 transmitters and a single receiver and the corresponding 

combined point-spread function. 

to the classical 

KRD{p,u;x,v) ccAv[2 
uc6{p2-x2) Jpi-xi)' 

(27) 

B. Inverse Synthetic-Aperture Radar (ISAR) 

ISAR systems rely on the target's rotational motion to establish a pseudo-array of distributed 

receivers, from which range measurements are made. To show how ISAR follows from the results 

of this paper, we fix the coordinate system to the rotating target. Succeeding pulses of a pulse 

train are transmitted from and received at positions z = y that rotate around the target as 

V — y(@)- The pulses typically used in ISAR are high range-resolution (HRR) ones, so that 

each pulse yields a ridge-like ambiguity function Ay(u, r) = ^y(r), with ~AV(T) sharply peaked 
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around r = 0. Using this ambiguity function in (24) shows that the imaging process corresponds 

to backprojection [8]. 

C. Synthetic-Aperture Radar (SAR) 

SAR also uses high range-resolution pulses, transmitted and received at locations along the 

flight path y = y(C), where C denotes the flight path parameter. For a stationary scene, tt = 

v = 0, which implies that (3U = fiv = 0. In this case, (24) corresponds to backprojection over 

circles [19]. 

Fig. 7.   For SAR, we consider a stationary scene and a sensor that (in the start-stop approximation) does not move as il transmits 

and receives each pulse. Between pulses, the sensor moves to a different location along the flight path. 

D. Doppler SAR 

Doppler SAR uses a high Doppler-resolution waveform, such as an approximation to the ideal 

single-frequency waveform s(t) = exp(—iu0t) transmitted from locations along the flight path 

V — y(0- If we transform to the sensor frame of reference, then the entire scene is moving with 

velocity u = v — —y(0 (see Fig. 8). 

For a high Doppler-resolution waveform, AV(U,T) = Ay{u), where Ay{u) is sharply peaked 

around u = 0. Using this waveform in (24) shows that the imaging process corresponds to 

backprojection over hyperbolas, as detailed in [5]. 
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Fig. 8.    For Doppler SAR, we use a frame of reference in which the sensor is fixed and the plane below is moving with a 

uniform velocity. 

E. SAR for Other Ridge-like Ambiguity Functions 

In the above scenario, SAR reconstruction can be performed with a sensor moving along the 

path y = y{(,) while transmitting other waveforms. In particular, waveforms (such as chirps) 

can be used which produce a ridge-like ambiguity function along any line v = T\T in the delay- 

Doppler plane [16]. Then (24) corresponds to backprojection over the planar curves LP{Q\ 

LP(0 = -uoRp,y(0 • 2/(0 + vRvMO (28) 

The curve LP(C) is the intersection of the imaging plane with a surface generated by rotating 

a limacon of Pascal (see Fig. 9) about the flight velocity vector. We note that for a slowly- 

moving sensor and a side-looking beam pattern, the curve obtained from the limacon is almost 

indistinguishable from a circle. 

F. Moving Target Tomography. 

Moving Target Tomography has been proposed in the paper [13J, which models the signal 

using a simplified version of (17). For this simplified model, our imaging formula (19) reduces 
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Fig. 9.    A lima9on of Pascal. The origin is located at the transmitter position y. 

to the approach advocated in [13] — namely matched-filter processing with a different filter for 

each location p and for each possible velocity u. 

V. CONCLUSIONS AND FUTURE WORK 

We have developed a linearized imaging theory that combines the spatial, temporal, and 

spectral aspects of scattered waves. 

This imaging theory is based on the general (linearized) expression we derived for waves 

scattered from moving objects, which we model in terms of a distribution in phase space. The 

expression for the scattered waves is of the form of a Fourier integral operator; consequently 

we form a phase-space image as a filtered adjoint of this operator. 

The theory allows for activation of multiple transmitters at different times, but the theory is 

simpler when they are all activated so that the waves arrive at the target at roughly the same 

time. 

The general theory in this paper reduces to familiar results in a variety of special cases. We 

leave for the future further analysis of the point-spread function. We also leave for the future 

the case in which the sensors are moving independently, and the problem of combining these 

ideas with tracking techniques. 

February 9, 2009 DRAFT 



IEEE TRANS. AEROSPACE AND FXECTRONIC SYSTEMS, VOL. , NO. , DECEMBER 2008 18 

VI. ACKNOWLEDGEMENTS 

This work was supported by the Office of Naval Research, by the Air Force Office of Scientific 

Research1 under agreement number FA9550-06-1-0017, by Rensselaer Polytechnic Institute, and 

by the National Research Council. 

REFERENCES 

[1]  N. Blcistcin, J.K. Cohen, and J.W. Stockwell, The Mathematics of Multidimensional Seismic Inversion, (Springer: New 

York, 2000) 

[2]  N. Bleistein and R.A. Handelsman, Asymptotic Expansions of Integrals, Dover, New York, 1986. 

[3] B. Borden Radar imaging of Airborne Targets (Bristol: Institute of Physics, 1999). 

[4]  B. Borden "Mathematical problems in radar inverse scattering". Inverse Problems 18 (2002) R1-R28. 

[5]  B. Borden and M. Cheney, "Synthetic-Aperture Imaging from High-Doppler-Resolution Measurements," Inverse Problems, 

21, pp. 1-11 (2005) 

[6]  I. Bradaric, O.T. Capraro, D.D. Weiner, and M.C. Wicks, "Multistatic Radar Systems Signal Processing", Proceedings of 

IEEE Radar Conference 2006. 

[7]  J. Cooper, "Scattering of Electromagnetic Fields by a Moving Boundary: The One-Dimensional Case", IEEE Antennas 

and Propagation, vol. AP-28, No. 6, pp. 791-795 (1980). 

[8]  M. Cheney and B. Borden, "Imaging moving targets from scattered waves," Inverse Problems, 24 (2008) 035005. 

[9]  C.E. Cook and M. Bernfeld, Radar Signals (Academic: New York, 1967) 

[10]  J.R. Fienup, "Detecting moving targets in SAR imagery by focusing", IEEE Trans. Aero. Electr. Systems 37 (July 2001) 

794-809. 

[11]  G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing, CRC Press, New York, 1999. 

[12]  B. Friedlander and B. Porat, "VSAR: A High Resolution Radar System for Detection of Moving Targets," IEE Proc. Radar, 

Sonar, Navig., 144, pp. 205-18 (1997) 

[13]  B. Himed, H. Bascom, J. Clancy, and M.C. Wicks, 'Tomography of Moving Targets (TMT)", in Sensors, Systems, and 

Next-Generation Satellites V, ed. H. Fujisada, J.B. Lurie, and K. Weber, Proc. SPIE Vol. 4540 (2001) pp. 608 - 619. 

[ 14]  J.K. Jao, 'Theory of Synthetic Aperture Radar Imaging of a Moving Target", IEEE Trans. Geoscience and Remote Sensing 

39 (September 2001) 1984 - 1992. 

[15]  R. Klemm, Principles of Space-Time Adaptive Processing, (Institution of Electrical Engineers: London, 2002) 

[16]  N. Levanon, Radar Principles, (Wiley, New York, 1988) 

[17]  M.J. Minardi, L.A. Gorham, and E.G. Zelnio, "Ground Moving Target Detection and Tracking Based on Gcneraized SAR 

Processing and Change Detection," Proceedings of SPIE, S808, pp. 156-165 (2005) 

[18]  C.J. Nolan and M. Cheney, "Synthetic Aperture Inversion," Inverse Problems, 18, pp. 221-36 (2002) 

'Consequently the U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith- 

standing any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not 

be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force 

Research Laboratory or the U.S. Government. 

February 9, 2009 DRAFT 



IEEE TRANS. AEROSPACE AND ELECTRONIC SYSTEMS, VOL. , NO. , DECEMBER 2008 19 

[19] C.J. Nolan and M. Cheney, "Synthetic Aperture Inversion for Arbitrary Flight Paths and Non-Flat Topography," IEEE 

Trans, on Image Processing, 12, pp. 1035-43 (2003) 

[20]  M. Reed and B. Simon, Methods of Modern Mathematical Physics. 1. Functional Analysis (Academic Press: New York, 

1972) 

[21]  M. Soumekh, "Bistatic Synthetic Aperture Radar Inversion with Application in Dynamic Object Imaging", IEEE Trans. 

Signal Processing, Vol. 39, No. 9, pp. 2044-2055 (1991). 

[22]  M. Stuff, M. Biancalana, G. Arnold, and J. Garbarino, "Imaging Moving Objects in 3D From Single Aperture Synthetic 

Aperture Data," Proceedings of IEEE Radar Conference 2004, pp. 94-98 

[23]  D. Swick, "A Review of Wideband Ambiguity Functions," Naval Research Laboratory Rep. 6994 (1969) 

[24]  T. Tsao, M. Slamani, P. Varshney, D. Weiner, H. Schwarzlander, and S. Borek, "Ambiguity Function for a Bistatic Radar," 

IEEE Trans. Aerospace & Electronic Systems, 33, pp. 1041-51 (1997) 

[25]  N.J. Willis, Bistatic Radar (Artech House: Norwood, MA, 1991) 

[26]  N.J. Willis and H.D. Griffiths, Advances in Bistatic Radar (SciTech Publishing, Raleigh. North Carolina, 2007) 

[27]  N.J. Willis, "Bistatic Radar," in Radar Handbook, M. Skolnik, ed., (McGraw-Hill: New York, 1990) 

[28]  P.M. Woodward, Probability and Information Theory, with Applications to Radar, (McGraw-Hill: New York, 1953) 

[29]  B. Yazici, M. Cheney, and C.E. Yarman, "Synthetic-aperture inversion in the presence of noise and clutter", Inverse 

Problems 22, pp. 1705-1729 (2006) . 

February 9, 2009 DRAFT 



Time-reversal Waveform Preconditioning for Clutter 
Rejection using Distributed Apertures in Multi-path 

Environment 
T. Varslot,  Member, IEEE, B. Yazici, Senior Member, IEEE, M. Cheney, Member, IEEE 

Abstract—Y/e present a time-reversal implementation of a 
transmit waveform preconditioning scheme for optimal clutter 
rejection in radar imaging. Waveform preconditioning involves 
determining a map on the space of transmit waveforms, and 
then applying this map to the waveforms before transmission. 
We consider a distributed aperture where the antenna elements 
arc distributed spatially in an arbitrary fashion, possibly several 
hundred wavelengths apart, transmitting from multiple elements 
simultaneously. We use a physics-based multi-path scattering 
model for the propagation environment. We design a precon- 
ditioning operator using the model for the multi-path scattering 
environment and a priori target and clutter statistics. We show 
that, by our time-reversal implementation, we avoid the need for 
an explicit model for the multi-path environment and a priori 
target and clutter statistics in order to compute the precondition- 
ing operator. While our focus has been on radar imaging, our 
work is also applicable to other pulse-echo applications, such as 
ultrasound, sonar and microwave imaging. 

I. INTRODUCTION 

In radar applications, the scene (everything in the radar 
beam) is composed of three classes: objects of interest, objects 
which are not of interest, and (known) background. Objects of 
interest are referred to as targets, while those objects which 
are not of interest are referred to as clutter. In our current 
exposition, we seek to minimize scattering from clutter by 
modifying the waveforms that are being transmitted into the 
scene. This is an important task, as scattering from clutter 
can overpower scattering from targets, rendering the targets 
difficult to detect or image. Waveform preconditioning has 
been introduced in a series of papers by the authors as a 
way to modify transmit waveforms for better performance 
in a cluttered environment [l]-[4]. Here, we will present the 
appropriate proofs for our previous results, thus providing a 
firm theoretical background for our waveform preconditioning 
work. 

Waveform preconditioning involves determining a filter on 
the space of transmit waveforms. We refer to this filter 
as a preconditioning operator, it is applied to the transmit 
waveform prior to transmission. Our primary application is 
radar imaging. However, our physics-based approach, where 
we formulate the problem in terms of Green's functions 
and second-order random fields, is applicable to pulse-echo 
imaging in general, including ultrasound, sonar and microwave 
imaging. 

It has long been recognized that the transmit waveforms 
impact the performance of radar systems. Early contributions 
to the field of waveform design was made by Wilcox [5], who 

considered waveforms which lead to good range- and Doppler 
resolution, and Deling [6], Rummler [7], and Spafford [8], 
who tailored waveforms to the detection of point targets. 
There are currently two main waveform design approaches 
in the radar literature: ambiguity-based and variational-based. 
In the first approach, a rangc-Dopplcr echo model is used 
with matched-filter processing. The waveforms are designed 
and combined in order to create an approximate Dirac-dclta 
ambiguity function [9]—[17]. In the second approach, the 
scene is assumed to be static, and therefore, range-only echo 
models are considered. Similar to the first approach, matched 
filtering is used as a foundation for joint design of waveforms 
and receive processing for target detection, identification and 
classification [181—[21]. For target detection, the waveforms 
are designed by maximizing the signal-to-noise or signal-to- 
interference ratios [19]—[21]. A mutual information criteria 
has also been used to design optimal waveforms for target 
classification [19]. 

From a communications point of view, the radar transmit 
signal which illuminates the target may be considered as a 
means for establishing a communication channel between the 
target and the observer. In this language, the effect of a com- 
plex environment is considered as part of this communication 
channel. A filter is then designed, which, when applied to 
the transmit signal, shapes the received signal in a desired 
manner. There are therefore similarities between the ideas 
presented here for pulse-echo, and the existing literature on 
precoding [22]-[24|. However, since our primarily aim is to 
reconstruct the spatial distribution of the target, the spatial 
aspects of the wave propagation are pronounced in our work. 

We derive clutter-rejecting waveforms for pulse-echo mea- 
surements from a sparse array of transmitting and receiving 
elements. The array elements can be distributed spatially 
in an arbitrary fashion, and can be several hundred wave- 
lengths apart. Such an array is referred to as a distributed 
aperture [25]. Distributed apertures typically view regions 
of interest that are not in the far-field of the array. This 
introduces range-dependence in the scattering measurements 
which cannot be ignored [26], [27]. By using a physics- 
based measurement model we directly account not only for 
this range-dependence but also for effects such as multi-path 
scattering and interference. We incorporate a priori statistical 
information about the scatterers. Furthermore, we allow for 
multiple transmitters and receivers to be activated simultane- 
ously [28]—[31], and make no additional assumptions about 
being able to separate the waveforms from each transmitter 



by orthogonality [28], [32]. 
Our analysis leads to explicit expressions for the pre- 

conditioning operator involving the Green's function for the 
background medium, as well as second-order statistics for 
the target of interest and the clutter. It turns out, however, 
that the need for such explicit information can be relaxed by 
application of the time-reversal principle. The time-reversal 
principle is based on an invariance to changing the sign of the 
temporal variable in the wave equation [33], [34]. It has been 
used in many applications which involve wave propagation, 
e.g., ultrasound imaging [34]-[37], underwater acoustics [38], 
[39], radar imaging [40], [41], and microwave imaging [42]. 
Typically, the time-reversal principle is applied successfully 
to cases where we have a multiple-scattering medium and 
where explicit modeling of the medium is difficult due to 
its complexity or due to random perturbations [37], [43]- 
[45], Here, we show how the time-reversal principle can be 
employed to obtain the preconditioning operator when explicit 
models for the environment and/or the target and clutter 
distributions are not available. 

Our paper is organized as follows: in Sec. II, we define 
target and clutter, as well as a signal model which relates 
transmit waveforms to scattering measurements. In the same 
section we also introduce a Hilbert-space structure which al- 
lows us to work with our stochastic scattering operators within 
the framework of Hilbert-Schmidt operators. In Sec.IV-B, we 
present the concept of waveform preconditioning, and the 
waveform preconditioning operator. We proceed to show that 
the waveform preconditioning operator may be evaluated using 
the time-reversal principle in Sec.V. In Sec. VI we present a 
numerical simulation indicating how waveform precondition 
would work. Section VII contains discussion and concluding 
remarks. 

II. PRELIMINARY THEORY AND MODELING 

A. Notational Conventions 

Throughout this paper we use the following font conven- 
tions: bold-face italic font (a:) denotes vector quantities, Latin 
capital letters in calligraphic font (7-0 are used for operators, 
and Latin capital letters in roman font (S) are used to denote 
function spaces. We use subscript index (Gij, Xi) to indicate 
a matrix or a vector element, while we reserve superscript 
indices (xk) for indexing a set of vectors. We define the 
Fourier transform of a function / as 

Txl 

/M == 
i  r°° 

x)c~'utdt (1) 

Our notation for specific variables, operators, functions and 
function spaces is shown in Table II-A. 

B. Model for Distributed Aperture 

We consider an antenna array consisting of m transmitting 
elements, and n receiving elements. The placement of these 
elements can be chosen arbitrarily; the location of each 
element may be assigned independently of where the other 
elements are located. For simplicity, we assume each element 
to behave like an isotropic point antenna; the radiation patterns 
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Fig. 1. Distributed array with two transmitting elements (circles labeled 
Txi and Txj), and ten receiving elements (small squares labeled from Rxi 
to Rxio). The elements are placed at equidistant points along an arc with 
radius 10A, where A is the wavelength corresponding to the center frequency 
of the transmitters. The target is indicated as a square with sides of 1.5A, 
while the region of interest is 5A X 5A around the target. 

from each element do not exhibit any directivity. The latter 
assumption is not needed, but is made in order to keep the 
analysis more transparent. An important feature of the system 
under consideration is that we have a reference clock which 
is common to all of the elements. This common reference 
clock facilitates coherent data processing. An illustration of 
the distributed nature of an antenna with two transmitting 
elements and ten receiving elements is shown in Fig. 1. 

In order to exploit the spatial diversity inherent in the 
antenna, it is desirable to allow for transmitting different 
waveforms from each element. Let Sj(t) denote the waveform 
which emanates from the jth element. The transmit waveforms 
are arranged in a transmit vector s(t) 

*(*):= («i(t),...,«m(t)|T. (2) 

Similarly, if the measured scattering at the ith receive element 
is denoted by rrij((), then the scattering which is collected 
by the distributed antenna may be arranged in a measurement 
vector m{t) 

m(t):=[m1(f),...,m„(t)]T. (3) 

C. Model for Multi-path Scattering 

The ability to distinguish scattering objects depends on 
how much their electromagnetic properties deviate from a 
known background. We denote this deviation by the reflectivity 
function V(x). At an abstract level, we denote by H(V) 
the operator which maps the transmit vector s(t) to the 
measurement vector m(t) 

rn(t)=H(V)s{t). (4) 

H{V) is called a scattering operator. An explicit relationship 
between V and H{V) can be derived in terms of the Green's 
function g(x,y,t) for the background medium. The Green's 
function is the response measured at position x from an 
impulse 5(t) at position y. The geometric layout of the antenna 



Notation Explanation 
To Positive constant which determines the maximum length of a transmit signal 

V,T,C Reflectivity functions 
Ry, Rj* i Rc Covariance functions for reflectivity functions V, T and C, respectively 

8(0, To) Space of transmit waveforms 
S = S(0, T0)

m Space of transmit vectors 
•(«) Transmit vector with vector elements in S(0,To) 
m(t) Measurement vector with vector elements in L2(R) 
H(V) Scattering operator: operator from S(0, T0)

m to L2(R)n 

g Green's function operator: operator which models scattering from an ideal point reflector 
T\{A} Trace of the operator A 

Q Compact subset of R3 where all reflectivity functions have support 

TABLE I 
DEFINITION OH VARIABLES, OPERATORS, FUNCTIONS, AND FUNCTION SPACES. 

elements naturally plays an important role here. Let therefore 
the jth transmit element be located at position Zj, and the 
ith receive element be located at position X{. In the current 
analysis we use a linear scattering model often known as 
the distorted-wave Born approximation [46]. If we define a 
(m x n) matrix G(y, t) with matrix elements 

then 

Gij(y,t): =  I g{xi,y,T')dlg{y,Zj%t - T')&T', 

H(V)s(t) := J G(y, t - r)V(y)dy s(r)dr. 

(5) 

(6) 

Integration in Eq.(6) is understood to be element-wise. For a 
derivation of Eq. 6, we refer to the Appendix of [47]. 

We use the notation Q for the integral operator with (matrix) 
kernel G(y, t, T) where the elements of G are given in Eq.5 

Gf{y,t):= jG(y,t-r)f(r)dr. (7) 

In many situations it is reasonable to assume that informa- 
tion about statistics of the scattering is available. There is a 
large body of literature on stochastic signal models for electro- 
magnetic waves (see e.g., Sarkar et al. [48] and the references 
therein). Here, we have chosen to impose a stochastic model 
for the reflectivity function. More specifically, we make the 
following assumptions: 

Assumption 1. The reflectivity function V{y) is a zero-mean 
random field with continuous covariance function 

RV(X1,X2) = E[V(X1)V(X2)]. (8) 

Let fl be a fixed compact subset o/R3, and let K be a fixed 
constant. 

1) All scattering takes place at locations inside f2. More 
precisely, we assume that Rv(x, x) is supported in Q. In 
addition, we assume for simplicity that each realization 
ofV is in L2{il). 

2) All transmitter locations z^ and receiver locations x' 
are outside il. 

3) The background medium does not focus energy onto 
an arbitrarily small region; in other words, we rule 
our trapped rays. More precisely, let g(x,y,uj) denote 

the temporal Fourier transform of the Green's function 
g{x,y,t). We assume that 

\9(x\y,u)g(y,zj,uj)\ <K, (9) 

uniformly for all frequencies ui € R, all y e il, and all 
pairs of transmitter and receiver locations (^.a;1). 

Parts (2) and (3) of Assumption 1 can be relaxed somewhat. 
However, this would require additional attention to deal with 
the integrable singularities of the Green's function. We also 
note that the background may always be defined in such a 
way that the first-order statistics of the reflectivity function 
is zero. Therefore, the zero-mean assumption can be made 
without loss of generality. 

The fact that the reflectivity function is a random field, 
of course, implies that the kernel of the integral operator in 
Eq.(6) is stochastic [49, Ch.2]. 

D. Model for Target and Clutter 

The above formalism allows us to utilize a physics-based 
model for the background, which in principle can contain an 
arbitrary level of detail. It is not reasonable, however, to expect 
that the background model can account for all details of the 
scene except for the target. As outlined in the introduction, 
this suggests that the reflectivity function should be divided 
into two parts 

V(x) =T(x) + C(x) (10) 

where T{x) represents target and C(x) represents clutter. 
Note that our definition of clutter incorporates contributions 
due to a compromise between model fidelity and tractability: 
clutter includes deviations between the background and our 
model for the background. The real interest lies in recovering 
T, while suppressing C. 

For our purpose it is reasonable to assume that target and 
clutter are independent of each other: 

Assumption 2. Let V satisfy Assumption 1, and let T and C 
be related to V through Eqn.10. We assume that T and C 
are: 

1) zero-mean random fields with continuous covariance 



functions 

JMxi,*a)=E[r(a:,)T(za)] 

Rc{xux2) = E [c(xi)C(x2)] . 

2) statistically independent such that 

Rv(xi,x2) = RT(XI,X2) + RC{XI,X2). 

(ID 

(12) 

(13) 

We briefly note that since Ry(x,x) is supported on tt, so 
arc RT(X, X) and Rc{x, x). Furthermore, it follows that Ry, 
RT and Re are all supported on tt x fi. 

We use the notation RT and Tlc for integral operators with 
(scalar) kernels RT and Re from Eqns. 11 and 12, respectively 

ttr/d/i) := j«r(wi,IM)/(wa)d»a (14) 

fcc/(l/i) := /Rc(Vi,V2)f{V2)dy2. (15) 

III. STRATEGY FOR CLUTTER REJECTION AND IMAGE 

FORMATION 

In this section we briefly outline our strategy for clutter 
rejection and image formation. 

A. Clutter Rejection 

Our goal is to suppress C by modifying the transmit 
waveforms such that they produce mostly scattering from T. 
Loosely speaking, this is achieved by determining a determin- 
istic (linear) operator W on the space of transmit waveforms 
such that 

H(T + C)W^H{T). (16) 

We suppress scattering from C by employing the transmit 
waveform Ws(t) instead of s(t). We refer to the operator 
W as the preconditioning operator. The design of the precon- 
ditioning operator is discussed in sections IV and V. 

B. Image Formation 

We obtain an image by inverting the mapping H : T >-* 
H(T), i.e., we reconstruct the target reflectivity function T 
from the knowledge of Ti(T). The inversion is performed by 
the following steps. 

1) We approximate the inverse of K via the pseudo-inverse 
ftt _ (H'Hy1 H", where H* denotes the adjoint. Note 
that H depends only on the known background medium, 
so "W can be computed off-line. 

2) We do a singular value decomposition (SVD) of 7VH, 
denoting the singular values by An and the singular 
vectors by Un. Since H and 7i"H operate on "vectors" 
consisting of scenes, the singular "vectors" Un consist of 
elemental scattering scenes. Again, because H is known, 
this step can be done off-line. 

3) We construct the scattering operators Un = 7i(Un) 
corresponding to the elemental scenes. In other words, 
we compute the scattering data corresponding to the 
elemental scenes. This too can be done off-line. 

4) We take the inner product of each measurement vector 
m with the predicted measurements due to scattering 
from each elemental scene Uns. 

5) From the SVD of H'H, we have the general formula 
for any scene Y: 

(H'H)] Y = J2-±-{Y,Un)Un (17) 

Consequently, we can compute the image T as 

f = (WW)fW \H{T)} = Y, y{ln*n(T)},Un)Un 

pseudoinvcrsc    data 

(18) 

where we have used (17) with Y = H"H(T). In (18), 
the inner product is computed as 

([H"H(T)lUn) = (H(nH(Un)) 
K 

K 

= £(mfc,ft({/n)S
fc> (19) 

Jt=i 

Here we have used the definition given in section A of 
the inner product of two Hilbert-Schmidt operators. 

In summary, once we have precomputed Un, H{Un)s
k, and 

X„, we simply take inner products of the measured data mh = 
H(T)sk with H{Un)s

k as in (19) and form the sum (18). 
More detail, including extension of this basic idea to 

stochastic T, can be found in [47]. 

IV. PRECONDITIONING OPERATOR 

In this section we identify a Hilbert-space structure for 
scattering. We next use this Hilbert space structure to design 
a preconditioning operator for clutter rejection. 

A. Hilbert-space Structure 

In this section we identify a Hilbert-space structure for the 
transmitted waveforms and the scattering operator. 

/) The Hilbert space S(0,To) of transmit waveforms: We 
assume that the transmit waveforms have finite energy, are of 
finite duration, and are approximately band-limited in the sense 
that their Fourier transforms decay rapidly. More specifically, 
let p > 0 and To > 0 be predetermined constants. The space 
S(0,To) of transmit waveforms is a subset of the Sobolev 

space H(5+p)/2(0, T0). Here H<5+">/2(R) consists of functions 
s whose Fourier transforms $(u>) satisfy 

/< 
(1 + M6+')|S(w)|2dw < oo (20) 

and H(5+p)/2(0,T0) is the subspace of H(5f"»/2(R) of func- 
tions with support in [0,T0]. On the space S(0,To), we use 
the H(5+">/2(R) inner product 

</,.9>s := J{\ + |a,|5+')/(")^RaV (2i) 

For the transmit waveform vector, we consider the direct 
product S = S(0, T0)

m of S(0, T0). 



2) The Hilbert space of scattering operators: For each 
realization of the reflectivity function V in L2(Q), the scatter- 
ing operator H(V) is a Hilbert-Schmidt [50, Ch. 6.2] map 
between the Hilbert space S and [L2(R)]n ( Lemma 1 in 
Varslot et al. [47]). For the definition of an HS operator, see 
Appendix A. 

B. The Design of the Preconditioning Operator 

We determine a linear preconditioning operator W: S —» S 
by minimizing the expected Mean Square Error (MSE): 

W := argmin E\\H{T + C)W - H(T)\\2HS.      (22) 
w 

Here the HS norm is computed for each realization, and the 
resulting values are averaged over all realizations. 

Theorem 1. The linear operator W which solves Eq.22, and 
hence minimizes the MSE of the approximation in Eq.16 is 

W = [E[H(T + C)'H(T + C)}}1 E \H{TYH{T)\.    (23) 

Here * denotes adjoint involving the inner products (-,-)2 
in [L2]n and (•, )s, and t denotes (Moore-Penrose) pseudo- 
inverse. The operator W can be alternatively expressed as 

W=[C*[7lr + 7lcie]t [G'TITG]. (24) 

where Q* is the adjoint of Q with respect to standard inner 
products in (L2)m and (L2)n. 

We prove this theorem in the Appendix  B. 
The operator W may be applied to any transmit vector in S 

to yield a new transmit vector; W is a bounded linear operator 
in this space. Loosely speaking, W emphasizes subspaces of 
S which result in best signal-to-clutter ratio. 

V. TIME-REVERSAL PRECONDITIONING 

Although Theorem 1 gives an explicit expression for the 
preconditioning operator, computing the operator is difficult, 
as it requires a priori information about the second-order 
statistics of target and clutter, as well as a model for the back- 
ground medium. In this section, we introduce a time-reversal 
experiment which allows us to estimate the preconditioning 
operator from scattering measurements directly eliminating the 
need for a priori information. 

First, from Eq. (6) we see that H(T + C) = H(T) + K{C). 
We use this fact to write 

H(T) = H{T + C) - H(C). (25) 

Inserting Eq.(25) into Eq.(23) we arrive at 

w = i- \E\H{T + cyn{T + c)]]f E \n(cyn{C)) 

I-{G'(TlT + 'rlc)Q}iG,-R-cG. 

(26) 

(27) 

The last equality follows from Eq.24 The significant dif- 
ference between Eq.(23) and (26) is that in Eq.(26) we have 
replaced H(T)"H{T) by H(C)"K(C). This is important, as 
H(T) corresponds to scattering from a target without the 
presence of clutter, and is infeasible to measure. On the other 

hand, H(C) corresponds to scattering from clutter. This can 
be observed at times when there is no target present. 

Consider now the case where there is no target present, 
and let ck(x) be a particular clutter realization. By definition, 
the measured scattering we obtain is mk(t) = H{ck)8(t). 
Furthermore, if we interchange the roles of transmitters and 
receivers, and transmit mk(-t), this corresponds to employing 
the transpose of the matrix kernel G in Eq.(6), i.e., the 
measured responses at the original transmitters become 

qk(t) = j GT(y, t - T)ck(y)dy mfc(-r)dT. (28) 

If we now insert Eqns.6 into Eq.28, and express it in the 
temporal frequency domain, we obtain 

qk(u) = J GT{y,u)ck(y)dy m(w) (29) 

/ GT{y,ui)ck(y)dy / G{x,ui)ck(x)dxs(uj) 

(30) 

./ 
= / Gil{y^)ck(y)ck(x)G(x,uj)dxdya(w).   (31) 

Consider now averaging this experiment over multiple realiza- 
tions of the clutter to form 

P(0 =-^E «*(-*)• (32) 
*=i 

Then 

p(t) = T,Y,    GH(y,u>)ck(y)ck(x)G(x,u>)dxdya(u) 

(33) 

* JGH(y,w)E [cfc(i/)cfc(a;)] G(x,w)dxdys(w) (34) 

-/ 
GH(y,cj)Rc{x,y)G(x,ui)dxdys(u). (35) 

Comparing this expression with the frequency-domain expres- 
sion for G"R-cGs(t) , we see that p(t) is an approximation 
for G*TlcGa(t). 

Under the assumption that there is no target present in the 
scene, the following algorithm allows us to obtain G'l^cG 
applied to a transmit vector s: 

1) Transmit   waveform   s{t)   and   obtain   measurement 
mk(t). 

2) Interchange the role of transmitters and receivers 
3) Transmit waveform mk(—t) and obtain measurement 

q"(t). 
4) Repeat multiple times to obtain the estimate 

1    N 

PW = M Z><-*) " 0'KcSs(t)s(t). 
fc=i 

The same procedure allows us to determine G'i'R-T + 
TZc)Gs(t) from data containing scattering from both target 
and clutter. We can thus estimate the required information for 
computing W as defined in Eq.27. 

Finally, to carry out the imaging process, we transmit 
Wst obtain the corresponding measurements, and use these 



measurements to construct an approximation to H(T). This is 
used in the imaging algorithm outlined in section III. 

Vl. NUMERICAL SIMULATION 

In order to demonstrate the clutter-suppression obtained 
with our waveform preconditioning operator, we have per- 
formed a set of numerical simulations. In these simulations 
we want to image the target T from scattering measurements 
made with two transmitters and ten receivers. The transmitters 
and receivers were placed equally spaced on an arc around the 
target. This simulation setup is illustrated in Fig. 1. 

We employed the imaging method proposed in [47] to form 
the images. This method is well suited to work with waveform 
preconditioning, as it is capable of handing scattering from 
multiple sources simultaneously, and is based on the same 
figure of merit as our current preconditioning work; it forms 
the optimal image in a MSE sense. 

From the two transmitters we transmitted short chirp sig- 
nals: transmitter 1 emitted a linear up-chirp, while transmitter 
2 simultaneously emanated a linear down-chirp. The dimen- 
sions of the experiment was normalized according to the 
wavelength corresponding to the center frequency. We denote 
this wavelength by A. 

As a target we chose a square with sides 1.5A x 1.5A. 
From this target model we constructed a target spectrum as 
if the target was a realization of a stationary random field. 
A high-frequency version of the stationary stochastic target 
model was then constructed and used to simulate different 
realizations of the surrounding clutter. This construction is 
explained further in Yazici et al. [51]. Compact support of 
the clutter was imposed by subsequently applying a spatial 
mask, rendering the clutter inherently non-stationary. For our 
purpose we used a region of 5A x 5A around the target as our 
compact set fi. The radius of the arc on which the antenna 
elements were placed was set to 10A. 

The preconditioning operator was constructed according 
to Eq.(23) by a Monte-Carlo approach where we used 500 
realizations of T and C. The spatial discretization for each 
scattering simulation was 15 samples per wavelength A. 

The signal-to-clutter ratio (SCR) in our simulations was set 
to -3.5dB, when defined according to 

SCR =10 log 
jE[|T(x)|2]dx 

fE[\C(x)\*]dx 
(36) 

The performance of the preconditioning was then evaluated 
by observing the square error in the reconstructed image 
when compared to the true scattering potential. The mean- 
square-error (MSE) was estimated by averaging over 10 clutter 
realizations. We computed the MSE according to 

MSE(W) = (37) 

10 log 
/E [\\H-lH{T + C)W\(x) - T(x)|2] dx 

/E[|T(x)Hdx 

Here H"1 simply indicates our imaging algorithm. The images 
were reconstructed on a grid with 10 samples per wavelength. 
We used a reconstruction algorithm which is consistent with 

Fig. 2.   Target with clutter (left) and reconstruction of taigel from clutter-free 
scattering (right). 

clutter rejection in the MSE sense; for a given scattering 
measurement, the algorithm minimizes the MSE in the re- 
construction [47]. 

Figure 2 shows the target embedded in clutter, as well as 
a reconstructed image based on scattering without clutter in 
free space. The MSE is in this case was -3.7dB. The latter is 
used lo give an indication of the best-case performance of the 
imaging algorithm for this scenario. 

Figure 3 shows reconstruction result for a particular realiza- 
tion of the clutter. Preconditioning of the transmit waveform 
improves image quality from 1.1 dB to —3.6dB when mea- 
sured using the MSE defined in Eq.(37). 

Figure 4 shows the spectrum of one of the transmit wave- 
form that were employed in this experiment. 

VII. CONCLUSIONS 

In this work we separated the reflectivity function into 
two distinct classes; target and clutter. The clutter produces 
unwanted scattering which in turn degrades the final result 
of the reconstructed image. If scattering from clutter can 
be removed from the measurement, the end result will be 
improved.Our preconditioning operator can be applied to any 
set of transmit vectors in order to optimally reject scattering 
from clutter in an MSE sense. 

When we perform clutter rejection, we implicitly identify 
a transmit-vector subspace where the signal-to-clutter (SCR) 
ratio is high. The fact that we allow for waveforms to be 
transmitted simultaneously, and that they are not orthogonal 
imply that there is a great deal of ambiguity in the data 
with respect lo the correct time-of-flight for a given echo. We 



Fig. 3. Reconstruction results for a single realization of clutter. Left: image 
from scattering with original chirp waveform. Right: image from scattering 
with preconditioned chirp waveform. 
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Fig. 4.    Spectrum of transmit waveforms. 

therefore have limited ability to determine the correct source- 
receiver pair for a given echo. Our choice of imaging algorithm 
reflects this, in that it does not rely on the ability to resolve 
the source-receiver ambiguity [47]. 

Our analysis is based on assumed a priori knowledge about 
the scene in the form of the Green's function, and about the 
target and clutter distribution in the form of first and second- 
order statistics. We used the Green's function to map second- 
order statistics of the clutter and target to the space of transmit 
vectors and thereby construct the preconditioning operator. 
Finally, we point out how the time-reversal principle can be 

applied to alleviate the need for explicit knowledge about the 
Green's function and the target/clutter statistics. 

We address the problem of modifying the transmit wave- 
form when the transmit power is limited. Obviously, after 
preconditioning the resulting waveform may not have the 
same strength. However, this is trivially amended by proper 
normalization of the preconditioned waveform. As a result, the 
transmit vector contains the same power as the original trans- 
mit waveform, but its shape is modified to minimize scattering 
from clutter. Hence, for a fixed total transmit power, the SCR 
may be improved in the final image. Alternatively, for a given 
signal-to-noise ratio in the final image the total transmit power 
can be reduced. This is of interest in applications where it is 
desirable to keep the transmit power as low as possible, e.g., to 
reduce transmitter vulnerability/detectability. 

The underlying propagation model which we have used for 
this work is derived from a scalar wave equation. This is 
a commonly-used model for many radar applications where 
polarization effects may be ignored. In order to get ex- 
plicit expressions in terms of Green's functions, a linearized 
scattering model was used, namely the distorted-wave Born 
approximation (DWB). Note, however, that the operator norm 
which we used to determined the preconditioning operator 
also makes sense without the DWB. Furthermore, the time- 
reversal principle also holds in other pulse-echo applications. 
Our work therefore has applications also in other areas such 
as ultrasound, sonar and microwave imaging. 

Clutter filtering process is an integral part of space-time 
adaptive processing (STAP). In STAP the statistics of the clut- 
ter is used to perform filtering of the measurement in order to 
reduce the clutter content. |52] Filtering of the measurements 
implies that parts of the scattered power do not contribute 
to the final result. In this sense, filtering clutter in receive 
results in waste of scattering power. We obtain a similar result 
by filtering the transmit signal, thereby avoiding transmitting 
power which is predominantly used to produce scattering from 
clutter. In this sense, the preconditioned transmit vector yields 
more efficient use of the transmitter power. By avoiding clutter 
filtering of the measurements, we reduce the computational 
resources needed at each the receiver element. Our scheme 
is therefore suited for applications where inexpensive receiver 
elements with limited computing power are employed, such 
as distributed sensing in urban environments. 

The development in this paper was performed using the 
minimum-mean-square-error (MMSE) to define the optimal 
clutter rejection operator. This is a suitable in many appli- 
cations. However, it should be possible to apply the idea of 
preconditioning in conjunction with other figures of merit, 
leading to different optimal preconditioning operator. 
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APPENDIX 

A. The Hilbert-Schmidt Norm 

Let Hi and H2 be two Hilbert spaces. Furthermore, let {efc} 
be an orthonormal basis for Hi, and denote the inner-products 


