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1.0 INTRODUCTION 
Although increasingly powerful information systems are revolutionizing defense capabilities, the 
nation faces difficult challenges with the amalgamation of systems of systems within dynamic 
networking environments using multiple protocols. This problem is further complicated as the 
constituent systems simultaneously increase in complexity.  The emerging defense operational 
C4ISR (Command, Control, Communications, Computers, Intelligence, Surveillance and 
reconnaissance) environment requires support for capabilities such as real-time sensor-to-shooter 
targeting support, rapid bomb damage assessment, UCAV (Unmanned Combat Aerial Vehicle) 
operation, and air tasking order generation and distribution.  Support for joint forces including 
Army, Navy, Air Force, and allied units presents a significant additional challenge to the 
effective deployment, operation, support, and protection of the C4ISR infrastructure required to 
manage modern battlefields.  The Joint Battlespace Infosphere (JBI) is a combat information 
management system under development by the Air Force that combines C4ISR inputs from a 
variety of source, including existing systems such as JTIDS (Joint Tactical Information 
Distibution System) or AWACS (Airborne Warning and Control System) and emerging systems 
such as UAVs (Unmanned Aerial Vehicle)/UCAVs and the Joint Tactical Radio System.  From 
this collection of systems and their inputs, the JBI builds an aggregated picture to provide 
situational awareness for users from joint task force commanders down to individual soldiers or 
pilots in the field.  The vast collection of sensors provides tremendous amounts of raw data that 
must be quickly processed to extract timely information.  Given the critical role of the JBI, 
evaluation of the most effective computer architecture approaches to support the associated 
cognitive processing applications is needed to ensure the JBI and similar systems can effectively 
provide mission-critical capabilities such as situational awareness.   

Cognitive processing algorithms promise to transform Air Force mission capabilities if practical, 
deployable systems can be created.  Advanced computing architectures based on approaches 
such as polygranular parallel processing (e.g., high performance reconfigurable computing), data 
intensive systems (e.g., processors in memory or intelligent RAM (Random Access Memory), 
configurable/morphable processors, DNA (Deoxyribonucleic Acid) computing, and quantum 
computing could make embedded cognitive processing feasible.  Given the diverse new 
computational technologies that are now emerging, an assessment of their effectiveness for 
various types of cognitive processing would be helpful for Air Force systems acquisition.   

Specific cognitive processing approaches addressed herein include global information grid 
approaches such as the JBI and embedded real-time, adaptive neural network structures.  A host 
of architectural options exist that can be employed for cognitive architectures, including vector 
supercomputers, massively parallel processors, symmetric multiprocessors with shared memory, 
systolic arrays, dataflow architectures, configurable instruction set architectures, processors in 
memory, reconfigurable computing, general purpose programming with graphical processing 
units, multicore architectures, grid computing, quantum computing, and DNA computing.  When 
one considers the execution of cognitive processing applications on these architectures, questions 
of performance, scalability, reliability, and deployability arise.  The computing architecture 
space will be evaluated for each of these cognitive systems with respect to the computational 
model and suitability for implementing cognitive processing algorithms, the requirements for 
architectures to meet the computational, memory, I/O (Input/Output), storage, and 
communications demands of cognitive algorithms, and additional system constraints such as 
size, weight, cost, and power dissipation.  In addition, considerations impacting practical systems 
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development are surveyed with a particular emphasis on topics such as runtime systems support 
(e.g., operating systems, libraries, middleware, and compilers), performance evaluation, 
application development tools, and support infrastructure.  Prior work with analytical 
performance modeling of parallel systems is exploited and extended as appropriate for these 
architectures and applications.  In so doing, we seek to develop an analytical framework with 
which to evaluate the most effective approaches under various operational regimes and based on 
technology trends.  For example, as a result of Moore’s Law and Pollack’s Rule, vendors of 
commodity microprocessors are moving towards multicore implementations.  At the same time, 
trends for clock speed, interconnect technologies, and memory cycle times indicate that memory 
latency issues render ineffective serial architectures and prior commodity-based supercomputer 
architectures.   

Symmetric multiprocessors include a number of processors that share a common global memory.  
The data caches for the processors must be managed so that coherence and consistency is 
maintained, which results in caching protocols that limit system scalability.  In practice, 
emerging computer architectures are likely to employ small numbers of shared memory 
processors to comprise individual nodes, with a global distributed memory model based on 
message passing between nodes.  Such an approach leverages the multicore technology trends 
while enabling scalable systems.  To the extent that cognitive processing applications include 
significant locality (both temporal and spatial) for modest numbers of concurrent threads of 
execution, symmetric multiprocessing nodes are likely to be widely deployed in future cognitive 
architectures. 

True system scalability and flexibility will require distributed memory and message passing.  In 
particular, the JBI will consist of a host of heterogeneous computational nodes that will be 
interconnected by various communications links with disparate bandwidth, latency, and 
reliability characteristics.  Technologies associated with massively parallel processors and grid 
technologies can potentially be employed for cognitive processing applications.  The 
publish/subscribe model for distributed sensors making data available in a controlled manner to 
various users will be a distributed system of cooperating computational nodes.  Technology 
trends for these types of platforms will be particularly important to understand in order to predict 
future needs and capabilities. 

Traditional vector supercomputing platforms are not likely to be as useful for cognitive 
processing applications within the JBI framework using current algorithms.  Although these 
systems employ vectors as an effective means to mask memory access latency, the floating point 
focus of these platforms does not match well with most cognitive processing.   

A reconfigurable computing (RC) system offers a revolutionary combination of the performance 
of custom hardware and the flexibility of software by employing programmable logic technology 
to create customized application accelerators.  The key feature of an RC is the reconfigurable 
processing element (PE) which, in the current generation, is a FPGA (Field Programmable Gate 
Array) chip.  Flexibility, improved performance, and cost effectiveness are opening up new 
avenues for FPGAs in the area of reconfigurable computing.  Reconfigurable computing is often 
achieved via the coupling of FPGA units as configurable co-processors or attached units to 
general-purpose processors.  Many of today’s computationally intensive applications can benefit 
from the speed offered by application specific hardware co-processors, but for applications with 
multiple specialized needs it is not feasible to have a different co-processor for every specialized 
function in order to achieve the maximum performance.  Such diverse applications stand to 
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benefit the most from the reconfigurability of RC architectures.  One RC unit potentially can 
replace several ASIC (Application Specific Integrated Circuit) co-processors and by 
reconfiguring the FPGA(s) during run-time, one can achieve superior performance over that of a 
software only solution.  Alternatively, High Performance Computers (HPC) provide dramatically 
improved capabilities for a number of coarse granularity parallel applications, but often are quite 
expensive to acquire and program.  To address the high hardware costs, one may create more 
inexpensive “Beowolf” clusters of dedicated commodity processors.  With the emergence of grid 
computing, vast numbers of processors become available for parallel and distributed applications 
at virtually no cost.   

One can accelerate cognitive processing applications by exploiting the potential parallelism of an 
algorithm subject to the constraints of the cost of communications and the granularity of the PEs.  
In practice, cognitive processing applications often contain tasks with a heterogeneous mix of 
potential parallelism that, to fully exploit the potential parallelism, must be addressed using PEs 
with different computational granularity.  For example, for tasks containing coarse-grained 
parallelism, MIMD (Multiple Instructions Multiple Data) architectures can achieve significant 
speedups.  Some fine-grained parallelism can be exploited using the instruction level parallelism 
(ILP) found within modern superscalar, superpipelined processors.  In both these cases, the 
statically defined processor can exploit a specific granularity of parallelism.  In contrast, 
reconfigurable computing elements also exploit fine-grained, bit-level parallelism, although 
multiple RC engines can be collected together to support coarser-grained parallelism as well.  
With high performance reconfigurable computing (HPRC), the combination of RC and 
microprocessor computational elements provides the infrastructure to effectively accelerate 
polygranular parallel processing.  This project explored the polygranular nature of cognitive 
processing applications and their best mapping to various types of processing elements. 

The author is also collaborating with computational scientists to perform research into next-
generation computing approaches and architectures for scientific computing.  The effort 
described here includes a similar approach, but with a focus on embedded systems and cognitive 
applications of interest to the military.  Some comparison between these application domains and 
computer architectural issues that arise will also be discussed.   

In the next chapter we give a brief overview of current and emerging architectures of interest for 
cognitive processing applications.  We then explore a set of application areas related to cognitive 
processing and their appropriateness for various architectures.  Next we explore CAD (Computer 
Aided Design) and language issues for the computing architectures.  Then we develop a 
performance modeling framework to help understand the performance of applications and 
architectures and then explore ways to use it for optimizing the architecture or mapping thereon.  
Finally, we draw conclusions and suggest future directions for research. 
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2.0 COMPUTING ARCHITECTURES 
Computing architectures have been a topic of significant research for decades, and the need for 
architectures that are effective for cognitive processing applications has helped impact these 
architectures.  We explore various types of architectures in this chapter to appreciate the 
diversity of emerging platforms that can be targeted for cognitive processing applications.  
DARPA has funded a number of efforts related to cognitive processing architectures, with the 
Strategic Computing, Adaptive Computing Systems, Rapid Prototyping of Application Specific 
Signal Processing Systems, Data Intensive Systems, Cognitive Architectures, Polymorphic 
Computing Architectures, and High Productivity Computing Systems (HPCS) programs all 
addressing this area. 

Cognitive processing and computational science applications feature voracious appetites for 
processing power.  To meet this demand, next-generation supercomputers have now achieved 
petascale capabilities and discussions have already begun on approaches to field exascale 
supercomputers.  Although the demand for processing power continues to explode, the 
performance of individual microprocessors has largely stalled due to issues such as delays and 
power dissipation.  Because of this current state of affairs, the computing industry is now at an 
inflection point as a set of possible emerging computational approaches vie for prominence in 
future platforms.  In particular, multicore processors, general purpose processing with graphical 
processing units, reconfigurable computing with programmable logic devices, and accelerators 
built with custom logic circuits have achieved promising results and are areas of active research 
programs and commercial development.  Other technologies such as intelligent RAM, intelligent 
disk, quantum computing, and DNA/biomolecular computing show promise as well, but are not 
as mature or popular, so we will not address them herein.  The primary focus of this report is on 
exploring the emerging computational platforms to evaluate their effectiveness and 
appropriateness for creating next-generation cognitive processing applications.  We first briefly 
discuss each of these technologies and then explore how they may impact next-generation 
computational platforms. 

Traditional serial processors have evolved over the past 75 years from huge systems based on 
vacuum tubes, to systems built from discrete transistors, to small, medium, and large scale 
integration to create processors composed of dozens of integrated circuits, to microprocessors 
implemented on a single integrated circuit using very large scale integration (VLSI).  Starting 
with the Intel 4004 microprocessor, the typical computer now is commonly implemented with a 
central processing unit with attached main memory, I/O devices, and storage (e.g., cards, tapes, 
floppy and hard disks, optical disks, FLASH disks).  The processor is either a complex 
instruction set computer with an instruction set architecture that supports complicated 
instructions with varied addressing modes or a reduced instruction set computer with an 
instruction set architecture featuring simpler addressing modes and targeted for faster, typically 
pipelined implementation.  The processors have evolved to include pipelining, hazard detection 
and mitigation (e.g., forwarding, branch delay slots, branch prediction units), superscalar 
execution to allow issuance of multiple instructions per cycle, out of order execution and/or 
completion, speculative processing, and symmetric multithreading or hyperthreading.  The 
memory systems have evolved to include caching of up to several levels with different 
associativity, split or unified construction, various write back or write through protocols, and 
cache consistency and coherence for shared memory processing as well as support for memory 
segments, pages, virtual memory, shared memory, DMA (Direct Memory Addressing), and 



 

 

5 
 

support for different memory affinities.  Multimedia extensions such as MMX (Multi-Media 
eXtension, Matrix Math eXtension), SSE (Streamind SMID Extensions), and Altivec provide 
vector units for accelerating operations on arrays of data, particularly for graphics and audio 
applications.  For all the dizzying variety of processor enhancements and optimizations, 
processors now face practical performance limits due to power dissipation issues leading to clock 
speed constraints and a dearth of new microarchitectural enhancements to maintain performance 
growth. Consequently, processors are now shifting to include multiple cores per die. See 
Hennessy and Patterson’s excellent text for an overview of the field [1].  

Virtually every vendor of microprocessors now ships multicore processors.  This approach takes 
advantage of the additional transistors posited by Moore’s Law [2], which is especially useful at 
a time when architectural advances to improve the performance of each core have largely stalled.  
Hence, quad-core processors are common and larger numbers of cores are now becoming 
available.  IBM has the Power and Cell/BE architectures for homogeneous and heterogeneous 
multicore processing.  Similarly, Intel has the Xeon, Core, Nehelem, Itanium, and Larrabee 
multicore processors, AMD has the Opteron multicore processors (e.g., Barcelona and 
Shanghai), and Sun has the SPARC/Rock/Niagara multicore processors.  The number of cores is 
generally expected to double every eighteen months for the foreseeable future.  With current 
multicore processors, the porting and tuning of applications is now quite similar to the adoption 
of shared memory symmetric multiprocessors.  The memory hierarchy performance and ability 
to bring data onto the device looms as the primary issue for today’s modest number of cores, but 
will likely become a critical issue as the number of cores scales significantly.  Because of the 
memory hierarchy and bandwidth limitations of the die, many question the ability to scale cores 
beyond 8 while sustaining performance.  At the same time, applications must be recoded to 
exploit the additional cores.  For example, see [3] for an overview of programming Intel’s 
multicore processors. 

A number of larger high performance computing systems are available for supercomputing 
applications.  Dating back to the DARPA’s Strategic Computing and DOE’s ASCI programs, a 
variety of parallel supercomputers have become popular.  Since the early 1990s, nearly all 
supercomputers have shifted from custom processors (e.g., Cray vector units, NCUBE and 
nMOS Transputer custom processors) to commodity microprocessors.  Modern supercomputers 
now reach petascale size and performance with tens of thousands of sockets populated with 
multicore microprocessors.  For example, the UT (University of Tennessee) and ORNL (Oak 
Ridge National Laboratory) Cray XT5s, Kraken and Jaguar, are based on AMD multicore 
microprocessors.  The IBM BlueGene/L and /P are based on multicore PowerPC 
microprocessors.  Other large supercomputers using Sun and other microprocessors are also 
available.  The current fastest computer in the world, RoadRunner, is comprised of x86 
processors augmented with IBM Cell/BE multicore processors.  Although Cray and other 
manufactures include support for accelerators such as vector units, GPUs (Graphics Processing 
Unit), and FPGAs, none of these accelerators is widely adopted on full-scale computer systems 
as of yet.  However, these technologies are demonstrating enough performance improvement 
over commodity microprocessors, that the supercomputer vendors are all actively exploring the 
insertion of these technologies into their platforms. 
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Graphics processors achieve impressive speedups for applications that can exploit their pipelined 
processing units while fitting into their on-board memory.  These devices prove quite effective 
for streaming applications with limited conditionals, but current GPUs are largely limited to 
single-precision floating point.  With double-precision floating point support having recently 
become available, GPGPUs (General Purpose Graphics Processing Unit) seem likely to become 
quite popular for accelerating computational science applications. The primary vendors are 
AMD/ATI and NVIDIA, although Intel is addressing this architectural space with their Larrabee 
project. Although a wide range of papers have reported speedups of 200-500x, one might 
reasonably expect speedups on the order of 50-100x for suitable single precision applications 
when compared to tuned serial codes.  Similarly, codes with double precision floating point 
computation achieve speedups of 10-20x. 

Reconfigurable computing (RC) platforms typically include devices such as field programmable 
gate arrays (FPGAs) that enable the creating of optimized circuits on demand to accelerate 
applications [4].  RC platforms enable one to exploit fine-grained, bit-level parallelism through 
pipelining and replicated functional units.  The data precision, movement, and storage are all 
controlled by the application developer.  A similar approach is to develop customized circuits for 
specific processing tasks such as image processing for automatic target recognition, signal 
processing with customized datapath elements, encryption circuits optimized for specific keys, 
string matching circuits for publish/subscribe computations or bioinformatics, computing forces 
for molecular dynamics simulations, or to perform floating point operations for linear algebra. 

Reconfigurable computing systems first became available in the early 1990s as FPGAs shifted to 
programmability with SRAM (Static Random Access Memory) bits (as opposed to antifuse-
based) and they became large enough to support significant designs.  Early RC systems included 
several FPGAs on a board connected via PCI (Peripheral Component Interconnect) or VME  to a 
host processor that controlled configuration and reconfiguration of the FPGAs, data movement, 
and initiation and termination of FPGA processing.  By the end of the 1990s and into the early 
2000s, FPGAs were becoming large enough and fast enough that significant processing 
capabilities were demonstrated, particularly in the areas of signal and image processing and 
encryption.  By the mid 2000s, FPGA devices each supporting millions of gate equivalents were 
available and RC systems with more powerful development and runtime systems were becoming 
available.  The interconnection between FPGA and host processor was improving, with PCI 
express becoming popular as an interface.  In the late 2000s, the Hypertransport (HT) 
interconnect for AMD processors was opened to support accelerators such as FPGAs and 
vendors (DRC [5] and Xtreme Data [6]) made processor socket compatible FPGA systems that 
provided HT high-speed communications to memory and other devices.  Intel similarly opened 
its Accelerator Applications Layer and QuickPath Interconnect to allow FPGA boards to be 
inserted into Intel processor sockets for similar benefits.  These new systems provide much 
higher bandwidth for sustained high performance processing.  At the same time, the devices now 
are large enough and fast enough to provide floating point support in addition to the fixed point 
support provided in earlier generations.  As processor technologies have stagnated due to power 
constraints and a lack of microarchitectural enhancements, FPGAs continue to grow with 
Moore’s Law, increase clock rates, and provide built-in functions for high speed 
communications, memory, and arithmetic units. 
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Reconfigurable computing not only enables flexibility in mapping problems onto the hardware; 
one can consider using machine intelligence approaches to optimize the hardware 
implementation in real time.  The insight of repeated programming of FPGAs under the control 
of an evolutionary algorithm was first introduced by deGaris [7] back in 1992. The idea is to 
encode the bit streams that configure the FPGAs as genetically mutable chromosomes and 
evolve a population of such chromosomes over hundreds of generations using genetic operators 
such as selection, crossover, and mutation to find the fittest circuit design for particular circuit 
functionality. The fitness function is the performance quality of the function towards which the 
chromosomes are being evolved. This gave birth to the field of evolvable hardware (EHW) 
systems. deGaris classified these systems into extrinsic EHW systems and intrinsic EHW 
systems. Extrinsic evolution is the offline evolution where the evolutionary algorithm is wrapped 
around a software model of the hardware system, whereas the intrinsic evolution employs an 
online evolution paradigm where an evolutionary algorithm is directly changing the hardware. 
deGaris later used EHW principles he developed to evolve 3D cellular automata (CA) based 
neural network modules directly in Xilinx's XC6264 FPGAs in special hardware called a 
CAMBrain Machine (CBM) [8]. Although deGaris introduced and classified EHW, Thomson 
illustrated its promise by developing the first intrinsic evolvable hardware system design [9]. He 
used a Xilinx XC6216 chip to distinguish between two square wave inputs of 1 and 10 kHz. The 
circuit was evolved intrinsically so that the output would be 0 volt for the 1 KHz input, and 5 
volts for the 10 KHz input. Early researchers concentrated on evolving bit streams, in effect gate 
level evolution of a digital circuit. Researchers such as Higuchi used the concept of evolvable 
hardware to do functional level hardware evolution instead of evolving logic gates [10]. He 
evolved connections between functional modules such as adders, multipliers, sine, cosine etc. 
One of the rationales for functional level evolution was that a gate level bit stream encoded as a 
chromosome is very long, making the evolution process very time consuming. But it limits the 
circuit functionality that can be targeted for evolution to circuits that can be constructed with the 
functional blocks already available at the time of evolution.  

Reconfigurable systems comprised of a collection of hard or soft processor cores, reconfigurable 
logic (e.g. FPGAs), memory, and interconnect are now widely available. The management of the 
resources for high performance reconfigurable computing (HPRC) systems remains an important 
gap in capability: current systems have very primitive infrastructures to support device 
scheduling, sharing (spatially and temporally), library support, debugging and development 
support, and to provide fault tolerance. Moreover, no real notion of security models is included 
with these HPRC systems. In particular, we need a runtime environment for HPRC systems to 
address the missing capabilities with respect to supporting multilevel security, sharing the system 
among multiple processes that may use the reconfigurable hardware, and providing reliable 
constructs for assuring confidentiality, integrity and availability. 

As part of the DARPA Polymorphic Computing Architectures program, new architectures such 
as TRIPS (Tera-op Reliable Intelligently advanced Processing System) from UT Austin and 
Monarch from Raytheon were developed.  Other work included smart memories research at 
Stanford and RAW at MIT.  These projects addressed ways to reconfigure processing elements 
and caches/memories to provide faster, customized processing.  These architectures appear 
promising, but aren’t commercially available or economically viable yet. 
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There are a host of other architectural approaches as well.  For example, transactional memories 
provide a beneficial semantic for large systems, particularly when fault tolerance issues are 
considered.  Intelligent RAM and Intelligent Disk (and variations on both) have shown promise 
for some application areas as well.  Exotic technologies such as quantum computing and 
DNA/molecular computing show promise, but are years away from being ready for practical 
deployment.  Application specific processors and accelerators, such as MD-GRAPE for 
molecular dynamics or Clearspeed [148] devices for accelerating floating point computations 
also show promise, but with much smaller installed bases. 

For each of these types of platforms, programming represents a major challenge.  The best 
languages, compilers, runtime systems, and even computational model for each of these 
emerging platforms remain as open problems to be solved.  

For all of these types of devices, a range of system-level issues remain to be addressed.  For 
example, to solve a given problem, what is the best type of processing platform to use?  Should it 
contain multicore processors, GPUs, and FPGAs?  If so, of what type and in what number?  How 
should the memory be organized?  What I/O capabilities should be supported? 

In order to address these questions, we have been evaluating a set of cognitive processing 
applications relevant to USAF as well as computational science applications from chemistry, 
biology, and physics.  We seek to define a useful set of metrics or attributes of interest in 
assessing the appropriateness of the various emerging computational platforms for the 
computational science applications. To understand the tradeoffs in this large, complex 
architectural space, we propose to create a performance modeling framework to describe the 
applications and platforms of interest.  This framework can then be used to understand the 
behavior of systems, including the location and cause of performance bottlenecks or load 
imbalances.  We can then employ optimization techniques to explore the architectural space, 
scheduling policies, or programming strategies to most effectively exploit the polygranular 
parallelism present in large-scale computational science applications.  Before we address the 
programming infrastructure, performance modeling, or optimization, we next turn to an overview 
of applications relevant to this study. 
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3.0 APPLICATIONS 
In this chapter, we explore a set of representative cognitive processing applications and their 
mapping onto various computer architectures.  In so doing, we gain insight into the most 
appropriate architectural approaches for specific types of cognitive processing applications as 
well as how to best map these applications onto the hardware resources.  We first consider neural 
networks and artificial brains as exemplars of common machine learning techniques. Next, we 
evaluate distributed publication/subscription databases such as that of the JBI.  We then explore 
text and image processing applications that are necessary for situational awareness and sensor to 
shooter capabilities.  Finally, we look at a set of scientific computing codes to draw comparisons 
to the other application types and highlight the different architectural approaches needed to best 
address cognitive processing application needs. 

3.1 MACHINE LEARNING WITH ARTIFICIAL NEURAL NETWORKS 
Artificial Neural Networks have gained a lot of popularity in the computational intelligence and 
machine learning community over the last couple of decades. They are networks of fully or 
partially interconnected information processing elements called artificial neurons. Artificial 
neurons are simulations of their biological counterparts, typically producing an output from 
summation of multiple weighted inputs and a bias. The output is passed through a nonlinear 
monotonically increasing activation function also called a transfer function. Various network 
topologies proposed for the artificial neural networks can be broadly classified into recurrent and 
non-recurrent networks. Recurrent networks have feedback connections from outputs back to 
input nodes or to one of the hidden layers. Non-recurrent networks are feed-forward networks 
such as the popular multilayer perceptron model. These networks are exposed to a training 
dataset from which they extract information and learn over time some particular characteristic of 
the input data. The learning algorithms are classified into supervised and unsupervised training 
algorithms. Under supervised training the input data used to train the network have 
corresponding target output vectors that are typically used to calculate the mean squared error 
between the network output and target output. This error is used to guide the search in the weight 
space to optimize the network. It is a gradient descent search algorithm, popularly known as the 
back-propagation algorithm, which tries to minimize the total mean squared error between 
network and target output. These networks can effectively model complex nonlinear 
relationships between inputs and outputs. They are widely used in pattern classification, 
sequence recognition, function approximation, and time series prediction, as well as in data 
processing systems for filtering, clustering, and compression applications. There have been many 
successful artificial neural network implementations in real world scenarios ranging from 
military applications, medical diagnosis, autonomously flying aircrafts, and credit card fraud 
detection systems.  

3.1.1 REVIEW OF ANN FPGA IMPLEMENTATIONS 

FPGAs offer a custom hardware solution with the flexibility of runtime reconfigurations to 
change the circuit functionality after fabrication. This feature makes them attractive for low 
volume custom ANN (Artificial Neural Network) implementations and many have been reported 
in the literature. Zhu and Sutton present a good survey of FPGA implementations of artificial 
neural networks [11]. One of the earliest reported FPGA implementations was the Ganglion 
connectionist classifier [11]. The implementation used FPGAs to achieve higher connection 
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processing speeds relying on runtime reconfigurations for each application of the classifier. The 
neural network training was performed in microprocessor-based offline software simulations. 
[12,13,14] are some other implementations relying on reconfigurations for different neural 
network applications. Implementations of the back-propagation algorithm on FPGAs for 
accelerating training of ANNs have also been reported in the literature, but have relied on 
runtime reconfigurations due to smaller FPGA capacities for different sequential stages of the 
algorithm, making them unsuitable for online training [15-16]. To be area efficient and fit larger 
networks on a single FPGA, some approaches have used bit stream and other encoding 
techniques for representing real values. This approach can replace larger multipliers by simple 
logic gates such as bitwise XOR and demonstrate area efficiency and higher processing capacity 
[14,17]. Others have used a vector-based data parallel approach to represent real values and 
compute the sum of products [12,13]. Noory and Groza [18] demonstrate a distributed arithmetic 
(DA) approach for their implementation. 

This section addresses intrinsic artificial neural network training and evolution on FPGAs. It 
presents an intrinsic evolvable hardware design of a class of artificial neural networks called 
block-based neural networks trained using genetic algorithms. The presented design addresses 
some of the implementation issues with intrinsic hardware designs of artificial neural networks.  

3.1.2 GENETIC EVOLUTION OF ARTIFICIAL NEURAL NETWORKS 
The back-propagation algorithm, being a gradient descent approach, has two drawbacks as 
outlined by Sutton [19]. The search often gets trapped in local minima if the gradient step is 
small and could have an oscillatory behavior for large gradient steps. The method is inefficient in 
searching for global minima, especially with multimodal and non-differentiable search surfaces. 
Also, there is a problem of catastrophic interference with these methods. There is a high level of 
interference between learning with different patterns, because those units that have so far been 
found most useful are also the ones likely to get changed to handle new patterns. The problem of 
global minima can be solved using global search procedures such as genetic algorithms. Many 
researchers have proposed using genetic algorithms to evolve neural networks to find optimized 
candidates in the large deceptive multimodal search space [20,21,22,23,24,25,26,27,28]. Genetic 
evolution works on a population of neural networks, each encoded as a chromosome. These 
chromosomes are genetically evolved to survive the fittest individual. The fitness function is 
defined using the aforementioned total mean square error. The selective pressure is against the 
least fit individuals, thus surviving and selecting the fittest for genetic crossover and mutation to 
produce newer generations. The population of chromosomes is evolved over multiple 
generations until an individual is found with fitness equal to or greater than the target fitness. 
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GA (genetic Algorithm) being a global approach avoids the pit falls of local minima faced in 
gradient descent algorithms. It does not need to calculate derivatives of the error function and 
hence works very well with non-differentiable error surfaces. Also there are no restrictions on 
network topologies as long as a good fitness function can be defined for the network. Thus it can 
handle a wide variety of artificial neural networks. But, the evolutionary algorithms are 
computationally intensive and can be slower compared to gradient descent based training such as 
back-propagation algorithm. If the initial guess in gradient descent algorithms gives an error that 
is closer in proximity to the global minima on the error surface, these algorithms can converge 
faster than a global sampling technique such as genetic evolution. But, if the neural network is 
more complex with multiple hidden neural layers, the error surface will be complex with many 
discontinuities. In such cases gradient descent search algorithms may get stuck in local minima 
or not converge at all, whereas, the global search techniques such as GA are more likely to find 
an answer [29]. Genetic evolution being an adaptive process is good at global sampling, but 
performs poorly for local fine tuning. 

3.1.3 HARDWARE IMPLEMENTATIONS OF ANNS 
Due to wide ranging applications of these networks and inherent parallelism in the network 
structure, there has been a lot of interest in building dedicated hardware for these networks to 
increase the computational and training speeds. A lot of references of fully analog, fully digital 
as well as hybrid neurochips can be found in literature. [30] has a very good survey of neural 
hardware implementations until 1995. [11] has a good survey of FPGA implementations of 
artificial neural networks. Dedicated hardware can give much higher speedups in the recall 
speeds over software-only implementations, exploiting the inherent parallelism in these 
networks. Also, longer training times for these networks can benefit a lot from faster hardware 
implementations. This research focuses on the FPGA implementation of artificial neural 
networks and their on-chip training. 

FPGA IMPLEMENTATIONS OF ANNS 

The iterative training algorithms for these networks make custom hardware implementations of 
on-chip training of these networks challenging. Multiple training iterations with varying network 
parameters and structure need a custom hardware design that can support these dynamic changes 
in network structure and parameters. A custom ASIC (Application Specific Integrated Circuit) 
implementation of ANNs not taking these factors into consideration would be unsuitable for an 
online training platform. Consider the hugely popular multilayer perceptron (MLP) model of 
ANN. MLP is a feed-forward neural network comprised of layers of artificial neurons typically 
trained using the back-propagation algorithm. The first layer is called the input layer, last layer is 
called the output layer and the ones in between are the hidden layers. Figure 1a shows an 
example MLP network under training at training iteration ‘n’. Assume that in the next iteration 
‘n+1’ there is a slight change to the structure of the network; an additional neuron has been 
added in the first hidden layer of the MLP. This is shown with dotted lines in Figure 1b. Now if 
this network is implemented in digital hardware for online training the hardware designer has to 
somehow handle dynamic routing issues arising due to iterative structure and parameter changes. 
Also, the number of inputs to the neurons in the second hidden layer has increased from 4 to 5 as 
shown in Figure 1. Hence the sum of products module will have to increase the number of 
pipeline stages in the multiply-accumulate unit of these neurons dynamically to handle the 
additional inputs. For a rigid digital design this requires a time consuming hardware re-synthesis 
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and re-routing, which kills any motivation for an online training scenario. These dynamic 
changes can be very easily handled in software making it attractive for training these networks. 
Providing this flexibility in digital hardware comes at a significant cost in area and speed. Due to 
such limitations most implementations reported in the literature use software for neural network 
training to find an optimal network and use custom hardware to achieve higher connections per 
second (CPS) recall speeds. 

To gain the flexibility of software and the processing speeds of digital hardware many 
researchers have proposed FPGA implementations of artificial neural networks, relying heavily 
on multiple FPGA reconfigurations [12,15,31,32,33,34,35,36]. FPGAs are ‘soft’ hardware chips 
consisting of arrays of programmable logic components interconnected using programmable 
interconnects. The logic components are typically implemented using lookup tables and they 
duplicate the functionality of basic logic gates such as AND, OR, NOT, XOR. Current 
generation FPGAs include a lot of other complex functions on-chip such as memory elements, 
multipliers and accumulators, high speed serial communication transceivers, on-chip embedded 
processors or DSPs (Digital Signal Processor), etc. The advantage of hardware reconfigurability 
in FPGAs makes them very attractive low cost solution for prototyping digital circuits before 
fabrication. This considerably reduces the time-to-market for products using dedicated ASICs. 
Due to slow processing speeds and low capacities per unit size, the early FPGAs were mainly 
used as glue logic between various ASIC components on PCBs, but the current generation FPGA 
devices have come a long way. Higher processing speeds, typically a few hundred MHz and 
capacities in millions of equivalent ASIC gate counts make these devices a very attractive low 
cost, low volume option to ASIC implementations which typically cannot fit the budget for 
lower volume productions. Also, availability of good software design/verification suites from 
leading CAD companies makes them more attractive to hardware designers.  

 

 
Figure 1: Multilayer Perception Example (a) Training Iteration ‘n’ (b) training iteration ‘n+1’ 

 

FPGA IMPLEMENTATION ISSUES 
Many researchers in the field of artificial neural networks have reported varying success with 
FPGA implementations of ANNs. Typical issues faced in FPGA ANN implementations are that 
of data representations and precision, reconfiguration time overheads, and activation function 
implementation. These play an important role, guiding various hardware design decisions. 
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DATA REPRESENTATION AND PRECISION 

A double precision floating-point representation of data (weights, biases, inputs, outputs) in a 
neural network may still be impractical to implement on FPGAs despite the current advances in 
FPGA technology [37]. Floating point arithmetic units are slower and more complicated as well 
as need more silicon area than their integer counterparts. There exists a body of research to show 
that it is possible to train ANNs with integer weights and biases. The interest in integer values 
stems directly from the fact that integer multipliers and accumulators are much more efficient in 
terms of area and speed than corresponding floating point units. [38] proposed special training 
algorithms for multilayer perceptrons that uses weight values that are powers of two. This 
eliminates any need for multipliers in the ANN implementation, as they are replaced with simple 
shifters. Many approaches encode real values in randomly generated bit streams and implement 
the multipliers in bit-serial fashion, essentially serializing the flow and using simple logic gates 
instead of complex expensive multipliers for real estate efficiency. Murray and Smith’s VLSI 
implementation of ANNs [39], used pulse-stream encoding for real values which was later 
adopted by Lysaght et al. [14] for ANN implementations on Atmel FPGAs. Van Daalen et al 
[17] used digital bit serial stochastic techniques to represent real valued signals so that the 
product of two stochastic bit streams can be computed using a bitwise exclusive OR. Economou 
et al [40] used pipelined bit serial arithmetic for their ANN implementation on FPGAs used for 
medical expert systems. Salapura [41] used delta encoded binary sequences to represent real 
values and used bit stream arithmetic to calculate a large number of required parallel synaptic 
calculations. [42] has a good overview of pulse stream arithmetic technique based hardware 
implementations of artificial neural networks. [43] is a more recent implementation using pulse 
stream encodings. The flip side of using pulse stream arithmetic approach is the precision 
limitation which can severely affect ANNs capability to learn and solve a problem. Also, for 
multiplications to be correct the bit streams should be uncorrelated. To produce these would 
require independent random sources which again require larger resources. Guccione and 
Gonzalez [13] have used vector based data parallel approach to represent real values and 
compute the sum of products. The distributed arithmetic (DA) approach of Mintzer [44] for 
implementing FIR filters on FPGAs was used by Szabo et al, [45] for a digital implementation of 
pre-trained neural networks. They used Canonic Signed Digit Encoding (CSD) to improve the 
hardware efficiency of the multipliers. Noory and Groza [18] also used the DA neural network 
approach and mapped it to FPGAs.  

A more direct approach of using fixed point numbers for representing real values has also been 
of great interest as the fixed point arithmetic essentially uses integer arithmetic units. One of the 
delicate issues here is to select the weight precision. A larger precision will have fewer 
quantization errors but requires larger multiply-accumulate units, increasing the required area on 
silicon, whereas with choosing smaller bit widths, in effect lowering precision, arithmetic unit 
implementations will be simpler, smaller, faster, and more power efficient. But reduced precision 
causes larger quantization errors which could severely limit the ANNs capabilities to learn and 
solve a problem. There is a trade off in selecting one over  the other, and a way to resolve this 
conflict is to select a ‘minimum precision’ that would be required for target applications. Holt 
and Baker [46] investigated the minimum precision problem on a few ANN benchmark 
classification problems using simulations and found that 8 bit fixed point precision was sufficient 
for networks to learn and correctly classify the input datasets.  
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RECONFIGURATION TIME OVERHEADS 

One of the motivations of using FPGAs for evolvable hardware or ANN implementations is its 
flexibility of full/partial hardware logic reconfiguration. This gives us an advantage of software 
flexibility and higher speedups achieved by exploiting inherent parallelism in artificial neural 
networks. As classified by Zhu and Sutton [11] the purposes for FPGA ANN implementations 
are mainly – (a) prototyping and simulation, (b) density enhancement and (c) topology 
adaptation.  

Prototyping and Simulation: Taking advantage of the multiple reconfiguration capability of 
FPGAs, they are used as prototyping chips to validate hardware design strategies before actually 
sending the validated design for fabrication. In the case of artificial neural networks, an evolved 
network design after training for a particular application is implemented on the FPGAs. The 
FPGA can be reconfigured with a newer design for a different application. The Ganglion project 
[12] used this strategy for different applications of their connectionist classifiers.  

Density Enhancement: Full or partial FPGA reconfiguration can be used to implement hardware 
circuitry that is time sliced into multiple temporal stages, saving the intermediate results and 
feeding them back in the next stage. This approach temporally folds the hardware design and 
uses partial or full FPGA reconfiguration to reuse the limited FPGA resources. This increases the 
amount of effective functionality per unit reconfigurable circuit area of FPGAs. Eldredge et al 
[15] used run-time reconfiguration to implement the back-propagation training algorithm using 
three sequentially executable stages, temporally dividing the back-propagation algorithm into 
feed-forward, error propagation, and synaptic weight update stages. The feed-forward stage feeds 
in the input to the network and propagates the internal neuronal outputs to output nodes. The 
back-propagation stage calculates the mean squared output errors and propagates it backward in 
the network in order to find synaptic weight errors for neurons in the hidden layers. The update 
stage adjusts the synaptic weights and biases for the neurons using the activation and error values 
found in the previous stages. Hadley et al [31] improved the approach of Eldredge by using 
partial reconfiguration of FPGAs instead of full chip runtime reconfiguration. Gadea et al [32] 
show a pipelined implementation of the back-propagation algorithm in which the forward and 
backward passes of the algorithm can be processed in parallel on different training patterns, thus 
increasing the throughput. Another scenario here is as adopted by James-Roxby et al. [33]. They 
use dynamic reconfiguration of FPGAs to update the read only lookup tables with coefficients 
which can only be determined at run time for constant multipliers of a multilayer perceptron 
neural network. 

Topology Adaptation: Run-time reconfiguration capability of FPGAs can be used to change the 
network structure and topology on-the-fly. This idea was initially proposed by deGaris [7] for 
evolving digital circuits under the control of an evolutionary algorithm. The same idea is applied 
to evolving neural networks. Perez-Uribe and Sanchez used this technique for implementing an 
adaptable-size neural network [34-36].  



 

 

15 
 

A typical current generation FPGA takes about 20-30 msec for a full run-time reconfiguration, 
assuming the bit stream to be loaded in the FPGA is preloaded in designated configuration 
memory [47]. For systems employing an online learning capability or using FPGA 
reconfigurations for density enhancement, the overhead of total reconfiguration time can be 
significantly high for multiple FPGA reconfigurations. In this case, performance hinges on the 
computational time versus the reconfiguration time. Guccione and Gonazalez [48] investigated 
this and came up with the equation: q=r/(s-1); where s denotes the computational time, r denotes 
the reconfiguration time and q is the number of times the configured logic should be used before 
another reconfiguration to achieve good performance.  

3.1.4 ACTIVATION FUNCTION IMPLEMENTATION 
Activation functions or transfer functions are nonlinear monotonically increasing sigmoid 
functions. A direct hardware implementation of these functions can be very expensive. A more 
typical approach is to use piece-wise linear approximations of the nonlinear sigmoid functions as 
shown in Figure 2. One problem of direct implementations of the activation function is that one 
has to redesign the hardware logic for every application using a different activation function such 
as logsig, tansig, etc. Another approach is to use a preloaded lookup table for the activation 
function. The lookup table can be easily reloaded with the different values for different 
activation functions. This obviously is a lot easier than designing the hardware logic for a direct 
implementation and also could be faster in execution. The size of the LUT (Look Up Table) is 
directly influenced by the data precision used in the design. So if the LUT is embedded on chip 
along with rest of the hardware logic, the size of LUT that can fit could influence design 
decisions regarding the data precision being used. Wolf et al [49] have used piece-wise linear 
approximation techniques to implement nonlinear activation functions in their implementation. 
Krips et al [50] have implemented an MLP model on FPGAs for a real-time hand tracking 
system. The real valued data is represented as fixed point values and a tansig activation function 
has been implemented as a lookup table. 

 

 
Figure 2: Piece-wise linear approximation of a nonlinear sigmoid function 
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3.1.5 BLOCK-BASED NEURAL NETWORKS 
A block-based Neural Network (BbNN) is a flexible network design that is convenient for 
hardware implementation. [26,51,52,53,54,55,56]. A BbNN is a network of neuron blocks 
interconnected in the form of a grid as shown in Figure 3. These blocks are the basic information 
processing elements of the network. Depending on the number of inputs and outputs on a block, 
a basic neuron block can have the following possible variations in the internal configuration 
modes: 

 

(a) 1-input, 3-output (1/3),  

(b) 2-input, 2-output (2/2), and 

(c) 3-input, 1-output (3/1). 

 

Figure 4 shows the various internal configurations of a basic neuron block.  

 

 
 

Figure 3: Example BbNN network Structure 
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Figure 4: Four different internal configuration modes of a basic block  
(a) General block  (b) 2/2 configuration (c)  3/1 configuration  (d)  1/3 configuration 

 

Each individual neuron block computes outputs that are a function of summation of weighted 
inputs and a bias as shown in equation 1.  
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 Where,  

yk  kth output signal of the neuron block. 

xj  jth input signal of the neuron block. 

wjk 
 synaptic weight connection between jth input node and kth output 

node. 

bk  bias at kth output node. 

J, K  number of input and output nodes respectively of a neuron 
block. 

g(• )  linear / nonlinear Activation function. 

 



 

 

18 
 

A neuron block can have up to six synaptic weight connections, three inputs and three outputs 
depending on the internal configuration of the block. A 2/2 neuron block has 6 synaptic weights, 
and 2 inputs as well as two outputs. Similarly, a 1/3 block has 3 synaptic weight connections, 1 
input, and 3 outputs. The activation function g(•) can be linear (e.g., ‘purelin’) or a nonlinear 
function (e.g., ‘logistic sigmoid’). Internal configurations of blocks used in the network are 
determined by the signal flow in the network from input to output which in turn is determined by 
the network structure.  

3.1.6 MULTI-PARAMETRIC GENETIC EVOLUTION OF BBNN 
To train the BbNN network, both structure and the synaptic connection weights of the neuron 
blocks need to be evolved simultaneously. The error surface in a multi-parametric optimization is 
typically non-differentiable with lot of discontinuities and many local minima. A gradient 
descent technique such as back-propagation will be very inefficient and may not converge at all, 
getting repeatedly trapped in local minima. A global search technique is required for such 
problems and it fits the case for using genetic algorithms.  

The network structure and the synaptic weights in BbNN are encoded in a chromosome and 
simultaneously evolved using multi-parametric genetic evolution. The network structure is 
encoded as a gene using a sequence binary numbers. Any connection between the blocks is 
represented with either 0 or 1. Bit 0 denotes down (↓) and left (←), and bit 1 indicates up (↑) and 
right (→) signal flows. The number of bits required to represent the signal flow of an m × n 
block-based neural network are (2m-1)n. This is illustrated in Figure 5.  

 

 
 

Figure 5: BbNN network structure encoding 

 



 

 

19 
 

Although BbNN block structures can support feedback connections with the bottom node being 
an input as shown in the example above, the hardware implementation has been restricted to only 
feed-forward networks for simplicity in hardware design and because many interesting 
applications can be successfully implemented as feed-forward networks. This also, reduces the 
size of the network structure gene, since the signal flow will always be downward and hence 
need not be encoded in the structure gene. Thus the number of bits required to represent the 
signal flow of an m × n block-based neural network is mn. This is illustrated in Figure 6.  

Synaptic connection weights of each neuron block in a network are encoded in an array. The 
arrays of all the blocks are concatenated sequentially to form a weight gene. The weight gene 
along with the structure gene forms the BbNN chromosome. Figure 7 shows the BbNN weight 
gene encoding for a single block in a network.  

 

 
 

Figure 6: Network Structure encoding for a feed-forward BbNN network 

 

 
Figure 7: BbNN block weight encoding 
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A population of these networks encoded in chromosomes is genetically evolved using selection, 
crossover, and mutation operators, with selection pressure against the least fit individuals, thus 
selecting fit individuals for survival or crossover to form newer generations. The fitness function 
is derived from total mean squared error between target and actual outputs of the network. 
Equation 2 shows the fitness function used.  
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The flowchart in Figure 8 shows the evolution process. 

 

 
 

Figure 8: Flowchart showing GA Evolution 
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3.1.7 HARDWARE IMPLEMENTATION OF BLOCK-BASED NEURAL NETWORKS 
The goal here is to build an intrinsically evolvable platform on FPGAs for evolution of block-
based neural networks that can be trained online and dynamically adapted to changes in 
environmental stimuli. The grid based topology of BbNN limits the number of connections 
between neuron blocks to four connections per block. Thus, adding a new row or column of 
neuron blocks to the grid just adds fixed external routing connections that can be pre-determined 
during design and it does not affect the internal multipliers and accumulators of the existing 
neuron blocks. One of the disadvantages of the limited number of connections between neuron 
blocks is that more blocks are needed to solve a particular problem as compared to a multilayer 
perceptron model, but this is offset by the advantages of ease in developing a dynamically 
adaptable system.  

SMART BLOCK-BASED NEURON BLOCK DESIGN 
One of the challenges here is to design a neuron block that can dynamically emulate all the 
various internal configuration modes. The simplest approach to do this would be to design a 
library of neuron blocks for all the internal configuration modes and combine them in a super 
block using a multiplexer to select each depending on the structure gene. But the problem with 
this approach would be the silicon area required per such super block will be  four times that 
required by a single block, making this brute force approach very inefficient. A smarter way is to 
develop a neuron block as shown in Figure 4a that has all the required connections for all the 
internal configuration modes, by selectively activating only the required connections for the 
configuration mode being emulated and deactivating others. This approach yields a neuron block 
design that requires about 35% of the silicon area as would be required by the brute force 
approach described above and still is able to emulate any internal configuration modes 
dynamically depending on the structure gene. Also, included in the design is a neuron block 
bypass ‘greyed’ internal configuration mode. In this mode the inputs are just passed on to the 
outputs with any modifications, essentially bypassing the neuron block. This was an important 
design choice to successfully implement an evolvable system as will be evident later. We call 
this design the smart block-based neuron design.  

The design was implemented using a Xilinx Virtex-II Pro (XC2VP30) FPGA [47] housed on a 
Digilent Inc. XUP development board and also an Amirix AP100 board with the same FPGA 
[57]. Some of the interesting features of this FPGA are 

• Two embedded PPC405 processors 

• 30,816 logic cells 

• 136 built-in 18 x 18 multipliers 

• 2448 KBits (306 KBytes) on-chip block RAM 

• 8 Gigabit Rocket I/O transceivers 

The real values in the network are represented in an 8.8 fixed point format based on the 
simulation results of Holt and Baker [46]. Provisions are made in various design decisions to 
support a 16.16 implementation. All the synaptic weights as well as inputs and outputs are stored 
in software readable/writable memory-mapped registers. The activation function has been 
implemented using a software writable lookup table. One of the reasons for this design choice 
was the ease of implementation of activation function and the advantage of changing the 
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activation function being used dynamically during evolution by rewriting the lookup table using 
software drivers. The size of the lookup table (LUT) required is directly associated with data 
widths used. An 8.8 fixed point representation requires a LUT that is 16 bits wide and 216 deep. 
This requires a total 128 KBytes per LUT. The LUTs are implemented in FPGA using the 
available on-chip block RAMs. If we use a separate LUT for individual neuron block, we can 
only fit two blocks per FPGA chip before we run out of block RAMs. But, if the LUT is shared 
between all the neuron blocks we have to serialize access to the LUT using a FIFO, slowing 
down the computational speed. Hence a design decision was made to share a LUT between 
neuron blocks in a column. The advantage of this design decision is that no two blocks in a 
column can ‘fire’ (process) at the same time and thus will not need to access the LUT 
simultaneously. This will be evident when we discuss the dataflow implementation details. But 
again this still limits the number of columns that can be implemented to two, before we run out 
of block RAMs. To further optimize the size of the LUT we implemented a LUT that was 16 bits 
wide but only 212 deep. This reduces the size of the LUT to 8 Kbytes per LUT. This was done 
taking into consideration that most of the activation functions used are saturating functions with 
output tapering off to a constant value. Thus there is no need to store these values repeatedly, in 
effect chopping of the activation function in the LUT beyond the saturated values on the negative 
as well as positive side. Thus the number of LUTs and hence columns that can be implemented 
on the FPGA would be a lot higher, not posing a bottleneck for implementation. Figure 9 shows 
a logic diagram for the smart neuron block implementation.  

 

 

 
 

Figure 9: Logic diagram smart block-based neuron 
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DATAFLOW IMPLEMENTATION 

One of the issues with implementing data flow architectures in hardware is to know when the 
outputs are stable. This is a much bigger problem with feedback in the network structure. 
Currently we are looking at only feed-forward BbNN networks. To solve the problem of latching 
the correct outputs, we have implemented a control structure inspired by a Petri-Net model 
architecture. A Petri net (also known as a place/transition net or P/T net) is one of several 
mathematical representations of discrete distributed systems. As a modeling language it 
graphically depicts the structure of a distributed system as a directed bipartite graph with 
annotations. As such, a Petri net has place nodes, transition nodes, and directed arcs connecting 
places with transitions [58,59].  

At any time during a Petri net's execution each place can hold zero or more tokens. Unlike more 
traditional data processing systems that can process only a single stream of incoming tokens, 
Petri net transitions can consume tokens from multiple input places, act on them, and output 
tokens to multiple output places. Transitions act on input tokens by a process known as firing. A 
transition fires once each of the input places has one or more tokens. While firing, it consumes 
the tokens from its input places, performs some processing task, and places a specified number 
of tokens into each of its output places. It does this atomically, namely in one single 
nonpreemptive step.  

The BbNN dataflow can be represented using an acyclic Petri net. Each of the blocks can be 
represented by an equivalent Petri net model as shown in Figure 10. The input and output 
registers can be represented by places. When each of the input registers (input places) have a 
valid input (a token), the BbNN fires and computes the outputs. Each of the output places will 
now get a token after the BbNN fires and the tokens at the input places are consumed. Thus the 
dataflow through a BbNN network can be represented using an equivalent Petri net network 
model (replacing each block with equivalent Petri net model as shown in Figure 10) for the entire 
BbNN network structure. Figure 11 shows the firing sequence for a particular BbNN network 
example. The side inputs have been hard-coded to be zero and have a valid token (shown as a 
‘●’) until consumed by firing. When the top inputs are applied the input places get tokens and 
they fire computing the outputs. As can be seen only the blocks with valid input tokens fire and 
validate the corresponding input tokens for the neighbors, which in turn fire next. 
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Figure 10: Equivalent Petri Net models for BbNN blocks  
(a) 1/3 (b) 2/2 (c) 3/1 

 

 
 

Figure 11: An example 2 x 2 BbNN firing sequence 
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3.1.8 INTRINSIC EVOLUTION STRATEGY 
The BbNN design developed is part of a Programmable System on-Chip (PSoC). The PSoC 
platform is designed using the Xilinx Embedded Development Kit (EDK). It includes a PPC405 
processor along with on-chip local memory communicating via Processor Local Bus (PLB),  and 
other peripherals such as UART for serial communication connected as slaves on an on-Chip 
Peripheral Bus (OPB). The platform is shown in Figure 12. The GA code runs on the on-chip 
PowerPC processor. It writes the structure and weight gene in corresponding BbNN registers 
which are memory-mapped to the PowerPC processor. BbNN network structure in hardware 
dynamically realigns according to the structure gene loaded in the register. The inputs and 
outputs along with synaptic weights also are memory-mapped to the PowerPC and can be written 
to and read from using standard PowerPC assembly instructions. The computed outputs of the 
network can be read back for fitness evaluation. The entire genetic evolution process intrinsically 
runs on the FPGA without requiring a single FPGA reconfiguration cycle, thus avoiding 
reconfiguration time overhead for better speedups. The idea here is to program the FPGA once 
with the maximum network size that can be accommodated on the chip along with the platform 
and other required logic cores for the application at hand. The structure and weights can be 
evolved and adapted intrinsically in the field without requiring any further FPGA reconfiguration 
cycles. So, for example, we have a 3 x 6 network size programmed on the FPGA, then we can 
use any subset of that network size, such as 2 x 5, 3 x 2, or 3 x 6 without requiring any FPGA 
reconfiguration cycle.  

 

 
 

Figure 12: BbNN PSoC Platform 
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3.1.9 PERFORMANCE AND UTILIZATION SUMMARY 
The BbNN network design can operate at 100 MHz frequency on the Xilinx Virtex-II Pro FPGA 
(XC2VP30). Each block takes at the most 10 cycles to complete processing of the inputs to 
produce an output. This again depends on the internal block configuration and the number of 
output nodes using the activation function LUT instead of a simple ‘purelin’ function with slope 
1. Each block computation processes 6 synaptic connections. Thus, each block has a peak 
connection per second speed of 60 MCPS (Millions of Connections Per Second) per block for a 
16 bit data width. With generally more than one block computing at a time, depending on the 
network structure the peak CPS would be (n computing blocks)×(80 MCPS / block) processing 
speed. Considering an m×n BbNN grid the theoretical peak processing speed would be 60n 
MCPS and the minimum speed would be 60 MCPS. In practice, processing speeds for each 
BbNN execution cycle would be different and will depend on the network structure, number of 
output nodes using the activation function LUT as opposed to a ‘purelin’ function and number of 
concurrent block computations.  

The minimal platform excluding the BbNN network needs about 13% of the Xilinx Virtex-II Pro 
FPGA XC2VP30. Table 1 shows the post-synthesis device utilization summaries for various 
BbNN network sizes excluding the rest of the platform. According to the utilization summaries 
we can fit around 20 neuron blocks on a single FPGA chip along with the rest of the platform. 
Table 2 shows the post-synthesis device utilization summary for a larger FPGA device 
(XC2VP70) in the Xilinx Virtex-II Pro series, widely used in many commercially available 
FPGA boards. This device can fit around 48 neuron blocks.  
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Table 1: Post-Synthesis Device Utilization Summary on Xilinx Virtex-II Pro FPGA (XC2VP30) 

 

Network 
Size 

Number of Slice  
Registers 

Number of block 
RAMs 

Number of 
MULT18x18s 

 Used  Utilization Used Utilization Used Utilization 

2 x 2 2724 19% 8 5% 12 8% 

2 x 4 4929 35% 16 11% 24 17% 

2 x 6 7896 57% 24 17% 36 26% 

2 x 8 10589 77% 32 23% 48 35% 

2 x 10 12408 90% 40 29% 60 44% 

3 x 2 3661 26% 8 5% 18 13% 

3 x 4 7327 53% 16 11% 36 26% 

3 x 6 11025 80% 24 17% 54 39% 

3 x 8 14763 107% 32 23% 72 52% 

3 x 10 18456 134% 40 29% 90 66% 

4 x 2 4783 34% 8 5% 24 17% 

4 x 4 9646 70% 16 11% 48 35% 

4 x 6 14587 106% 24 17% 72 52% 

4 x 8 19508 142% 32 23% 96 70% 

4 x 10 24461 178% 40 29% 120 88% 

 

 

 FIXED POINT SOFTWARE SIMULATOR FOR BBNN EVOLUTION 

The BbNN genetic evolution code is written in the C programming language and runs on the 
embedded PPC405 processor in the FPGA. The real values as discussed above have been 
implemented as 8.8 fixed point numbers and hence have a storage type defined as ‘short’ in the C 
code. Since the PPC405 doesn’t have any hardware floating point unit, the code almost uses no 
floating point operations. The code implements the genetic operators such as selection, 
crossover, and mutation as functions, and defines the BbNN chromosomes that contain the 
structure and weight genes, and BbNN populations as data structures. Various genetic evolution 
control parameters such as population size, maximum number of generations, maximum fitness 
value, etc. are implemented as global input variables. The software is cross-compiled using the 
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Table 2: Device Utilization Summary on Xilinx Virtex-II Pro FPGA (XC2VP70) 

 

Network 
Size 

Number of Slice  
Registers 

Number of block 
RAMs 

Number of 
MULT18x18s 

 Used  Utilization Used Utilization Used Utilization 

2 x 2 2497 7% 8 2% 12 3% 

2 x 4 4929 14% 16 4% 24 7% 

2 x 6 7390 22% 24 7% 36 10% 

2 x 8 9915 29% 32 9% 48 14% 

2 x 10 12403 37% 40 12% 60 18% 

3 x 2 3661 11% 8 2% 18 5% 

3 x 4 7327 22% 16 4% 36 10% 

3 x 6 11025 33% 24 7% 54 16% 

3 x 8 14788 44% 32 39% 72 9% 

3 x 10 18461 55% 40 12% 90 27% 

4 x 2 4783 14% 8 2% 24 7% 

4 x 4 9646 29% 16 4% 48 14% 

4 x 6 14561 44% 24 7% 72 21% 

4 x 8 19534 59% 32 9% 96 29% 

4 x 10 24470 73% 40 12% 120 36% 

4 x 12 29221 88% 48 14% 144 43% 

 

 

Xilinx Software Development Kit (SDK) which is part of the Xilinx embedded development kit 
(EDK). The code is loaded on the SDRAM (Synchronous Dynamic Random Access Memory) 
during the PPC (Power-PC) bootstrap process either from an external compact flash card 
memory or using Xilinx debugger software and executed from SDRAM. Fitness evaluation is 
done in BbNN FPGA hardware circuitry as designed above. Also, written was software code for 
fixed point simulation of BbNN genetic evolution and fitness evaluations. This was also 
implemented in C. One of the purposes here was to verify and validate the outputs of the 
hardware design. Also, it provides a bit true software simulator for the BbNN evolution platform 
in hardware that can be used for research on newer evolution strategies and applications for 
BbNNs. The simulator can work with various fixed point representations. Floating point software 
for BbNN genetic evolution and fitness evaluations has also been developed for research 
purposes. 
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3.1.10 BBNN EVOLVABLE PLATFORM APPLICATIONS 
The developed evolvable hardware platform has many real-world applications. BbNNs have 
been applied to mobile robot navigation [26], multivariate Gaussian distributed pattern 
classification [51], chaotic time series prediction [52], and ECG (ElectoCardiGram) signal 
classification [53]. Here we have shown two example applications of our platform. 

N-BIT PARITY CLASSIFIER 

The designed platform was used for solving the n-bit parity computation problem. This is widely 
used in error correction and detection. A parity bit is a binary digit that indicates whether the 
number of bits with value of one in a given set of N bits is even or odd. The given set of bits is 
applied as inputs to the BbNN, and the output gives the value of the parity bit. A 3-bit parity has 
three inputs to the BbNN network thus needing at least three columns. Similarly 4-bit parity 
needs at least 4 columns. Figure 13 and Figure 14 show the evolved networks, and fitness curves 
for 3-bit and 4-bit parity problems, respectively. Various parameters used for the genetic 
evolution are as follows  

• Population size = 30 

• Target Fitness = 1.0 

• Structure and weight crossover probabilities = 0.7 

• Structure and weight mutation probabilities = 0.1 

• Activation Function = Logistic sigmoid function 

• Selection Strategy = Tournament selection 

• Elitist genetic evolution model used to speed up the convergence.  

 

 

 
Figure 13: 3-bit parity example (a) Evolved BbNN (b) Fitness Curves 
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Figure 14: 4-bit parity example (a) Evolved BbNN (b) Fitness Curves 

 

IRIS PLANT CLASSIFICATION 

The dataset used in this classification example was originally compiled by R.A Fisher [60]. This 
dataset has been very widely used as a benchmark application for various classifier systems. It 
has 150 samples with three classes, with 50 samples per class instance. The attributes are sepal 
length, sepal width, petal length, and petal width for the three classes of Iris plants namely Iris 
Setosa, Iris Versicolour, and Iris Virginica.  The Iris Setosa class is linearly separable from the 
other two, the latter are not linearly separable from each other. The designed platform for block 
based neural networks was used as a classifier for the dataset.  The entire dataset of 150 samples 
was used as the training dataset. The inputs for the network were sepal area, and the petal area 
calculated by multiplying the sepal width with the sepal length, and the petal width with the petal 
length respectively. Figure 15 shows the evolved network, the classification error, and the fitness 
curves of the genetic evolution. We can see around 2% misclassification in the result which has 
been consistent with some of the other methods used for classifying this dataset [61]. The 
following genetic evolution parameters were used  

• Population size = 80 

• Maximum generations = 10,000 

• Target Fitness = 0.9843 

• Structure and weight crossover probabilities = 0.7 

• Structure and weight mutation probabilities = 0.2 

• Activation Function =Tangent sigmoid function 

• Selection Strategy = Tournament selection 

• Elitist genetic evolution model used to speed up the convergence.  
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Figure 15: IRIS plant classification results 

 

3.1.11 NEURAL NETWORK SUMMARY 
The BbNN hardware platform developed here can be used for research as well as eventual 
practical implementation in an evolvable embedded system. Since the entire evolutionary 
algorithm, as well as the hardware network, all run on a single chip, they can be compactly 
deployed in a larger embedded system. The BbNN architecture gives us the flexibility and ease 
of hardware implementation, and promising capability for application in many real-world 
scenarios such as navigation [26], pattern classification [51], signal prediction [52], and 
biomedical signal classification [53]. The current implementation uses the Xilinx Virtex-II Pro 
(XC2VP30) FPGA which is at least a 3 year old technology from Xilinx. The current generation 
Virtex-4 and Virtex-5 FPGA series from Xilinx have at least 3 to 4 times the capacity of the 
Virtex-II Pro FPGAs used here. Currently we could fit a network with around 20 blocks in one 
Virtex-II Pro FPGA chip (XC2VP30) used here. As a comparison with a slightly larger FPGA 
chip (XC2VP70) in Virtex-II Pro family, we can fit about 48 neurons. With the currently 
available capacities we should be able to realize BbNN networks with about 60 to 80 neuron 
blocks. Also, the current implementation running at 100 MHz clock rate on the Virtex-II Pro 
chip could be expected to run at a much faster clock rate on newer Xilinx FPGAs, increasing our 
current 60 MCPS per neuron block processing speed to a much higher value. The PowerPC 405 
processors available in Virtex-II Pro chips run at maximum 300 MHz delivering 400+ MIPS 
processing power. Current generation devices have on-chip PowerPC processors with 700+ 
MIPS (Millions of Instructions per Second) processing capability, significantly speeding up the 
genetic evolution process. To construct larger networks, multiple FPGA chips could be daisy-
chained using the gigabit serial communication transceivers available on these FPGAs or reuse 
the BbNN platform on the same chip temporally. Other possible scenarios for future work 
include programming partial or the entire genetic evolution algorithm on the FPGA 
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reconfiguration fabric. Hardware implementations of genetic algorithms have already been 
reported in literature [62,63]. This could significantly speedup genetic evolution. Looking at the 
past and current trends, in increasing capacities and speeds of the FPGA devices, and embedded 
processors in accordance with Moore’s law, and assuming it holds true over the next few years, 
widespread deployment of these platforms is becoming more practical. 

 

3.2 MACHINE LEARNING WITH ARTIFICIAL BRAINS/MASSIVELY PARALLEL 
COGNITIVE SYSTEMS 

Although artificial neural networks were developed to mimic the neurons in our brains, the 
processing performed by ANNs is quite different from that performed by biological neurons.  In 
the past twenty years, much better understanding of the function of biological neurons has been 
obtained. Moreover, a number of research efforts have addressed building circuits that more 
closely approximate the behavior of biological neurons.  The complexity of ANN models and 
overheads for simulation are significant, so that ANNs are not appropriate for modeling systems 
with large numbers of neurons, particularly when training is taken into account.  Other 
approaches are the topic of research to better mimic biological behavior. 

One area of research with interesting results in recent years pertains to the architecture of the 
cortical columns of neurons.  Many believe that a seven layer model of the cortex with localized 
hypercolumns of neurons is accurate, with debate about the specific feedback mechanism within 
and between the hypercolumns.  See Hawkin’s book for a good introduction on this area [64]. 

At a more detailed level, the function of biological neuronal synapses is known to be based on 
spiking signals, in contrast to the approach typically used with ANNs.  See [65,66,67] for more 
information.  This type of model is harder to implement with digital computers, requiring 
complicated continuous value simulation support in order to correctly compute the behaviors of 
interest.  These models of neurons employing analog signaling and transformations may be 
implemented best with analog circuits implemented as ASICs/full custom integrated circuits (or 
perhaps with field programmable analog arrays, although these are not as powerful or 
economically viable as FPGAs).   

The implementation of analog-based spiking neurons on traditional digital processors (or GPUs, 
FPGAs, etc.) is not a good fit, and would require very high computational power to achieve 
significant performance with large neuronal circuits.  More abstract models of neuronal behavior 
have been fit onto supercomputers though.  For example, IBM’s BlueGene/L supercomputer can 
be used to simulate such systems, for example with the SPLIT simulator evaluating a network of 
hypercolumns using abstract modeling of interactions (in this case with sequences of events on 
axons), reasonable scaling performance is reported with 8192 processors [68]. 
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With a large number of researchers focusing their efforts on understanding the function of the 
brain, there is hope for significant improvements in our understanding of the brain and how to 
create artificial brains or intelligent systems along similar lines.  The current state of the field 
still remains somewhat immature, with ongoing fundamental research addressing the structure 
and behavior of neurons, hypercolumns, and higher structure, not to mention learning, 
representation, ontologies, and other topics.  Hence, it is still difficult to forecast the best 
computational technologies for cognitive processing applications based on brain circuit 
emulation, but it seems most likely that large, detailed analog circuits will require large arrays of 
custom analog circuits, but that large digital systems could be used for higher level research, 
training, and learning. 

3.3 DYNAMIC PUBLICATION/SUBSCRIPTION DATABASES 
A major component of the Joint Battlespace Infosphere is the capability to collect information 
and disseminate it in an efficient, scalable, flexible manner.  To do so, database queries must be 
supported as well the ability to quickly determine permissions for producers and consumers to 
publish data and subscribe to data.  The access control, authentication, cryptographic, and related 
services have been studied extensively, and reconfigurable computing or application specific 
integrated circuits have shown great promise for accelerating this processing.  For instance, 
AFRL in-house research using string matching approaches for pub/sub processing showed 
speedups of hundreds of times over software processing.  In order to assess the effectiveness of 
these technologies for this type of cognitive processing, we consider related processing from 
bioinformatics. 

As part of a separate effort, we performed related research addressing bioinformatics database 
processing.  Previous work addressed the BLAST string matching code for comparing genomic 
data by accelerating its execution using parallel processing and reconfigurable computing [69]. 
Similar acceleration can be applied to other bioinformatics codes. 

The HMMER package is widely used for the detection of protein sequence homology, functional 
annotation, and protein family classification. It uses profile Hidden Markov Model (HMM) 
methods for sensitive database searches. Multiple sequence alignments are used as search queries 
to build statistical models for database searches [70]. HMMER operations rely on accurate 
construction of the profile HMMs. These HMMs are applied to protein sequence databases for 
homology determinations in order to extend the protein families with functional annotations of 
query sequences. HMMER functions are based upon a profile HMM architecture which is 
constructed using a plan-7 model [71]. The plan-7 architecture is constructed using the Viterbi 
algorithm [71,72,73]. The hmmpfam tool compares the protein sequences to the protein domain 
databases of HMM models and identifies the protein domains in the query protein sequence [70]. 

The nucleotide and protein sequences in various databases are growing at an exponential rate 
[74] and doubling their size every six months [75], but according to Moore’s law [2] the number 
of transistors on a chip doubles every 18 months. Hence, processor performance improvements 
lag behind the growth of sequence databases. This performance gap led to porting the HMMER 
algorithms onto clusters of computers, shared memory architectures, networks of workstations, 
GPUs, and FPGA-based hardware accelerators. Each of these HMMER acceleration approaches 
focuses on improving the speeds of either a single search or a few hundred protein searches. 
There are around 6.5 million protein sequences in the non-redundant (nr) protein database [76] 
alone and an estimate of around 13 million proteins currently known. This number is growing 
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rapidly. Thus to identify domains for these millions of proteins it will take months or even years 
of time based on computations done on either clusters of computers or on a single custom 
architecture. At the same time, PFAM [77] domain models are increasing every year. With every 
new release of PFAM domain models one has to run the millions of proteins to update the 
databases with the latest domain information. 

Here, we describe an efficient parallel hmmpfam tool used on a supercomputer that allows the 
analysis of millions of proteins in less than a day using thousands of processing nodes. We 
modified the hmmpfam.c code using MPI (Message Passing Interface) [78] to distribute 
individual serial hmmpfam jobs to each of the computer cores. Each hmmpfam job accesses its 
own input sequence with no communications between the computer nodes. This scenario is often 
referred to as “embarrassingly parallel”. The approach obviously simplifies programming issues 
while avoiding overhead associated with sending and receiving messages. This latter problem is 
likely a significant factor in the low performance observed with MPI-HMMER, especially when 
the number of computer cores is high (more than 500). The performance of our parallel version 
of HMMER and MPI-HMMER are both affected by the intense I/O for reading and writing to 
and from disk. Input data has to be read for each protein sequence, with the analysis results 
written to separate output files. When using 1000 or more compute cores, this can create very 
intense I/O traffic. We partially mitigate this problem by redistributing the protein sequences for 
each hmmpfam job. The main idea consists of distributing different lengths of amino acid 
sequences so that each job finishes (and writes results) and starts a new sequence (reads) at 
different times, thus randomizing as much as possible the I/O events. This minimizes 
simultaneous reads/writes and avoids major time delays due to contention. Once the computation 
is done we populate a flat file database with proteins and their respective domain information 
using simple scripts. 
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Both coarse-grained and fine-grained parallelisms, along with hardware acceleration, are 
exploited to accelerate HMMER algorithms. The HMMER software distribution comes bundled 
with a PVM (Parallel Virtual Machine) [79] implementation. HMMER is a computationally 
intensive algorithm, so the higher the processor speed the faster the execution [80]. Hyper-
threading and load balancing play significant roles in increasing speedups of HMMER [80]. 
JackHMMER exploits the coarse-grained parallelism to accelerate profile-HMM searches [81]. 
JackHMMER is a version of HMMER designed to run on an Intel IXP 2850 network processor 
consisting of heterogeneous multi-core processors. By using a high degree of thread-level 
parallelism, JackHMMER outperforms the hyper-threaded HMMER version on a Pentium 4. 
ClawHMMER, a streaming implementation written in the Brook language to run on graphics 
processors, outperforms CPU implementations [82].  Opteron processors are also used to 
accelerate HMMER searches with minimally invasive recoding, and the authors claim to achieve 
better performances than Intel architectures [50].  FPGAs are used to design an accelerator for 
HMM search that exploits both coarse-grained and fine-grained parallelism [83,84]. FPGA-based 
hardware accelerator of HMM search achieved 100-fold speedup over the software HMM search 
implementation [83].  A combination of hardware (FPGA) and software acceleration is used by 
MPI-HMMER-Boost [85] to accelerate the hmmsearch and hmmpfam tools. MPI-HMMER 
performs well on small clusters from a few nodes to tens of nodes [86]. This led to the 
development of parallel I/O HMMER that performs well for a few hundred nodes [86]. There is 
also a web-based interface to submit batch jobs without a local HMMER installation known as 
SledgeHMMER [87]. Although each of these approaches shows promise, none provides the 
scalable performance required for the scope of processing addressed herein (and that relates to 
JBI applications). 

More than thirteen million protein sequences exist in various databases, with the latest nr 
database containing around 6.5 million protein sequences. The rate at which new proteins are 
discovered is growing exponentially.  The distribution of protein sequence lengths is shown in 
Figure 16 [88]. The large variation in protein lengths enables us to take advantage of this 
variation to randomize the communication between the processing nodes and the file system to 
reduce contention due to correlated I/O. The computation time of hmmpfam depends on both the 
query sequence length and the domain database size [70,86]. The PFAM22 database is used for 
domain identification in this paper, so each node uses the same database.  Thus, the computation 
time is proportional to the sequence length; so longer sequences take more time to finish than 
shorter sequences. 
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Figure 16: Distribution of Protein Sequence Lengths 

HSPHT was run using a combination of nodes ranging from 16 to 8192 processing cores on 
Jaguar, the fifth supercomputer on the Top500 list as of June 2008 [89]. At the time of the 
experiments, Jaguar was a 250TF Cray XT4 system with 7832 nodes, each of which consisted of 
a quad-core 2.1 GHz AMD Opteron processor with 8GB of memory per node and 600 TB 
available in the scratch file system. There were more than 31K processing cores on Jaguar. 
According to the job scheduling policy, smaller jobs could run only few hours and the biggest 
job could not exceed 24 hours. Hence, one has to optimize the core request based on the job size. 
Two data sets are used for computation: dataset1 is a subset of the nr database with 300K 
proteins (~300 million AA(Amino Acid) count) used for performance comparison between MPI-
HMMER and HSPHT.  The entire nr database was used for getting domain information for all 
6.5 million (~2.25 billion AA count) proteins as a second dataset.  



 

 

37 
 

MPI-HMMER Computation on Jaguar

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of nodes

MPI-HMMER

 

Figure 17: Computation Speed for MPI-HMMER 
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Figure 18: MPI-HMMER and HSPHT Performance on Cray XT5 

We use dataset1 with 300K proteins for performance comparison between MPI-HMMER and 
HSPHT.  MPI-HMMER was run using 16 to 4096 processing cores on Jaguar, allocating an hour 
per job. Figure 17 shows the total number of AA count processed by these jobs per hour using 
different combination of processing cores. From Figure 17 it is clear MPI-HMMER performs 
linearly until 256 processes and then flattens between 256 and 512 processes. The performance 
drops beyond 512 processes due to increased communication contention.  The best allocation 
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using MPI-HMMER on Jaguar is to submit jobs using 256 processes. With this low number of 
processing cores per job one can execute a job for only 2.5 hours. Thus with MPI-HMMER 
using 256 processes per job it will take ~320 (2.5 hours/job) simultaneous jobs, taking 
approximately just over a month to finish computation on Jaguar. Figure 18 shows a comparison 
between the MPI-HMMER and HSPHT computation using thousands of processes, 
demonstrating the embarrassingly parallel approach is much more scalable than MPI-HMMER.  
We reduced simultaneous communications by separating the output files for each process and 
randomizing the sequence lengths, thus achieving optimized bandwidth and reducing the latency. 
Speedups of 3-4x are achieved by HSPHT over MPI-HMMER until 256 processes and a speedup 
of ~107x using 4096 processes. 

One advantage of HSPHT is the utilization of the multi-threaded functionality of HMMER. We 
compared the performance of HSPHT using one thread and two threads jobs with processes 
varying from 16 to 8192 cores. The single threaded implementation uses 1 thread per processing 
core, whereas the dual threaded implementation uses two processing cores. Thus a job with N 
processes uses N cores for the one-thread implementation and 2N cores for the two-threaded 
implementation. Due to the limited allocation of processing hours on Jaguar only these two runs 
were conducted. The two threaded implementation gives almost two fold speedups using 256 to 
2048 processes, but the best performance is achieved between 512-1024 nodes. Thus the entire 
nr database was divided into four equal parts. Four jobs were used for finishing the computation 
for the entire nr database, with each job consisting of 1024 two-threaded processes using a total 
of 2048 processing cores. Each of the four jobs took less than 12 hours thus taking less than two 
days for identifying domains for all 6.5 million proteins of the nr database using HSPHT. The 
estimated time to complete identifying domains for all the proteins in nr database using 2048 
dual threaded processes is less than a day.  

We demonstrated that the embarrassingly parallel approach used in HSPHT performs much 
better than MPI-HMMER for large problems on supercomputers. With this approach we can 
identify domains for millions of proteins in a day, as compared to months of processing for other 
approaches. This demonstrates the power of supercomputing for attacking large-scale 
bioinformatics problems. HSPHT achieves speedups of over 100 times faster than MPI-HMMER 
for the nr dataset.  Future work includes developing better load balancing strategies for very 
large problems. We are also working on further improving the HMMER code so that the 
communications are minimized between the processing nodes and file systems and extending the 
efficient embarrassingly parallel approach to support both hmmpfam and hmmsearch. 
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3.4 TEXT AND IMAGE PROCESSING 
The processing of text, images, or other signals to extract information is ubiquitous for the DoD 
and one of the primary forms of input to any current or future cognitive systems.  We consider 
each of these types of processing as typical, important types of computation for cognitive 
systems and discuss the suitability of emerging computational platforms for each of these types 
of computation. 

Processing text may involve symbolic computations, including integer operations and many 
branches, or could include processing using Bayesian reasoning or Hidden Markov Models 
implemented using floating point computations.  Other types of text processing include string 
matching (as with the examples with BLAST discussed above).  All of these types of text 
processing are often performed with processors, but often with low efficiency with respect to 
speed or power dissipation.  There has been some success with using GPUs to speed up some of 
these types of codes; see for example the work with ClawHMMER [82].  GPUs should perform 
best when the computations are dominated by single precision floating point operations.  
Reconfigurable computing platforms have had great success with this type of text processing.  
By building custom parallel datapaths, RC implementations can concurrently search various 
paths for determining likely meanings or predictions for text strings.  This type of approach is 
very good for decimating data demands for processing further downstream, as with BLASTp 
acceleration [69].   

Image processing is the raison d’etre for GPUs, so they tend to perform well for these 
computations.  Processors include special multimedia instructions and functional units to 
accelerate these types of operations.  FPGAs have also been shown to be quite good for these 
computations, particularly when there can be some optimization based on word sizes.  Similarly, 
signal processing works best on processors that are optimized for this type of computation 
(DSPs).  GPUs can also perform well for these types of computation, but are hindered currently 
by immature tools.  FPGAs provide great flexibility for signal processing applications, with the 
ability to relatively easily build a pipelined datapath optimized for the specific application needs.  
For this constrained problem domain, the FPGA tools are most mature, with the ability to take 
higher level codes and generate bitstreams to program the circuitry.  Accordingly, power 
efficiency for FPGAs is much better than for more traditional processors. 

3.5 SCIENTIFIC COMPUTING CODES  
Computational science codes typically involve high precision, very large data sets, and often 
include linear algebra formulations.  Processing these applications on vector supercomputers 
then massively parallel supercomputers has been the topic of research for decades.  With modern 
supercomputers now achieving more than a petaflop, truly massive computations can be 
supported.  Modern microprocessor architectures have been stagnant with respect to clock speed 
or microarchitectural improvements, so the basic building block has now become the multicore 
processor.  Each of the largest supercomputers now available is based on these technologies.   

As an alternative, the use of accelerators has emerged in the past few years as an area of exciting 
research for computational science applications running on supercomputers.  Technologies such 
as Clearspeed’s floating point accelerators, general purpose processing with graphical processing 
units (GPGPUs), and reconfigurable computing with FPGAs have all become topics of interest 
[90,91,92].   



 

 

40 
 

The data precision of computations has great impact on the effectiveness of each of these 
accelerator technologies for improving performance of applications.  For example, the traditional 
processor architecture is hampered by the overhead of instruction processing, restriction of 
predetermined data (word) sizes, and managing data storage and movement.  Hence, compilers 
and code developers must exert great effort to produce instruction sequences that minimize data 
movement, keep functional units busy, and perform computations in the fewest possible number 
of instructions.  To the extent that the operations and data sizes map well for accelerators such as 
the multimedia extensions (e.g., SSE or MMX) and the data movement with the registers, then 
code can execute faster.  Similarly, if the application can be mapped to threads or other forms of 
concurrency, then the multicore processors can be successfully exploited.  If the application can 
be partitioned into very large numbers of concurrent tasks that do not require significant 
communication or coordination, then large parallel supercomputers may be used to accelerate it.   

The use of Clearspeed accelerators or GPUs promises speedups for floating point computations.  
In particular, GPUs can provide significant speedups for single precision floating point, but not 
as well for double precision (anecdotal evidence from a range of applications indicate speedups 
for floating point intensive codes from 50-100x for single precision, but with speedups for 
double precision from 5-10x).  Many higher speedups have been reported recently, but most (if 
not all) of these numbers are based on poor serial implementations as the baseline.  A GPU board 
such as the Tesla 1060 from NVIDIA can perform at about the same rate as a dual quad-core 
Intel or AMD workstation (assuming both platforms have been tuned and optimized 
appropriately).  Current capabilities of GPUs show limitations with the ability to move data 
flexibly, perform low-level optimizations, or to share the GPU resources with multiple functions 
or processes, but these limitations are easing over time as the technology matures.  In the next 
chapter, we discuss the languages and design environments for GPUs and other computing 
technologies.   

Reconfigurable computing promises the ability to build pipelined datapaths on demand with the 
specific mix of functional units, pipelining, resource sharing, operand size, and clock speed to 
best perform the computations.  In recent years, the size and speed of FPGAs has increased 
significantly enough that scientific computations now are practical targets for the technology 
(Underwood reports an increase in performance over a decade of 10,000x compared to 100x for 
microprocessors [93]).  Earlier reconfigurable computing systems suffered from relatively low 
bandwidth to/from the FPGA resources as well as limited memory.  Newer architectures that 
support AMD’s hypertransport [5,6] or Intel’s QPI (Quick Path Interconnect) [6,141] promise to 
provide much better bandwidth.  The amazing flexibility promises tremendous performance 
improvement, but at significant development cost because design tools and environments are still 
immature.  We discuss this issue in more detail in the next chapter. 
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The optimized datapaths for FPGAs have been the focus of RC research for nearly twenty years.  
More recently, we have been investigating the ability to develop optimized algorithms that take 
advantage of the application-specific word sizes, including variable precision floating point.  A 
student in our research group recently won the Supercomputing Student Research Contest with 
his implementation of a variable precision solver that used faster, lower precision circuitry 
during the computationally expensive approximation followed by higher precision iterative 
refinement [108].  For more information on this work, as well as related work with precision for 
fixed point representation used instead of double precision, see [94] and [95]. 

To the extent that cognitive processing applications share the attributes of scientific computing 
codes, these lessons will be applicable.   
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4 MAPPING APPLICATIONS ONTO ARCHITECTURES/CAD 
PROGRAMMING ISSUES 

The problem of how to implement or port an application on a computational platform has 
profound impact on the practical ability of systems developers to exploit various computing 
technologies.  The development of sophisticated cognitive processing applications faces enough 
difficulties without the additional burdens of immature development environments.  Nonetheless, 
the runtime systems and development environments for newer computing platforms always lag 
behind the hardware systems.  To address this issue, we next briefly discuss the infrastructure 
available for application development with the computational platforms of interest. 

A significant amount of related work addressing application development for reconfigurable 
computing and next-generation parallel processing has been performed under the auspices of the 
DARPA Adaptive Computing Systems (ACS) and High Productivity Computing Systems 
(HPCS) programs, respectively.  Under ACS, the Synopsys Nimble Compiler effort targeted the 
synthesis of C onto reconfigurable logic, but is not oriented for high performance computing 
tasks.  The USC/ISI DEFACTO effort exploited the SUIF project to address compilation of more 
abstract representations onto reconfigurable hardware, and included some nice capabilities to 
map to customized Arithmetic Logic Unit ALU/CPU structures for a given program.  Once 
again, this is a very low-level view of the partitioning and mapping problem.  The compilation 
technology from these program can be applied to compiling function blocks to reconfigurable 
computing elements once partitioning is completed and the blocks are mapped to RC elements. 

Efforts from Northwestern University and UT exploited visual programming languages like 
Khoros or MATLAB to ease the reconfigurable hardware programming task.  These approaches 
provide an excellent programming model for applications developers.  These projects do not 
support the migration of functionality between CPUs and RC elements in either a static or 
dynamic manner.   

There are several Java-related ACS programs for applications targeting FPGAs.  Brigham Young 
University (BYU) researchers developed the JHDL Java-based hardware description language 
environment for programming FPGAs.  The approach enjoys the benefits of code portability 
inherent with Java, while still achieving good hardware performance on the FPGA devices.  With 
respect to hardware/software systems, the approach suffers from the reduced performance 
typically encountered with Java interpreters or compilers, which limits its applicability to high 
performance computing environments.  A related effort from Lava Logic (a division of TSI 
Telesys) targeted the use of Java for programming reconfigurable devices by developing 
hardware implementations for Java bytecodes, but it suffered from the same high performance 
computing software drawbacks as the JHDL effort.  The Xilinx JBITS effort targets the use of 
the fine-grain reconfigurability of the Virtex family of FPGA devices.  This ability to perform 
fine-grain reconfigurability during operation promises a performance boost, but focuses on low-
level design issues.   

The System Level Applications of Adaptive Computing (SLAAC) program provided the primary 
demonstration vehicle for the DARPA ACS program.  A SLAAC RC architecture was developed 
and used for a number of technology demonstrations.  In addition SLAAC completed 
compilation work to map C to VHDL on Annapolis Microsystems RC boards.  The Virginia 
Tech ACS work used the BYU JHDL design environment, but it did not have automatic 
partitioning onto multiple FPGAs.  The manual intervention required for this task is significant; 



 

 

43 
 

supporting multiple RC boards further complicates the design task.  The SLAAC API 
(Application Programmers Interface) was developed at Virginia Tech to make porting 
application host code between reconfigurable computing boards easier.  Related efforts are 
ongoing with OpenFPGA to develop common APIs for RC platforms.  The CHREC NSF center 
for HPRC research is addressing a number of these concerns with their research projects as well. 

A number of C-based languages have been developed by vendors, particularly for use with their 
boards.  Examples include HandelC, MitrionC, and DimeC.  Similarly, SRC provides Carte and 
Starbridge sells VIVA, which are library-based programming environments for RC platforms 
that support higher level languages such as C or FORTRAN.  None of these languages has 
become dominant, nor has any supplanted Verilog or VHDL for development of RC 
applications.   

In an attempt to better support portability of vector, signal, and image processing applications, 
the embedded systems community created the VSIPL (Vector, Signal and Image Processing 
library) API for commonly used functions.  Vendors for various HPC platforms support the 
VSIPL API by providing a library of functions optimized for their particular machines.  Because 
a variety of vendors support VSIPL, applications developers can develop their applications using 
familiar programming languages/tools like C/C++, MATLAB, or Khoros, and can more easily 
port their applications to other platforms.   

As part of the HPCS program, several new languages are under development and evaluation, 
including X10, Chapel, and Fortress, as well as related work with CoArray Fortran and UPC.  
There has been significant work in testing these languages and benchmarking their performance 
for various applications and platforms to evaluate their effectiveness and appropriateness (for 
one example, see the work at ORNL located at 
http://www.csm.ornl.gov/essc/benchmarks/index.html).  We will not discuss these languages in 
detail in this report as they are not directly focused on cognitive processing applications and 
architectures. 

4.1 PROGRAMMING ENVIRONMENTS 
It would be ideal to have a tool that would let users design their application and map it onto the 
HPRC system without having to know the details of parallel processing or reconfigurable 
computing. Such a tool would essentially achieve the following: 

User  CAD Tool  design specification  HPRC 

We know that the modeling framework for the HPRC architecture is also suitable to the design 
of Systems on a Chip (SoC), because the design and architecture of HPRC and SoCs will be 
homomorphic.  Both the architectures contain Reconfigurable Units (RC units) and also share 
some of the same design methodologies in Hardware/Software Codesign [96].  

Previous work at UT focused on the use of Khoros, a graphical design environment primarily 
used for image processing applications.  The CHAMPION program used Khoros to capture 
algorithms, and then provided a set of VHDL libraries to map the application to a reconfigurable 
computing board with one or more FPGAs.  A partitioning algorithm automatically broke the 
application into pieces that were then mapped to the collection of available FPGAs.  Using this 
approach, speedups of up to 2000x were achieved in mapping applications to FPGAs. 

http://www.csm.ornl.gov/essc/benchmarks/index.html
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MATLAB is another tool for capturing algorithms and is widely used.  We discuss the interfaces 
provided with MATLAB for using parallel processing and how we can develop the interface 
between a processor running a MATLAB program and the FPGAs we would like to use to 
accelerate portions of the MATLAB problem.  First, we discuss some issues related to 
computational models and how we are investigating the models of computation one may wish to 
consider for HPRC applications. 

4.2 MODELS OF COMPUTATION 
Ptolemy is a software framework developed at the University of California, Berkeley and is used 
for modeling, simulation and design of concurrent, real-time embedded systems [97,98,99,100]. 
The advantage of this tool is that it allows heterogeneous mixing of different “models of 
computation”. A model of computation varies from another mainly in its notion of “time”. 
Ptolemy II is a JAVA-based component-assembly framework and its GUI (Graphical User 
Interface) allows the user to create designs that involve one or more interacting components 
(which could be of different models of computation).  

“Models of computation” are architectural patterns, which focus on relationships between 
concurrent or sequential components.   Ptolemy II includes a suite of domains, each of which 
realizes a model of computation. It also includes a component library, in which most components 
are domain polymorphic, in that they can operate in several of the domains. Most are also data 
polymorphic, in that they operate on several data types. The domains that have been 
implemented are listed below. 

CT: continuous-time modeling,  

DE: discrete-event modeling,  

FSM: finite state machines,  

PN: process networks,  

SDF: synchronous dataflow  

CSP: communicating sequential processes, (only in the full release)  

DDE: distributed discrete events (experimental),  

DT: discrete time, (experimental),  

Giotto: periodic time-driven (experimental) and  

GR: 3-D graphics (experimental).  

SR: Synchronous Reactive (experimental).  

TM: Timed Multitasking (experimental). 

The first aim of the research into computational models is to demonstrate the feasibility of using 
HPRC for the applications/computational models chosen.  For each computational model, the 
process of dividing tasks between the processors and the reconfigurable units is done by hand.  
In so doing, a better understanding of the types of applications and the implementation 
approaches that are most appropriate for HPRC/cognitive architectures is achieved.  This insight 
is critical to the ultimate goal of finding a way to efficiently automate the process while 
achieving high performance.  The applications we consider for cognitive architectures include 
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different computational models, so these demonstration applications help in understanding which 
computational models are most appropriate for cognitive architectural platforms. Some 
comments are included in the application discussion below concerning their computational 
model and the effectiveness in mapping the application/computational model to HPRC/CA.  
With emerging architectures replacing the von Neumann computing model, there remains a need 
for a robust computational model for these architectures to enable reasoning about programs and 
correctness, enable compiler transformations/optimizations, and similar tasks.  Such work is 
ongoing. 

4.3 PARALLEL PROGRAMMING  
The Grid is the name given for the vast collection of interconnected computers distributed 
throughout the world, combined with the software tools and infrastructure required to develop 
and execute applications on these computational resources.  The related development of Cloud 
computing shares many of the characteristics of grid computing.  A wide variety of tools provide 
support for job scheduling, including such tools as Condor, Utopia, and LSF.  Other tools such as 
the Internet Backplane Protocol for Logistical Computing help in caching data for distributed 
grid applications.  Distributed operating system work, including the Globus project, seek to 
exploit grid resources as well by allowing tasks to be spawned off to other machines and 
migrated as necessary. 

The programming infrastructure to support communicating processes executing on the grid is a 
quite difficult problem.  Early efforts to provide these capabilities include PVM [79] and MPI 
[78], which are libraries of communications and control functions to coordinate processes on the 
grid.  PVM is quite popular and widely distributed, with support for a wide variety of 
architectures.  It supports a dynamic process model, hence tasks can be created or destroyed at 
runtime.  In contrast, MPI supports a CSP-like computational model in which tasks continue for 
the entire life of the distributed program.  OpenMP [101] provides shared memory programming 
support for multiprocessing.  Similarly, POSIX threads (pthreads) and Threaded Building Blocks 
are other popular programming libraries for concurrent programming.  MPI is the most common 
communications library used for parallel processing. MPI is used in our work for parallel 
applications. 

The NetSolve project was developed at the University of Tennessee's Innovative Computing 
Laboratory. NetSolve is a client-server system that enables users to solve complex scientific 
problems remotely. The system allows users to access both hardware and software computational 
resources distributed across a network. NetSolve searches for computational resources on a 
network, chooses the best one available and using retry for fault-tolerance, solves a problem and 
returns the answers to the user. A load-balancing policy is used by the NetSolve system to ensure 
good performance by enabling the system to use the computational resources available as 
efficiently as possible. 

As part of the DARPA High Productivity Computing Systems program, a number of new 
languages for large-scale parallel processing are in development.  These include Cray’s Chapel, 
IBM’s X10, and Sun’s Fortress.  Chapel and X10 continue development under the auspices of 
the HPCS program, but finding for Chapel has ended, so compiler development and runtime 
support is not as advanced as the others.  These languages provide interesting features, but it is 
too early to determine their success in adoption by programmers.   
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4.4 GENERAL PURPOSE PROGRAMMING FOR GRAPHICAL PROCESSING 
UNITS 

The multi-core paradigm has become the primary method for providing performance 
improvements in processors. As Instruction Level Parallelism (ILP) has begun to yield 
diminishing returns on transistor investments [102], multiple copies of processors (cores) are 
being placed onto a single die to exploit Thread Level Parallelism (TLP). While desktop users 
see benefit in a multi-tasking environment, single-threaded applications must often be recoded to 
take advantage of the multiple processors appearing in desktops. This presents a new set of 
challenges in algorithm design; programs must now account for parallelism and the pitfalls that 
come with it. In a different context, Graphics Processing Units (GPUs) have become 
programmable. Traditionally, GPUs had fixed pipelines for assembling vertices, mapping 
textures, and rasterizing scenes to create 3D environments for games and CAD applications. To 
allow for more complex effects in rendering, such as bump mapping and complex lighting, 
vendors replaced the fixed pipeline with programmable shader units. In doing so, they allowed 
the high bandwidth memory and parallel shader units to be used for general purpose computing 
[103]. 

Specifically, we compare the streaming model behind AMD’s Brook+ and Computer Abstraction 
Layer (CAL) development environments and compare this to C, a traditional sequential 
language. To do this, the grid potential computation used in Ab Initio modeling serves as a 
memory bound application for exploration. This paper provides qualitative assessments of 
programmability, such as ease of use, expressability, and how to optimize an application written 
in these languages. Additionally, quantitative performance results are given for naïve and 
optimized kernels. These results are compared to what is theoretically achievable on these 
architectures. 

AMD’s GPUs use a hierarchy of processors to provide massive parallelism. This arrangement is 
shown in Figure 19. Stream processors are divided into SIMD engines. Each SIMD engine runs a 
number of threads concurrently on its thread processors. These threads are grouped into a 
wavefront. Each SIMD engine can time slice execution of multiple wavefronts. Within a 
wavefront, a number of threads execute concurrently. Four threads are multiplexed per thread 
processor to hide memory latencies [104]. Finally, each thread processor contains 5 stream cores, 
which serve as the ALUs that perform actual computation. 
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Figure 19: AMD FPU Architecture 

Brook+ is a high level stream computing language developed by AMD. It is based on the Brook 
project at Stanford University [105]. Brook+ is a C-like programming language using kernels 
running on the GPU in conjunction with host-side code written in C. Kernels are defined using 
the kernel keyword. Top-level kernels operate on streams while other kernels can be used to 
modularize code. If a kernel is top-level, it can read from and write to streams, but cannot return 
data. Kernels that are not top level are inlined at compile time and cannot operate on streams. 
Instead, they serve as functions to return a result based on some inputs. Kernels may not call 
regular functions, though functions can call kernels. When running code in Brook+, the domain 
of execution is defined by default to be the size of a kernel’s output stream(s). The developer can 
manually change this if needed. Kernel instances are created for each point in the domain of 
execution and may write only to the instance’s location in an output stream (shown in Figure 20). 
The streaming model provides implicit parallelism and separates communication from 
computation [106]. Depending on how an input stream is declared, a kernel may read from any 
location or only the current domain instance location. Streams can be declared as input or output; 
input streams can only be read from while output streams can only be written to [104]. 
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Figure 20: Streaming Model 
 

The Compute Abstraction Layer (CAL) is a low-level streaming environment for performing 
computation. Like Brook+, it uses a streaming model for processing data. However, CAL has 
additional constructs that can be used in kernels. Shared registers are accessible by all threads in 
a wavefront (rather than being accessible by only a single thread). In addition to reading and 
writing to streams, the global buffer can be used in computation. The global buffer is 128-bit 
addressed and can be read or written to by any thread at any index [104]. 

CAL is divided into two components: the CAL runtime and Intermediate Language (IL). The 
runtime serves as the front end for managing streams, devices, kernels, contexts, hardware 
counters, and kernel compilation. The runtime is implemented as a library of C functions. For 
handling streams, a number of options exist. A stream can be allocated locally (on the GPU) or 
remotely (on the host). In addition to these, a feature exists allowing a stream to be allocated on 
the host in any address specified. This contrasts with remote allocation, which returns an address 
the runtime creates. Using this feature, data can be written directly into a buffer without needing 
to be copied. Local allocations are limited by the amount of memory on the GPU, remote 
allocations are limited to 64MB, and pinning memory is limited to 16MB (as of SDK v1.3 for 
Linux). 

Streaming languages provide implicit parallelism. Since the kernel is invoked once for each 
element in the domain of execution, developers need only express the computation of a single 
element. Traditional sequential languages, like C, require users to explicitly define the 
parallelism granularity and patterns. This is often a difficult task, even with libraries like 
OpenMP [101]. Brook+ and CAL are simpler than C in this respect, since threading is handled 
by the hardware. Additionally, Brook+ and CAL hide architectural details, as opposed to 
Nvidia’s CUDA (Computer Unified Device Architecture)  [107], which requires using shared 
memory and efficiently mapping threads to achieve high performance. In some cases, this may 
prevent the developer from fully exploiting hardware capabilities, but this does not affect the 
application presented in this paper. Brook+ is simpler than CAL for practical reasons; it hides 
API calls into elegant class abstractions while CAL requires numerous C API calls to perform 
operations. Both CAL and Brook+ presently lack double precision transcendental operations (as 
of SDK v1.4). 
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We created naïve and optimized implementations of the grid potential kernel in Brook+, CAL, 
and C. The naïve C algorithm is given in Figure 21. The optimizations applied to each kernel are 
given in Table 3. Kernel unrolling refers to having the kernel write to eight streams instead of 
one. This increases kernel efficiency [104]. SIMD instructions are exploited in this application 
by using Intel’s Math Kernel Library (MKL) vector routines on the host machine and float4 data 
types on the GPU. Precomputing the radii eliminates redundant computation. Its performance 
benefit in Brook+ was very negligible and actually hurt performance in CAL. Cache blocking is 
done on the host machine to maximize L1 cache reuse in the inner loop. Finally, the host code 
was parallelized using an OpenMP parallel for construct with guided scheduling. 

 

for(i = 0; i < npt; i++) 

{ 

 float r2 =x[i]*x[i]+y[i]*y[i]+z[i]*z[i]; 

 for(j = 0; j < nbas; j++) 

 { 

  gridpot[j*npt+i] = 

  exp(alpha[j] * r2); 

 } 

} 

Figure 21: Naive Grid Potential Kernel 
 

Table 3: Kernel Optimizations Applied 

Optimization C (x86) Brook+ CAL 

Kernel unrolling No Yes Yes 

SIMD Yes (Intel 
Math Kernel 
Library) 

Yes Yes 

Precompute radii Yes Yes No 

Cache alphas Yes No No 

Cache Blocking Yes No No 
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Performance results shown in Table 4 highlight the performance advantage of AMD’s GPU over 
the multi-core CPU, despite a simpler programming model. The C implementations were run on 
an 8 core X5355 machine. Using the time to compute the exponential function in MKL and an 
optimized STREAM copy benchmark, we computed the optimized performance to be 74% of 
what is theoretically achievable on this machine. GPU results were taken on a Firesream 9170 
with SDK version 1.3. The optimized CAL implementation used 80% of the Firestream’s 
51.2GB/s of memory bandwidth (and hence achieved 80% of the theoretical performance). 
Brook+, while outperforming the CPU even in the naïve implementation, suffered from compiler 
overhead not present in the CAL version. The short nature of this kernel prevented Brook+ from 
amortizing this overhead. All results given are for single precision computation. 

 

Table 4: Platform Performance of Naive and Optimized Kernels 

Billions of points 
per second 

Naïve Optimized 

C 0.02 0.86 

CAL 3.05 10.19 

Brook+ 0.87 2.66 
 

We have shown that the streaming model simplifies computation without sacrificing 
performance in the grid potential application. Using CAL, we were able to achieve 80% of the 
cards computational capabilities. The simplicity of Brook+ and CAL programming languages 
provide large speedups with little effort. The streaming model eliminates the need to explicitly 
parallelize applications. By far, the most complicated optimizations lied in the C implementation, 
which required complex cache blocking and leveraging libraries to exploit parallelism (SIMD 
and thread). While CAL is conceptually simple, its driver level API makes programming more 
difficult than Brook+. 

Compute Unified Device Architecture (CUDA) is a programming environment provided by 
NVIDIA for general-purpose computation on their GeForce, Quadro, and Tesla GPUs [107]. The 
kernel offloaded to the GPU is specified as a computational grid of blocks of threads. The 
threads are grouped into warps, which use Single Instruction Multiple Data (SIMD) for 
instruction execution.  We found for a computational chemistry application that Brook+ provided 
the better performance than CUDA, partially because there was better library support. 
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4.5 RECONFIGURABLE COMPUTING DEVELOPMENT 
Reconfigurable computing comes from a broader application of programmable logic device 
technology.  Programmable logic devices provide designers with the ability to modify circuit 
functionality after its fabrication.  Examples of programmable logic devices include 
programmable arrays of logic (PALs), complex programmable logic devices (CPLDs), field 
programmable system level integrated circuits (FPSLICs), and field programmable gate arrays 
(FPGAs), with FPGAs the most commonly used devices for reconfigurable computing. 

Currently, reconfigurable computing systems are typically comprised of processing nodes 
associated with co-processing boards with FPGAs.  This co-processing model uses software 
executing on the processor for general computation and control, with the reconfigurable 
hardware accelerating computational intensive operations.  Following some promising research 
results, the emerging system on a chip market will likely provide SoCs with configurable logic. 

Computing systems, particularly those employed in embedded applications, are increasingly 
benefiting from the use of programmable logic.  Many developers use programmable logic 
devices (PLDs) to rapidly develop customized circuitry for various applications, and then ship 
the systems with the configured programmable logic devices.  FPGAs used to be widely used for 
system prototyping or implementing glue logic on boards.  The reduced device costs, increased 
capacities, faster operational speeds, and shrinking product time to market requirements now 
result in the common deployment of FPGAs in embedded systems as a substitute for ASICs.  
Such systems typically have a static configuration throughout their lifetime.   

In some cases, the configurations of the programmable logic devices can be updated after the 
system is fielded, resulting in a configurable computing system.  This ability to configure a 
system can reduce maintenance costs and extend product lifetimes via system upgrades in the 
field accomplished by updated configurations.  In contrast, reconfigurable computing systems 
frequently change the programming of the logic devices during operation.  Recent developments 
in programmable logic device technology (density, speed) have made reconfigurable computing 
practical. 

Reconfigurable computers provide the user with the ability to dynamically change the logical 
operation of its computational elements.  Configurable computers also provide the ability to 
change the logical operation of computational elements, but in a more constrained manner. 

Reconfigurable computing promises to provide a wide variety of benefits to system designers.  A 
primary reason for the initial use of programmable logic devices is the relative ease in employing 
them in designs.  Configuration requires seconds to perform, as opposed to the weeks required 
for fabricating an ASIC.  If there are errors in the logic implementation, attractive system 
improvements, or changes to the specification, designers can make changes as necessary before 
the system is deployed. These benefits are equally applicable for configurable and reconfigurable 
systems. 
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The use of configurable or reconfigurable systems provides similar benefits in fixing errors, 
adding features, or providing other updates to systems throughout their life cycle.  By modifying 
the functionality with a new configuration of the programmable logic, minimal update costs may 
be required.  If one combines this model of providing upgrades or bug fixes with internet-
connected configurable systems, radical improvements in the ability to maintain embedded 
systems become possible.  Because reconfigurable computing provides this capability to modify 
system functionality to fix bugs or add features, cost reductions during design as well as after 
deployment result in significantly reduced life cycle costs.  For products with long lifetimes, this 
cost reduction can be substantial. 

The use of programmable logic results in accelerated development cycles yielding a reduced 
time to market.  By avoiding the extended design and fabrication times required for ASICs, 
designers can reach the market more quickly.  If design flaws or engineering change orders arise 
near the end of the design process, modifications to programmable logic can usually be 
implemented quickly with the existing parts.  In the case of an ASIC-based design, a new version 
of the ASIC will typically be required, resulting in additional costs and delays.  By avoiding 
these additional costs and delays, reconfigurable computing systems can reach the market more 
quickly.  Because the timeliness in reaching the market often determines if a product is profitable 
or not one cannot overstate the importance of the schedule risk mitigation due to reconfigurable 
hardware. 

The flexibility coming from the ability to reconfigure components of a system based on 
environmental or operational conditions enables systems to be fielded for a broad range of 
applications and for dynamic or unknown environments.  A single reconfigurable computing 
system can be applied to image processing, signal processing, cryptographic, and string matching 
problems through reconfigurations.  An ASIC-based hardware approach would require a large 
investment in hardware resources while a software solution may not achieve the require 
performance.  In this context, the flexibility of reconfigurable computing provides unmatched 
capabilities. 

By optimizing the hardware to address the specific task at hand, reconfigurable computing 
platforms can often perform operations using much less power than general purpose hardware or 
software based solutions.  Even custom or specialized hardware may not provide the power 
savings obtainable from customizing the hardware used to the specific application.  For example, 
in a number of signal and image processing applications, variable word sizes can be 
implemented with programmable logic to provide sufficient accuracy but no more.  
Reconfigurable computers can reduce the number of gates used in the design by optimizing word 
sizes as needed, whereas digital signal processors, microcontrollers, or general purpose 
processors must be designed with a static word size that cannot be changed to reduce power. 
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In our work, we found that solving systems of equations can be accelerated by employing LU 
decomposition and lower precision processing elements with RC devices to find an approximate 
answer, followed by iterative refinement in double precision on a host CPU.  By reducing the 
precision used, the execution is accelerated, but at the potential cost of additional iterations to 
refine the solution or even failure to converge.  Hence, a complicated optimization space results.  
This work was awarded first prize at the student research competition at Supercomputing 2007 
and was awarded 3rd place in ACM’s grand finals of the student research competition (compared 
to all other research competition winners) [108].  Similarly, FPGA implementation of fixed-point 
engines for quantum Monte Carlo (MC) simulations depends on careful selection of pipeline 
structure and data precision.  Another student won the student research competition at 
Supercomputing 2008 for this work [109]. 

Reconfigurable computers can support a very large number of gates through the use of multiple 
configurations.  In effect, a given set of programmable logic devices can replace a much larger 
collection of ASICs.  This will result in a reduction in the physical size required for the 
electronics comprising embedded systems. 

Programmable logic devices provide an ideal capability to detect, identify, and isolate faulty 
hardware elements in embedded systems.  With the ability to support testing configurations and 
to adapt to detected faults, reconfigurable computers can support a variety of critical 
applications.  By enabling graceful system degradation in the presence of faults, much cheaper 
and more reliable critical systems can be fielded. 

Last, and certainly not least, designers can achieve higher performance by using reconfigurable 
computing to adapt to the environmental conditions during operation. 

In one recent cryptography example, engineers achieved higher performance with an FPGA-
based reconfigurable computing solution than available with an ASIC developed for the same 
task after a long and expensive development [110]. 

With reconfigurable computing systems, key attributes that determine its capabilities include the 
speed and granularity of reconfiguration.  The ability to reconfigure programmable logic quickly 
makes it practical to change configurations more frequently during operation.  The technology 
used in the programmable logic device dictates the granularity of reconfiguration that can most 
effectively be supported.  The ability to selectively reconfigure parts of the programmable logic 
is known as fine-grain reconfiguration.  Many families of programmable logic devices do not 
support the random access and modification necessary to support fine-grain reconfiguration.  For 
these parts, most or all of the part must be reconfigured at the same time.  Because the time to 
configure an entire part takes a large number of cycles, the performance penalty associated with 
such reconfigurations renders it impossible to support frequent function modifications while still 
attaining high performance.  Hence, reconfigurable systems assembled from such parts have a 
coarse granularity of reconfiguration.  In contrast, some newer generations of programmable 
logic devices support the fine-grain reconfigurability that enables hardware optimization based 
on the operations and data at hand. 

Reconfigurable computers must include runtime systems to support the configuration data for the 
programmable logic device elements, much like a processor uses a sequence of instructions.  For 
systems with slower, coarse-grain configuration, the programmable logic devices may be 
updated when each new application is run, or during changes between operational phases.  As 
the frequency of reconfigurations increases and their granularity decreases, the runtime support 
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required becomes more sophisticated.  Memory banks or configuration caches may hold the 
necessary configuration data, as with instruction and data caches.  Although in principal, 
dynamic optimization of configurations is possible via the runtime system, in practice current 
limitations in the design tools currently make it impractical.  Work with the Xilinx Jbits [111] 
interface is improving the runtime and design environment to make such systems practical in the 
future.  This research does not directly address runtime reconfiguration or configuration caching, 
but the performance modeling framework is intended to support these capabilities with little, if 
any, modification. 

Reconfigurable computers bring together aspects of both hardware and software systems.  Not 
surprisingly, debate rages about the best design languages, methodologies, and tools for 
reconfigurable computing systems.  Many of the same issues and arguments concerning systems 
design and hardware/software co-design are applicable. 

Most development efforts to map applications onto reconfigurable computers uses VHDL or 
Verilog for capturing the design, typically at the register transfer level.  In doing so, hardware 
designers can use the same design capture, simulation, and synthesis languages and tools already 
used for ASIC development.  In practice, the productivity from directly using HDLs lags behind 
industry needs.  Designers write much of the HDL code at RTL (Register Transfer Language), 
and too often do not employ language constructs such as VHDL generics, configurations, and 
generate statements to create portable, flexible designs.  In addition, the synthesis tools provide 
roughly equivalent capability for FPGAs as with ASICs, enabling the reuse of much of ASIC 
design flows and tools. 

The same domain specific attributes that make hardware description languages (HDL) effective 
for designing electronic systems prove to be a significant limitation to the widespread adoption 
of VHDL or Verilog for capturing designs intended for reconfigurable computers.  Software and 
systems engineers are not familiar with these hardware description languages and resist using 
them. 

At the system design level, a number of proposed extensions to C or C++ have been forwarded 
by various companies to address behavioral design.  Because C/C++ is widely used by systems 
engineers to develop system prototypes or executable specifications, it is hoped providing a 
facility to develop hardware designs in some C/C++ dialect will improve productivity and bring 
systems and hardware engineers closer together.  Adoption of a C/C++ dialect potentially will 
potentially enable a much larger pool of designers to describe hardware because C/C++ users 
dwarf the HDL user population.  The amount of infrastructure required with these C/C++ 
extensions may approach or even exceed that of using HDLs. 

In an attempt to leverage the surging popularity of the Java programming language, as well as its 
support for code portability and for reuse via object-oriented facilities, researchers at BYU 
developed JHDL (see http://www.jhdl.org).  The JHDL approach exploits the explosion in 
software development tools for Java and the much larger population of Java programmers to ease 
in the general adoption of reconfigurable computing.  JHDL lowers many of the barriers to entry 
for potential developers, and significantly simplifies the mapping of functionality between 
hardware and software.  Nonetheless, performance limitations for Java hinder its adoption for 
high-performance applications. 

http://www.jhdl.org
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A number of challenges remain for developers using reconfigurable computers.  The verification 
of RC systems faces all the challenges of ASIC verification combined with the additional 
complexity of multiple configurations.  Fine-grain adaptation of configurations provides a higher 
bar for systems verification. 

Design languages, tools, and methodologies for RC systems continue to be a topic of research 
and development.  The same productivity gap between available gates and designed gates 
currently hindering ASIC designers affects RC designers as well.  Tools that support more 
abstract design while automatically extracting a problem’s parallelism and the most appropriate 
configurations are needed.  Addressing this problem is the focus of this research. 

For software engineers, the notion of an instruction set architecture greatly reduces the difficulty 
in developing applications.  This abstraction of a processor provides sufficient insight into the 
hardware to enable its effect use without overwhelming the programmer.  Currently, 
reconfigurable computers lack such a standard “programmable configuration architecture” to 
serve a role like that of an instruction set architecture.  This lack of a programmable 
configuration architecture could pose significant portability problems for the industry in the 
future. 

Understanding the impact of architectural changes is just beginning; the changes to models of 
computation are not well understood yet.  This remains as an exciting area of basic research with 
wide-reaching implications.  For example, just as the notion of virtual memory has resulted in 
significant improvements in software, the notion of the virtualization of hardware will provide 
similar benefits for hardware design. 

4.6 SECURITY SUPPORT FOR COGNITIVE COMPUTING ARCHITECTURES 
At the same time, reconfigurable computing provides the possibility to provide more secure 
computation. By providing functionality using reconfigurable circuitry, we can create 
customized systems with better security and reliability.  We first consider work pertaining to 
reliability and fault tolerance and how it can apply to creating secure systems. 

Significant prior work has been focused on FPGA testing, techniques for building fault tolerant 
systems using redundancy and voting, and related work for achieving reliability. Much of this 
prior work can be easily leveraged to improve the robustness of our systems (including security 
and reliability).  For example, configurations can be included that provide testing for some or all 
of the slices of the device. By periodically performing tests, the parts of the FPGA device that 
are inoperable can be identified and potentially avoided. Similarly, redundant functionality can 
be easily mapped to the device along with voting circuitry in the platform to provide fault 
tolerant operation. Scheduling execution with different portions of the FPGA (slices) over time 
can provide temporal redundancy as well. Providing functional redundancy by a diversity of 
implementations of accelerated operations on sandboxes can also be easily employed with the 
approach herein. What is particularly promising for this approach with reconfigurable devices is 
the potential for tracking errors in devices and scheduling around defects. In this effort we did 
not implement dynamic generation of bitstreams, but considered requirements for this capability 
and explored how this could be achieved. Finally, previous work in performance modeling for 
parallel and HPRC systems was adapted to explore predictions related to reliability for large 
numbers of FPGAs, processors, and accelerated operations [112,113]. 
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To create more robust systems, we explored the ability of reconfigurable computing systems to 
provide application-specific functionality on demand.  Although the hardware devices already 
provide much of what we need to achieve this, the overall system must be modified to provide 
the services to achieve robustness.  In particular, what is needed is a runtime system that works 
with the reconfigurable hardware to provide the user applications with the desired functionality 
and performance, but with robustness and flexibility.  

A runtime system that supports a set of hardware configurations was explored first, with a set of 
configurations statically defined. Although this conservative approach does not initially allow 
support of aggressive (partial) runtime reconfiguration, current tool and language limitations 
have prevented the adoption of this approach, so it should have little practical impact on DoD 
systems. The runtime system includes the development of “sandboxes” for each collection of 
logic mapped to the reconfigurable system, where the sandboxes provide isolation to preclude 
interactions between the different processes. Note that soft processor cores with applications 
software and data can exist within a sandbox, not only digital logic. The runtime system must 
interact with each of the sandboxes to support secure I/O, interrupts, and similar interfaces. The 
runtime system must also interact with the operating system to schedule the execution of 
configurations on the reconfigurable hardware (with some consideration of meeting real-time 
schedules considered, but not implemented here). A primary issue for each of these tasks is 
providing the right set of abstractions for the configurations and their services to the runtime 
system/operating system and to the applications developer.  

 

 
Figure 22: Column-Based Advanced FPGA Architecture (from www.Xilinx.com) 

The requirements for runtime support of a reliable, secure, reconfigurable system are complex. 
For example, reconfigurable hardware can provide the ability to change functionality, but 
effective means of managing the potential configurations and minimizing resource fragmentation 
is a challenge. The RS3 (Runtime support for Reliable , Secure, Reconfigurable systems) runtime 
system and scheduler must account for the potential problems related to fragmentation in order to 
work. Similarly, effective scheduling algorithms must be explored, keeping in mind theoretic 
constraints [114,115]. The effort focused on Xilinx Virtex FPGAs, as shown in Figure 22. These 

http://www.Xilinx.com
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FPGA families use a “slice” based architecture that enable convenient analysis of resource usage, 
flexible support for dynamic use, inclusion of reliability, and consideration of separation for 
sandboxes. Operating system and middleware support for the dynamic scheduling of tasks to the 
FPGA devices entail additional requirements for the runtime system. Such requirements include 
both software and hardware issues.  For example, the software requirements include standard 
requirements related to secure operating system management of resources as found with other 
types of devices and secure systems. Additional requirements include the ability for the operating 
system to allow multiple applications to share the FPGA resources in a controlled, correct 
manner. Such support levies requirements on the hardware, specifically including the platform 
and the sandboxes, so that signals, interrupts, memory, and I/O between the host processor, the 
platform, the sandboxes, and the accelerated operations. 

To pursue this research, we first defined a base hardware platform for consideration (we 
considered using a multicore processor and FPGA system such as from DRC, but worked instead 
with the Cray XD1 and Xilinx University Platform, XUP). We abstracted of this platform to 
generalize the results. Given the hardware platform, we used a Linux kernel to allow easy 
modification. Although we did consider real-time operating system issues as well, this research 
primarily focused on desktop environments initially. See [123] for a good overview of operating 
system and middleware issues related to secure systems. The primary extensions required related 
to scheduling a mix of accelerated operations on the reconfigurable hardware, dynamically 
configuring the reconfigurable logic devices as needed, and managing the communications 
between processes and the accelerated operations in a secure and reliable manner. For example, a 
process associated with a specific accelerated operation can interact with that portion of the 
reconfigurable hardware, but not with other portions not associated with that process. The 
operating system services must ensure that no illicit communications can occur that disseminated 
sensitive information and that no process can corrupt or modify the execution of another process. 
In order to constrain the problem, this effort only targeted a set of statically predefined set of 
legal configurations (bitstreams) for the FPGAs.  These configurations used “sandboxes” to 
provide encapsulation and isolation via a flexible interface. 

4.6.1 SANDBOXES 
An application requests services from the operating system in order to use the reconfigurable 
processing elements.  These services include configuration management and scheduling, I/O 
support, exception handling, and encryption support. The operating system services then 
schedules the configuration for execution within a sandbox selected from a set of sandbox 
templates. The sandbox templates include different sizes and aspect ratios of combinational logic 
blocks or slices. The sandbox templates support different security levels; memory requirements 
for distributed registers, embedded memory, or portions of external memory address space; and 
I/O requirements for encryption, bus widths, and data rates. The operating system then manages 
the execution of various configurations for accelerated operations with a set of sandboxes that 
provide high performance while ensuring the isolation required for security. The platform then 
manages the communications between the host processor and each of the sandboxes containing 
an accelerated operation. 
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Often times FPGAs are used for rapid prototyping of application specific integrated circuits that 
are to be fabricated.  In order to reprogram one, a circuit layout must be converted into a 
bitstream that details the FPGA functionality by dictating the function and interconnections of 
primitive elements.  This is similar to a C++ program being turned into  machine language for a 
CPU.  The majority of FPGA implementations are static and require the system to be completely 
erased before modifications can be loaded.  However, some FPGAs allow for dynamic circuit 
modification to enable systems that are re-programmable at runtime.  These systems are known 
as partially reconfigurable circuits.  They are a very powerful type of circuit that results in 
heightened security, higher performance, lower circuit complexity, and a flexibility that is 
similar to software [116].  Other notable benefits include increased function density, reduced 
power dissipation [117], and a smaller required area for the entire circuit, which results in cost 
savings.  Unfortunately, all of these benefits come at the cost of implementation complexity.  
The first hurdle is that the implementation requires bitstreams to be pre-synthesized and loaded 
into memory.  Then, a controller needs to be accessed to load the partial bitstreams. The nature 
of this pre-synthesis opens up all kinds of manual floor-planning requirements. Next, the 
methodology for implementing a PRC (Partially Reconfigurable Circuit) is quite complicated.  It 
requires the insertion of bus macros between modules, specific synthesis guidelines to generate 
the partially reconfigured netlist, proper floor-planning and placement of the bus macros, and 
adherence to specific PRC design rules; all of which require meticulous implementation in order 
to ensure success [118].  Due to design tool limitations and the lack of design flows, PRCs have, 
for the most part, remained in the realm of research.    Existing tools require designers to perform 
many extra design steps to manipulate primitive routing and function elements.  Many of these 
steps such as designing special connection points that must be manually inserted between static 
and dynamic regions [119], significantly increase the complexity of the implementation.  
Because of this, many designers have not had the proper guidance and experience to make PRCs 
practical [120].  

In order to simplify this complexity and gain additional design security benefits, we developed a 
method that implements an array of generic modules known as sandboxes.  Rather than 
modifying the bitstream for circuit reconfiguration, the connections between different sandboxes 
are modified, which essentially build the circuit at run time.  This concept of reconfiguration at a 
more abstract level allows for security levels far higher than were previously possible.  Areas 
where this technique and heightened security may be applicable include data cryptography, 
pattern recognition, power controlling, time division multiple access applications, and data 
manipulation that requires extreme security. Here we detail the proposed approach from the 
smallest element, the sandbox, up through the design flow.  An explanation of which methods 
can be implemented to dynamically create fast, reliable, and secure hardware functions will also 
be discussed. 

In this system the sandbox is the smallest element of a larger design.  The sandbox is a generic 
isolated module that can perform any one function, of a set of simple predefined functions.  A 
simple sandbox that performs some basic functions can be seen in Figure 23 below: 
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Figure 23: Simple Sandbox for Basic Arithmetic Operations 

 

A sandbox such as the one above might be capable of executing different operations such as add, 
subtract, shift left, shift right, and, nand, or, xor, nor, or more complex operations. 

Combining lots of these basic sandboxes together, with different operations on each, allows for 
the creation of a near limitless number of circuits without modifying the bitstream.  The idea is to 
essentially design an abstraction layer to be placed over the FPGA, specifically for 
reconfiguration, that allows for circuit modifications without modifying the actual hardware.  
Such a system would allow for mobile hardware processes [121]. A connection description could 
be passed to the FPGA along with initial parameters. After the function is completed it can 
destroy existing connections.  The end result is a method of true virtual hardware. 

The emerging paradigm of providing a large number of processor cores on a die, combined with 
aggressive adoption of virtualization support, presents challenges for fielding systems with 
effective security. Similarly, soft processor cores as well as accelerated functions included in 
reconfigurable logic will need to support multiple processes that may have different levels of 
security or require immunity from tampering. Different models of security and associated 
policies have been the focus of research for decades in order to provide a hierarchy of security 
levels and to compartmentalize information in a safe manner [122,123].  

The sandbox model relies on a hierarchical design to allow easy controllability. Connection 
bookkeeping is handled by a sandbox controller that has many of these sandboxes attached to it.  
The controller contains a port look up table and memory to store state information for the 
hardware process.  See Figure 24. 

 

 
Figure 24: Sandbox Controller with Block RAMs 
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A hardware process is implemented on the FPGA through the following flow.  First a computer 
system software process sends a request to the daemon running on the machine, which controls 
access to the FPGA.  The daemon sends the hardware configuration plus required inputs to the 
logic board.  Next the FPGA takes the hardware configuration, decodes it, and sends it to the 
OTF (On-The-Fly) Layout Planner.  This module consults the resource manager to determine 
which sandbox controllers are currently busy.  From here the layout is determined and the inputs 
and local layout configurations are passed to the sandbox controllers that are needed for the 
process.  The sandbox controllers set their connections and execute the task based on the inputs.  
A response is sent back to the daemon and relayed to the requesting software process.  The 
connections on the system are then released and ready for the next operation. 

 

 
Figure 25: Sandbox Model System 

 

The expected benefits from this design include the benefits of dynamic hardware systems with 
faster reconfiguration loading due to no hardware being changed (e.g., no new bitstream loaded), 
and increased security which will be discussed below. 

The driving motive that led to this new run-time reconfiguration implementation was the need 
for secure systems.  Next we will discuss the passive and active security features of this 
implementation.  The most notable passive security feature is that any individual or group 
attempting to tamper with the circuit to obtain valued information would not see the true circuit.  
Other security features include encrypted bitstreams, sensitivity control, and quick connection 
flushing. 

One of the major security features that the sandbox approach takes advantage of is the anti-
tamper protection.  Any individual who has the resources to extract the bitstream would have to 
decrypt it—as FPGAs often allow their bitstreams to have triple DES protection—and then 
reverse engineer it.  Assuming they were able to reverse engineer the circuit they would not have 
any valuable information. The only thing that would be visible would be the unconnected 
sandboxes.  Essentially, there is no hardware signature.  This is due to the fact that the design is 
created and destroyed at run-time.  The hardware process is created through the configuration, it 
executes, and then it dies through resetting the sandbox interconnections. 

Another prominent security feature of partially reconfigurable FPGAs is that they contain SRAM 
controlled configurations.  This means that the pre-synthesized bitstreams are held in volatile 
memory waiting to be swapped in at a nanosecond's notice.   The benefit of this is that when the 
system is powered off, the circuit function disappears, which makes tampering much more 
difficult.  Moreover, the functions built out of tiled sandboxes require dynamic instructions 
which are also held in volatile storage, further protecting the design from tampering.   
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Next, several active security features can be added to the system to further increase the overall 
safety.  The connection configuration and data that is passed to the FPGA can be encrypted 
before it is sent and then decrypted when received on the FPGA.  Also, depending on the size 
and security requirements of the design, the FPGA can be split into different self-contained areas 
each of which contains different levels of security.  This will allow multiple users, with different 
security requirements, to use the PRC elements, in a secure seamless manner.  The regions in 
which the processes are run can be separated based on classification level or other measures.  On 
very large systems or systems that require even further safety, these different regions may be 
implemented on completely different FPGA boards.   

An additional security feature that this approach makes easy to implement is a circuit self-
destruct feature.  A button or command could be added that instantly flushes all sandbox 
connections.  This would destroy the circuit leaving it empty for anyone who tries to tamper with 
it later.  One final security advantage to point out is that by design, sandboxes provide protection 
against many common attacks such as buffer overflows. All of these different passive and active 
security features make the sandbox model ideal for situations where security is of the utmost 
importance. 

4.6.2 CHECKPOINTING AND RECOVERY 
In order to support reconfiguration of some or all of an FPGA, one must determine what happens 
to any state associated with a previous configuration.  In the case of the sandbox system 
discussed above, the functions in each sandbox can be memoryless (without side effects), so that 
swapping different sets of sandboxes in and out of an FPGA can be easily accomplished.  On the 
other hand, if the sandboxes contain state that must be preserved for later function calls, then this 
greatly impacts our ability to reuse the sandbox.  Similarly, if the sandbox control circuitry 
contains state that must be preserved (we expect this to be the normal situation), then there is a 
need to save this control state before reconfiguring the FPGA to support different sandbox 
configurations.  To address this need, we developed an approach for checkpointing the state 
associated with an FPGA and enabling it to be recovered or restored after reconfiguration is 
complete. 

In order to support this saving of state, we must have some storage that is not affected by the 
FPGA reconfiguration.  We assume that this is RAM or some other memory located logically 
near the FPGA (perhaps on the same board).  This storage may or may not be volatile, as long as 
it is not erased after a checkpoint.  Next, we must annotate which memory block(s) we wish to 
checkpoint.  We must also provide some controller whose responsibility it is to manage the 
transfer of this data from the memory block(s) to the external storage during a checkpoint.  This 
controller could be implemented much like a TAP (Test Access Port) controller for IEEE 1149.1 
boundary scan support, or it could be implemented to transfer data during execution, but to 
prevent incoherent data from being saved, it is best to freeze the function of a sandbox while its 
data is being checkpointed. 

Each block of data is stored in memory using a directory scheme akin to the inodes used with 
Unix for managing files.  In the case of the sandbox controller, it has responsibility for reloading 
the state of each sandbox that will be restored (we assume a flag is kept for each of them 
pertaining to whether or not they will be restored).  When a new configuration is loaded, the 
checkpoint and recovery controller will take over from initialization and grab the equivalent of a 
bootstrap from a specific external memory location.  It will then look up in this location the 
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bootstrapping information for the controller (e.g., how many memory blocks, their size, location, 
etc.).  Using this information it will address the required data, read it from external memory, and 
load it into the locations on the FPGA.  Similarly, the checkpoint and recovery controller will 
work with the sandbox controller to transfer memory blocks from checkpointed sandboxes back 
to their memory location (which may be on a physically different part of the FPGA, or perhaps 
on a different FPGA in more complex systems). 

To accomplish this functionality, one needs to provide a checkpoint and recovery controller.  
One means of doing this is to use a built-in PowerPC processor in many Xilinx FPGAs or 
perhaps a MicroBlaze or NIOS soft core.  The controller must be able to access the memory to 
be saved.  If sandboxes have state to be saved, they must provide access to the controller by 
standard design interfaces (this could be similar to scan chains of registers or paths to block 
RAMs). 

Using this approach, one can save some or all of the critical state of an FPGA and restore it after 
being reconfigured.  In the case of the sandboxes, one might wish to change the number or 
specific mix of types of sandboxes.  By using this approach, one can save the state of interest, 
reconfigure the FPGA as needed, restore state, and then continue operation.   

An idea we have not pursued is the potential to have some sandbox state loaded from biometrics, 
secure ID, or other input that could be used to authenticate users and restore specific capabilities 
when they use the secure computing system. 
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4.6.3 SANDBOXES SUMMARY 
A simple prototype has been developed to act as a proof of concept.  It implements the generic 
sandbox shown in Figure 25.  With this proof of concept completed, we are investigating 
different sandboxes to create operational flexibility and to serve as a framework to maximize 
performance, reliability, security, and re-usability.  A good tool to test the performance and 
reliability, is to run comparative analysis against static circuits with the same functionality.  A 
verification metric would be suitable for future work as well to ensure reliability.  As it stands, 
verifying a circuit model that constantly changes could be quite challenging.  Creating a built in 
self-verification for dynamically loaded circuits would be a very cumbersome task, but one that 
needs to be explored.  Our extensions of this work will address these issues. 

The flexibility and performance of FPGAs have made them ideal for the rapid prototyping of 
custom ASIC (application specific integrated circuit) designs.  One of the most intriguing 
research areas has been the practical application of dynamic partial reconfigurable FPGAs.  
These dynamic configurations have many benefits and limitations.  They provide better 
performance and flexibility while taking up less area, which is ideal for ASICs.  However, their 
limitations include lack of design tools and intensive manual floor planning.  This is also 
assuming that the board chosen for design can even be dynamically reconfigured.  This paper 
proposed a new solution for run-time reconfiguration limitations that enhances features such as 
security and reconfiguration load times.  An added benefit is that such a system is generic 
enough that it can be implemented on FPGAs that have not been designed for dynamic 
reconfiguration.  Security is one of the motivators behind this new implementation, and as such, 
notable security enhancements include no hardware signatures, bitstreams that do not reveal any 
sensitive information about the circuit, and the ability to quickly flush all circuit connections 
effectively destroying the circuit.   

Another key issue related to CAD and programming is an understanding and appreciation of the 
performance achieved by cognitive processing applications.  The next chapter addresses 
performance evaluation approaches we have explored for these platforms.
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5. PERFORMANCE MODELING 

5.1 INTRODUCTION 
The performance of a large parallel application on shared resources depends on the performance 
characteristics of the resources, the division and scheduling of tasks, and the load balance across 
nodes of the computing platform. The scheduling problem has been well studied in the literature 
[124,125,126,127]. In this work, we focus on static scheduling of applications that follow a 
generalized Master-Worker paradigm (also called task farming). The generalized Master-Worker 
paradigm is easy to program and is especially attractive for grid platforms. In grid platforms, the 
availability of resources is typically in a state of flux and worker tasks in a Master-Worker 
paradigm can be easily re-assigned as needed when resource availability changes. Furthermore, 
many scientific and computationally intensive applications can be mapped naturally to this 
paradigm: N-body simulations [128], genetic algorithms [129,130], Monte Carlo simulations 
[131], and parameter-space searches, among many others. Cognitive processing applications can 
also share this structure of processing, with many types of signal and image processing, pub/sub 
processing of queries, distributed agent coordination, and neural network evolution/training or 
application following a master-worker form. In scheduling these applications, there are two main 
challenges: 1) how many workers should be allocated to the application and 2) how to assign 
tasks to the workers. In general, we would like to make the most efficient use of our computing 
resources while at the same time minimizing our runtime.  

Networks or clusters of workstations can provide significant computational capabilities if 
effectively utilized. Similarly, large supercomputing platforms exist to provide high performance 
computing, but demand effective mapping of tasks to resources to exploit their resources.  
Adding reconfigurable computing (RC) devices to form a high-performance reconfigurable 
computing (HPRC) platform, introduces additional challenges for efficient utilization of all 
available resources. To address these issues, we have developed an analytic performance 
modeling methodology for synchronous iterative algorithms, a sub-class of fork-join algorithms, 
running on shared, heterogeneous resources which is completely developed in [112,132]. In this 
report, we present an overview of this model and investigate some example applied uses. If 
HPRC resources can be effectively utilized, users can garner increased performance and 
flexibility for a wide range of computationally demanding problems. 
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Execution time estimation plays an important role in parallel performance modeling. Given 
certain computation loads and resources, the execution time of each processor can be modeled as 
a random variable while that for the parallel system is determined by the last processor 
completing its task [133]. For example, Peterson and Chamberlain built a model for network 
stations [133,134]. The overall execution time consists of three parts: parallel work, serial work 
and overhead. When the number of tasks is big enough, execution time for each processor can be 
represented by Gaussian random variables iX . Because of the effect of synchronization, the 
overall execution time is decided by the latest completed task. Therefore, the estimation of the 
system execution time depends on the calculation of the expectation of maximum value 
(EMV) )(max 1 i

N
i XE = . However, the solution in closed form usually cannot be derived for this 

term. This problem is even more challenging for heterogeneous environments, where the 
execution time for different processors has different distributions. Due to its importance in 
parallel computation modeling and other places, many researchers have tried various kinds of 
methods for this problem.  

Monte Carlo (MC) methods can be used to compute EMV with any initial distributions. 
However, it has no analytical expression and is too computationally expensive for most of the 
evaluations. The use of order statistics is first suggested for analyzing parallel program 
performance by Weide [135]. For independent identically distributed (i.i.d.) random variables 
with known distribution functions, extreme theory [136,137] can be applied to approximate the 
distribution of extreme values. The approximation becomes exact when the number of random 
variables increases. This method cannot cover all distributions because it is too complicated to 
derive asymptotical extreme distribution functions for some distributions by extreme theory. 

Agrawal [138] evaluates the performance of synchronous logic circuits simulation by applying 
the Binomial distribution to determine the number of events at each processor. The amount of 
active gates, which needs to be simulated for each processor, is randomly distributed. Order 
statistics is used to calculate the expectation of execution time when gates are equally assigned to 
each processor. In this case, the processor loads are independent and identically distributed 
binomial random variables. For imbalanced cases, processors are divided into different subsets. 
The processors in one subset are equally statically loaded, so the order statistics can be applied to 
calculate the expectation of execution time for each subset. Because there is no analytical 
method for the non-identical random variables, the maximum subset execution time is 
considered as the overall execution time [138]. As we will discuss later, this method brings large 
estimation error. 

Despite of all these work above, the problem to compute the expectation of the maximum value 
is still left unsolved for decades. First of all, current method cannot accurately compute EMV for 
heterogeneous initial distributions. Secondly, even when initial random variables are i.i.d., 
current methods either cannot cover all the common applied distributions in parallel computing 
or are not accurate enough. MC simulation can be general and accurate for all distributions. 
However, its expensive computational requirement is usually unacceptable in large scale parallel 
computation performance evaluation. Furthermore, MC simulation cannot provide an analytical 
form for this problem, which is important for the property analysis of the execution time. 
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This report includes an interesting property of extreme values we discovered, which provides an 
analytical method to accurately approximate the expectation of parallel execution time for both 
homogeneous and heterogeneous environments. Compared to previous methods, it is more 
accurate, computationally effective, and general to probabilistic distributions. Using complicated 
task graph analysis for parallel computation modeling is a well known challenge. We utilize 
probability tools to simplify the complexity in task graphs and utilize the EMMA( Expected 
Mean Maximum Approximation) method for execution time analysis. Interdependencies are 
usually unavoidable among parallel tasks but very difficult to calculate in performance modeling. 
To help solving these problems, we also discuss the effect of interdependence on execution time 
estimation and extend the EMMA method for interdependent computing tasks.  

5.2 BACKGROUND 

5.2.1 HPC, RC, AND HPRC 
In RC architectures, the general-purpose processor performs operations that are not efficient in 
the reconfigurable logic such as data setup and organization, loops, branches, and other control 

structures, while computationally intense tasks are mapped to the reconfigurable hardware [4]. 
As shown in Figure 26, HPRC platforms consist of a number of computing nodes connected by 
some interconnection network (ICN); the computing nodes typically consist of a general-purpose 
processor coupled to the RC hardware via some communication interface (e.g. PCI, memory bus, 
rapid array, hypertransport, etc.). The HPRC platform allows users to exploit fine and coarse 
grain parallelism within the RC device and across the parallel compute nodes.  

Several options currently exist for building or buying HPRC systems. In addition to a variety of 
RC cards such as the Pilchard [139] and others available from vendors such as Celoxica [140] 
and Nallatech [141], HPC vendors such as Cray with its XD1 [142] and SGI with their RASCTM 
system [143] have entered the market with HPRC platforms featuring high-end processors 
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Figure 26: High-performance Reconfigurable Computer (HPRC) Architecture 
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tightly-coupled with reconfigurable devices. The advantage of these systems is that users are 
accustomed to programming in their environments (compilers, debugging tools, task managers, 
etc.). The disadvantage of these systems is the software stack specifically for the FPGA devices 
is not fully developed and difficult for scientists and end-users to utilize. Additionally, 
companies such as SRC with their line of MAPstations® [144], OpteronTM-socket products from 
DRC Computers [5] and XtremeData [6], and systems using Intel’s Accelerator Abstraction 
Layer support from DRC [5] and Nallatech [141] have entered the market with cluster based 
platforms. The advantages of systems from these vendors include their more sophisticated and 
developed software stack and that systems can be built incrementally (node by node) and in 
some cases, less expensively. The disadvantage of these systems is that the FPGA software 
development stack is often tightly coupled to the architecture and in the case of SRC, only works 
with their systems. One final advantage for the SRC system is that it is currently the only system 
offering Fortran support for FPGAs (Fortran is a commonly used language in scientific 
applications). 

For all the HPRC systems mentioned thus far, the RC element of the system is in the form of an 
RC board or module and the primary architectural difference is the manner in which it is coupled 
with the rest of the system. Each of the above-mentioned platforms has a different 
communication interface between the general-purpose processors and the reconfigurable 
hardware devices in addition to other variations including the host processor, memory hierarchy, 
FPGA devices, clock frequency, etc. The model presented later provides parameters for 
describing these various differences enabling the performance comparison of an application 
running on a variety of different architectures from current to future systems. 

5.2.2 SYNCHRONOUS ITERATIVE ALGORITHMS (SIAS) 
As the name implies, Synchronous Iterative Algorithms (SIAs), also known as multi-phase 
algorithms in the literature, are iterative in nature with each processor performing some portion 
of the required computation during each iteration. SIAs are a sub-class of a much broader set of 
algorithms known as fork-join algorithms where a main process or thread forks off some number 
of other processes or threads that then continue in parallel to accomplish some portion of the 
overall work before rejoining the main process or thread. These algorithms can be hierarchical 
and recursive, thus supporting a wide range of distributed and parallel applications. Many 
scientific algorithms fall into this large class of problems such as N-body simulations, Monte 
Carlo simulations, many discrete-event simulations, numeric optimizations, Gaussian 
elimination, FFTs, equation solvers, data encryption, sorting algorithms, and others.  

 
Figure 27: Timing of a synchronous iterative algorithm 
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In [112,132], we developed a performance model for fork-join type algorithms that takes into 
account the division of computation between the workstation processor and the reconfigurable 
device, task balance across the set of compute nodes, background loading (due to shared 
resources), and workstation heterogeneity. The development of an analytic performance model is 
a significant contribution that facilitates resource management optimization by helping users 
understand the performance tradeoffs in the computer architecture. With the knowledge and 
understanding of the combined system and application performance gained from the model, one 
can quickly determine the optimum application mapping for a set of constraints or identify the 
best set of computing resources to optimize runtime. 

In order to effectively utilize our shared resources, we will employ this modeling methodology 
along with a usage policy with a measurable goal(s). Specifically, our objective is to choose an 
appropriate set of compute nodes on which to execute a given application that best meets our 
usage policy goals. The scheduling decisions must account for the individual processor 
performance characteristics as well as the existing background load. The desired usage policy is 
based on the relative importance of parallel applications to the existing background load 
(priority) and individual workstation characteristics such as processing power, type of or lack of 
reconfigurable hardware, current workload, or other factors. To implement the desired usage 
policy into a schedule for the parallel application, we build a cost function that represents the 
policy goals and using optimization techniques to minimize that cost function, we find a 
schedule for the parallel application that will most effectively utilize the available resources. It is 
well known that the optimization of a general cost function is an NP-hard problem [115] 
therefore true optimization is limited to restricted classes of problems which have efficient 
solutions or the use of heuristics to find near-optimal solutions. 

  5.3 PERFORMANCE MODEL OVERVIEW 
In fork-join algorithms and SIAs, the time required to complete a given iteration is equal to the 
time required for the slowest or longest task to complete. The join processes in fork-join 
algorithms, or barrier synchronizations in SIAs, ensure that all processors start a given iteration 
together and that processors who complete their tasks early sit idle until the end of the iteration. 
Within a given iteration, a parallel algorithm normally includes some serial calculations 
(operations that cannot be parallelized), the parallelized operations, and some additional 
overhead (i.e. setup, synchronization). For the applications considered, each iteration requires 
roughly the same amount of computation making iterations similar enough that we consider the 
computations required for a “typical” iteration. This characteristic is valid for a large class of 
problems and is a reasonable assumption for many real-world algorithms. This tradeoff is used 
here to make the mathematics of the model less complex and more tractable for analysis. 
References to individual iterations could be maintained at the expense of a more complex model 
in the end. 
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First, we will assume we have a segment of an application having I iterations that will execute on 
parallel nodes with RC hardware accelerators and we will assume that all iterations exhibit 
similar behavior with respect to performance. Software tasks are distributed across parallel 
computing nodes and hardware tasks are distributed to the RC devices(s) at each individual node. 
For an SIA, we know the time to complete an iteration is equal to the time for overhead 
operations plus the time for the longest (slowest) task, which in the case of HPRC could be 
computed in either hardware or software depending on the task distribution. Therefore, we 
represent this iteration time as the overhead operations plus the maximum of the hardware or 
software task times: 

iteration time = overheads +  
max(hardware runtimes, software runtime) (5) 

Looking at these terms in more detail, within each iteration of the algorithm there are some 
calculations which cannot be executed in parallel or accelerated in hardware and are denoted 
tserial,i. There are other serial and overhead operations required by the RC hardware and they are 
denoted tRC-ovhd,i. Other overhead processes that must occur such as synchronization and 
exchange of data between parallel computing nodes are denoted tpar-ovhd,i. The time to complete 
the tasks executing in parallel on the processor (software) and RC unit (hardware) are tSW,i,k and 
tHW,i,j,k respectively. For I iterations of the algorithm where n is the number of hardware tasks at 
node k and m is the number of processing nodes, the parallel runtime, RP, can be represented as 
shown in                        
(6), where in the second line, the tSW,i,k and tHW,i,j,k terms are combined to form the general task 
completion time for the RC node, tRC,i,k. 

RP =
[tserial ,i + tRC −ovhd ,i + t par −ovhd ,i

+ max
1≤k ≤m

(tSW ,i,k ,max
1≤ j ≤n

[tHW ,i,k , j ])]i=1

I

∑

=
[tserial ,i + tRC −ovhd ,i + t par −ovhd ,i

+ max
1≤k ≤m

(tRC ,i ,k )]i=1

I

∑
                      

(6)              

Now we combine the serial and RC-overhead into one serial term along with other manipulations 
detailed in [112] and separate the parallel overhead term into the communication and 
synchronization overheads, we can rewrite the parallel runtime as: 

RP = I
tserial + β ⋅ tHW + E max

1≤k ≤m
(tRC ,k )⎡

⎣⎢
⎤
⎦⎥

+tsynch ⋅ log m + tcomm

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

(7) 

where n tasks are divided across the nodes, a load imbalance occurs due to application workload 
distribution (β), background users (γ), or workstation heterogeneity (δ). The he application load 
imbalance exists when tasks are unevenly distributed across the parallel computing nodes either 
a priori or during application runtime. Background load imbalance results from other users of the 
shared workstations. These users consume clock cycles that would otherwise be available for the 
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parallel application in a dedicated system. Finally, workstation heterogeneity, or workstations 
with different performance capabilities, induces another load imbalance since some workstations 
will have better performance capabilities than others. We represent this total load imbalance 
product as η [112,132]. Assuming that the RC system load imbalance at any node is independent 
of the other nodes, the runtime for an application running on a shared, heterogeneous HPRC 
platform becomes: 

RP = γ ⋅ tserial ,i + β ⋅ tHW +
η ⋅ twork

m
+ tsynch ⋅ log m⎡⎣ ⎤⎦ + tcomm

 (8) 

load imbalance on shared, heterogeneous workstations can be represented using scaling factors 
for application (α) and background (β) loading. To model heterogeneous processors, the scaling 
factors δj representing the processing time per unit work of processor j, and ω the time per unit 
work of the baseline processor are introduced. (For homogeneous resources, δj = ω = 1 since 
processor j will have the same performance as the baseline processor.) Finally, B represents the 
average work for a processing node and βj/B is the application load imbalance scale factor for 
processor j. Therefore, for heterogeneous processors, η is defined as [112,132]: 

η =
1
B

E max
1≤ j ≤n

[
η j

Wj

]
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
1

ωB
E max

1≤ j ≤n
[β jγ jδ j ]⎡

⎣⎢
⎤
⎦⎥

 (9) 

Assuming the application and background load imbalances are independent of each other and 
that the application and background load imbalances of any processor are independent of the 
other processors, the expected value is [112,132]: 

η =
1

ωB
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(10) 

The application and background load imbalances are modeled with discrete-valued scale factors 
since the loads consist of some number of processes or tasks (a non-negative integer). Full 
derivation of the load imbalance model can be found in [112,132]. 

  5.4 OPTIMIZATION PROBLEMS 
In this section we will look at the application of the performance model to optimizing HPRC 
resources. Three algorithms are used to demonstrate the optimizations: the Level 3 BLAS routine 
DGEMM [145], a cryptography algorithm for Advanced Encryption Standard (AES) [146], and a 
Boolean SAT (Satisfiability (Boolean Satisfiability) Solver [147]. 
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  5.5 EXPERIMENTAL SETUP 

In the analysis experiments discussed in this section, there were two experimental systems. In the 
first analysis discussed, the experimental system consisted of an SRC MAPstation [144]. The 
particular MAPstation used for testing consisted of dual 2.8 GHz Xeon® microprocessors with a 
Series C MAP® (Multi-Adaptive Processor). The MAP board is connected to the microprocessor 
via the SNAP® interface cards which plug into the DIMM slot. The MAP consists of two Xilinx 
Virtex II XC2V6000 devices running at 100MHz, a pre-configured FPGA control processor, and 
six 4MB SRAM banks referred to as On-Board-Memory (OBM). Code for both the host 
processors and the MAP hardware is written in standard C or Fortran. Function or subroutine 
calls are used to execute code on the MAP and are compiled by an SRC-proprietary compiler 
that targets the MAP components. The CARTE® environment [144] builds and links a unified 
executable that binds the application and configuration(s) for the MAP hardware. 

The second experimental setup, used in the remainder of the analysis, consists of six Pentium 
workstations running Linux OS populated with Pilchard boards [139]. The Pilchard architecture 
consists of a Xilinx Virtex 1000E FPGA interfaced to the processor via the SDRAM DIMM slot. 
The logic for the DIMM memory interface and clock generation is implemented in the FPGA 
and the user’s application code is developed using VHDL (Very High speed integrated circuits 
hardware Description Langauge). The FPGA is configured using the download and debug 
interface, which is separate from the DIMM interface and as such, requires a separate host 
program to configure the FPGA. Application code for the host processor is developed using a 
standard C compiler. Both experiment platforms address the FPGA-to-processor bandwidth 
bottleneck of the PCI bus by interfacing the FPGA device to the processor via the memory bus. 

The overhead components of the problems consist of tRC-ovhd and tpar-ovhd. The former is related 
the RC hardware and consists of the time necessary to configure the FPGA device and move data 
to and from the FPGA device. The latter overhead contribution, tpar-ovhd, consists of the time 
necessary to perform functions such as synchronizations and communications between parallel 
tasks.  

Instrumentation of the applications is accomplished with timer functions in the C code and 
hardware counters in the FPGA designs. The hardware counters do not introduce overhead but 
only provide measurement of computation internal to the FPGA. The timer functions in the C 
code do introduce overhead and care has been taken to minimize their impact. Background loads 
were synthetically generated and introduced via cron scripts to simulate background users and 
heterogeneity in an otherwise dedicated, homogeneous cluster. 

We point out that although this development and validation work directly address parallel 
processing systems and reconfigurable computing (e.g., HPC, RC, and HPRC), the same 
framework can be applied to systems using accelerators such as GPUs.  In fact, we have done so 
with very accurate results, modulo the compiler optimizations and instruction scheduling for the 
specific GPU processors.  We expect similar applicability and accuracy for other accelerators 
such as Clearspeed [148].  We have not considered this modeling framework for other 
architectures such as quantum computing or DNA/molecular computing. 
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 5.6 APPLICATION-ARCHITECTURE ANALYSIS AND OPTIMIZATION 

A straightforward use of the modeling methodology in optimization and scheduling is to predict 
the runtime performance of applications executing on our shared HPRC resources. We have 
investigated the characteristics of a particular application under various workload conditions and 
policies, but we could also use the model to evaluate the performance impact of varying the 
problem size, network size, and other effects. The modeling methodology provides for easy 
investigation of these issues by simply changing the values for such things as the problem size, 
overhead, communication time, etc. We can easily consider the addition of more computing 
nodes, faster nodes, more RC devices, larger or faster RC devices, etc. and using appropriately 
constructed cost functions, determine their cost-effectiveness and/or performance impact. Figure 
28 shows an analysis of the effects of FPGA speed, FPGA logic density, and data streaming on 
the performance of the Level 3 BLAS [145] routine DGEMM running on the SRC Series C 
MAPstation [144]. The first trace listed in the legend represents the software-only atlas-tuned 
version of DGEMM running on the SRC dual 2.8 GHz Xeon host processors and provides a 
baseline comparison for our analysis. The next two traces listed in the legend are HPRC 
implementations of DGEMM on the SRC MAPstation. The first of these traces, which is the 
lowest performance on the graph, represents the implementation of DGEMM in hardware and 
includes tRC-ovhd. The next trace is the same hardware implementation but in the model, the 
overhead tRC-ovhd is hidden by with DMA-streaming. This technique overlaps the computation 
with the data movement and as seen in the graph, offers a significant improvement especially in 
the smaller dimensions where overhead costs dominate. Analysis of other application 
implementations has confirmed this improvement.  

The remaining two traces are model results predicting performance of the DGEMM 
implementation with FPGA devices running at 2x the clock rate. Assuming the data bandwidth 
supports the increased computing throughput, there is a significant improvement in performance 
and ‘time to solution’ as shown in Figure 28. The first of these traces includes the worst-case 
data transfer overhead tRC-ovhd where the computation stalls and waits for data. The last trace, 
which offers the best performance on the graph (better than the atlas-tuned software-only 
implementation) across the entire dimension studied, utilizes the DMA streaming technique 
mentioned earlier to hide the data transfer costs by streaming data in parallel with computations. 
Through this simple straightforward analysis we see that the modeling methodology is a 
powerful tool for investigating the performance of an application and the impact of the 
characteristics of a hardware platform and programming techniques. The results of this analysis 
have led to an increase in the FPGA clock rate, higher data bandwidth in and out of the FPGA 
devices, and improved DMA streaming capabilities in the succeeding SRC MAPstation systems. 
The study also provided useful information about the bottlenecks in the application, which 
centered on the data access in the algorithm; focused techniques were then used to extract the 
maximum parallelism achievable with the given application and hardware architecture 
combination. These techniques included loop unrolling, block matrix operations, data sharing, 
and loop fusing. Additionally, macros provided with the CARTE development tool were used to 
implement the most efficient multiply-accumulators in the FPGA hardware. Performance 
analysis with the model allowed us to isolate parameters to determine the location of the 
bottlenecks and eventually how to overcome them. 
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5.6.1 MINIMUM RUNTIME 

To determine the schedule with the minimum runtime for shared homogeneous HPRC resources, 
we use the algorithm shown in Figure 29(a) [149]. 

First the compute nodes are sorted based on the arrival rate of background jobs. This process 
orders the nodes based on background load (or highest performance potential) since all nodes are 
of equal unloaded performance. Then the set of nodes for the schedule is selected to contain only 
the compute nodes with the lowest background task arrival rate. The runtime for the application 

is calculated for this computing node set and the next compute node is added in sorted order, 
repeating the runtime calculation until the added compute node no longer improves the runtime. 
In each calculation, an equal amount of work is assigned to each compute node in the set. This 
algorithm, similar to the one described in [150], gives the optimal solution for minimum runtime 
only when there is a minimum runtime, which is always true for SIAs where a barrier 
synchronization is required after each iteration. This optimization problem is applicable to all of 
the aforementioned HPRC platforms where any of them can be configured with either 
homogeneous or heterogeneous resources. 
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Figure 28: Performance analysis of DGEMM running on SRC MAPstation (NxN matrix) 
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5.6.2 HOMOGENEOUS RESOURCES 
For the AES algorithm, we see in Figure 29(b) that the runtime continues to improve from 
adding homogeneous workstations until we are using 25 computing nodes (in this case, we 
assume the same background loading model at each workstation, with an arrival rate of λ = 0.2). 
As more nodes are added, the additional overhead required for communication and 
synchronization of the new workstations negatively affects the performance. Additionally, due to 
the criteria used in the sorting algorithm, the background load is greater on each subsequently 
added node (the workstations are sorted based on background load), which contributes to a 
longer runtime. Therefore, we reach a threshold (approximately 25 nodes) where as nodes are 
added our performance no longer improves. Our measured results are limited by the size of our 
experimental platform - 6 nodes.  

Next we look at the SAT Solver Application and investigate how changing the number of FPGA 
processing elements per computing node (parallel copies of the compute function in the FPGA 
device) and speed of the computing node resources will affect the application runtime. As shown 
in Figure 30(a), as one would expect, increasing the number of FPGA processing elements per 
computing node reduces the application runtime. However, as the total number of computing 
nodes increases, the three cases (4, 8, and 16 PEs/Node) approach one another and the 
performance advantage of extra processing elements per node is not as significant. In Figure 
30(b) we again see that increasing the speed of the FPGA processing elements reduces the 
application runtime. However, as the total number of computing nodes increases, the three cases 
again approach one another and the performance advantage of faster hardware is not as 
significant.
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Sort available compute nodes S by background job arrival 
rate λ
P  {j}, where j is compute node in S with lowest arrival rate
while  not done do

P’  P U {k}, where k is next node in S
if RP’  < RP

P  P’
else

done  TRUE
endwhile
return optimal set P  

(a) 
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Figure 29: Homogeneous Resources: (a) Algorithm for minimum runtime on homogeneous 
resources (b) Optimum set of homogeneous resources for AES algorithm
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(b) 

Figure 30: Optimum Set of Homogeneous Resources for SAT Solver: (a) Compare number of 
PEs/Node (b) Compare FPGA Clock Frequency 

 

5.6.3 HETEROGENEOUS RESOURCES 
For applications running on heterogeneous resources, the performance model and algorithm are 
more complex and we resort to heuristics to find a near optimal solution since an efficient 
optimal solution does not exist [149]. Greedy heuristics are efficient to implement and in this 
case an acceptable choice even though they can get stuck in local extrema and therefore may not 
provide the best global solution. 

If we assume that the application code is divided equally among the computing nodes, then we 
only need to consider the background load and heterogeneity when determining the optimum set 
of nodes. For the HPRC runtime model in [112], the background load is represented by a 
processor sharing queuing model and assuming that the service distribution of background tasks 
is Coxian [149,151], the expected number of background tasks at compute node j is ρj/(1 – ρj). 
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Adding the current application to the workstation load, the expected number of background tasks 
at processor j becomes 1/(1 – ρj). Since the compute nodes are heterogeneous, from the model in 
(8) and (9), we scale the runtime by δj/ω, where δj represents the processing time per unit work 
of compute node j, and ω the time per unit work of the baseline compute node. Multiplying by 
the background load (γ) and heterogeneity scale factors (δj), we find that compute node j is 
expected to take δj/[ω(1 – ρj)] times as long as if the application ran on a dedicated baseline 
computing node. Using the heuristic algorithm shown in Figure 31, we sort the computing nodes 
based on the values of this scale factor rather than simply the background arrival rates as was 
done in the homogeneous case. We start with at least two workstations in the set and test the 
addition of more workstations as in the homogeneous example to find a near-optimal set of 
workstations P. 

 

Sort available compute nodes S by δj/[ω(1 - ρj)], the scale factor for compute node j

P0  {j}, where j is first compute node in S      (serial case)

P  P0 U {j+1}, where j is first compute node in S (make sure we test at least 2 nodes)
while not done do

P’  P U {k}, where k is next compute node in S
if  RP ’ < RP

P  P’
else

done  TRUE
endwhile (done when exhausted all nodes)
if RP

 < RP0
return P (near-optimal set)

else

return P0    (serial case faster than parallel)
 

Figure 31: Greedy Heuristic for Minimum Runtime on Heterogeneous Resources
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Figure 32: Near-Optimum Set of Heterogeneous Resources for AES Algorithm, choose from set: 
(a) 8 nodes or (b) 16 nodes 

 

In our first example, we model the AES algorithm running on eight heterogeneous nodes with 
four different speeds as denoted by the value δj for compute node j. Two of the compute nodes 
have δj = 1, two have δj = 2, two have δj = 4, and two have δj = 6. In Figure 32(a), we see that for 
our set of eight heterogeneous nodes, the runtime is at a minimum at six nodes.  

In the second example we have a set of sixteen heterogeneous nodes with four different speeds. 
Two of the compute nodes have δj = 1, four have δj = 2, four have δj = 3, four have δj = 4, and 
two have δj = 6. In Figure 32(b) we see that for our set of sixteen heterogeneous nodes, the 
runtime is at a minimum at ten nodes.  

The algorithms we have discussed thus far ignore the impact on other users. By minimizing the 
runtime of the candidate application, without considering the impact on other users, the cost 
function essentially gives the candidate application priority over other users. In the next section, 
we will look at the use of a cost function to balance the runtime of the candidate application with 
the impact on other users while optimizing resources. 
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  5.7 OPTIMIZATION SPACE ANALYSIS 

To illustrate the power of the modeling methodology when used with cost function analysis, we 
will now analyze the optimization space using a fixed cost function and vary other parameters in 
the model. In our example, we will look at the SAT Solver Application running on a set of 
homogeneous resources with identical costs and a cost function representing the trade-off 
between maximizing the application performance and minimizing the impact to other users 
[149]: 

CP = xRP + cj RP = RP x + cj
j =1

P

∑
⎛

⎝⎜
⎞

⎠⎟j =1

P

∑  (11) 

The cost function reflects the usage policies encouraging the use of particular compute nodes for 
the candidate application based on the cj values. Higher cj values equate to higher cost or less 
desirable nodes. The x term represents the desire to minimize the execution time of the candidate 
application regardless of the number of nodes (higher x gives higher priority to the candidate 
application). 

First, we will vary the number of processing elements of the SAT Solver engine implemented at 
each node (i.e. per FPGA) and determine how that number affects both the runtime and the cost. 
Figure 33 plots the optimal set of homogeneous resources for the SAT Solver application as we 
vary the x/c ratio. In Figure 34 we select the values of x and c such that x/c = 0.0001 to enact a 
usage policy that gives more priority to the background users relative to the candidate 
application. From the three plots we see that by changing the number of processing elements per 
FPGA at each computing node we reduce the overall runtime (right axis) as expected but the 
change also affects the cost analysis results. As the number of processing elements per node 
increases, the number of computing nodes in the optimum set for our cost function decreases 
(from 6 to 4 to 3 in this example). Although our overall runtime would be shortened with a larger 
set of nodes, our cost function is optimized with fewer nodes (see Figure 34). 
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Figure 33: Optimal Set of Homogeneous Resources for SAT Solver, Varying the Number of 
Processing Elements per Node 
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Figure 34: SAT Solver: Varying the Number of Processing Elements per Node (x/c = 0.0001) 
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5.8 COMPUTING THE EXPECTED MAXIMUM VALUE 
To compute the execution time using the model developed above, we have to calculate the 
expectation for the maximum parallel execution time per iteration, which can be computed by 
numerical or analytical methods. An analytical solution of this problem is very helpful for 
performance analysis and optimization. If the individual runtimes are i.i.d., the distribution 
function of S is: 

( ) ( )( )p
tS sFsF

jparallel ,
=  (12) 

 

The density function of S is: 

( ) ( )( )

( )( ) ( )( )

( )( ) ( )sfsFP
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−
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The expected maximum is then: 

( ) ( )
( )( ) ( )∫=
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−b
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dssfsFsP

dsssfSE

jparalleljparallel ,,

1  (14) 

Where a  and b  are the lower and upper bounds of random variable s . EMV (Expected 
Maximum Value) in equation (14) could be analytically solved for some simple distributions. 
However, numerical methods normally have to be used. The resulting computational load is 
unacceptable for many applications, such as dynamic load balancing and scheduling.  

Extreme theory [136] could approximate EMV when the initial random variables are i.i.d. and 
follow certain distributions. For normally distributed random variables with mean μ  and 
variance 2σ : 
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tE jparallel
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Where γ  is Euler’s constant (0.5772). 

Note that extreme theory gives asymptotic approximations as the number of random variables 
grows. It can only work for certain distributions. To find a general and effective execution time 
approximation for parallel performance evaluation, we introduce the EMMA method in the next 
section. 
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5.8.1 THE EMMA MEHTOD 
Current methods cannot calculate EMV for many commonly used distributions. At the same 
time, it is normally a tedious task to derive the approximation functions from extreme theory. 
The EMMA method solves this problem by using a short function and constant. This section will 
also describe a novel extension to the EMMA method for non-identical initial distributions. 

4.1.1.1 THE EMMA METHOD FOR I.I.D. RANDOM VARIABLES 
To solve the mean of maximum random variable problem presented above, we introduce the 
EMMA method for i.i.d. (independent and identically distributed) tasks. For simplicity, we give 
the conclusions without explanation first. The mathematical proofs and extensions of the method 
are described in the next part. 

Method I: Let iX  ( ni ≤≤1 ) be i.i.d. random variables, and i
n

1in XmaxY == . Then ϕ≈≤ n
i ))(EP(X nY , 

where )( nYE  is the mean of nY  and ϕ  is a constant taken as 0.57. If iX  has distribution function 

iF  with inverse function 1−
iF , then )( nYE  can be approximated by )(

11 n
iF ϕ− .  

According to this theorem, equation (14) can simply be calculated by  

( ) ( )( ) 57.0)()(
,

== P
tS SEFSEF

jparallel
 (16) 

 

( ) ( )P

jparalleltFSE 1

,
57.01−=  (17) 

Compared to previous work, this theorem gives a much more effective approach for the EMV 
problem. By using 0.57=ϕ , the EMMA method replaces the complicated extreme distribution 
forms in order statistics. Mathematical explanation and proof will be given in the next part.  

Assume iX  ( ni ≤≤1 ) are i.i.d. Gaussian random variables with mean μ, variance σ2, and 
i

n
1i XmaxY ==n . Here, we take μ=30, σ2 =9. For each value of n, we use a MATLAB MC random 

number generator to produce the n Gaussian random variables and find the maximum value. We 
repeat this operation 500 times and get the expectation by taking the average of these 500 
maximum values. MATLAB provides reverse distribution functions for many distributions. For 
the Gaussian distribution, the approximated EMV value )( nYE for each n can be simply computed 
as:  

30+3*sqrt(2)*erfinv(2*((0.57)^(1/n))-1) 

Where erfinv is the inverse error function for Gaussian distribution. 
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Figure 35: EMV by EMMA, Extreme Theory and MC simulation for Gaussian distributions 

In Figure 35, we compare EMMA results to extreme theory [152] and MC simulations. Figure 35 
shows that EMV from EMMA theorem accurately matches the MC simulation results. We repeat 
the above experiment many times and change the values of μ, σ2, and n. We observe that EMMA 
approximates the simulation results consistently and accurately. 

Binomial is another common distribution used in computer performance modeling. For example, 
in logic simulation, the number of gates to be simulated may follow a binomial distribution 
[133,153]. Assume iX  ( ni ≤≤1 ) is binomially distributed with parameters M=5000 and p=0.02 
(activity level in logic gate simulation). By using similar methods in example 1, we illustrate 
implementing method 1 for i.i.d. binomial distributions. The result is compared to MC 
simulation in Figure 36. The approximation accuracy increases with the amount of random 
numbers. However, there are some exceptions, which is because the inverse function of binomial 
distribution is discrete while the MC simulation gives continuous real numbers. 

For both Gaussian and binomial distributions, the EMMA method gives similar results as MC 
simulation. Note that the approximation becomes more accurate when the number of random 
numbers grows. We compare EMMA and MC simulation for many common used distributions 
with arbitrary parameters, and get promising results in all tests. Usually, the approximation error 
is already very small when n is as small as 3. 
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Figure 36: EMV by MC simulation and EMMA (Binomial distribution) 
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MATHEMATICAL PROOF AND EXTENSIONS 
It is well known in order statistics that there are three types of distributions for extreme values: 
type I, type II, and type III [152]. These three types of distributions cover the asymptotic extreme 
distributions for most initial distributions. Most common initial distributions, such as normal, 
exponential and Rayleigh distributions belong to type I. Here we explain the EMMA method by 
using the properties of extreme distributions.  

Theorem 1: For a Type I distribution with mean μn and cumulative distribution function )(⋅
nYF , 

the following property exists: 57.0)( ≈nYn
F μ . 

Proof: For a Type I distribution, the probability density function (PDF) and cumulative 
distribution function (CDF) for the maximum values are [152]: 
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The mean of this distribution above is: 
kn γαμ += , 

Where γ  is the Euler-Mascheroni constant.  Substituting μn into the CDF function, we get 
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Theorem 2: For a Type II distribution with parameters nv  and k, let μn and )(⋅
nYF  be the mean 

and cumulative distribution function. The following property exists: 57.0)( →
∞→

n
k

Yn
F μ  

Proof: For Type II distribution, the probability density function (PDF) and cumulative 
distribution function (CDF) for the maximum random variable are: 
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Where nv is the characteristic largest value of the initial random variables and k is the shape 
parameter ( k/1  is a measure of dispersion). The mean for this distribution is: 

)11( kvnn −Γ=μ  
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Where )(⋅Γ  is the gamma function.  Substituting μn into the CDF function, we get 
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In order statistics, Type I and Type II are the extreme distributions for the initial distributions 
unlimited in the directions of the relevant extremes (maximum). In contrast, Type III represents 
the limiting distribution for initial distributions with a finite upper bound or lower bound value 
(we are only interested in upper bounds for this report). 

Theorem 3: For Type III distribution with parameters nw  and k, let μn and )(⋅
nYF  be the mean 

and cumulative distribution function. The following property exists: 57.0)( →
∞→

n
k

Yn
F μ  

Proof: For Type III distribution, the PDF and CDF for the maximum random variables are: 
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Where nw  is the characteristic largest value of the initial random variables, k is the shape 
parameter ( k/1  is a measure of dispersion of nX ), and ω  is the upper bound value of the initial 
distributions. The mean for this distribution is: 

( ) )11( kwnn +Γ−−= ωωμ  

Where ( )⋅Γ  is the gamma function. Substituting μn into the CDF function, we get 
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Figure 37 plots the CDF value at mean point μn φor three types of extreme distributions. It is 
always roughly 0.57 for Type I. With the growth of parameter k, the CDF values for Type II and 
Type III converge very quickly to 0.57 from above and below, respectively. 

Based on the theorems above, we derive the following result.  

Theorem 4: The CDF value at the mean point for Type I is always 0.57. For Type II and III, it 
converges to 0.57 quickly with the shape parameter k.  
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By theorems 1 to 3, we can derive the EMMA method for i.i.d. initial distributions, whose 
extreme distributions meet the following sufficient conditions: 

i. Type I, or 

ii. Type II/III with shape parameter k not too small, 

For both Type II and III in extreme theory, the parameter k is the shape parameter, which is 
normally an increasing function of n and converges to constant when n approaches infinity. Note 
that this proof of the EMMA method uses extreme distributions in order statistics. Because 
extreme distributions are not exhaustive for all initial distributions, it is the same for this proof. 
That is, the conditions i and ii above are sufficient but not necessary. We do not need to worry 
about this exhaustiveness of the proof because all commonly used distributions are covered. 
Figure 38 gives approximation error on some commonly used distributions. Because of the lack 
of analytical methods for EMV computation for most of these distributions here, we compare 
EMMA with MC simulation. The results are listed when the number of processors is 5, 50 and 
500. Note that the approximation becomes more accurate as the number of processor n increases. 
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Figure 37: CDF values at maximum mean point converge to 0.57 for all three types of extreme 

distributions 
For completeness, we now consider distributions that do not meet these two conditions although 
they could rarely be used in computation performance modeling. As with Figure 37, if for some 
certain initial distribution, the parameter k converges to a small value for a certain distribution, 
then a constant different than 0.57 should be used for ϕ  to achieve more accurate approximation. 
However, if a certain approximation error can be tolerated, the constant 0.57 can still be used for 
simplicity. That is, the EMMA method is robust to parameter k. We describe this property by 
constructing a distribution converging to type III with shape parameter 2=k . 

Example 3: Assume an initial distribution function has CDF and PDF as: 

( ) ( )210/)10(1 xxFX −−= ; ax ≤≤0  (27)

And, 
( ) ( ) 50/10 xxf X −=  (28)



 

 

87 
 

This distribution in type III, the asymptotic form for the maximum value is: 

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%
1.80%
2.00%

Gaussian Exponential Binomial Poisson Rayleigh Geometric

Distributions

Ap
pr

ox
im

at
io

n 
Er

ro
r

n=5

n=50

n=500

 
Figure 38: Approximation Error for Different Distributions 

 

( ) ( ) ]10/)10(exp[ 2ynyF
nY −−=  (29)

With the parameters 2=k  and 10=ω . The mean is  

( )n
nY /5.0110 πμ −=  (30)

The shape parameter k  very small and the related CDF value at maximum mean point )( nX n
F μ  

is around 0.46 in Figure 37. By extreme theory and the deduction of theorem III, we know that 
the EMMA method can accurately approximate the maximum mean for this distribution by 
taking the constant ϕ  as 0.46. In this case, we are interested in the approximation error when ϕ  
is given 0.57. Figure 39 plots the approximation from the EMMA method when ϕ  is 0.46 and 
0.57. 
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Figure 39: EMMA with different constants 

Figure 39 shows that for a type III distribution with small shape parameter k, which does not 
meet the sufficient conditions, the EMMA method with constant 0.57 also follows the trend very 
well, but only with a little bigger approximation error when the amount of paralleled number of 
processors is low. We test the EMMA method for most commonly used distributions and find it 
is accurate for all distributions in large systems. 
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5.8.2 THE EMMA METHOD FOR HETEROGENEOUS DISTRIBUTIONS 

Method 2: Let D  be a set of independent random variables, and can be divided into m  mutually 
exclusive subsets iD  ( mi ≤≤1 ). For each iD , there are in  i.i.d. random variables jiX ,  ( inj ≤≤1 ). 
Let )max(XY ji,=n  ( mi ≤≤1  and inj ≤≤1 ) for all the probability events. Then 

∏ ≈≤=
m

nY1i
n

ji, 0.57))(EP(X i , where )( nYE  is the mean of nY . If jiX ,  ( inj ≤≤1 ) has distribution 
function iF , then )( nYE  can be approximated by solving the function: ϕ∏ ≈=

m
nY1i

n
i

i))((EF , where ϕ  
is a constant usually taken as 0.57. 

The above is an extension of method 1 to non-identical random variables. Note that different 
subsets do not need to have the same kind of distribution in this method. This extends EMMA 
for heterogeneous computing environments.  

Using method 2 to find EMV needs to solve an implicit function, where numerical methods can 
be used. The steps can be as the following:  

1) Compute the EMV of any individual subset by method 1.  

2) Let the result from step (1) as the initial value of )( nYE  and increase it by reasonable value 
each time until the approximation equation in theorem 2 is met.  

Note that iteration times in step (2) can be reduced by choosing larger initial values in step (1). 
Since the overall extreme mean usually not much larger than the largest extreme mean of each 
subset, step (2) usually converges very fast.  

We illustrate method 2 using a collection of Gaussian distribution. Assume there are three 
subsets, each with identically distributed random variables. The parameters are shown in Table 
5: 

Table 5: Subset Parameters 

Parameter Subset 1 Subset 2 Subset 3

Mean 40 45 50 

Standard 
Deviation 12 9 6 
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Figure 40: EMV from MC simulation and EMMA for heterogeneous environment (Gaussian 

distribution with different parameters) 
In Figure 40, we assume each subset has the same number of tasks. The X-axis is the number of 
tasks for each subset. We can see EMV by Method 2 agrees accurately to MC simulation. EMV 
for each subset are also given by MC simulation. They are all under the overall maximum mean 
as expected. Because of a lack of analytical methods to calculate EMV for non-identical random 
variables, the largest execution time for individual subset is historically used as the overall 
execution time [138]. Figure 40 shows that this method can bring around ten percent errors even 
there are just three subsets of tasks.  

We validate method 2 with various combinations of common used distributions and receive 
accurate approximation results for all of them. Figure 41 approximates the execution time when 
the tasks have different distributions as shown in Table 6. 

Table 6: Subset Parameters 

 Subset 1 Subset 2 Subset 3 

Distributions Gaussian Gaussian Exponential 

Parameters 12,40 == σμ 9,45 == σμ 30=μ

 

Note that the parameter for Subset 3 stands for mean, instead of the parameter (one over mean) 
normally used in the density function of exponential distribution. 

The X-axis in Figure 41 represents the number of processors per subset. We assume each subset 
has the same number of processors for simplicity. In this example, subset 3 is dominant and 
determines the maximum mean, which is also very accurately approximates by EMMA. 
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Figure 41: EMV from MC simulation and EMMA for heterogeneous environment (mixed 

distributions) 

5.8.3 UTILIZATION OF THE EMMA METHOD 

The EMMA method provides an accurate and general mathematic tool for execution time 
approximation in parallel computing. It can also be conveniently used to analyze other 
characteristics of the system, such as speedup and optimal number of processors computation. 
This part describes using the EMMA method to analyze the system performance by an example 
in logic simulation, which is widely used to verify modern VLSI system design before 
fabrication. As the number of gates per VLSI chip increases, the simulation time becomes an 
important issue. We now apply the first model and Method 1 into an example in logic simulation. 

An efficient logic simulation of circuits is possible by the event-driven method, where node 
voltages are represented by discrete values and their changes are restricted to discrete points in 
time [154,155]. The gates are modeled as functions to manipulate signals applied to their inputs 
and produce output signals. There is a finite delay for the gate operation depending on different 
gate types. On each clock cycle, plenty of the gates are inactive because their input signals keep 
unchanged. In event-driven method, only the active gates are simulated. For each of the 
iterations, the simulations for all the gates are independent and take roughly the same 
computational effort.  Table 7 shows the active gates for some experimental circuits.  

 

Table 7: Experimental Circuit Collections [156,157] 

Circuits Gate count Average activity 

CKT2 1754 0.03 

8080 3439 0.001-0.005 

Multiplier 5000 0.01-0.02 
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For event-driven method on parallel processors, tasks (gates) can be statically assigned to 
processors with approximately equal amount per processor. Due to the static allocation of gates 
to the processors, the numbers of potentially active gates for each processor are independent 
identical random variables. At the end of each of the iterations, the processors synchronize, share 
signal updates and proceed to the next iteration.  

We first discuss the speedup characteristics of problems with stochastic execution time. The time 
used for synchronization, communication are neglected for simplicity. Now, equation (13) is 
simplified as: 

⎥⎦
⎤

⎢⎣
⎡⋅=

≤≤
jparallel

Pj
P tEIR ,

1
max  (31)

Assume the Multiplier circuit is simulated on 5 paralleled processors with 1000 gates per 
processor. If 0.02 is picked up as the average activity, the number of active gates per processor 

in  ( 51 ≤≤ i ) is binomial distributed with parameters 1000 and 0.02. That is, )02.0,1000(~ Bni . 

Assume the computation effort for simulating each gate is one time unit and 300 iterations are 
needed. The expected execution time can be derived by equation (17), where the function -1F  is 
now the inverse function for binomial distribution:  

( )5
1

,
57.0300 1−⋅=

jparalleltP FR  (32)

By using the inverse Binomial distribution function, we get the execution time expectation:  
7800=PR . 
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Figure 42: Ideal vs. analytic speedup without counting time on synchronization, communication 

and overheads 
For simulation on a single processor, the execution time is  

( ) 3060057.0300 1
1

,

1
1 =⋅= −

jparalleltFR  (33)

Note that -1
t jparallel,

F  is now the inverse function for binomial distribution )02.0,5000(B . The speedup 
is: 

92.37800
30600

1
=== R

RPSpeedup  (34)
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where we can see the parallel speed up cannot achieve the ideal even when the time on 
synchronization, communication and overhead are not counted. The reason is for parallel 
computation on multiple processors: 

[ ]jparalleljparallel
Pj

tEtE ,,
1
max >⎥⎦

⎤
⎢⎣
⎡

≤≤
 (35)

Assuming this simulation task is assigned to a variety number of processors, Figure 42 plots the 
speedup with the number of processors. This example demonstrates that: for the problems with 
stochastic execution time on each processor, the speedup can never be ideal. 

In real practice, the synchronization and communication times cannot be neglected in many cases 
and can be modeled as a function of the number of processors [158]. The following will 
introduce finding the optimal number of processors to achieve the minimum execution time by 
using the EMMA method. 

For simplicity, we assume that the time for synchronization and communication is linear to the 
number of processor, that is, for equation (12): 

( )1,_ −= Pkt ioverheadpar  (36) 

k  is a constant and taken as 2 in this example. Equation 13 becomes: 

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎥⎦

⎤
⎢⎣
⎡+=

≤≤
12max ,

1
PtEtIR jparallel

Pj
serialP

 (37)

After taking away the constants I and serialt , which will not affect our optimization results, the 
cost function to minimize the execution time can be simplified as: 

( )12max ,
1

−+⎥⎦
⎤

⎢⎣
⎡=

≤≤
PtEC jparallel

Pj
 (38)
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Figure 43: Simplified cost function for finding optimal number of processors 

By using the EMMA method, we can easily plot this equation as shown in Figure 43. The 
optimal point is where the value of cost function C  is the smallest. In this particular case, the 
cost function has similar values when the number of processors is 6, 7, or 8. If other factors like 
economics are considered, 6 would be expected to be the best selection. 
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5.8.4 EXECUTION TIME FOR TASK GRAPHS 

Task graphs are often used to describe program executions. Lots of efforts have been delivered to 
analyze the execution time of task graphs by many researchers. In this part, we discuss the 
analysis on complicated task graphs by using the EMMA method. For simplicity, some results 
from probability are cited without proof. 

Precondition 1: Let nXX L1  be random variables and ∑= =
n
i iXX 1 , then ∑= =

n
i iXEXE 1 )()( . 

This precondition is well known in probability theory, which says that the mean of the sum is 
equal to the sum of the mean. For a task graph in Figure 44a, the overall structure of the task 
graph is serial, where each phase could be parallel tasks. In such a paragraph, the overall 
execution time is equal to the sum of the execution time for all phases. For phase having parallel 
tasks, the mean execution time of that phase can be computed by the EMMA method.  

 

 
Figure 44: Serial and parallel task graphs 

For the task graph shown in Figure 44b, the middle path consists of a series of tasks. To apply 
the EMMA method, we consider the overall task graph is parallel, so the distribution functions 
for all paths are required. We discuss finding distribution for the sum of serial tasks in the 
following. 

Precondition 2: Let ),,1( niX i L=  be a normal random variable with mean iμ  and variance 2
iσ , 

∑= =
n
i iXX 1 .  Then X  is still a normal random variable with mean ∑= =

n
i i1μμ  and variance ∑= =

n
i i1

22 σσ . 

Since the Gaussian distribution is usually used to model running time, it is important that the 
distribution can be accurately calculated for the sum of Gaussian distributions. Unfortunately, 
this might not be possible for other distributions. However, these non-Gaussian distributions can 
be approximated according to the central limit theorem.  

Precondition 3: Let ),,1( niX i L=  be independent and iiXE μ=)( , 2)( iiXVar σ= . Assume that  
∞<+ )||(sup 2 ε

j
j

XE  for some 0>ε . Let ∑= =
n
i iXX 1 , then X  converges to a Gaussian random variable 

with mean ∑= =
n
i i1μμ  and variance ∑= =

n
i i1

22 σσ . 
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The proof of precondition 3 can be found in [152]. Once the distribution functions of all the 
paralleled paths are available, the overall execution time in Figure 44b can be computed by using 
the EMMA method for heterogeneous cases. It might not be accuracy to apply the central limit 
law when the number of serial processes is too small. A more accurate method is to compute the 
distribution formula for the sum of random variables. However, it is usually too complicated and 
not easily extended. 

5.8.5 EXTENSION TO DEPENDENT TASKS 
For parallel computation performance evaluations, independence is usually assumed for 
simplicity. However, dependencies usually exist due to many reasons. First of all, the tasks can 
be dependent themselves. For example, in logic gate simulations, the active gates might be 
related. Secondly, for some parallel computer architectures, parallel programs have to share 
some common hardware which brings dependence. Thirdly, some tasks might be dependent by 
sharing a common path. Communication and synchronization will also bring dependencies. It is 
very difficult to quantify dependencies, so normally they are just neglected for simplicity sake. 
For example, Madala approximates the execution time by assuming task paths are independent 
[137].  

It is very necessary to analyze the inaccuracy caused by assuming independence. The following 
subsection will show that the EMMA model is an improvement on current methods, but is not a 
general solution for when dependencies exist. The improvements are due to the extension of the 
EMMA method for programs with interdependencies due to associated tasks. 

ASSOCIATED TASKS 

For parallel programs with dependencies due to associated tasks, the EMMA method can be 
applied by neglecting the dependencies. The following part will discuss the result in this case for 
associated parallel tasks. Two tasks are associated if the load increase of one affects that of the 
other. An example is that the number of active logic gates increase simultaneously on different 
parts of a circuit. A precise definition for association is as the following [159]. 

Definition 1: Random variables nXX ,,1 L  are associated if  

( ) ( )[ ] 0,cov ≥ΔΓ XX  (39)

For all pairs of increasing binary functions Γ  and Δ .  

According to the theory of reliability, if iX  ( ni ≤≤1 ) are associated random variables then 
[159,160]  

[ ] [ ]∏ ≤≥≤≤
=

n

i
in yXPyXyXP

1
1 ,,L  (40)

Let i
n
in XY 1max == , then 

( ) [ ]∏≥
=

n

i
XY yFyF

in 1
 (41)

Corollary 1: For dependent associated parallel tasks, the result from EMMA theory by ignoring 
dependence is an upper bound of the real mean of the maximum. 
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Proof: according to theorem 4, the mean of the maximum can be computed by: 
( ) 57.0)( =nY YEF

n
 (42)

From equation (41), we have 

[ ] 57.0)(
1

≤∏
=

n

i
nX YEF

i
 (43)

When we compute the mean of the maximum by ignoring the dependence, we take the inequality 
in equation (43) as equal. That is we compute by using 

[ ] 57.0)(
1

=∏
=

n

i
nX YF

i
 (44)

Since the function sum and cumulative distribution function are both non-decreasing, the 
computed results are bigger than or equal to the real value. The equality is achieved when the 
random variables are mutually independent. 

SHARING COMMON PATHS 

The dependence between paths can also be caused by sharing common paths. Note that, although 
the dependence caused by sharing the common path appears to meet the definition of association, 
corollary 1 cannot be directly applied because of the synchronization effect. For the task graph in 
Figure 45, some previous work [160] concluded the execution time in task graph b is the upper 
bound of its counterpart with common paths (graph a). Here we give a counter example 
illustrating the error of previous methods. 

 
Figure 45: Task graph with common paths (a) and its independent counterpart (b) 
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Assume the sub tasks in Figure 45 represented by circles are identical. The running time of each 
subtask is Gaussian distributed with mean 30 and variance 9.  By applying the EMMA method 
the mean execution time for phase 1, 3 and 5 in task graph (a) is computed into 34.033. 
Therefore the overall average runtime can be calculated as 
34.033+30+34.033+30+34.033=162.099. For task graph (b), the running time distribution for 
each path is Gaussian distributed with mean 150 and variance 45, the overall execution time is 
159.227. MC simulation results agree with our results. This example means that if we compute 
the execution time of task graph (a) by considering it as 5 independent paths like in task graph 
(b), the result is less than the real value (159.227 < 162.099). The reason is that paths in task 
graph (a) are not the same as in graph (b) because phase 1, 3 and 5 need to be synchronized 
before proceeding to the next phase and this synchronization costs extra time. Therefore, for the 
instance presented, the EMMA method assuming independence provides a more accurate upper 
bound than that of [160]. 

Accurate performance modeling of parallel applications faces difficulties due to the challenge of 
finding EMV. Although many efforts have been devoted, the problem is still left unsolved for 
decades especially for heterogeneous computing. Our work can be considered as an extension of 
Extreme Theory especially to heterogeneous distributions. By exploiting extreme value 
properties, we propose the EMMA method that is capable of finding fast, accurate solutions for 
the parallel execution time in both homogeneous and heterogeneous environments. We presented 
mathematical proofs and sufficient comparisons to MC simulation, which demonstrate the 
accuracy and generality of our method. EMMA can significantly improve the efficiency of 
parallel computation modeling.  

5.9 PERFORMANCE EVALUATION CONCLUSIONS 
High Performance Reconfigurable Computing (HPRC) platforms, and other accelerator 
technologies, offer the potential for cost-effective performance improvements for many 
computationally intensive applications provided the resources are used efficiently. We have 
developed a performance modeling methodology for fork-join and more specifically 
Synchronous Iterative Algorithms (SIAs) running on shared HPRC resources and demonstrated 
how to exploit those resources by optimizing scheduling of the parallel applications using the 
modeling results. 

A sample cost function was considered to reflect different policy goals and priorities. We 
discussed how the model could be used to analyze different applications and their performance 
on the shared HPRC resources. We have only scratched the surface of the wide applicability and 
use of the model for problems in optimization, scheduling, and performance evaluation. 

Future work will continue investigating the application of this modeling methodology to other 
dual and multi-paradigm computing platforms. These computing systems consist of multiple 
specialized devices tightly-coupled in a single environment. The specialized devices of interest 
include FPGAs, graphical processors, cell processors, PIMs, ClearSpeed [148], and others. The 
modeling methodology and application presented in this paper can be applied in these systems 
because the theoretical approach is analogous: offload the intense computation to the specialized 
computing device. Additional work will involve incorporating the model into CAD tools for 
scheduling and optimization for these systems. 
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6 CONCLUSIONS 
Cognitive processing applications present a set of challenges for computational architectures.  
Given the diversity of applications that can be classified as “cognitive”, one would not expect a 
single approach to be universally the best.  Nonetheless, as the scale of cognitive processing 
application increases, previous architectural approaches seem unlikely to meet USAF needs 
because processor performance has stagnated in recent years.  Similarly, embedded cognitive 
processing applications face further constraints on their size, weight, power, and related 
characteristics, so emerging technologies already can perform better than traditional computer 
architectures for many of these problems. This report aims to survey the field of cognitive 
processing applications, the computational technologies available to implement them, and the 
infrastructure for developing and tuning these applications. 

A range of computational architectures and emerging technologies are now available for 
implementing cognitive processing applications. Serial processors have not significantly 
improved in their performance in the past few years because power and other constraints have 
rendered clock increases impractical and continued microarchitectural enhancements have 
remained elusive. Instead, multiple processor cores are now commonly deployed within the same 
processor die, making parallel processing architectures the norm. In the foreseeable future, the 
additional transistors posited by Moore’s Law will be invested in doubling the number of 
processor cores every eighteen to twenty-four months. At the same time, emerging computing 
technologies show promise for providing performance improvements. For example, general 
purpose processing with graphical processing units (GPGPUs) has recently become quite popular 
for researchers interested in accelerating floating point computations with the parallel arithmetic 
units contained in moderns GPUs. Similarly, reconfigurable computing with FPGAs shows 
promise for faster and more efficient processing by allowing developers to create application-
specific customized circuits. Other technologies such as quantum computing and 
DNA/biomolecular computing loom on the horizon as potential approaches to achieve 
performance gains, but most likely at least a decade remains before these technologies will be 
viable. 

Cognitive processing applications span a range of domains with varying attributes. We surveyed 
a set of application types to explore their characteristics in order to provide insight into next-
generation computational needs for cognitive processing applications. The artificial neural 
network approach to machine learning remains popular for many applications, so we explored 
mapping neural networks to reconfigurable computing as well as evolutionary computing 
techniques to improve their effectiveness over time. We then considered attempts to create much 
larger brain-like structures with neuron circuits that more closely approximate biological 
neurons. Scaling these neuron models to yield cognitive processing rivaling that of small 
mammals will require vast computational processing that will best be implemented using analog 
circuits. Hence, this type of cognitive processing will probably require the development of a new 
computational structure based on analog primitives.   

Situational awareness demands a good understanding of the state of a wide array of systems, 
people, and environment. This can be achieved by culling important information from large 
numbers of disparate data sources and extracting salient situational knowledge. In order to 
provide flexible distribution and access to data, the fielding of systems such as the Joint 
Battlespace Infosphere requires that data sources must be able to flexibly publish their results 
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while authorized users are empowered to subscribe to the data pertinent to their mission.  We 
explored the processing associated with pub/sub and databases, in particular with managing large 
numbers of queries with the various computing technologies as well as managing the 
authorization and access to the data.  With our previous research into bioinformatics applications 
manipulating data from large databases to extract information, we explored the potential for large 
parallel supercomputers, GPUs, and reconfigurable computing to help with these types of 
processing.   

With the complexity of individual processing elements such as pipelined, superscalar processors 
supporting hyperthreading and multilevel caching, parallel systems now employing thousands of 
cores and marching towards millions of cores, or FPGA devices that enable new circuits to be 
employed, the ability to effectively program these systems for cognitive processing applications 
looms as a critical factor.  We surveyed the vast array of languages and tools that address 
programming these different computing technologies. Because defense systems require support 
for decades, many commercial tools and techniques for systems development may not be 
appropriate.  Hence, programming and related development tools remain a critically important 
aspect of the computing environment and will require ongoing investment by DoD/USAF to 
ensure the ability to meet defense needs.   

With the sensitivity of critical or classified data or the recent widespread emergence of computer 
hackers attacking every computer system, security and reliability represent critical aspects of 
defense systems.  Accordingly, we explored the use of reconfigurable computing to provide 
more robust processing capabilities so that the systems and information are both secure and 
reliable.  The approach we used was to develop “sandboxes” for processing applications on 
virtualized reconfigurable hardware. It provides flexibility and the potential to share 
reconfigurable computing hardware among multiple processes or users concurrently.  This 
approach also enables runtime reconfiguration to easily customize hardware for evolving mission 
needs.  It also provides defense against tampering or reverse engineering, as the “flushing” of 
sandbox data and configuration information will provide a level of complexity above that of 
encrypted bitstreams protecting the FPGA circuit.  Moreover, we explored software service 
support with the operating system and the sandbox controller to enable the system to operate.  
Finally, we developed an approach for saving the state of sandboxes or other FPGA circuit state.  
In this way the state can be restored after a reconfiguration to enable process migration, provide 
better robustness to failures, or enable runtime reconfiguration for better system performance. 

The complex space of applications and architectures makes it difficult to determine the best 
approach to employ.  In order to provide a mathematical foundation for any tradeoffs or 
optimization, we developed a performance modeling framework.  Although this framework was 
originally developed for reasoning about parallel and distributed computer systems, we have 
extended it to include support for reconfigurable computing as well.  Similarly, this modeling 
framework seems to perform well for GPGPU processing too.  This framework has been used to 
explore performance and identify bottlenecks as well as to support optimization with respect to 
runtime, cost, power dissipation, and other constraints. 

One aspect of the performance modeling framework is the analytical solution of the expected 
value of the maximum of a set of random samples.  This represents the final task to reach a 
barrier synchronization or the last to reach a “join” in a fork-join task graph.  In practice, solving 
this problem is mathematically intractable in most interesting cases.  Others have explored the 
use of the statistics of extremes or order statistics, although this approach typically provides 
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loose bounds.  Many performance modeling efforts have faced this challenge, and there are 
numerous papers with incorrect solutions to this problem.  To address this, we developed a 
theory that allows an accurate and easy approximation to the expected mean of the maximum.  
We discuss this theory and its application for homogeneous and heterogeneous mixes of 
distributions, thus allowing us to reason about complex computing systems. 

Having surveyed this array of topics related to cognitive processing applications and the best 
architectural approaches for implementing them, we can summarize the results by noting the 
following.  First, traditional processing with serial CPUs is no longer tenable.  Second, the 
emerging GPU architectures show great promise for floating point computations, and are likely 
to merge with traditional processors.  Third, reconfigurable computing promises to provide 
substantial performance improvements as well as more robust operation with respect to 
reliability and security.  Finally, parallel processing will be a fundamental aspect of cognitive 
processing applications, so parallel program and related development environments should 
continue to be a topic of sustained research and development by DoD/USAF. 
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DNA Deoxyribonucleic Acid 

DSP Digital Signal Processor 

ECG ElectroCardioGram 

EDK Embedded Development Kit 

EHW Evolvable Hardware 

EMMA Expected Maximum Mean Approximation 

EMV Expected Maximum Value 

FPGA Field Programmable Gate Array 

FPSLIC Field Programmable System Level Integrated Circuits 
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GA Genetic Algorithm 

GPGPU General Purpose Graphics Processing Unit 

GPU Graphics Processing Unit 

GUI Graphical User Interface 

HDL Hardware Description Language 

HMM Hidden Markov Model 

HPC High Performance Computing 

HPCS High Productivity Computing Systems 

HPRC High Performance Reconfigurable Computing 

HT Hyper-Transport 

i.i.d. Independent identically distributed 

I/O Input/Output 

ICN Inter-Connection Network 

IL Intermediate Language 

ILP Instruction Level Parallelism 

JBI Joint Battlespace Infosphere 

JHDL Java Hardware Description Language 

JTIDS Joint Tactical Information Distribution System 

LUT Look Up Table 

MC Monte Carlo 

MCPS Millions of Connections Per Second 

MIMD Multiple Instructions Multiple Data 

MIPS Millions of Instructions Per Second 

MKL Math Kernel Library 

MLP Multi-Layer Perceptron 

MMX Multi-Media eXtension, Matrix Math eXtension 

nr non-redundant 

OBM On Board Memory 

OPB On-Chip Peripheral Bus 

ORNL Oak Ridge National Laboratory 
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P/T Place/Transition 

PAL Programmable Arrays of Logic 

PCI Peripheral Component Interconnect 

PDF Probability Density Function 

PE Processing Element 

PLB Programmable Local Bus 

PLD Programmable Logic Device 

PPC Power PC 

PRC Partially Reconfigurable Circuit 

PSOC Programmable System On a Chip 

PVM Parallel Virtual Machine 

QPI Quick Path Interconnect 

RAM Random Access Memory 

RC Reconfigurable Computing 

RS3 Runtime Support for Reliable, Secure, Reconfigurable Systems 

RTL Register Transfer Language 

SAT Satisfiability (Boolean Satisfiability) 

SDRAM Synchronous Dynamic Random Access Memory 

SIA Synchronous Iterative Algorithm 

SIMD Single Instruction Multiple Data 

SLAAC System Level Applications of Adaptive Computing 
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SMP Symmetric Multi-Processing 

SOC System On a Chip 

SRAM Static Random Access Memory 

SSE Streaming SIMD Extensions 

TAP Test Access Port 

TLP Thread Level Parallelism 

TRIPS Tera-op Reliable Intelligently advanced Processing System 

UAV Unmanned Aerial Vehicle 

UCAV Unmanned Combat Aerial Vehicle 

UT University of Tennessee 

VHDL Very High Speed Integrated Circuits Hardware Description Langauge 

VLSI Very Large Scale Integration 

VSIPL Vector, Signal and Image Processing Library 

 

 




