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Abstract

Research in mobile robot navigation hag demonstrated gome success in navigating flat world
while avoiding obatacles. However, algorithms which analyze complex environments in order
to climb three-dimensional obstacles have had very little success due to the complexity of the
task., Unmanned ground vehicleg currently exhibit gimple autonomous behaviours compared
to the human ahility to move in the world.

This research work aime to degign controllers for a shape-shifting tracked robotic vehicle,
thus enabling it to autonomously climb obstacles by adapting its geometric configuration.
Three control algorithms are proposed to solve the autonomous locomotion problem for
climbing obstacles. A reactive controller evaluates the appropriate geometric configuration
baged on terrain and vehicle geometric congiderations. As a scripted contreller is difficult
to design for every possible circumstance, learning algorithms are a plausible alternative, A
neural network baged controller works if a task resembleg a learned case. However, it lacks
adaptability. Learning in real-time by reinforcement and progress estimation facilitates
robot control and navigation. This report presents the reinforcement learning algorithm
developed to find alternative golutions when the reactive controller gets stuck while climbing
an obstacle. The controllerg are validated and compared with gimulations.

Résumé

L’avancement gcientifique en navigation des robotg mobileg a démontré quelques succes en
navigation 2D et en évitement d’obstacle. Cependant, le défi d’analyser des environnements
complexes pour traverser des obstacles a eu peu de succés vu la complexité de la téche.
Les véhicules terrestres non-pilotés exhibent présentement de simples comportements au-
tonomes en comparaigon aux habiletés des humains & se mouvoir dang leur environnement.

Ce travail de recherche vige & concevoir des contréleurs pour quun véhicule robotisé qui
peut adapter sa configuration géométrique puisse gravir desg obstacles de maniere auto-
nome. Trois algorithmeg de contréle sont proposés afin de résoudre le probléme de mobilité
autonome pour traverser des obgtacles. Un contréleur réactif détermine la configuration
géométrique appropriée du robot en considérant le relief du terrain et la géométrie actuelle
du véhicule. Comme un contréleur scripté est difficile & concevoir pour toutes les circons-
tances posgibles, des algorithmes d’apprentisgage machine gont une alternative possible. Un
réseau de neurones artificiels fonctionnent si une tache resgemble 4 un cas appris. Toutefois,
il manque de faculté d’adaptation. Apprendre en temps réel par renforcement et estima-
tion de la progresgion facilite le contréle du rohot et la navigation. Ce rapport présente un
algorithme de contréle par renforcement machine développé pour trouver des alternatives
quand le contréleur réactif reste pris durant la traversée d’un obstacle. Les contrdleurs sont
validés et comparés en simulation.
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Executive summary

Control algorithms for a Shape-shifting Tracked Robotic Vehicle
climbing obstacles

[. Vincent; DRDC Suffield TR 2008-123; Defence R&D Canada — Suffield; December 2008.

Background: Unmanned Ground Vehicles (UGV) currently exhibit simple autonomous
behaviours compared to the human ability to move in the world. The challenge of analyzing
complex environments to traverse obstacles has had very little success due to the complexity
of the task. As military conflicts shift from traditionnal battlefields to urban settings, UGV
locomaotion must improve to better address the needs of the Canadian Forces. This regearch
investigates mobility behaviours that exploit the shape-shifting capabilities of a hybrid UGV
that combineg tracked and legged locomotion for climbing obstacles.

Principal results: Control algorithms were degigned to get the mobile robot to vary its
geometry for climbing obstacles. The controllers were validated and compared in simu-
lations. The firet scientific contribution is the creation of a world representation suitable
to intelligent mohility control algorithms. The gecond scientific contribution ig the devel-
opment of a reactive controller. It ig efficient most of the time and generates a smooth
progresgion of the vehicle. However, it can get stuck. As a scripted controller ig difficult
to design for every circumstance, learning algorithms are a plausible alternative. The third
scientific contribution is the development of a neurocontroller trained with superviged runs.
This demonstrates that the robot can successfully learn to climb obstacles by copying a su-
pervisor. However, the artificial neural network does not adapt once the training is over and
the motion is not as emooth and predictive as for the reactive controller. The lagt scientific
contribution is the development of a methodology combining the reactive controller with
reinforcement learning. This controller provides online adaptation of the reactive behaviour
when the vehicle is stuck. By penalizing or reinforcing some actions, the system can opti-
mize the locomotion and overcome bad situations in real-time. This combines adaptation
with reactivity creating a more robust controller.

Significance of results: The controllers presented show the promise of using reinforcement
learning with reactivity on mobile robots for complex terrain navigation. It incorporates
adaptation abilities into the system, and produces improved UGV locomotion.

Future work: Real robot testing will be conducted to verify the controllers reliability and
robustness to real environments, gengors and actuators.
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Sommaire

Control algorithms for a Shape-shifting Tracked Robotic Vehicle
climbing obstacles

|. Vincent; DRDGC Suffield TR 2008-123; R & D pour la défense Canada — Suffield ;
décembre 2008,

Contexte : Leg véhiculeg terregtres non-pilotés exhibent présentement de simples com-
portements autonomes en comparaigson aux habiletés des humaing &4 se mouvoir dans leur
environnement. Le défi d’analyser des environnements complexes pour traverser des obs-
tacles a eu trés peu de succes vu la complexité de la tdche. Comme les conflits militaires se
déplacent des champs de bataille traditionnels aux milieux urbaing, la mobilité des robots
doit &tre améliorée pour mieux répondre aux besgoins des Forces Canadiennes. Ce projet
de recherche étudie les comportements locomoteurs qui exploitent la capacité d'un véhicule
terrestre non-piloté d’adapter sa géométrie pour produire des configurations appropriées
pour 'environnement qu’il traverse. Le véhicule hybride combine la locomotion & pattes et
celle & chenilles pour gravir des obstacles.

Principaux résultats : Des algorithmes de contréle ont été développés afin d’amener le
robot & varier sa geométrie pour traverser les obstacles. Les contréleurs ont été validés
et comparés en simulations. La premiére contribution scientifique est la création d’une
représentation du monde appropriée pour deg algorithmes de contréle en mohilité intelli-
gente. La seconde contribution scientifique est le développement d'un controleur réactif. Il
egt efficace la plupart du temps et génére une douce progression du véhicule. Cependant,
il arrive que le robot demeure prig durant la traversée d'un ohstacle. Comme il est difficile
de scripter pour toutes les circonstances possibles, des algorithmes d’apprentissage machine
sont une alternative plaugible. La troisieme contribution scientifique egt le développement
d'un neurocontréleur entrainé avec un superviseur. Cela démontre que le robot peut ap-
prendre avec sucees A gravir des obstacles en copiant un supervigeur. Cependant, le régean
de neurcnes artificiel ne g’adapte plus une foig I'entrainement complété et la progression
du véhicule n’est pas aussi douce et prédictive que celle du contréleur réactif. La dernigre
contribution scientifique est le développement d'une méthodologie combinant un controéleur
réactif & un contréleur d’apprentissage par renforcement. Le contréleur d’apprentissage par
renforcement adapte le comportement du contréleur réactif lorsque celui-ci est pris. En
pénalisant ou en renforcant certaines actions, le sygtéme peut optimizer la locomotion et ge
déprendre de mauvaises situations, et ce, en temps réelg. Le contréleur combine la faculté
d’adaptation & la réactivité et crée un contréleur plus robuste.

Signification des résultats : Les contréleurs présentés démontrent l'intérét pour 1'utili-
gation de 'apprentiszgage machine comhbinée avec la réactivité sur les robots mobiles pour
naviguer deg terraing complexes. Cela incorpore deg abilités d'adaptation au systeme, et
produit une locomotion améliorée du véhicule.
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Travaux futurs : Des tests geront conduits sur le vrai robot afin de vérifier la fiabilité et
la robustesze des contréleurs avec de vrais environnements, capteurs et actuateurs.
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Nomenclature

(zp,yr,2r) Range data point Cartesian coordinates in the lager reference frame.
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3 Angle between the track centerline and the bottom of the track.

A¢p Front track orientation error.

Ax Forward distance traveled.

¥ Disgcount factor.

g@dB Desgired back axle angular position estimation.
g@% Desgired front axle angular position estimation.
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Wy, Wy, W, Rotational rates.

gde Desgired back axle angular position.
gde Desgired back axle angular position.
quF Desgired front axle angular position.
Pp Current front axle angular position.
s Control policy.

s Yaw angle.

a Roll angle.

T Staircase inclination.

g Pitch angle.

£ Angle between the center and the current laser beam positions.
a Action.

Qg Forward acceleration.

Bp,By Orthogonal distanceg between the robot body centre and the front track origin.
D Range data point.
d Fvaluation digtance for the reactive controller.

f State transition function.
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Gridpyg, Terrain map grid.

Hr  Homogeneous transformation matrix from the lager reference frame to the robot
reference frame.

I Agent,

7 Terrain map x-axig cell index.

I, Immediate reward.

7 Terrain map pan angle index.

K Distance between the front track wheels.

L Digtance from the robot body centre to the extremity of the front track in the
extended configuration.

LW A Locally weighted averaging.

LWR Locally weighted regression.

P Front track origin.

Fe Progress estimator.

P Terrain elevation corresponding 1o 8y, 4.

Py ego Vector representing the front track origin in the robot reference frame.
F.;o  Vector representing a range data point in the robot reference frame.

Q Maximum discounted cumulative reward.

R Big wheel radius.

r Reward.

8 State.

Sg Back axle search direction.

Sp Front axle search direction.

SF  Safety factor.

t Time.

Ty, Ty Orthogonal distances between the robot body centre and the laser heam.
w Small wheel radius.

VT Discounted cumulative reward achieved by a control policy.
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Ug, Uy, U, Linear velocities.
IMU  Inertial Measurement Unit.
MDP Markov decision process.

MSE Mean squared error.

STRV Shape-shifting Tracked Robotic Vehicle.

UGV Unmanned Ground Vehicle
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1 Introduction
1.1 Background

Robotics iz gaining popularity in military operations to facilitate soldier tasks and decrease
their exposure to dangerous situations. Researchers around the world are working on au-
tonomous and semi-autonomous robots to provide goldiers with more intelligent prototypes.
The Family of Future Combat Vehicles study [2] from the Canadian Directorate of Land
Concepts and Doctrine describes the envisioned unmanned ground vehicles in the Army
of Tomorrow. Also, the American Office of the Secretary of Defensge published the Un-
manned Systems Roadmap 2007-2032 memorandum [3] which emphasizes the importance
of unmanned systems ag a new clags of military tools. The main challenges include partial
comprehension of the world due to imprecige sengors, navigation in uncertain environments,
control of imperfect actuators to provide useful locomotion in complex terraing, and motion
planning according to robot ahbilities. The intelligence required for autonomous vehicleg
demands advances in many fields of robotics. Mobility requirements for unmanned ground
vehicles (UGV) are expected to increase significantly as military conflicts shift from oper-
ationg in the open terrain to urban settings.

UGV currently exhibit simple autonomous behaviours compared to the human ability to
move in the world. The purpose of this study ig to develop intelligent mobility algorithms
to create autonomous locomotion in a complex terrain. In this research project, exploration
of locomotion is addresged by the variable geometry mobility class of autonomous robotic
vehicle behaviours, Shape-shifting robotics ig currently an active regearch area. At the Uni-
versity of Freiburg (Germany), researchers implement autonomous navigation strategies for
the Lurker robot 4,5 (Figure 1(a)) to climb ramps and stairs by adapting its tracks’
orientation. They are developing a planner which maps terrain clagzes to specific robot be-
havioural gkills. The Swiss Federal Institute of Technology is developing the shape-shifting
robotic platform Octopus [6] (Figure 1(b)). This 15 degree-of-freedom hybrid vehicle is
designed to climb ohstacles and rough terrain, by combining the adaptability of legs with
the efficiency of wheels. No controller seems to have been published for that platform. The
Defense Joint Roboticg Program ig developing the Novel Unmanned Ground Vehicle [7,8]
(Figure 1{c)), a 6 degree-of-freedom tracked robot, to learn mobility by adaptive control
of action patterns (scripted subroutines) based on conditionings. It is currently teleoper-
ated or used with local reactive control. Autonomous Solutions hag developed Chaos [9,10]
(Figure 1{d)), a small UGV designed for search, reconnaissance and surveillance in unstrue-
tured environments. It can walk, climb stairs, clamber over obgtacles and traverge steep

Octopus {d) Chaos (e) STRV

Figure 1: Shape-shifting robotic vehicles in different research labs.
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glopes using different modular running gears attached to the vehicle. Intelligent mobility
behaviours will be developed to reduce the complexity of the vehicle operation. Finally,
the Autonomous Intelligent Systems Section at Defence R & D Canada proceeds to a vari-
able geometry mobile vehicle regearch project using a small UGV called the Shape-shifting
Tracked Robotic Vehicle (STRV) (Figure 1(e)), to climb obstacles autonomously.

This technical report describes intelligent mobility algorithms developed for the STRV. This
hybrid UGV combines tracked and legged locomotion to produce various configurations
guitable to the environment it i dealing with. Tracked locomotion enables fast motion on
open terrain. On the other hand, legged locomotion ig suitable for complex terrain and
climbing over obstacles. A hybrid mechanism combining both locomotions helps in finding
suitable solutiong to a variety of terrains.

The use of robots for autonomous operations in complex terrains poses difficulty in develop-
ing perception, control and learning algorithms that are widely applicable, fagt to compute
and adaptive to changing ground conditions. The development of intelligence will provide
the STRV with the capahility of chooging appropriate geometric configurations to interact
efficiently with the surrounding environment. Thug, it will be able to handle unforeseen
scenarios and to increage the mohility performance.

Research in learning algorithms for mohile robots ig limited. It hasg been applied to path-
planning and ohstacle avoidance to orient a vehicle in simple structured environments for
gmall navigation tasks [11-20]. There has been limited application of learning algorithms
to shape-ghifting platforms for choice of geometry baged on terrain structure.

1.2 Motivation and problem definition

Algorithms which analyze complex environments in order to climb three-dimensional olb-
stacleg have had very little success due to the complexity of the task. The objective of this
gtudy is to develop control algorithms which allow the mobile robot to autonomously vary
its geometry in order to climb obstacles. This requires a good comprehension of the terrain,
and adaptive behaviours handling uncertainties.

In this report, the challenge is limited to:

o Linear shapes such as steps, boxes, ramps and staircases, which are common shapes
in urban settings.

o Obstacles fixed and solid.
o Obstacles wider than the vehicle.

o Track nominal propulsion speed constant at 2 km /h.

1.3 Potential contributions

The first scientific contribution is the creation of a world representation suitable to intelli-
gent mobility control algorithms.

2 DRDC Suffield TR 2008-123



The second scientific contribution is the development of a reactive controller providing
practical control of actuators and pitch stahbility. It evaluates the appropriate geometric
configuration based on terrain and vehicle geometric considerations. As a scripted controller
is difficult to design for every possible circumstances, learning algorithms are a plausible
alternative.

The third scientific contribution is the development of a neurocontroller trained offline with
supervigsed runs. This demonstrates that the robot can succesefully learn to climb obstacles
by copying a supervisor. It removes the necessity to script for every possible obhstacle.
However, the artificial neural network controller lacks adaptability once the training is
over. Some adaptation mechanism needs to be integrated to find a suitable solution when
the vehicle is stuck.

The last scientific contribution ig the development of a methodology combining a reactive
controller with a reinforcement learning controller. The reinforcement learning controller
provides online adaptation of the reactive behaviour when the UGV ig stuck. By penalizing
or reinforcing some actions based on progress estimation, the gystem can optimize the lo-
comotion and overcome bad situations in real-time. This combines adaptation to reactivity
creating a more robust controller.

1.4 Report organization
This study consists of:

Section 1: Introduction. The introductory section describes the importance of developing
intelligent mohility controllers for navigating complex terrain. It algo presents the research
problem of how to exploit the variable geometry capabilities of the STRV to autonomously
produce various configurations suitable to the obstacle it is climbing.

Section 2: Literature Review. This section reviews current regearch in the field of learning
for mobile robot navigation. It first explaing why learning becomes essential in controlling
UGV behaviour in a complex environment. Then it discusses the importance of reinforce-
ment learning for a real-time mohile robot autonomously exploring its world.

Section 3: Robotic plaiform. This section describes the robotic vehicle, and the sensors
usged for the project. First, it provides a detailed description of the STRYV, it gensors and
the hardware. Then, it illugtrates the interactions between the robot and its environment.

Section 4: Perception module. Thig section presents a perceptual module developed to
fuse gensor data into a terrain map.

Section 5: Conirel algorithms. Thig section details three controllers designed to au-
tonomously control the vehicle while climbing obstacles. It deseribes a reactive controller
baged on geometric considerations, an artificial neural network controller learning mobil-
ity offline with supervision, and a reinforcement learning controller improving the robot
behaviour based on online reinforcements.

DRDC Suffield TR 2008-123 3



Section 7: Swmulafion. This section reports experiments with the STRV in a simulated
environment. Two tests demonstrate the capabilities and limitations of the proposed con-
trollers. The first test evaluates the robustness of the controllers to the variation of height
and depth of box-shaped obstacles. The second test determines the steepest staircase each
controller climbs and descends for different tread dimensions.

Section 8: Conclusion. This section summarizes the results of the experiments and the
scientific contributions of the project. It also presents future workes and possible improve-
ments to the controllers.
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2 Literature Review

Learning for mobile robot navigation is reviewed throughout. The robot environment is
first defined. The reason for using learning and especially reinforcement learning has heen
analyzed. Finally, existing control techniques for mobile robot navigation are studied.

2.1 Robot environment

An autonomous robot relies on sensor data to make decisions and navigate within the world.
Its mohility is influenced by the terrain geometry and physical properties, and the vehicle’s
intrinsic capabilities. The terrain types vary from structured to complex. As many types of
environment are posgible, it is unrealistic to attempt to model all details. The robot has to
adapt to the environment and make decisions in real-time. The control and motion planning
of robotic platforms in complex terrain with varying ground conditions, sensor meagurement
uncertainty, planned motion not accurately followed and limited computation resources is
a very challenging problem [21].

A typical mobile robot relies on sensors such as a laser range finder for 3D terrain mapping,
an inertial measurement unit for orientation, rotational rate and acceleration measurements,
a global positioning system for localization (in outdoor applications), etc. The collection
of sengory inputs can be used to describe the state of the system. The robot may alzo
have effectors to influence that state, which are usually motors and actuators. The UGV
continuously maps the sensory inputs to the effector outputs. An action is an effector’s
output applied to the environment by the robot. Since the sensory inputs are characterized
by uncertainty, error and noise, the robot’s comprehension of the state of the world is only
partial. This means that taking the same action in the same perceived state may regult in a
different outcome, therefore thig is a nondeterminigtic system. In contrast, a deterministic
gystem generates the same result given the same action and perceived state.

2.2 Why learning?

A shape-shifting robot must control its effectors to generate useful locomotion patterns.
By sequencing different shapes it can progressively conform to the terrain geometry and
climb ohstacles. In this way, the variable geometry robot has the ahility to traverse obsta-
cles that are untraversable for a “single-configuration” robot. Modeling the robot and the
environment in an attempt to proceed directly to programming of shape shifting for adap-
tation to the terrain is unrealigtic since there are a very large number of poggible states, ag
well ag a large number of poggible actions. For the same reason and because the system ig
nondeterministic, preparation of a table with all state-action pairs i alzo unrealigtic. This
problem requires a learning process that can deal with continucus state and action spaces,
and optimizes the robot mobility in the case of unplanned outcomes.

The necesgity of learning ig explained by Kaelbling [22], as follows:

“The problem of programmang an agent to behave correctly wn a world 15 to
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choose some behaviour, given that the rest of the parameters of the agent and
world are fired. If the programmer does not know everything about the wovrld,
or if he wishes the agent he 15 designing to be able to operate n a variety of
different worlds, he must program an agent that will learn to behave correctly.”

For these reasons, researcherg have focused their efforts on learning algorithms to control
robot behaviours. Research in machine learning has seen an increase of interest in the
past 25 years. This iz partly due to computational resource improvements. Mitchell [1]
introduces different types of learning. Kaelbling [22] explores machine learning algorithms
in the context of designing embedded systems that adapt their behaviour to a changing
environment.

2.3 Why reinforcement learning?

Since mobile robots navigate in complex and nondeterministic environments, learning the
function mapping the states to the actions is quite complex. Furthermore, the robot needs
to learn and adapt since its sensors provide partial and imperfect representations of the
environment. Finally, common machine learning algorithme expect training examples to be
a get, of gtate-action pairg. However, for a real-time mobile robot autonomously exploring the
world, training examples are usually not available under the form of state-action pairs. For
these reasons, regearchers have heen focuging their efforts in a particular branch of machine
learning called reinforcement learning. Thig methodology learns to map the actions that
maximizes reinforcement with training examples of the form r(s,a), where the reward r is
a function of the current state s and action a.

A robot perceives the world, with noise and uncertainty associated with its sensors. Through
trial-and-error interactions with the environment, the learning system maps the inputs to
gome rewards or penalties, and learns the degirability of being in various states. Then, the
controller chooses the best action to perform based on the information learned in order
to achieve its goals. Sutton and Barto [23] give an introduction to reinforcement learning
methods.

2.4 Q-learning

Q-learning [24] is an algorithm that can learn the optimal control strategy from the rewards.
The best control strategy is the policy that selects the actions that maximize the robot’s
cumulative reward. The control policy outputs the optimal action, to reach specific goals,
given the current state. A reward function assigns reinforcements expressing the desirability
of the actions. This function ig designed to reinforce or penalize the behaviours hased on
different observations and goals. According to the actions it chooses to execute, the robot
can favour the exploration of unexplored states and actiong to acquire new information.
It can also favour the exploitation of high reward statez and actions already learned to
maximize the cumulative reward.
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Figure 2: Robot-environment interactions.

2.4.1 Markov decision process

A robot interacts with its environment as repregented in Figure 2. From Mitchell [1], at each
time step £, the robot iz in a state s; and chooses to perform an action a;. The environment
provides the system with a reward ry = r(s¢, a¢) reflecting the desirability of the chosen
action in the current state, and produces the next state s;y1 = f(s;, a:) where f is the state
transition function expresging the transition probability to the next state. Functions » and
f are not necessarily known to the system. In a Markov decision process (MDP), the two
functions depend entirely on the current state and action, and are independent of all prior
history.

Several learning algorithms apply to MDPs. However, real world mobile robots usually
deal with continuous state and action gpaces rather than a finite set of digcrete states.
Furthermore, the environment is nondeterministic therefore the transition from one state
to ancother does not depend only on the current state and action. The output can’t be
predicted with 100% certainty, ag with MDYPs, because there are multiple posgible outcomes
for each input. In a complex world, task achievement with the MDP assumption is usually
unrealistic. Mataric [25] describes why robots learning in nondeterministic environments
do not fit this assumption. Reinforcement learning in continuoug state and action space,
and nondeterministic system is a current research challenge.

2.4.2 Learning the optimal control strategy

To interact with the environment and reach its goals, the robot must learn a policy that
maps states into actions. From [1], if the robot follows the policy 7 from an initial state s,
the digscounted cumulative reward V'™ (s;) that the robot will gain if it executes the policy
from that state is expressed by Equation 1. The discount factor ~ reflects the relative
importance of immediate versus delayed rewards.

VT {(se) =re + yrep1 + Yriro 4 o (1)

The robot should learn the policy that maximizes V™ (s;) for all states. The optimal policy

7* ig as follows:

" = argmax V' (s), Vs. (2)
K
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This formula is difficult to apply directly, gince training data is usually not available in this
form. The Q function addresses this problem.

From [1], the maximum discounted cumulative reward that can be achieved is Q(s, a). It is
defined ag the reward obtained a ig performed in s, plus the dizcounted value of following
the optimal policy thereafter.

R(s,a) =7r(s,a) + AV (f(s,a)) (3)

The optimal policy ig then the maximum Q value over the entire et of possible actions for
that state.

7%(s) = arg mC?XQ(s,a) (4)
As
V™ (s) = argm?xQ(s,b), (5)

where b 18 a posgible action which could be performed in the next state, the Q value can be
rewritten as follows:

Q(s,a) = r(s,a) + ymax Q(f(s,a),b). (6)

This formula provides the robot with the posgibility of learning the @ function instead of
the V™" function and thus determining the optimal action without prior knowledge of the
r and f functions. It only needs to choose the action maximizing Q(s, a).

for esch stole-action pair do

| Initialize the table entry (s,a) to zero.
end

Sense the current state s;.

repeat
Choose an action a; and perform it.

Receive a reward r;.
Observe the next state s;41.
Update @(s:, a;) using the following training rule:

Qse, ag) — 1 + ng}{@(stﬂ: b) (7)

St — St+1 (8)

until end of run

Figure 3: Algorithm for deterministic MDP from [1].

Figure 3 presents the Q-learning algorithm for a deterministic MDP. It iteratively approxi-
mates the QQ values and stores them in a table. There is an entry for each state-action pair.
Q converges to ¢ if the system is a deterministic MDP and it converges asymptotically
with state-action pair visits.
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A nondeterministic environment may generate a different reward each time the same state-
action pair is visited. Thus, ¢ is continuously altered and does not converge to ¢). A new
training rule ig required to achieve convergence. From [23|, @ is given by:

~

Qlsy, ar) — (1 — 0)Q(st, ) + (e + ymax Q(se41,b)), (9)

The learning rate « is commonly decayed to give more importance to the first stages of
learning.

As mentioned in [1], Q-learning represents each state-action pair has an entry in a lookup
table. It does not generalize ) values for ungeen pairg. Since convergence ig proven only
if every state-action pair ig visited infinitely often, it is unrealistic for large and continuous
spaces. A solution is to combine function approximation methods with Q-learning. For
instance, the lookup table may be replaced by a backpropagation artificial neural network
uging each Q(s, a) update ag a training example. The artificial neural network is trained to
output Q as shown helow,

input (s,a) — artificial newral network — output Q(s, a). (10}

2.5 EXxisting control algorithms

The literature contains a number of diversified algorithms developed to navigate mobile
robotg. Those with the potential of making a contribution to a control algorithm for the
STRV are presented here.

2.5.1 RBReactive systems

A reactive system senses the environment and reacts to changes. A control engineer pro-
grams the action to select baged on the genged environment. It is difficult to script a perfect
controller, however reactive systems can be efficient in many circumstances. Some reactive
systems for tracked mobile robots climbing stairs can be found in the literature.

Dornhege [4] uses a state machine. From an elevation map, a behaviour map ig built by
classifying the terrain structures (flat ground, ramp and wall). Then, the starting location
and orientation of the trangition edge hetween each structure are evaluated, and a cost is
assigned. The A* algorithm is used to plan a path. For each transition, the corresponding
gkill subroutine, a state machine, is performed. It includes drive a ramp, climb up a stair,
lift up and drive down from a pallet.

Fair [26] uses sequences of actions. An automated stairclimbing wheelchair, which is man-
ually operated by the user, is modified to climb stairs autonomously, A laser scanner
detects risers and infrared sensors detect dropoffs. The stair negotiating algorithm utilizes
a sequence of actions with different triggers for each action transition.

DRDC Suffield TR 2008-123 9



2.5.2 Neural network based systems

ALVINN (Autonomous Land Vehicle In a Neural Network) [17] is a learning system in-
gtalled on the Navlab at Carnegie Mellon University. It drives in a variety of roads and
environments, at gpeeds up to 55 miles per hour. The network architecture is a gingle hid-
den layer feedforward neural network. The input is a 30x32 camera image. It has 4 hidden
nodes and 30 output nodes. The output layer represents the appropriate steering angle to
maintain the vehicle on the road and prevent colligion. The network iz trained using the
backpropagation learning algorithm. In supervised mode, the network imitates a human
driver.

2.5.3 Reinforcement learning systems

Reinforcement learning has been applied to mohile robot navigation tasks such as corridor
following, obstacle avoidance, and A-to-B mobility. Those with the potential of making a
contribution to a learning algorithm for the STEV are presented here.

2.5.3.1 Acceleration of Q-learning for continuous space control tasks

Smart and Kaelbling [11, 27] introduce a Q-learning algorithm named the HEDGER. pre-
diction algorithm. In continuous state control tasks, it replaces Q values lookup tables by
an approximation of the target function. Assuming that each training example can be rep-
resented by a point in an n-dimensional Fuclidean space, HEDGER. uses locally weighted
regression (LWR) for interpolation within the training data, and locally weighted averaging
(LWA) if the query point is outside the training data, to predict an approximation of the
target function. IWR. uses the training examples near the query point to construct a local
approximation of the target function in the neighbourhood of that point. The contribu-
tion of each training example is weighted according to a function of itg distance from the
query point. In contrast, LWA predicts the target function value using all training exam-
ples, not just the surrounding points, also weighted by their digtance to the query point.
The approximation value, or @ value, obtained from LWR or LWA stays the same if no
reward occurs. When reinforcement is observed, a standard Q-learning algorithm is used
instead to iteratively improve the Q value. The HEDGER algorithm effectiveness has heen
demongtrated on a real robot executing an obstacle avoidance tagk and a corridor-following
task.

Furthermore, the authors split learning into two phases repregented in Figure 4. The first
phase iz a passive learning process where the robot is controlled by a supplied control
policy. For instance, a human can drive the robot uging a joystick. The learner passively
watches the states, actions and rewards. It bootstraps information into ite target function
approximation. In the second phage of learning, the learned policy ig in control of the robot
and learning progresses usging a standard Q-learning algorithm. The knowledge acquired in
the firet stage allows the robot to learn more effectively and reduce the time spent acting
randomly in the second phase.
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Figure 4: Learning phases for the Hedger algorithm. In the first phase, the robot observes
passively and learns the supplied control policy. In the second phase, the learned policy is
in control of the robot and learning progresses using (J-learning.

2.5.3.2 Careful design of the reinforcement functions

Mobile robots usually navigate in nondeterministic environments. Therefore, taking the
same action in the same state may lead to a different next state and reinforcement. Also,
rewardg can be incongigtent, immediate or delayed. Mataric [28] discusses the reasons why
traditional reinforcement learning methods, applied to deterministic MD}P, perform poorly
in such environments. The author highlights the importance of carefully designing the re-
inforcement function if the robot is to be able to learn succesefully. She proposes a method-
ology that embeds human knowledge into reinforcement using heterogeneous reinforcement
functions.

An immediate reward occurs when a goal is reached. A progress estimator evaluates the
progresg done accomplishing a specific goal. If m progress estimators P, are degigned, and
n immediate rewards I, incur, the total reinforcement r gained by the robot at time ¢ is
given by:

e T
= Zwipe,i + Z Wiy il (11)
=1 =1

The weights w; corregpond to the contribution of each component to the overall reinforce-
ment. The approach was tested in a mobile robot group learning a foraging task. It has
been demongtrated that a dense reward function, with multiple reinforcers and progress
egtimators, significantly accelerate learning.

2.5.3.3 Learning composite tasks with subtasks acting in parallel

Lin [29] proposes a Hierarchical Q-learning architecture (HQ-L) consisting of a group of Q-
learning agents that learn the sub-problems of a main problem. When the robot observes a
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state s, each agent [ suggests an action ay. A switch agent chooses a winner &k and executes
the corresponding action ay. The switch agent learns the Q-values ¢(s, k) of the best agent
to select in each state. (s, k) is easier to learn than ¢(s,a). The agents learn their Q
values gimultaneougly. The update of the ) values is as follows for the winning agent:

Qrlst, ap) « (1 — a)Qu(se, an) + alry + Y max @rlsir1,a)) (12)
and for the others:

Qrlssar) — (1 — a)Qr(se, ap) + alry + ?’mc?XQI(StH,CL))- (13)

Humphrys [30] compares a standard Q-learning agent to a HQ-L system in a simulation of
a “house robot” application. The HQ-L architecture requires less memory since each agent
only senses the subspace that is relevant to ite reward function, and builds up Q values
quicker than the standard Q-learning algorithm.

2.5.3.4 Reinforcement learning and action-selection with heterogeneous goals

Humphrys [30] presents an action-gelection method for applications with heterogeneous
goals. The author introduces a reinforcement learning method called W-learning. The
action-selection process ig learned while the W-learning agents compete to control the sys-
tem. Different agents modify their behaviour based on whether or not they are succeeding
in getting the rohot to execute their action.

When a state s; is obgerved, each agent I suggests an action with its corresponding strength
Wi(s;) or W value. The W value indicates how important a specific action is for that
agent. A switch agent selects the highest W value proposed by the agents (Equation 14)
and executes itg corresponding action ay.

Wiise) = mIaxW[(st) (14)

W-learning oheerves how bad it is when the requested action is not taken in this state by
observing the reward ry and the state s;14 it led to. The agent I estimates a substitute W
value, resulting from having executed action aj in state s; instead of a;y. When agent k ig
the winner, all other agents update with:

Wilse) = (1= 0)Wi(s) + o(@i(se,ar) = (1 + ymaxQi(sin @) (15)

This is the difference between the reward expected from the execution of the agent’s sug-
gested action, and the reward obtained performing the winner’s action.

The agent learns by experiencing what the others want to do. When the leader changes,
the agent ig not required to learn a new Qy(s,a), it just changes the W value.

The W-learning algorithm has been tested in an ant world gimulation. It represents the
conflict between foraging food while avoiding predators. The algorithm has also been tested
on a larger state space in a simulated “house robhot™ context.
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Behaviour X Active | Inactive
Pogitive reinforcement a b
No positive reinforcement c d
Negative reinforcement ] k
No negative reinforcement 1 m

Table 1: Performance table for an arbitrarv behaviour X. It counts the number of times
positive or negative reinforcement does or does not occur when the behaviour is active or
inactive.

2.5.3.5 Behaviour activation by reinforcement and precondition fulfilment

Maes and Brooks [15] present a 6-legged robot that learns to coordinate its legs to walk for-
ward. The behaviour-haged algorithm learns by reinforcement learning to activate different
behaviours. Ewvery bhehaviour learns when it should be active. Thig ig posgible by find-
ing under which conditions the behaviour maximizes positive reinforcement and minimizes
negative reinforcement, and how relevant it is to the global goal achievement.

Each behaviour keeps track of its performance in tables. Those tables contain the number
of times posgitive and negative reinforcements happened when the behaviour was active and
not active. Table 1 illustrates the performance table for an arbitrary behaviour X.

The correlation between positive reinforcement Pos and the activation status A of the
behaviour is defined as:

ad — cb
Vie+d)b+d)a+b)(ate)

Corr(Pos, A) = (16)

It meagures the degree to which the behaviour is correlated with the presence of positive
reinforcement.
The relevance of a particular behaviour X is defined as:

Relevance(X) = Corr(Pos, A) — Corr(Neg, A), (17)

where Neg means negative reinforcement. Relevance evaluates the probability that the
behaviour becomes active. The reliability of a behaviour ig defined as:

@ c 7 l
,—), max(——, ——
at+catc i+l 541

Reliability(X) = min{max(

)- (18)

The cloger the reliability is to one, the more congistent the behaviour. The algorithm decides
whether the behaviour should improve itself or not based on it reliability.

Other statistics are required to select the appropriate behaviour. Some gpecific conditions
are monitored. Table 2 illustrates a table for an arbitrary condition monitored. Forinstance,
e is8 the number of times positive reinforcement happened when the bhehaviour X was active
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Active Behaviour X Condition ON | Condition OFF
Pogitive reinforcement e f
No positive reinforcement g h
Negative reinforcement n o)
No negative reinforcement P q

Table 2: Condition table for an arbitrary behaviour X. It counts the number of times positive
and negative reinforcement does or does not occur when the behaviour is active and the
condition is ON or OFF.

and the condition wag set to ON. Equation 19 evaluates the correlation between a positive
reinforcement and a condition set to ON.

eh— fg
Vg +R)(f (e + file +g)

When the system notices a strong correlation between the condition being monitored and a
certain reinforcement, it congiderg this condition as being a precondition for this particular
behaviour. When a new condition is learned, the behaviour becomes active only when this
condition ig obtained.

Corr(Pos, A,ON) =

(19)

The algorithm was tested on Genghis, a 6-legged robot. A trailing wheel provides the
algorithm with positive reinforcement if the robot moves forward. Front and back touch
gengors provide negative reinforcement if the body touches the ground. Fach leg hasg a
swing-leg-forward and a swing-leg-backward behaviour. An additional behaviour ensures
horizontal balance of the platform. All behaviours learn the conditions under which they
should become active.

2.5.3.6 Q-learning combined with neural networks

Junfei Qiao et al. [31] propose a learning action-selection controller for a mobile robot
in a goal directed obstacle avoidance tagk. The authors use Q-learning to navigate au-
tonomously, and a neural network to store the large state-action space. The neural network
hag a good ability of generalization and is used to approximate the Q function. The mul-
tilayer neural network has one input layer for the sensory information (7 sonar distance
meagurements and the angle between the current direction and the target), one hidden
layer of 18 nodes using the sigmoid function, and one output layer generating the Q value
for 7 possible steering angles. The neural network is trained with the backpropagation
algorithm. The system selects the hest action for each state according to the Q value. The
reinforcement ig based on the distance to surrounding obstacles and the proximity to the
target location. The method ig tested in a simulated environment on a robot having two
steering wheels and one cagter.

Similarly, Janusz and Riedmiller [16] apply Q-learning combined with neural networks to
a mobile robot obstacle avoidance scenario. Experiments are conducted with a miniature
2-wheel mobhile robot with eight infrared sensors located around the robot. The controller
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learns to select the velocity of the wheels in order to aveid colligsion. The controller observes
the state. The neural network estimates the Q value for each posgible action (forward, slow
right/left turn, fast right/left turn). The action providing the best Q value ig executed.
Then, the system gets a reward and updateg the weights in the neural network. The
reinforcement is pogitive if the robot doeg not collide with an obstacle, negative otherwise.

Researchers have used reactive, artificial neural network and reinforcement learning con-
trollers in mohile robot navigation tasks. Some interesting algorithms have been presented
in this literature review. In complex terraing, robot mohility could be improved by learning
the appropriate behaviours for the situations encountered. Reinforcement learning is an
attractive concept since it can learn in real-time based on rewards and penalties. A lot of
work gtill has to be done to provide robots with the ahility to efficiently learn to behave in
complex environments.
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Figure 5: STRV in different configurations,

3 Robotic platform

The Autonomous Intelligent Systems Section at Defence R & D Canada proceeds to a
variable geometry mohile vehicle regearch project on a small UGV called the STRV. Previous
publications have presented the STRV, the variable geometry paradigm, the perception
challenges to navigate with this platform, its characteristics and architecture [32-35].

3.1 STRV

Figure 5 presents the STRV in different geometric configurations. This section describes
the platform and the sensors chogen for this research project.

3.1.1 Platform

The platform consists of four independently driven tracks with two solid axles articulating
the front and rear track pairs. Novel control methods will take advantage of the small size
of the UGV, its robustness, its few degrees of freedom and ite inherent ahility to change
geometry. The amall size of the vehicle permits driving through typical door frames and
gtaircages, making it a good platform for indoor applications. In addition, its ability to
shift configuration provides an excellent solution to adapt to obstacle shapes.

The STRV's reference frame coordinate gystem ig egocentric, defined at the robot body
center, with the axes defined as: x-axis parallel to the forward motion, z-axis up along
the gravity axis, and y-axis subsequently defined uging the right hand rule. Roll & occurs
about the x-axis, pitch # about the y-axis and vaw ¢/ about the z-axis. Figure 6 sketches
the egocentric reference frame. Note that the forward velocity v,, uged in this document,
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Figure &: Bobot reforenca frams,

{a) Pomitive axle angular (h) Megative axle anpular (o) Positive pitch angle  {d) Megative pitch angle
poation poEtion

Figure 7: Sign conventions of the axle angular position and the wehide pitch. The front
brack iz rad and the bads track iz blua.
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Iz along the x-axis from the robot reference frame, which staye horizontal even if the robot
pitches, 2imilarly, the upward velocity 2, 18 along the gravity axiz. Figure 7 illustrates the
slgn conventions uzed in this document. The sign of the vehicle pitch iz defined by the right
hand rule using the robot reference frame, and the sign of the tracks’ orlentation i1z defined
by the model in the simulator,

3.1.2 Sensors

Az asmall scale vehicle, the 3TEV has limited load carryving capacity with limited available
power. As such, it poses a challenge when selecting zensors. They need to be small and
light, and hawve a low power consumption. The robot haz been outfitted with the following
perception sensors:

+ T crient the vehicle in the world and evaluate e progress traversing the terrain, the

robot needs inertial measurement information. A good compromise between slze and
accuracy I the Microstrain 3DB-GX1, It glves triaxial acceleration, rotational rate
and orientation with respect to the vehicle body center and magnetic north,

To traverse complex terraln, a robot requires a good knowledge of the shape and
location of obetacles, The Hukoyo URG-04L% scanning laser range finder shows the
digtance and direction to obstacles. It =& mounted at the front of the wehicle to
percelve an obstacle’s shape and determine e location. The laser executes a 1807
vartical scanline. The range data shows the vertical contour of the obetacles such 2=
stalrcase, step, trench, wall and ramp. A pan mechanizsm rotates the URG laser over
a0 degrees which, when combined with the vertical scanlines, produces a 3D sean of
the environment, as shown in Figure 8.

It was decided that collecting vertical scan lines and panning the camera provides
a better precizion to determine the vertical shape of the obetacles than a horizontal
configuration. The UREG laser makes 512 range measurements per scan line, and the
pan mechanizsm makes up to 19 pan angles, For this reazon, there iz a better resolution

200a,) 3
L 1020 ZCLU S
() PREETY

Figure 8: 3D sean of the environment using the Hukoyo URG-04LY seanning lagar rangs
findar pannad by a sarvo contraller mechanizm,
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3.2

vertically (along the scan line) than horizontally. Since good vertical shape detection
ig degired to cross the obstacles, with accurate height and depth measurements, the
vertical scan line is more appropriate than the horizontal scan line. In fact, the
horizontal scan provides information to evaluate the obstacle width and the robot
tolerates inaccuracy of the obstacle width measurement.

The platform has six optical encoding systems: one on each track and one on each
axle., Thus, the internal sensors provide the track velocitiez and the axle angular
positions.

For trajectory planning, a camera is mounted on the body. An operator can investigate
the area and remotely control the trajectory of the robot by looking at the camera
image.

Interactions

The robot perceives the environment and makes decigiong on how to behave. The conge-
quence of its motion is a change in the state. Figure 9 shows the sensory inputs and the
controlled outputs to navigate the robot in the world. The inertial meagurement unit (IMU)
provides orientation, rotational rate and acceleration, the encoders provide track velocity
and axle angular position, and the laser range finder provides distance measurements. The
robot can then actuate the track velocity and the axle angular position to interact with its
surroundings.
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Inputs:  Laser range finder  distance

» MU — scecleration, rotational ralz, and oricntalion

Encoders — track velodly and axle anpular position

Environment

F

Oueputs: Track velocity commands

Axle angular position commands

Figure 9: Bobot interactions with the world through ite sensors and actuators,

CROC Suffield TH 2008-123



25001 2500

2000+

2000 -

1500+

1500 -

1000+

1000 -

500 - 500 -

o SDID 1 DIDD 1 S‘Dﬂ QDIDD 25'00 SDID 1DIDD 1500 QD‘DD 25‘00
(a) Range data with invalid detec- (b) Range data after invalid de-
tions. tections removed by interpolating

with adjacent valid datapoints.

Figure 10: Hlustration of real range finder raw dafta with invalid detections and the corre-
sponding corrected image.

4 Perception algorithm

In order for the STRV to interact with its surrounding, it must recognize ohstacles that
may affect its behaviour. The regearch project focuses on detecting physical characteristics
such as obstacle location, height and depth that are useful for making control decigions.
Thig section presentg a first attempt to build a perception algorithm for intelligent mobility
navigation.

The digital elevation map, or terrain map, is the most widely used world representation
in mobile robot navigation [36-40]. This research project exploits elevation mapping to
control the STRV negotiating ohstacles.

For a vehicle operating under continuous motion, a pergigtent terrain map must fuse range
data where each terrain scan is acquired at a different vehicle poge. The lager range finder
generates a 180° vertical scan line of 512 range datapoints. The angle between the center
and the current lager beam positions is £. A pan mechanism rotates the URG laser sensor
x degrees every scan line to cover a 90° field of view in front of the STRV.

The lager is influenced by lighting conditions. Therefore, the raw range data includes noisy
data. A firet thing to do before analyzing the data is to remove thoge invalid detections.
The method usged is the interpolation with valid adjacent datapoints. Figure 10 shows raw
range data with invalid detections and the resulting range data after interpolation.

A range data point 1) is first converted from a spherical (D, &, k) to a Cartesian (zr, yr, z1)
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Figure 12: Laser reforence frame (#r, yr, #1) and robot reforance frams (2, ¥, 2).

coordinate svelem in the laser reference frame as follows:

er = Deos(£)cos(s)
yr. = Deos(£)sin(s) {200
2r.= Dsin(£).

Figure 11 illustrates the conversion,

To convert the range data point from the laser reference frame {27, wr, #z) to the robot
reference frame {#, %, #), the homogeneous transformation matrix Hy 1= applied as:

TL
= ¥ | _
Pyo=Hp | 3 [ =
1

, (21)
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Figure 13: 3D rangs detection of an ascanding staircass,

where Hr i= as follows:

cos(d) 0 e .cC) Tryeos(d) — Tirsin(d)
—sin{f)sin(o) cos(o) —cos(Bsin{o) —sin(o){Tyeos(d) + Tyeinl6)) (29)
sin{&);as{gj sivz[cr) cas{&)ﬂcas{gj cas{J){Tycas{f) + Tgein(d))

Hr =

and where & and & are the vehicle roll and pitch respectively. Figure 12 shows the variables
used in the conversion, Ty and Ty are the orthogonal distances between the robot body
centre and the lager beam. The resulting vector Fogo = the representation of the data peint
in the robot reference frame.

As egach vertical scan line covers 1807, it 1= necessary to differentiate the ground datapoints
from the ceiling datapoints, as shown on Figure 13(a). For this reason, the algorithm keeps
datapointe from the start position of the scan line, below the robotf, up to the furthest
location along the x-axis, for each scan line, It rejects the following datapoints in the scan
line., Thizs assumption allows mapping of the ground and the obstacles rather than the
celling, However, it does not represent an overhanging obstacle, which s not considered in
this research project,

The terrain map captures the terrain elevation for each grid cell covering a 1-centimeter
region along the x-axds. Linear interpolation provides elevation values between range data
pointz. Among all data pointe associated with the same grid cell, the algorithm keeps the
highezt elevation value, The grid map iz defined as 2 meters along the ;-axis, and data are
kept as an array of data point vectors Fayo per scan line or pan angle. Figure 13 shows the
3D range data and the resulting terrain map for a stalrcase.

Figure 14 demonstrates the terrain mapping method for a real lazer scan line of a stalrcaze
without rizer. This iz a good example of how difficult i 1= to recognize obatacles with lager
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Figure 14: 2D rangs detection of a real ascending stairease without risar,

range data, Without developing an algorithm keeping only the highest elevation value per
grid cell, it would be impossible to detect the stalrcase without rizers,
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Figure 15: Box climbing sequence illustrating the variation of the vehicle geometry to con-
form the ferrain.

5 Control algorithms

A box climbing sequence is depicted on Figure 15 and shows the capability of the STRV to
vary its geometry to conform to the terrain. The intelligence to chooge within its geometric
configurations the one that best fite the situation, allows the robotic platform to interact
with the world. This section explaing the different control algorithms developed.

5.1 Reactive controller

An attractive concept in robotics is a robot learning in order to behave in a complex environ-
ment. However, most machine learning algorithms and neural networks are computationally
expensive and require training data. An interesting alternative is to provide a robot with
a reactive controller. A reactive system senses the environment and reacts to changes. The
control engineer programs the action to select based on the gensed environment. It is dif-
ficult to program the perfect controller, however reactive systems can be efficient in many
circumstances. This subsection presents a geometric-based reactive controller providing an
estimation of a desirable actuation.

The proposed reactive controller orients the tracks. The main idea is to orient the bottom
of the front track with the highest elevation in the next near-range distance in front of the
vehicle ag gketched in Figure 16. The back track follows the front track motion with a delay.
This results in a snake-like behaviour.

Figure 17 illustrates the variables utilized in the algorithm,
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Figure 16: The STRV climbing a staircase without risers. The laser range data is shown
in blue, the terrain map in magenta, and the computed fronf track required orientation in

black.

26 DRDC Suffield TR 2008-123



Figure 17: Variablas used in the resctive contrallar,

where:

8 Pitch angle.

o Eoll angle.

dr Current front axle angular position,

dp Current back axle angular position.

Er, By Orthogonal distances between the robot body center and the front track origin,
K Distance between the front track wheels,

R Big wheel radius.

u Small wheel radius,

Ly Pront track origin.

A Angle between the track centerline and the bottom of the track,
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Figure 18: Beprasantation of the avaluation distance d usad to compute a desired front axla
angrular position.

The front track origin I iz 2et to the base of the front big wheel 2z presented in Figure 17,
Girven the vehicle orlentation and axle angular positions, Db e first located in the robot
reference frame. The homogeneous transformation matrix g 1= applied as:

a
a
H:l,ego = HH‘;. _T : {23)
1
where g, 18 a8 follows:
cosl8 — dp) 0 sinlf — ¢p) Breos(f) + Brrsin{6))

sin(o)sin(l — ¢r) cos(o) —sin(o)cos(adr — &) sin(o)(Bgsin{f) — Breos(6))
coslo)sinigr — ) sin(o)  cos{ojcos(adr — 8)  cos{o)(Breos(d) — Brsin{6))

0 0 0 1
(24)
and where ¢r iz the current front axle angular position, K the big wheel radius, and Eg
and By the origin orthogonal distances between the robot body centre and the front track

origin, The resulting vector I .40 18 the representation of the front track origin in the robot
reference frame.

Hp =

To caleulate a desired front axle angular position, the reactive controller does not consider
the entire terrain map. Instead, it considers only a short distance & called evaluation
diztance, and represented in Figure 18, 4 1= computed az follows:

d=L+ Ae+ 5F, {25)

where I i the distance from the robot body center to the extremity of the front track in
the extended configuration, Aw = the expected forward distance traveled for the next time
step 4, and 5F 1= a 10-centimeter safety factor to conslder further than the track edremity
when the velocity 1= null. The faster the robot goes, the longer d must be to compute a
desired front axle angular position since the time the robot has to react i shorter. The
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expected traveled distance & given as:

1
b = vyt + EamtE} (26)

where o, and &, are the forward velocity and acceleration respectively along the robot
reference frame x-axis.
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Figure 19: Partial tarrain map grid. Each dot is the (x,¥) grid location of a datapoint.

A terrain map Gride, 15 illustrated in Figure 19, Each dot is the (xy) grid location of a
datapoint. For row 1 and column j In Gridig,, 3 grid location is expressed by

(25 3,) = (0.01{3' — 1), 0.01(5 — 1)tan (;—6{3‘ - 10))) , (27)

where % comes from 3 fleld of view divided in 19 pan angles or 18 increments. The
coefficlent 0,01 converts the resulle from centimeters to meters, as each grid cell 4 covers a
one-centimetre region along the x-azxis, Thizs iz the projection of each dot on the xand y-axis,
For instance, the array position 4 =9 and j = 19 gives (g, %o 10) = (0.080, 0.080) meters,
The magnitude z of the elevation in each (xy) location can be expressed as Grid,,,. (4, ) =
i,

As illustrated in Figure 20, § i the angle between the horizontal and a segment from the
track origin Ih to a terraln elevatlon. BFor row 4 and column j in Gridis,, 0y 18 computed

as follows:
5o = farm ) ( Gridnp(t ) — b egol 8] )
K (s — Poegof1))2+ (255 — Feo(2))?

for all terrain elevations over d. Fy ... 1= given by Equation 23, The maximum angle i= d,...,,
and e corresponding terrain elevation iz F,. The line formed from the track origin Iy to
L, represents the desired orlentation of the bottom of the front track to cross the terrain
onvar d,

(28)
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Figure 20: Dagired front track orientation to traverse the tarrain,

To compute the front axle angular position, the orlentation variation must be added to the
current position. However, fppge 8 computed for the bottom of the track instead of the
track centerline. & represents the angle between the track centerline and the bottom of the

track. & 1= computed by
R —
g =tan"! ( % %) . {29)

where K iz the distance between the front track wheels, and « and & are the amall and big
wheel radius respectivaly.

Figure 21 illustrates the variables used in the following equations. The desired front track
orlentation = evaluated by subtracting £ from fpepe a8 follows:

DesiredTrachOrientation = fnew — £ {200

The current track orlentation is given by substracting the pitch angle from the current front

axle angular position.
(31)

Then, the front track orientation error Adyp is obtained by substracting the current track
orlentation from the desired track orlentation as follows:

Oy et d rachCricntabion = ¢p— 0
App = Desiredrach Orientation — Cwr erd Ty ach O iend ation

(32)
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Figure 21: Variables to evaluate the desired front axle angular position required to orient
the track with the terrain to cross.

Finally, the desired front axle angular position gb‘j}; is given by the current front axle angular
position plug the front track crientation error.

ﬁbdF = ¢F + Aqbp (33)
$% is limited to +180°.

The back axle executes the front axle opposgite commands, but delayed with respect to the
vehicle velocity. A table manages sequencing of the commands. The delay is established
baged on the vehicle nominal gpeed. It equals the axle span divided by the vehicle nominal
gpeed.

To maintain stability and avoid excesgive pitching as much as possible, it is checked that the
mags center of the track does not pass above or helow the hody mass centre. Equation 34
ghows the stahility equations where givdF and givdB are the desired front and hack axle angular
positions, and @ is the vehicle pitch angle.

if (% — 6> 90°) and (6 < 0) then ¢k = 00° 0
if (0—¢% > 00°) and (0 > 0) then ¢% — 90° — 0
if (¢>B +6 > 90°) and (0 > 0) then ¢% = 90° — 0
F (6% — 6 > 090°) and (0 < 0) then ¢% — 90° + 0

(34)

i
A reactive controller ig a good first step. However, human-scripted algorithms prove difficult
and time conguming to understand, design, and tune for a UGV that possesses multiple

modes of locomotion and navigates various terrains. The production of mohility behaviours
needs learning control algorithms and flexibility to changing conditions.
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5.2 Artificial neural network controller

Learning is required to improve the robot behaviour and its adaptability to new obsatacles.
Neurocontrollers have heen studied by some researchers to golve mobile rohot colligion-free
path planning problems [41-43]. Asg stated in [43], the interesting properties of neural
networks are their nonlinear dynamics, their natural complexity, and their adaptability and
learning ability., Artificial neural networks can be uged to copy an existing controller in
superviged learning mode, or to self-tune by reinforcement learning.

In the ALVINN project [17], Dean Pomerleau at Carnegie Mellon University used a multi-
layer feedforward backpropagation neural network to learn steering position basged on road
images. This concept has several similarities with controlling the angular position of the
axles based on terrain elevation images. Following this idea, this subsection describes the
control algorithm developed through an artificial neural network for the STRV.

Grid

map

o Axle
Actuation

NS L<:8 MS R VLV e

© o

™

Figure 22: Multilayer feedforward neural network architecture,

The neural network architecture, presented in Figure 22, consists of four nodes using the
hyperbolic tangent sigmoid transfer function in the hidden layer, followed by a single-node
linear transfer function in the output layer. The input layer consists of the roll ¢ and pitch
8 angles, triaxial linear velocity (ve, vy, v:) and triaxial rotational rates (we, wy, w;) in
the robot reference frame, and axle angular positions (¢p, ¢p). Moreover, the input layer
includes the terrain map for 5 pan angles (—20°, —10°, 0°, 10°) of 201 grid cells each as
illugtrated in Figure 23. The Matlab Neural Network toolkit refuses to process more pan
angles uging the Levenberg-Marquardt backpropagation algorithm, because it requireg too
much memory while training the network. However, the system could learn to navigate
effectively with only one pan angle, thus uging 5 pan angles was only to increase the gystem
robustness and accelerate the learning process. Every input activation ig normalized [-1,1].
Each of the 1015 input units is fully connected to the hidden layer units, which are in turn
fully connected to the linear output layer unit. The input activations include more than
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Figure 23: rid,,..,. cdls whose corrasponding terrain alavations are used as inputs to the
naural natwork, The bigrast grid calls in this partial view of the tarrain map grid reprasant
the five pan anglas chosen as natwork inputs.

just the terrain map to involve vehicle dynamics in the training process. This should help
maintain robot stability and motion smoothness,

The neural network iz trained to produce a suitable front axle angular position using the
Levenberg-Marquardt backpropagation algerithm [44] In backpropagation, the input ac
tivation s propagated forward through the network to determine the cutput. The result
Iz then compared with the target value. The weights are slightly modified to rectify the
output activation error.

The neural network i1z tuned using a supervised learning technique., The expectation is to
drive the robot through some obstacles to tune the network, and then obiain an appropriate
motion of the robotic platform traversing similar obstacles with the learned behaswiour,
Thus, the control engineer wouldn™ have to script how to achieve the task, the robot would
learn to behave by observing passively the supervisor outpul for every inputs. Since the
robot s broken, 1 is currently impossible to collect real remotely controlled run data. Also,
the simulator doesn't provide the user with the ability to control the simulated robot with
a joystick, Therefore, the most readily available supervisor iz the reactive controller. It
trains the network with appropriate axle angular positions based on the sensory inputs and
the robot geometric configuration.

The reactive behaviour has limitations, Bometimes the robot gets stuck on itz belly for
instance. Th train the network, the supervisor must generate successful runs and awveid
getting stuck on an obatacle, To counter that problem, whenever the vehicle gets stuck,
the robot executes a kick with both axles simultanecusly. If 1t staye stuck after a first kick,
it executes a bigger kick, and so on. Thiz kicking behaviour = very simple to implement,
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Node guantit 1 2 3 4 5
| quantity |

MSE 0.010498 | 0.007820 | 0.005935 | 0.005407 | 0.000012
Time (&) 60 213 465 926 1446

Table 3: Network training results when varying the quantity of hidden nodes. Trials over
25 epochs using the Levenberg-Marquart backpropagation algorithm.

however flipping over occurs often gince the robot gets unstable when kicking while climbing
obstacles. The only purposge of this behaviour is to provide the network being trained
with a continuous motion of the vehicle crossing obstacles without getting stuck, when the
reactive controller does not have an appropriate solution. Only successful rung are used in
the training process.

The multilayer feedforward neural network is trained offline for different series of obatacles.
The training set consists of upward and downward staircases. They vary from 0.05m to
0.50m tread depth, by 0.05m increments, and from 5° to 50° inclination, by 5° increments,
with respect to the supervisor abilities. Moreover, the training set consists of boxes varying
from 0.10m to 1.00m deep, by 0.10m increments, and from 0.05m high to the supervizor
limitg, by 0.01m increments.

Different neural network structures were tested to determine the configuration providing
the best performance. First, the number of nodes in the hidden layer was varied. The
accuracy of the network was evaluated through mean squared error (MSE). Table 3 shows
that 4 nodes provided the optimal performance. Each table entry represents 7 different
trialg. Since this controller wasg trained offline, the training time was not considered, only
the performance. Second, several training algorithms supported by the Matlab Neural
Network toolkit were tested. Table 4 shows the performance obtained for several meth-
ods. The training proceeded on 100 epochs. Each table entry represents 2 different trials.
The Levenberg-Marquart backpropagation [44], a second-order nonlinear optimization tech-
nique, provided the hest mean squared error. For the best trial, the mean squared error
performance was 0.4% over 25 epochs and Figure 24 shows the training curve obtained.
Weights and biases computed during that trial are the ones used by the artificial neural
network controller.
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| Training algorithm

| M2E | Time (s} |

Levenberg-IMarquardt 0.0028 2645
Powell-Beale Eestarts conjugate gradient descent 0.0158 29
Polalk-Eiblere update conjugate gradient descent 00172 26
Zealed conjugate gradient descent 0.0194 21
One step secant method 0.0208 24
Fletcher-Eeeves update conjugate gradient descent 0.0256 a8
E.esilient backpropagation 0.0264 is
Warlable learning rate backpropagation with momentum || 0.0446 21
Warlable learning rate backpropagation 00628 i8
Gradient descent with momentum 01282 18
Gradient descent 01247 18

Table 4: MNatwork training results for various training methods, Trials over 100 epochs,

Mean squared errar

5] 10 15 20 25
epachs

Figure 24: Bost Levenbare-Marguart backpropagation neural network training curve ob-

tainad ovar 25 spochs,
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5.3 Reinforcement learning controller

The reactive controller provides a good estimation of an appropriate solution for travers-
ing the terrain. Although this controller is effective and produces a desirable predictive
and smooth motion, it gets stuck in gome gituations. The gystem iz agsumed stuck when

v% + vg + vg < 0.01 m/s or v, < 0. Only forward movements are congidered in this work,

for this reason when v, < 0 the robot is considered stuck. Also, if the nominal gpeed of the
vehicle ig zero, meaning the vehicle ig stopped, the stuck situation doeg not apply. Recall
that these velocities are in the robot reference frame and do not change orientation with
the vehicle roll and pitch. The reactive controller gets stuck because it generates commands
baged on near-range views of the environment and the back axle only repeats the front axle
commandg with a delay. It does not take into account what is going on helow the body,
robot dynamics and uncertainties in perception. Reinforcement learning will he useful to
search for alternative actuations and exit bad situationg, when the reactive controller does
not have an appropriate golution. It will also attempt to maintain the robot stability during
the manoeuver.

Reinforcement learning adapts the robot behaviour to changing environments in real-time
and learns actuation online. This report presents the reinforcement learning algorithm
developed to select suitable STRV geometric configurations in situations where the reactive
controller is stuck. It adjusts the two axle angular positions to make it more fit to progress
under the terrain conditions.

Mohbile robots rely on their senzors to make real-time decigions and navigate various terrains.
They deal with inconsistent, complex and nondeterminigtic environments. Therefore, it is
difficult to degign a perfect controller. The golution is to make the robot learn to hehave
correctly. Reinforcement learning addresses the problem of how to learn the best action to
perform based on rewards and penaltieg incurred from performing particular actions.

Several criteria are congidered to build the reward function. During a guccessful navigation,
the robot’s forward velocity iz important. It slows down during obstacle agcent and the
linear velocity along the z-axis increages. A low or negative forward velocity usually signifies
a difficult progression. Similarly, a null or small linear velocity along the z-axis while
climbing an obstacle means the robot ig stuck or in difficulty and should vary its geometry.
Moreover, to maintain stability while climbing an obstacle, the more pitched forward the
robot ig, the lesg risk there iz to back flip. This tends to bring the body closer to the
obgtacle. Another consideration is the mass center displacement. In most circumstances,
when the vehicle ig stuck on an obstacle, the robot must raise or move the mass center
forward (in the robot reference frame). This increases the chance to exit the dead end
situation. A mass center upper displacement, in the robot reference frame, usually brings
the body nearer the obstacle, and often, this increases the traction surface area for better
propulgion.

Figure 25 presents different situations where the robot is stuck. In the first cage, the vehicle
iz stuck while climbing a box. The back legs need to push the hips upward and the front legs
to get more horizontal, pitching the body forward. In case 25(b), the box ig narrower than
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(a) Stuck while climbing a box. (b) Stuck on a narrow box.

(c) Stuck descending a box. {d) Stuck when descending the first (e) Stuck when climbing the

stair, last stair,
&

&®

(f) Stuck due to inaccurate eleva- (g) Slip in a steep stair. (h) Stuck on a tread deeper than the
tion representation. vehicle span.

Figure 25: Situations where the robot is stuck. The reactive controller does not have an
appropriate solution to Keep progressing.
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the axle gspan. Therefore, the robot is stuck on its belly and has trouble pushing itself out
of the bad situation. For low boxes, the robot may opt to lift itself up by pushing all tracks
down, or for tall boxes, flip the back legs up then forward to propel the vehicle forward. In
case 25(c), the robot is stuck on the belly while descending a box. The legs must generate
a balancing motion to pitch the body forward. The back legs must push or move upward
to displace the center of mass forward and help pitching the vehicle forward. The front legs
must extend to move the center of mass forward. In the other cages, the robot is stuck in
staircages. Casges 25(d) and 25(e) show the situation where the system ig stuck on its belly
and needs to push more with the back hips. Case 25(f) shows the situation where the robot
is stuck in the stairgs and the controller doeg not have an appropriate solution to progress,
probably due to an inaccurate representation of the environment. In case 25(g), the robot
slips because the staircase is steep. Finally, case 25(h) represents very challenging stairs
where the treads are deeper than the axle span. The robot needs to generate a snake-like
motion conforming to the shape of the stairs, increaging the traction surface.

Every situation requires a sequence of geometric configurations to exit the bad situation.
How to select the configurations and the gequence order vary from one attempt to another.
It depends on perception uncertainty, traction quality, obstacle dimensions, and wvehicle
dynamice. How much to rotate the axles, in which sequence and without flipping over, is a
very challenging problem. Reinforcement learning may help to solve that problem.

Figure 26 presents the reinforcement learning controller architecture developed. When
the gystem is stuck, this controller takes over control and adapts the behaviour to solve
the gituation. Then, the reactive controller takes over control again. Processed sensory
inputs are fed into an artificial neural network which outpute the desired front and back
axle angular position. On the next iteration, a reward function evaluates how good the
vehicle progresgion is since the performed actuation. The actuation is updated baged on the
obtained reward. The artificial neural network is then trained to output thig new actuation
next time it receives the same inputs. If the progression is very bad, an exploration function
explores new avenues. In this application, the exploration function switches the search
direction in the update function. The following paragraphs detail each step.

The congtruction of the reward function is a difficult and very important task since it
controls the learning process. The gystem won't learn the task if the reward function is
not designed properly. Which elements should be congidered for reinforcing an appropriate
motion and sclve a stuck situation? Through experimentation, it was determined that
different stuck situations require different reinforcements to successfully accomplish the
task. For this reagson, the reward function is gplit in three components. The clagsification
congists of 1) narrow boxes (Figure 25(b)) where Py is lower than 0.15 meters below the
body center and the vehicle pitch is greater than —5°, 2) upward stairs (Figures 25(f), 25(g)
and 25(h)) where Py, ig positive and 0 is negative and 3) steps or any other situations
(Figures 25(a), 25(c), 25(d) and 25(e)). After designing this reward function, it was clear
that, to expand the robot ahbilities for climbing more diversified obstacle shapes, it would
necessitate adding more clasgificationg in this reward function.

Equation 35 presents the reward function. As recommended in [28], the developed reward
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Figure 26: Reinforcement learning controller architecture,

function consists of several rewards and progress estimators to orient and accelerate learning.
It consiste of six elements. F, is a progress estimator. It equals 1 when v, i bigger than
0.1 m/s, otherwise P, equals -1. It gives an important reward when the vehicle gets some
forward velocity to reinforce the behaviour. Two other elements are the normalized forward
and upward velocities, 'L’wa and 22 reinforcing forward and upward motion. vmee i8

Urmnow

the maximum or nominal speed. Also, the normalized pitch angle % reinforces forward
pitch to keep the vehicle cloger to the obstacle and avoid flipping back over. Finally, it
is important to consider the mass center displacement. Appendix A presents the mass
center location calculation. Reinforcing a forward mass center displacement (in the robot

Dﬂ.’.‘ _DQC . . .
reference frame), ﬁ, usually reduces the risk of flipping back over. The mass center
TE—1q

relative digplacement is computed by dividing the displacement of congecutive iterations by
the previous location. In the case of a division by zero, this reward component ig get to
zero to avoid an infinite reward. Similarly, reinforcing an upward mass center displacement
(in the robot reference frame), D,, — D, ,, lowers the body near the obstacle and often
increases the traction surface. This should facilitate the vehicle propulgion. Only the gign
of the masg center displacement is considered, sgn{D,, — D,, | }. This reward component
hag been added mainly to solve gituations where the robot is stuck on narrow hoxes and
needs to rotate the back tracks above the body to propel the vehicle forward.
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a1 P, + azv:;;x + agﬂizw + CL4WL}2 + agsgn{D,, — D, |} + as( e ] )
if P, <—015 &6 > —5°
) buBe o bagte ot ba et basgn{Da — Da o basgn{ )i Py > 0 & 0.< 0
c1 Py + copPi- 4 c:g,ﬂ% + 04(%), otherwise.

(35)

The numeric value for each reward coefficient is presented in Table 5 and expresses the
gtrength of that component on the total reward. The coefficients were tuned by trial and
error to reinforce some hehaviours in specific gituations. Thig is how the control engineer
can incorporate hig own knowledge about how to act in specific circumstances. The engineer
decides what to reinforce and how much.

Coefficient | 1 | 2 | 3 | 4 | 5 | 6 |

a 017 10331 -05 | 0.5 | 0.17 | 0.03
b 0.17 1033 | 0.17 | 0D.08 | 0.08
c 017 1 033 05 | 0.17

Table 5: Reward function coefficient numeric values. The row indicates the coeflicient letter
and the column the coeflicient subscript.

An artificial neural network stores the knowledge acquired by experience. The network
structure was determined based on results obtained for the artificial neural network con-
troller pregented in Section 5.2. It is assumed that the network behaves gimilarly and the
optimal structure for the neural network controller is agsumed alsgo optimal for the reinforce-
ment learning controller. This agsumption is necessary since it would he difficult to train
online different network architectures to find the optimal one. Each run generates a dif-
ferent robot bhehaviour based on perception accuracy, vehicle dynamics and neural network
decigiong. Therefore, it would be pointless to compare the different architectures.

Figure 27 prezents the artificial neural network architecture. It hag 207 nodes in the input
layer consisting of the terrain map at 0° pan angle, forward and upward vehicle velocity
vy and v,, pitch angle @, current front and back axles angular position ¢p and ¢g, and Py
from the reactive controller algorithm. Using the central pan angle provides good results.
Adding more pan angles may increase the system robustness, but is more computationally
expensive. The velocities and pitch angle give knowledge about the vehicle dynamics. The
axles angular pogitions combined with Fj describes figuratively the kind of stuck situation.
The hidden layer consists of 4 nodes uging a hyperbolic tangent gigmoid transfer function.
Finally, the output layer has 2 nodes combining linearly the hidden layer outputs. They
represent the degired front and back axle angular positions givdF and qﬁdB. This is different, from
the neural network controller which generates the front axle position only. Here, the back
axle control assumption of repeating the front axle actuation with a delay does not apply.
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Figure 27: Artificial naural network srchitecturs for the reinforcament learning controllar,

The multilayer feedforward neural network is trained online using the LevenbergMarquart
backpropagation algorithm.

The syetem gete a reward each Ueration., If both axle actuations were changed simulta-
neously, 1t would be Impossible 1o know the impact of one axle actuation on the reward.
Therefore, the controller changes one axle command per iteration,

Biquation 36 presents the update function. ¢ and ¢o represent the current front and back
axle angular positions. 45%‘ and qEAf'dB are the desired axle angular peeltion estimations fad
into the artificial neural network, The learning rate o = zet to 1. It represents how much of
the reward component must influence the actuation. Sy and 5S¢ are the search directions
for the front and back axles. When the vehicle 1= stuck, the control switches from the
reactive to the reinforcement learning controller, The artificial neural network outputs the
learned actuations for the current situation. The search direction s the motlon direction
the axles must take to realize those actuations. Suppose the front legs are at 5° and the
neural network simulates 10°, then the search direction is pesitive (10-5=5) and 5F is set
to 1. If U was negative, 5S¢ would be st to -1, The same evaluation iz done for the back

legs and provides S, The controller maintaing the search direction until the exploration
function switches it.

-

.;5'%. — gp4 arip

(36)
#% — ¢+ orSp
This update function iz used, rather than the Q-learning update function [24], because the
controller was unsuccessful learning with the Q-learning algorithm, Therefore, the update
function was simplified to successfully accomplish the navigation task., By analogy, if 9 1=
replaced by ¢ (without the subseript indicating front or back axle), the update function
becormes:

Qsr, ) — Qlor, o) + ceme 5, (37)
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compared to the nondeterministic Q-learning update function
Q(Staat) —(1— Oft)@(sta ag) + ag(ry + ymax Q(SHLCL))- (38)

It iz important to keep in mind that the update function used here calculates an axle actua-
tion instead of a maximum discounted cumulative reward, ag for the Q-learning algorithm.
All neurocontrollers presented in Subsection 2.5.3 have one neural network output node per
possible action. The neural network outpute the @ values for each action and the robot
performs the action with the hest @ value. In our cage, there is a large action gpace, there-
fore it is not possible to have one output node per action. For that reason, it was decided
to output an actuation instead of a Q value.

The exploration ig very important in reinforcement learning to acquire knowledge over the
full action space and therefore make better action selection [23]. In this algorithm, the
exploration function explores new avenues when the reinforcement learning function acts
very poorly. That ig, when the reward is worse than the previous reward for that actuator,
minus a certain threshold, here 0.1. This threshold represents how long to wait hefore
switching from exploitation of learned information to exploration of new avenues. A small
threshold meang that the robot explores new avenues more often than it exploits the learned
behaviour. In contrast, a high threshold means that the robot is gtuck longer before deciding
to look for new avenueg. The threshold was tuned by trial and error. In future work, a
gengitivity analysis on that threshold should be done to figure out an optimal value. The
exploration function switches the sign of the update function by inverting the sign of Sg or
Sp in Equation 36 baged on the axle the reward is associated with. This leads the system to
search in the opposite direction. The exploration function is algo called when an actuator
reaches its limits to search in the other direction.

For safety concerng, the actuations are limited to a maximum of 30° increment per step.
This safety is necessary gince the network could generate an inadequate command and the
vehicle could be damaged.

6 Path planning module

The STRV ig not completely autonomoug., An operator remotely controls the vehicle head-
ing. The operator tells the robot where to go, but the control algorithm takes in charge
mobility adaptation to the terrain, and how to traverse and climb obstacles. This technique
reduces considerably the operator labour who just needs to plan the vehicle trajectory. This
semi-autonomous characteristic simplifies the control algorithme and adds safety in the nav-
igation process, since the operator tends to chooge the paths that seem the most feasible.
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Figure 28: Geometric feature coordinates of the environment are passed to the mathematical
modeller which correctly positions the vehicle info the world.
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Figure 29: Model of the STRV in the Vortex simulator,

7 Simulation

This section presents tests uging a simulator and compares the performance of the reactive,
the artificial neural network and the reinforcement learning controllers.

7.1 Simulator

The simulator Vortex by CMLabs Simulations Inc. [45], a physicg based engine for real-time
simulation, is used as a modelling tool. As presented in Figure 23, to fill the gap between the
real-world and the controller, relevant geometric features of the environment are extracted
from a world repregentation, whose coordinates are pasged on to the mathematical modeller.
A model of the STRV that includes its dynamics, ig then correctly positioned into the
world representation, ag illustrated in Figure 20. The Vortex gimulator models accurately
the physics of the ground vehicle, terrain and real-world ohjects. Degigned for real-time
gimulation, the Vortex development platform ig a great tool for testing and validating the
performance and logic of control algorithms.

7.2 Testing and controllers compatrison

Two tests were degigned to evaluate the performance and limitations of the controllers.
They consist of box and staircage crosging, two common obstacleg in indoor environments.
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7.2.1 Test 1: Box crossing

The first test is a series of hoxes of different sizes. It evaluates the robustness of the con-
trollers to the variation of height and depth of hox-shaped ohstacles. Performance criteria
include adaptahility to box dimensions, stability maintenance and ability to negotiate the
ohstacle.

Depth
- -]
| Width
Vehicle
Progression
—_— Height

Figure 30: Box parameters,

Figure 30 illustrates the box parameters and Figure 31 presents the maximum box dimen-
gions the vehicle can traverse employing a particular controller. For different box depths,
the graph shows the maximum box height each controller navigates successfully. For each
box depth corresponding to a datapoint in the graph, every height was tried gtarting at 5
cm by l-cm increment until an unsuccessful trial occurred. Then many trials around that
height were run to determine the maximum traversable box height.
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Figure 31: Plot of the maximum box sizes the controllers traverse driving at 2 km/h nominal
speed.
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7.2.1.1 Reactive controller results

e ®

S S e,

(a) Stuck on a narrow box (b) Stuck while climbing a box (¢} Stuck descending a box

Figure 32: Situations where the robot is stuck when controlled by the reactive controller.

With the reactive controller, the robot nicely climbs and descends the obstacles. The motion
is smooth and predictable. For boxeg narrower than the axle span, the robot gets stuck
on its belly (Figure 32(a)). It is a very diflicult situation to solve and every controller has
limited performance with narrow boxes. For deeper ohstacles, the vehicle reaches the hox
height but may not have the back track force to propel the body over the box. In that
circumstance, the vehicle gets stuck (Figure 32(b)). Furthermore, the body inertia helps
the robot to flip over the box. When the box is too deep, the robot can™t balance and
it requiregz more back track pushing force to lift the body. For this reason, the maximum
heights reached for deep boxes are lower than those with medium depths. Moreover, the
robot becomes quite vertical when attempting to climb tall boxes. Above the limit height, it
loses stability and flips back over. Rohot and sensors would be damaged if the vehicle flipped
over. Finally, the robot may get stuck on its belly when descending a box (Figure 32(c)).
Thig happens when the box edge is in contact with the belly and no track touches the
obstacle. In that circumstance, the robot must tilt forward by pushing with ite back legs
and keeping its front tracks forward to touch the ground.

7.2.1.2 Anrtificial neural network controller results

The artificial neural network controller successfully traverses the boxes. The motion is not
ag predictable and smooth ag the reactive controller. However, the vehicle maintaing better
stability and motion continuity while traversing narrow obstacleg, and outperforms the re-
active controller for every narrow box depth. More training could improve the predictability
of the behaviour and increase the robustness of the controller.

Ag mentioned previously, the behaviour is less predictable and may be erratic. Although the
robot can navigate a terrain in several geometric configurations, some have better traction
and stability. A solution is to merge the reactive controller to the neural network controller
by averaging their actuation outputs. The resulting behaviour is a good combination of
both. However, it would be hetter to use the neural network hehaviour only when the
reactive behaviour is less effective, since its progression iz lesg smooth and predictable.
Unfortunately, the terrain map may not provide the obstacle depth early enough in the
motion process to gwitch the controller in time for generating the appropriate mobility
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behaviour. If the algorithm waits for the rohot to get stuck before switching the controller,
the vehicle may not be able to get out of that situation gince inertia may be an important
factor in the ability to cross a particular ohstacle.

Another improvement would be to train the artificial neural network on the reinforcement
learning regults. It would provide the neural network with a wider range of data since the
reinforcement learning controller is more capable than the reactive controller.

7.2.1.3 Reinforcement learning controller results

The reinforcement learning controller improves congiderably the reactive behaviour and
outperformg the other controllers. It can traverse boxes roughly 15 cm higher than the
reactive controller. Except for 30 em deep boxes where the difference ig about 3 em. This
ig the transition from narrow boxes, where the vehicle can’t propel itself easily, to boxes
deeper than the vehicle span, where inertia and traction contribute to propel the vehicle.
All controllers behave the best at 30 cm depth because it ig the dimension where the
inertia helps the most to flip over the obstacle. For deep boxes, deeper than 70 cm, the
reinforcement learning controller croszes boxes up to 45 cm high, compared to the reactive
controller navigating bhoxes up to 31 ecm high. Between 30 and 70 ecm deep, the limitations
of every controller diminish progressively. The reinforcement learning controller has the
gmallest reduction with 49 to 45 cm, compared to 45 to 31 ecm for the reactive controller
and 42 to 30 for the artificial neural network controller.

In general, the reinforcement learning controller is the best controller to traverge box-shaped
obstacles. It improves considerably the reactive behaviour and increages its abilities over
time through online learning.

7.2.2 Test 2: Staircase crossing

The zecond test consists of serieg of regular staircases with different step sizes. The test
determines the steepest stair inclination each controller climbs and descends. Figure 33
illustrates the staircase parameters. A typical staircase hag a 178 to 203 mm riser height
and 254 to 304 mm tread depth, giving a 30° to 38° inclination shown by 7. The staircase
ig located at 2 meters from the robot initial position. It consists of 6 steps up, a flat surface
of 1 meter, then 6 steps down. The test fails if the vehicle flips over or gets stuck in the
gtairs. Figure 34 presents the maximum staircage inclination the robot can traverse for
varioug tread depths. Figure 35 prezents the regults differently, showing the maximum riser
height traverzed for different tread depths.
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Figure 33: Staircase parameters.
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Figure 34: Stair maximum inclination traversed by the controller for different tread depths,
at 2 km/h nominal speed.
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Figure 35: Staircase maximum riser height traversed by the controller for different tread
depths, at 2 km/h nominal speed.
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7.2.2.1 Reactive controller results

¢

R R

(a) Stuck on a tread deeper (b) Stuck when climb- (¢) Stuck when descending
than the vehicle span. ing the last stair. the first stair.

Figure 36: Situations where the robot is stuck when controlled by the reactive controller.

All of the controllers that were investigated are capable of climbing stairs, however, their
performance varies. For the reactive controller, when the distance hetween two congecutive
step edges ig bigger than the axle span the vehicle may slip or get stuck in the ascent (Fig-
ure 36(a)). That distance increases with the tread depth and the staircase inclination. For
this reagon, ag plotted on Figure 34, for deeper treads, the staircage maximum inclinationg
traverged are lower. Figure 35 shows that, despite reduced maximum inclinations traversed
for deeper treads, the rizer heights reached are higger.

With emall tread depths, the reactive controller is very capable. The limits reached are
higher than the typical staircase inclination range. At those limits, the vehicle flips back
over in the ascent or slips down very fast in the descent, since the stairg are too steep.

Another difficulty occurs at the last ascending step (Figure 36(b)) or the first descending
step (Figure 36(c)). The robot may get stuck on its belly. The back legs should push while
the front legs datten their confizuration. As the back hip imitates the front command with
a delay, it flattens instead of pushing the back hips upward. Even if the vehicle could go
up or down the staircase, that stair configuration is considered not traversable since the
vehicle ig stuck at the last step in the ascent or at the first step in the descent.

7.2.2.2 Artificial neural network controller results

The artificial neural network controller outperforms the reactive controller 40% of the time,
and under performs 35% of the time. For treads deeper than 51 ¢m, the learned behaviour is
guperior. The neural network generalizes better for circumstances where the vehicle tends
to get stuck and successfully exite these. The problem with thig controller ig that it is
not as predictive and smoocth as the reactive controller. The generated behaviour is based
on what the neural network hag learned. Sometimes, it selects geometric configurations
that are not appropriate even if the supervizor controller used to train it can achieve the
tagk. More training could improve that aspect. In general, the artificial neural network
controller generates a trajectory with more hesitation and erratic movements than the
reactive controller. This means a waste of time while navigating and maybe a less desirable
controller.
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7.2.2.3 Reinforcement learning controller results

The reinforcement learning controller improves congiderably the reactive behaviour and
outperforms the other two controllers. Its performance curve is smoother. Moreover, it is
the only controller that iz capable of traversing the full range of typical staircases. In fact,
for tread depths ranging from 20 cm to 34 cm, it can climb staircages with inclinations up
to about 45°. And as shown on Figure 33, it can traverse gtaircases with rigers up to about
30 ¢m high for tread depth deeper than 30 cm.

In general, the reinforcement learning controller is the best controller to traverse gtairs. It
improves considerably the reactive behaviour and increases its ahilitiez overtime through
online learning. The more often it climbs a staircase of a specific gize, the better ig its
progresgion to overcome obstacles with similar dimensions. When the controller ig not well
trained for a particular staircase, it may take a long time to figure out a good behaviour to
accompligh the task, but it will eventually find a way to keep progressing.

7.2.3 Summary

In this section, two control problems are used to demongtrate how learning, and particularly
reinforcement learning, can solve complex mobility tagks. Three different ways of controlling
the STRV hehaviour were applied to two navigation tasks. In the first test, the controllers
performances to climb boxes were meagured, while in the second test, they were evaluated
for staircase navigation. In every test, the reinforcement learning controller proved best for
climbing ohstacles.

The artificial neural network controller learned guccessfully to climb obstacles after being
trained with the reactive controller asg supervisor. The motion it generated, however, was
less smooth and predictive than the reactive behaviour. This proves that it is possible to
train the robot, to cross obstacles, using simulated or remotely controlled runs ingtead of
scripting all behaviours.

The reactive controller performed extremely well in all tests considering it hag no learning
capability. Reinforcement learning improved considerably the reactive behaviour baged on
online adaptation. All tests demonstrate that reinforcement learning can improve mobility
in complex environment. The results presented here will serve as evidence of the applica-
bility of reinforcement learning to mohile robot navigation in complex environments.
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8 Conclusion
8.1 Main results

The development of an autonomous variable geometry mobile robot for complex terrain
navigation opens up many exciting avenues in different aspects of robotics regearch. The
controllers that have been demonstrated in this work will provide a stable bage for robot
navigation in indoor and outdoor environments. The ability to vary the vehicle geometric
configuration to conform to the terrain will increase the UGV mohility autonomy in urban
settings.

This report proposed autonomous mobility control to perform obgtacle traversal for a shape-
shifting tracked robotic vehicle. This will reduce the operator workload while guiding the
robot to investigate an area. This kind of robot combineg tracked and legged locomotion to
successfully negotiate obatacles. Tracked locomotion enables fast motion on open terrain.
On the other hand, legged locomotion is suitable for complex terrain to climb over obstacles.
The hybrid mechanism combining both locomotions helps in finding suitable solutions to a
variety of terrain conditions.

A key issue is the creation of a world representation suitable for mobility control. A terrain
mapping algorithm has been developed using a lager range finder merged with inertial
meagurements to build an egocentric elevation map. It provides obstacle location and
ghape for planning the robot actuation.

Three controllers were designed to autonomously climb ohstacles by selecting appropriate
vehicle geometric configurations. A reactive controller successfully performed simulated
box and staircage navigation. It has the advantage of being completely understood by the
control engineer and behaves adequately for an important range of situations. A reactive
algorithm, however, is arduous to degign and it is difficult to script for every possible
circumstance.

To facilitate the controller degign process, and adapt in real-time to unforseen conditions,
machine learning offers interesting solutions. Offline learning using an artificial neural
network proved capable of copying a supervisor to navigate complex terrain. In thig work,
the reactive controller wag used to supervise the neural network training process. Similarly,
the system could be trained successfully using remotely controlled or simulated robot runs.
This would facilitate considerably the controller degign and tuning.

Reinforcement learning proved capable and very attractive to overcome the non-adaptive
aspect of the reactive controller. In this work, reinforcement learning adapted the reac-
tive behaviour online when undesgirable situations occurred. It found appropriate geometric
configurations to progress forward based on experience, rewards and progress estimation.
The resulting autonomous mobility adjusted to changing conditions, terrain mapping uncer-
tainties and actuator imperfections. It broadens the applicahbility of the variable geometry
robotic vehicle to complex terrain navigation. Table 6 summarizes the controller advantages
and disadvantages.

52 DRDC Suffield TR 2008-123



Reactive controller

Advantages:

1
2
3) Fast to compute

Predictive
Smooth

Disadvantages:

1) Non-adaptive

2) Gets stuck easily

3) Difficult to anticipate all possible situa-
tiong when degigning the controller

)
)
)
4) No training required
)
)
)

Artificial neural network

Advantages:

1) Can be trained by copying another con-

troller
Generalizes well ingide the training range

Disadvantages:

2

1) Large training data required

2) Non-adaptive after training

3) Generates erratic behaviour sometimes

4) Motion less smooth and predictive than the
reactive controller

Reinforcement, learning

Advantages:

1) Real-time tuning process haged on experi-

ence
2) Adaptive

3) Behaviour improves every time it deals

with similar situations
4) Continuous learning process

Disadvantages:

)
)
)
)
)
5) Long tuning process
)
)
)
)
)

1) Reward and exploration functions dificult

to design
2) It may not find an appropriate solution

3) Learns but may forget over time

Table 6: Summary of the controllers advantages and disadvantages.
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8.2 Future research directions

The next research step is testing the controllers on the real robot. It will be interesting to
verify the controllers reliability and robustness to real environments, sengors and actuators.

A second research direction will be the improvement of the terrain understanding. This
includes obstacle shape modeling for more complex terrain navigation. Also, track re-
engineering for ground tactile sensing would provide information about the terrain surface
below the robot. Lauria et al. [6] present tactile sensing concepts developed for wheels.
Dornhege and Kleiner [4] uses touch sensors in tracked flippers.

Desgign of a traversahility map would facilitate STEV control. This map would identify the
traversable and untraversable areag in the terrain map. The traversability depends on the
robot inherent limitations (clearance, width, span, dynamics, etc.), and its behavioral and
learning capabilities. The more hehaviours developed, the greater the ahility to traverse
a variety of regions. Dornhege and Kleiner [4] introduce a planning framework which
clagsifies the terrain based on specific gkills of the robot Lurker and builds the corresponding
traversability map.

Finally, for a safe stair ascent, the STRV should autonomously align to the stair edges
to provide good traction and stahbility. It would steer the vehicle to align with the edges.
This would permit the robot to climb circular stairs for instance. Furthermore, it should
autonomously center the robot relatively to the edges width. This would avoid hitting
a wall. Xiong and Matthies [46] have elaborated a vision-guided controller aligning and
centering a tracked vehicle climbing stairs.

The controllers presented in this technical report show the promise of using learning tech-
niqueg on mobile robots. It incorporates adaptation ahilities into the system, and produces
improved UGV locomotion for complex environments.
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Annex A: Mass center location

To evaluate the mass center location, we assume a 2D system in the xz-plane. The vehicle
is simplified as a body with two tracks. [t is sketched in Figure A.1.
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Figure A.1: Simplified sketch of the STRV,

The parameters are described in the following list.

m Track mass

iy Body mass

M System mass

J1 Front track masg center location vector from the body mass center
Jo Back track mass center location vector from the body mass center
J3 Body mass center location vector from the body mass center

Jeys System mags center location vector

K Distance between the wheels on a track

G Axle spread

@ Pitch angle

¢p Curent front axle angular position

¢p Current back axle angular position
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The masg center of each component ig assumed in the middle of that component. Taking the
body mass center as reference, each component mass center location vector is determined
with the following equations.

Ji, = %GCOS(Q) + %K(cos(gbp) cos(8) — sin(¢p)=in(8)) (A1)
Ji, = $Gxin(6) + K (cos(pr)sin(0) + sin(pr) cos()) '

Jo, = — LG cos(6) +

Ja, = —%G sin(@) +

K(—cos(¢pp)cos(8) + sin(gp)sin(8))
K{—cos(¢p)sin(f) — sin{dp) cos(6)) (A.2)

Ll TN

Js, =0
g (A.3)

Then, the mass center of the system is located by summing the products of each component
mass by its mass center location vector. The system mass center location Jg,, relatively to
the body center is given as:

mJ1 + mJz + mpJs

Joys = 0 , (A.4)

where
M =2m +my (A.5)

is the mass of the entire system.
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