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1. Introduction 

The demand for high temperature capacitor dielectrics in power electronics is increasing with the 
electrification of military propulsion and weapons systems.  Moving towards wide bandgap 
semiconductors (e.g., silicon carbide [SiC]) will enable operation at temperatures above 150 °C, 
which eases thermal management.  However, such systems cannot be designed efficiently unless 
capacitors are available that can operate at similarly high temperatures. 

Metallized polymer film capacitors have the advantage of self-healing, which allows graceful 
failure (1), i.e., a gradual loss in capacitance, rather than catastrophic failure as in ceramic 
capacitors.  As a result, the capacitor dielectric can be operated at an electric field near the 
dielectric breakdown strength, thus achieving higher energy density.  The state of the art in 
capacitor films is biaxially oriented polypropylene (BOPP), which has a low loss (tan  ~1x10–4) 
that is independent of frequency and a high dielectric strength (~700 MV/m).  The disadvantage 
of BOPP is that at temperatures above 85 °C, the operating voltage must be derated, and the 
maximum operating temperature is limited to about 105 °C. 

Other commercially available polymer film capacitors that can be operated over a wider 
temperature range include poly(ethylene terephthalate) (PET), poly(ethylene napthalate) (PEN), 
polycarbonate (PC), poly(phenylene sulfide) (PPS), and Teflon.  However, only PPS and Teflon 
can be operated at 150 °C and up to 200 °C, respectively.  PPS has a poor self-healing capability, 
and Teflon has a low breakdown strength.  As a result, neither of the presently available high 
temperature capacitor dielectrics is likely to satisfy military requirements for reliability and 
operating temperature on power electronics. 

Poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) are two commercially available 
thin films (<12 m) that are candidates for high temperature applications, as their glass transition 
temperature is above 150 °C.  This report characterizes these two polymer films over a wide 
range of temperatures and compares them to BOPP and PPS.   

2. Experimental 

2.1 Materials 

The materials studied were 12 m (nominal) PEEK from Victrex, 6 m (nominal) PEI from 
General Electric, 9 m (nominal) PPS from Toray, and 7 m (nominal) BOPP from Kopafilm.  
PPS and BOPP were used as benchmarks.  All samples were used as is. 
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2.2 Thermal Analysis 

The glass transition temperature (Tg) and crystalline melting temperature (Tm) of the samples 
were measured at a heating rate of 10 °C/min in nitrogen using differential scanning calorimetry 
(DSC) (Model DSC 2920, TA Instruments), as shown in figure 1. 

 

Figure 1.  Differential scanning calorimeter by TA Instruments. 

2.3 Breakdown Strength Measurement 

Figure 2 shows the configuration for breakdown strength measurement.  Metallized films with 
metallization facing the test sample were used as electrodes.  To define the active area for the 
breakdown measurement, a 100-m thick polyimide mask with a window was placed in between 
the top electrode and the film under test.  The active area was 2 cm2.  When voltage is applied, 
the layers are drawn together by electrostatic force, creating smooth interfaces without trapped 
air bubbles.  Near the typical breakdown field of 700 MV/m, the pressure generated by the 
electrostatic force is ~5 MPa.   
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Figure 2.  Schematic of the breakdown strength measurement setup, showing (a) the four individual  
layers separated and (b) the configuration during measurement. 

Breakdown strength measurements were performed using a linear voltage ramp of 300 V/s, 
which is generated by a resistor capacitor (RC) circuit used to control the high voltage power 
supply as shown in figure 3.  When the first breakdown event occurs, the power supply is shut 
off through an interlock input by a silicon controlled rectifier (SCR) circuit, which uses the 
breakdown-induced ground-rise voltage capacitively coupled to the gate of an SCR.  The 
breakdown voltage of the sample is read from a peak-holding voltmeter, the internal impedance 
of which is employed as the “bottom” of a resistive divider.  A new set of film electrodes was 
used for each measurement.  Using metallized film instead of metal blocks as electrodes 
eliminates the need for polishing the electrode surface to remove the pits/craters caused by the 
breakdown events, which, if not removed, may reduce the breakdown strength of the samples 
due to local electric field enhancement.  The sample thickness required for calculating the 
breakdown field was determined as the average of several measurements near the breakdown 
site.  Figure 4 shows the thickness gauge (Model LE1000-2, MeasureItAll) employed to measure 
the thickness.  It has a guaranteed absolute accuracy of 0.2 m. 
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Figure 3.  The circuit block diagram for breakdown strength measurement. 

 

Figure 4.  Thickness gauge by MeasureItAll. 

Breakdown strength measurements at elevated temperature were conducted in an enclosed 
heated stage with an additional heater above the sample to reduce heat loss, as shown in figure 5.  
The sample setup was equilibrated at the test temperature for five minutes prior to 
measurements.  A thermocouple was placed on the heated stage away from the active area to 
monitor the temperature. 
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Figure 5.  Enclosed heated stage for breakdown strength measurements at elevated temperature. 

2.4 Dielectric Spectroscopy 

Dielectric constant and dissipation factor (loss tangent) as a function of frequency at various 
temperatures were measured using a broadband dielectric spectrometer by Novocontrol,  
which is shown in figure 6.  A 2-cm diameter of gold electrode with a surface resistivity of  
less than 10 /square was sputtered on the samples.   
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Figure 6.  Broadband dielectric spectrometer by Novocontrol. 

3. Statistical Analysis 

The Weibull distribution, which is based on the weak-link theory, is commonly employed for 
characterizing dielectric breakdown data (2), although other statistical distributions such as 
smallest extreme-value distribution or log-normal distribution are sometimes used.  The Weibull 
distribution function (3), F(x), is given as 

 ,
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where x is the electric field; η is the Weibull characteristic breakdown field, i.e., the breakdown 
field at 63.2% probability of breakdown (x=η+c, F(x)=0.632); β is the Weibull slope parameter, 
which is a measure of dispersion in the data; and c is the threshold field below which no 
breakdown will occur.  The 2-parameter Weibull distribution is obtained when c=0 and is 
employed in the present analysis.   
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4. Results  

4.1 Thermal Properties 

The DSC thermograms for PEI, PEEK, PPS, and BOPP are shown in figure 7.  PEI is an 
amorphous polymer and therefore does not show a crystalline melting peak as do the other three 
polymers, which are semi-crystalline.  Table 1 summarizes the glass-transition temperature, the 
melting temperature, and the percent crystallinity of the samples.  The values for heat of fusion 
of PEEK, PPS, and BOPP at 100% crystallinity used for calculating the percent crystallinity of 
the samples are taken from references 4–6, respectively.  
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Figure 7.  DSC thermograms of the polymers under study at a scan rate of 10 °C/min in nitrogen. 

Table 1.  Glass transition temperature, crystalline melting temperature, and percent crystallinity of the polymers 
under study.   

Polymer 
Glass Transition 

Temperature 
(°C) 

Melting 
Temperature 

(°C) 

Heat of Fusion, 
Hf  
(J/g) 

Hf, 100% 
Crystallinity 

(J/g) 

Percent 
Crystallinity 

PEI 218 N/A N/A N/A N/A 
PEEK 149 342 42.1 130 32.4 
PPS 118 287 48.5 112 43.3 

BOPP 61 171 100.0 165 61 
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4.2 Breakdown Strength at Elevated Temperature 

The 2-parameter Weibull distribution of breakdown strength for the four polymers at room 
temperature is shown in figure 8, and the parameters are summarized in table 2.  As shown in 
figure 8, the Weibull characteristic breakdown strength of PEI is about 500 MV/m, which is 
similar to that of PPS, while PEEK is lower, at around 320 MV/m.  The breakdown strength of 
the high temperature polymers is at least 30% lower than that of BOPP, which is about  
700 MV/m.  The film quality for PEI appears to be poorer in comparison to the other three 
polymers, as indicated by wide dispersion of the data.   

 

Figure 8.  The 2-parameter Weibull distribution of breakdown strength of the polymers under  
study at room temperature. 

Table 2.  Summary of the 2-parameter Weibull statistics of the polymers under study at room 
temperature. 

Polymer 

Weibull 
Characteristic 

Breakdown Field 
(MV/m) 

Slope Quality of Fit 
Number of 

Samples 

PEI 497 5.7 0.813 14 
PEEK 322 20.4 0.946 15 
PPS 490 10.3 0.929 15 

BOPP 733 21.3 0.959 19 
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Figure 9 shows the Weibull characteristic breakdown strengths with 90% confidence intervals at 
elevated temperatures for the four polymers.  They all show similar behavior, i.e., stable 
breakdown strength up to some threshold, above which the breakdown strength drops abruptly.  
For PEEK, PPS, and BOPP, the threshold temperature occurs above their glass transition 
temperature, while for PEI the threshold is around 150 °C, which is 70 °C below the glass 
transition temperature.  At 150 °C, the decrease in breakdown strength relative to the room 
temperature value for PEI is about 16% and about 13% for PEEK, while PPS remained 
unchanged.  For BOPP, the maximum test temperature was 100 °C, at which the breakdown 
strength decreased by about 11% from room temperature. 
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Figure 9.  Weibull characteristic breakdown strength as a function of temperature for the polymers under 
study with 90% confidence limits. 

The energy densities of the polymers calculated using breakdown strength at room temperature 
and at 150 °C are shown in table 3.  Although PPS, PEI, and PEEK have dielectric constants 
about 50% higher than BOPP, their energy densities at room temperature are at least 40% lower 
than that of BOPP (5 MJ/m3) due to their significantly lower dielectric strengths, as energy 
density scales with square of the dielectric strength but only linearly with dielectric constant.  
The results shown in table 3 suggest that PEI and PEEK do not offer any improvement over PPS, 
from which capacitors are already available.  
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Table 3.  Energy density of the polymers under study calculated from breakdown strength at temperatures 
25 and 150 °C.  

Polymer 

 
Dielectric 
Constant 

Breakdown 
Strength (MV/m), 

T = 25 °C 

Max. Energy 
Density 
(MJ/m3) 

Breakdown 
Strength 
(MV/m),  

T = 150 °C 

Energy Density 
(MJ/m3),  

T = 150 °C 

PEI 3.2 460 3 400 2.3 
PEEK 3.1 320 1.4 280 1.1 
PPS 3.1 470 3 470 3.0 

BOPP 2.25 700 5 NA NA 

4.3 Dielectric Properties at Elevated Temperature 

The loss tangent of PEI, PEEK, PPS, and BOPP as a function of frequency at various 
temperatures are shown in figures 10–12.  At 30 °C, the loss tangent of PEI and PEEK is an 
order of magnitude greater than both of PPS and BOPP, as illustrated in figure 10.  As 
temperature was increased to 95 °C, an increase in dielectric loss with decreasing frequency was 
apparent, especially in BOPP, as shown in figure 11.  As temperature was further increased to 
above 150 °C (figure 12), similar behavior observed in PEI, PEEK, and PPS became more 
pronounced.  Figure 13 shows the dielectric constant of BOPP at 95 °C and that of the other 
three polymers at 200 °C along with the data at 30 °C for comparison.     
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Figure 10.  Loss tangent of the polymers under study at room temperature. 
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Figure 11.  Loss tangent of the polymers under study from 90 to 120 °C. 
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Figure 12.  Loss tangent of the polymers under study from 150 to 200 °C. 
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Figure 13.  Dielectric constant of the polymers under study at different temperatures. 

5. Discussion 

The dielectric loss can be decomposed into terms due to relaxation and DC-conductivity, so that 
the loss tangent can be written as 

 ,
''

tan
''

""""











 


 relaxDCrelax  (2) 

where ’ and ” are the real and the imaginary parts of the dielectric constant, respectively;  is 
the DC-conductivity; and  is the angular frequency.  When the loss is dominated by DC-
conductivity such that it increases inversely with frequency and therefore exhibits an inverse 
frequency relationship, the DC-conductivity can be determined using equation 2.  As shown in 
figure 12, loss due to conduction was apparent in PPS at 200 °C but not obvious for BOPP, PEI, 
or PEEK.  Using equation 2, the conductivity for PPS at 200 and 165 °C was calculated as 
1.72x10–11 S/m and 6.90x10–14 S/m, respectively.  The room temperature value provided by the 
manufacturer (7) is 2x10–16 S/m.  Other measurements are required to determine the conductivity 
for PEI and PEEK.  Assuming these two polymers have negligible conductivity, PEI appears to 
be the better candidate for power electronic applications as the acceptable dissipation factor is 
below 0.3%.  Note that the electrical conductivity obtained above is from low electric field 
measurements.  Under high field at the same temperature, the conductivity will be greater.   
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5.1 Effect of Electrical Conductivity 

Even though a polymer is stable thermally to a high temperature, it may not be used successfully 
as a high temperature capacitor dielectric.  If the electrical conductivity increases too rapidly 
with temperature, the power dissipation at operating temperature may be sufficient to cause 
thermal runaway at elevated temperature.  The electrical conductivity increases with both 
temperature and electric field.  For good capacitor dielectrics, the change in conductivity with 
electric field between low field and operating fields is generally quite small.  The change in 
conductivity with temperature generally fits an Arrhenius relationship of the form: 

 ),exp()( 0 TK

Aq
T

B


   (3) 

where 0 is  A is an activation energy in eV, q is the electronic charge, and KB is Boltzmann’s 
constant.  

5.2 Adiabatic Temperature Rise 

The effect of temperature-dependent conductivity can be evaluated in a number of 
approximations.  The simplest approximation is to assume that no heat is lost from the capacitor 
so that the system is adiabatic, in which case the temperature rise will be the adiabatic 
temperature rise of the polymer given by the power density ( times the volumetric heat 
capacity.  This first order evaluation of stability is useful, for if the adiabatic temperature rise is 
very large, the system must certainly be unstable thermally, while if it is extremely small, the 
system will be stable. 

Figure 14 shows the power density (PD) as a function of electric field using the DC-conductivity 
at 165 and 200 °C calculated for PPS.  From the power density, one can calculate the rate of 
adiabatic temperature rise, (Tad), which is given by 

 ,
v

ad C

PD
T   (4) 

where Cv is the volumetric heat capacity.  For PPS, a value for Cv of 2.3x106 J/(m3-K) was 
obtained from the ratio of molar heat capacity (8) to the molar volume (9), which was assumed to 
be unchanged at elevated temperature based on the 1.5% increase in density observed from 25 to 
270 °C (5).  Figure 15 shows the rate of adiabatic temperature rise as a function of field. 
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Figure 14.  Power density as a function of electric field calculated based on electrical conductivities 
calculated for PPS at 165 and 200 °C. 
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Figure 15.  Rate of adiabatic temperature rise as a function of electric field calculated based on electrical 
conductivities calculated for PPS at 165 and 200 °C. 
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As shown in figure 15, for a moderate field of 200 MV/m, the rate of adiabatic temperature rise 
is 1.5x10–3 K/s for a conductivity of 6.90x10–14 S/m at 165 °C and 0.35 K/s for a conductivity of 
1.72x10–11 S/m at 200 °C.  Given that the capacitors may be at voltage for prolong period of time 
in certain applications, 0.35 K/s may be excessive but would be too low to have a noticeable 
effect during breakdown strength measurement.  

5.3 Surface Temperature at Constant Power Dissipation 

The next level of approximation is to assume an operating field and an initial operating 
temperature with a corresponding electrical conductivity for the polymer within the capacitor, 
which results in a uniform power density, as previously described.  However, we now assume 
convective and radiative heat loss from the surfaces of the capacitor enclosure, from which we 
can compute the enclosure surface temperature.  If this surface temperature is comparable to the 
assumed capacitor dielectric temperature within the enclosure, then the capacitor will probably 
be unstable.  This is because the temperature at the center of the enclosure will be much greater 
than the enclosure temperature as a result of the poor thermal conductivity of the capacitor 
dielectric (~0.3 W/m-K), resulting in greater conductivity and power dissipation.  As the power 
dissipated goes as the enclosure volume but the heat loss is determined by the enclosure area, the 
size of the enclosure has an impact on thermal stability, which decreases with enclosure size, i.e., 
a large capacitor will be less stable than a small capacitor.   

By assuming a solid rectangular geometry, a capacitor enclosure surface temperature, Tcs, at 
steady state can be obtained by solving the heat balance equation given as 

 ),()( 44
amcsSBamcs TTATTAhVPD    (5) 

where PD is the power density generated due to electrical conductivity; V and A are the volume 
and surface area of the capacitor, respectively; h is the convective heat transfer coefficient of 
20 W/(m2-K); Tam is the ambient temperature; SB is the Stefan-Boltzmann constant; and  is the 
emissivity of the enclosure surface, which is 1 for an ideal black body and <1 for others.  For the 
present calculation  = 1 is used.  Table 4 summarizes the data for three capacitor sizes for the 
two electrical conductivities assuming an operating electric field of 200 MV/m at an ambient 
temperature of 27 °C.  As shown in table 4, PPS, which has a low-field electrical conductivity of 
6.90x10–14 S/m at 165 °C, should be useable at this temperature, as indicated by the negligible 
temperature rise.  However, at 200 °C with a conductivity of 1.72x10–11 S/m, the temperature is 
unstable.     

Table 4.  Capacitor surface temperature at steady state for various rectangular sizes at  
E-field of 200 MV/m and 27 °C ambient temperature.   

Tcs (°C) at Steady State Capacitor Size  
(cm3)  = 6.90x10–14 S/m  = 1.72x10–11 S/m 

3 x 3 x 10 28 168 
10 x 10 x 5 28 257 
60 x 30 x 45 34 622 
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5.4 Temperature Distribution Based on Constant Rate of Heat Generation 

For uniformly distributed power dissipation within the capacitor with convective heat loss from 
the enclosure, the temperature distribution within the capacitor can be computed both as a 
function of time as the capacitor comes to thermal equilibrium (transient case) and for final the 
equilibrium temperature distribution.  The steady state solutions for the case of an infinite 
rectangular solid can be found in Carslaw and Jaeger (10, p. 171), as can the transient solution 
for the temperature distribution within an infinite solid bounded by two planes (10, p. 133),  
i.e., the case ignoring heat loss from the edges, top and bottom.  As the electrical conductivity 
and therefore, the power dissipation of the dielectric is a strong function of temperature,  
these solutions are probably not much more useful than the two simpler approximations 
presented previously. 

5.5 Temperature Distribution from Transient Nonlinear Finite Element Analysis 

The most accurate approach to computing thermal stability is a three-dimensional (3D) transient 
nonlinear finite element thermal computation with fixed applied voltage, temperature-dependent 
electrical conductivity, and convective/radiative boundary conditions, employed as discussed 
earlier.  Using modern multiphysics programs (e.g., COMSOL), such computations are relatively 
simple, as long as the temperature-dependent conductivity is known.  If the capacitor dielectric 
conductivity is known as a function of temperature and electric field, such a computation can be 
undertaken with coupled electric and thermal fields.  In such computations, the temperature 
distribution is computed as a function of time, and thermal runaway is indicated by divergence of 
the temperature in some region of the capacitor dielectric. 

As noted previously, thermal stability for given dielectric properties is a function of ambient 
temperature, enclosure size and shape, and boundary conditions.  For example the convective 
heat transfer coefficient in still air is typically about 20 W/m2-K, but for air motion in the range 
of 1 m/s, this can increase by an order of magnitude.  Thus thermal stability will be sensitive to 
the conditions of use.  The thermal conductivity of metallized polymer film is anisotropic as a 
result of the metallization.  Although the metallization thickness is only about 0.1% of the film 
thickness, the metallization thermal conductivity is about 1000 times greater than that of the 
polymer.  Thus thermal conduction in the plane of the film should be substantially greater than 
that through the film, although no data are presently available.  Measurements are underway to 
quantify this effect.  As multiphysics programs allow the thermal conductivity to be anisotropic, 
such effects could be included in 3D transient nonlinear finite element models used to evaluate 
thermal stability. 
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6. Conclusions 

In summary, the breakdown strength measurements and dielectric properties at elevated 
temperatures for PEEK and PEI were compared to those for PPS and BOPP, which represent the 
present state of the art.  The breakdown strength at room temperature for PEEK was the lowest at 
about 320 MV/m, while strength for both PPS and PEI was 500 MV/m and for BOPP was 
720 MV/m.  At 150 °C, the decrease in breakdown strength relative to room temperature for PEI 
is about 16% and about 13% for PEEK, while PPS remained unchanged.  For BOPP, the 
maximum test temperature was 100 °C, at which the breakdown strength decreased by about 
11%.  Based on the results of breakdown strength measurements, PEEK and PEI appear to offer 
no improvement over PPS, from which capacitors are already available.  However, results from 
dielectric loss measurements seem to indicate that PPS has a greater electrical conductivity at 
200 °C than PEEK or PEI.  Moreover, PEI has a lower loss than PEEK at temperatures above 
150 °C and frequencies higher than 1 kHz.  Therefore, PEI appears to be the better candidate for 
power conditioning capacitors.  More measurements are needed to determine the conductivity of 
PEEK and PEI.              
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List of Symbols, Abbreviations, and Acronyms 

3D three-dimensional  

BOPP biaxially oriented polypropylene  

DSC  differential scanning calorimetry 

PC polycarbonate 

PEEK poly(ether ether ketone) 

PEI poly(ether imide) 

PEN poly(ethylene napthalate)  

PET poly(ethylene terephthalate) 

PPS poly(phenylene sulfide)  

RC resistor capacitor 

SCR silicon controlled rectifier 

SiC silicon carbide  
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