

AFRL-RX-WP-TP-2009-4095

NOVEL MEMS APPARATUS FOR INSTIU THERMO-MECHANICAL TENSILE TESTING OF MATERIALS AT THE MICRO- AND NANO-SCALE (PREPRINT)

M.D. Uchic, J. Han, and T. Saif Metals Branch Metals, Ceramics and NDE Division

APRIL 2009

Approved for public release; distribution unlimited. See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE

The part program guines of the first statuses of information is adverged and statuses. Including the the formation is adverged and statuses as used by adverged and statuses. Including the first statuses and the first status and the fir	REPORT DOCUMENTATION PAGE							Form Approved OMB No. 0704-0188	
1. REPORT DATE (DD-MM-YP) 2. REPORT TYPE 3. DATES COURSED (#con - 70) April 2009 10 April 2009 01 April 2009 01 April 2009 4. TITE AND SUBTILE 5a. CONTRACT NUMBER 5a. CONTRACT NUMBER NOVEL, MEMS APPARATUS FOR IN SITU THERMO-MECHANICAL TENSILE 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(5) 5c. PROGRAM ELEMENT NUMBER 5c. PROGRAM ELEMENT NUMBER 5c. TASK NUMBER 7. DEFERSTMING ORGANIZATION NAME(5) AND ADDRESS(ES) 5c. TASK NUMBER 8c. CASK NUMBER Metals Branch (RXLMP) University of Illinois at Urbana-Champaign, IL 9c. PREFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) Metals Branch (RXLMP) University of Illinois at Urbana-Champaign, IL 9c. PREFORMING ORGANIZATION Metals Caraming on Air Force Rase, OH 45433-7750 University of Illinois at Urbana-Champaign, IL 9c. PREFORMING ORGANIZATION 6a: FORCE MAURTIE Command. United States Air Force 9c. PROGROMONTORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSORINGMONTORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSORINGMONTORING AGENCY NAME(5) AND ADDRESS(ES) Air Force Rase, OH 145433-7750 Jart Force Rase, OH 45433-7750 Jart Force Materiel Command Jart Force Rase, OH 45433-7750 Air Force Materiel Command Jinter Stresse Stresse Stres Stres Stresse Stresse Stresse Stresse Stresse Stres	The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS .								
April 2009 Journal Article Preprint [01 April 2009-01 April 2009 4. TITLE AND SUBTILE NOVEL. MEMS APPARATUS FOR IN SITU THERMO-MECHANICAL TENSILE TESTING OF MATERIALS AT THE MICRO- AND NANO-SCALE (PREPRINT) 5a. CONTRACT NUMBER In-house 56. AUTHOR(S) 56. GRAM PLEMENT NUMBER 62102F 56. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) 5. PROGRAM ELEMENT NUMBER 62102F 56. PROGRAM ELEMENT NUMBER 62102F 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 50. PROGRAM CORGANIZATION Reform NUMBER NOZEL 1000 5. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750 Air Force Materiel Command. United States Air Force S. SPONGORINGMONTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONTORING AGENCY ACRONTING AGENCY ACRONTING AGENCY ACRONTING AGENCY PROPERT NUMBER Naterials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750 Air Force Materiel Command United States Air Force 11. SPONGORINGAMONTORING AGENCY PROPERT NUMBER AGENCY ACRONTING AGENCY PROPERT NUMBER So Construction on this work and has the right to use; modify, reproduce; release; perform, display, or disclose the work. 13. SUPPLEMENTARY NOTES To be submitted to MEMS 2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. The U.S. Government is joint author of this work and has the right to use; modify, reproduce; release; perform, display, or disclose the work. 14. ABSTRACT We prosent, for the first time, a MEMS-based test methodology that potentially enables clevated-temperature mechanical tensite to fabricated force	1. REPORT DATE (DD-MM-YY)	-YY) 2. REPORT TYPE 3. DATES						S COVERED (From - To)	
4. THE AND SUBTLE NOVEL LENGES APPARATUS FOR IN SITU THERMO-MECHANICAL TENSILE TESTING OF MATERIALS AT THE MICRO- AND NANO-SCALE (PREPRINT) 5. ORANT NUMBER 6. AUTHOR(5) 6. AUTHOR(5) 6. AUTHOR(5) 6. AUTHOR(5) 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) Materials and Manufacturing Directorate Materials and Manufacturing Directorate 3. SPONSORINGNONTORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSORINGNONTORING MAGENCY NAME(5) AFRL-RX-WP-TP-2009-4095 11. SPONSORINGMONTORING AGENCY NAME(5) AFRL-RX-WP-TP-2009-4095 12. DISTRIBUTONAVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SFM or TEM (T > SAR 14. ABSTRACT MEMS, methodology, include a co-fabricated force calibration device, and a builtin thermocouple sensor to measure the stage temperature close to the sample. 15. SEQUENTY CLASSIFICATION OF: 16. SEQUENTY CLASSI	April 2009		Journal Article Preprint 01 April					1 2009- 01 April 2009	
NOVEL MENS APPARATUS FOR IN SITU THERMO-MECHANICAL TENSILE in-nouse TESTING OF MATERIALS AT THE MICRO- AND NANO-SCALE (PREPRINT) is. orant number Se. authors is. orant number M.D. Uchic (AFRL/RXLMD) is. orant number J. Han and T. Saif (University of Illinois) is. orant number Generating Directorate is. orant number Metals Branch (RXLMP) University of Illinois at Urbana-Champaign, IL Metals Branch (RXLMP) University of Illinois at Urbana-Champaign, IL Metals Ceramics and NDE Division Champaign, IL Materials and Manufacturing Directorate Champaign, IL Air Force Material Command, United States Air Force as Pencorning on Air Force Pace on Air Force Base, OH 45433-7750 Air Force Research Laboratory Materials and Manufacturing Directorate as Ponsoningomontroning AceNet vame(s) AND ADDRESS(ES) Air Force Research Laboratory AFRL-RX-WP-TP-2009-4095 AFRL-RX-WP-TP-2009-4095 13. SUPFLEMENTARY NOTES AFRL-RX-WP-TP-2009-4095 AFRL-RX-WP-TP-2009-4095 14. BSTRIBUTIONAVALLABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPFLEMENTARY NOTES 70 Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. AFRL-RX-WP-TP-2009-4095 The US. Govern	4. TITLE AND SUBTITLE							5a. CONTRACT NUMBER	
TESTING OF MATERIALS AT THE MICRO- AND NANO-SCALE (PREPRINT) 56. GRANT RUMEER 56. AUTHOR(S) 56. PROJECT RUMBER 6. AUTHOR(S) 56. PROJECT RUMBER 7. DERFORM ELEMENT NUMBER 4347 56. TOSK NUMBER 56. ROGENT RUMEER 7. DERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Metals Branch (RXLMP) University of Illinois at Urbana- Champaign, IL Metals Cramics and NDE Division Champaign, IL Materials and Manufacturing Directorate University of Illinois at Urbana- Champaign, IL Air Force Materiel Command, United States Air Force Champaign, IL Air Force Research Laboratory 10. SPONSORINGMONTORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory AFRL/RXLMD Materials and Manufacturing Directorate Vright-Patterson Air Force Base, OH 45433-7750 12. DISTRIBUTIONAVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES To be submitted to MEMS 2009 To be submitted to MEMS 2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. PAO Case Number and clearance date: 88ABW 2008-0979, 14 November 2008. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perf	NOVEL MEMS APPARATUS FOR IN SITU THERMO-MECHANICAL TENSILE							In-house	
6. AUTHOR(\$) 56. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(\$) 56. PROJECT NUMBER 4347 M.D. Uchic (AFRL/RXLMD) 56. FASK NUMBER RG 57. TASK NUMBER RG 58. TORK NUMTORING ORGANIZATION NAME(\$) AND ADDRESS(E\$) 8. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) Metals, Caramiss and NDE Division Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-750 Air Force Materiel Command, United States Air Force 9. PENFORMING ORGANIZATION REPORT NUMBER Champaign, IL 9. SPONSORING/MONTORING AGENCY NAME(\$) AND ADDRESS(E\$) 10. SPONSORING/MONTORING AGENCY ACRONYMOS) Air Force Rase, OH 45433-750 Air Force Materiel Command 11. SPONSORING/MONTORING AGENCY ACRONYMOS) Air Force Rase, OH 454433-750 11. SPONSORING/MONTORING AGENCY ACRONYMOS) Air Force Materiel Command 11. SPONSORING/MONTORING AGENCY ACRONYMOS) AIr Force Base, OH 454433-750 11. SPONSORING/MONTORING AGENCY ACRONYMOS) AIr Force Materiel Command 11. SPONSORING/MONTORING AGENCY ACRONYMOS) AIR FORCE NUMBER MATERIAL 3. SUPPLEMENTARY NOTES To be submitted to MEMS 2009 7.14 November 2008. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 41. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mech	TESTING OF MATERIALS AT THE MICRO- AND NANO-SCALE (PREPRINT)							5b. GRANT NUMBER	
6. AUTHOR(6) M.D. Uchic (AFRL/RXLMD) J. Han and T. Saif (University of Illinois) 4347 5. TASK NUMBER 4347 5. TASK NUMBER KG 5. WORK UNIT NUMBER MO2R1000 8. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) Metals Branch (RXLMP) Metals, Caramics and NDE Division Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750 Air Force Material Command United States Air Force 9. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) Air Force Research Laboratory Air Force Material Command United States Air Force 9. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) Air Force Material Command United States Air Force 10. SPONSORING/MONITORING AFRL-RX-WP-TP-2009-4095 11. SPONSORING/MONITORING AFRL-RX-WP-TP-2009-4095 11. SPONSORING/MONITORING AFRL-RX-WP-TP-2009-4095 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated Samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated sa								5c. PROGRAM ELEMENT NUMBER 62102F	
M.D. Uchic (AFRL/RXLMD) 4347 J. Han and T. Saif (University of Illinois) 5e. TASK NUMBER RG J. Han and T. Saif (University of Illinois) 5e. TASK NUMBER RG J. Han and T. Saif (University of Illinois) 5e. TASK NUMBER RG St. Orgen States and NDE Division Matarials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750 Air Force Material Command, United States Air Force 4FRL-RX-WP-TP-2009-4095 S. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Material Command, United States Air Force 10. SPONSORING/MONITORING AGENCY ACRONYM(S) Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750 Air Force Material Command 4FRL/RXLMD United States Air Force United States Air Force AFRL/RXLMD 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AAFRL-RX-WP-TP-2009-4095 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 4FRL-RX-WP-TP-2009-4095 13. SUPPLEMENTARY NOTES To be submited to MENS 2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables clevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated Sepratup	6. AUTHOR(S)							5d. PROJECT NUMBER	
J. Han and T. Saif (University of Illinois) 56. TASK NUMBER RG 57. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) 8. PERFORMING ORGANIZATION Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750 4. REFORMING ORGANIZATION REPORT NUMBER Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750 10. SPONSORING/MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) 10. SPONSORING/MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) Air Force Research Laboratory Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750 10. SPONSORING/MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) Air Force Materiel Command United States Air Force 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(\$) AFRL-RX-WP-TP-2009-4095 13. SUPPLEMENTARY NOTES To be submitted to MEMS 2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fibricated separately from the MEMS -apparatus, a significant advancement from other test devices developed by some of the present authors [1]. Therefore the test methodology should be applicable to the study of a wide range of materials. Other advancements found in the methodology include a co-fabricated force calibration 19. ELEPHONE NUMBER (include Area Code) N/A <td colspan="7">M.D. Uchic (AFRL/RXLMD)</td> <td>4347</td>	M.D. Uchic (AFRL/RXLMD)							4347	
KG 5. WORK UNIT NUMBER MO2R 1000 7. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) Metals Branch (RXLMP) Metals, Caramics and NDE Division University of Illinois at Urbana- Champaign, IL 8. PERFORMING ORGANIZATION REPORT NUMBER Af FOrce Matcriel Command, United States Air Force National Ananda Curing Directorate AFRL-RX-WP-TP-2009-4095 Materials and Manufacturing Directorate Intercervice 10. SPONSORING/MONITORING AGENCY ACRONYM(\$) Air Force Research Laboratory Materials and Manufacturing Directorate AFRL-RX-WP-TP-2009-4095 Wright-Patterson Air Force Base, OH 45433-7750 10. SPONSORING/MONITORING AGENCY ACRONYM(\$) AFRL-RX-UP Air Force Materiel Command Materials and Manufacturing Directorate AFRL-RX-WP-TP-2009-4095 Wright-Patterson Air Force Base, OH 45433-7750 AFRL-RX-WP-TP-2009-4095 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(\$) AFRL-RX-WP-TP-2009-4095 12. DISTRIBUTION/AVALABRIITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES To be submitted to MEMS 2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. AFRL-RX-WP-TP-2009-4095 The submitted to MEMS 2009 <td colspa<="" td=""><td colspan="7">J. Han and T. Saif (University of Illinois)</td><td>5e. TASK NUMBER</td></td>	<td colspan="7">J. Han and T. Saif (University of Illinois)</td> <td>5e. TASK NUMBER</td>	J. Han and T. Saif (University of Illinois)							5e. TASK NUMBER
3. WOR DWI NUMBER M02R1000 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) M02R1000 Metals Branch (RXLMP) University of Illinois at Urbana- Champaign, IL B. PERFORMING ORGANIZATION REPORT NUMBER Metals Stands, Ceramics and NDE Division University of Illinois at Urbana- Champaign, IL AFRL-RX-WP-TP-2009-4095 Materials and Manufacturing Directorate University of Illinois at Urbana- Champaign, IL AFRL-RX-WP-TP-2009-4095 Mir Force Materiel Command, United States Air Force 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SPONSORING/MONITORING AGENCY ACRONYMS(S) Air Force Materiel Command Jarretorate AFRL/RXLMD AFRL/RXLMD Wright-Patterson Air Force Base, OH 45433-7750 Air Force AFRL/RXLMD 11. SPONSORING/MONITORING AGENCY ACRONYMS(S) Junited States Air Force JAFRL/RXLMD AFRL/RXLMD AFRL/RXLMD 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. AGENCY ACRONYME(S) AFRL-RX-WP-TP-2009-4095 14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated separately from the MEMS-apparatus, a significant advancement from other test devices developed by some of the									
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Intervention of the performance of the performanc								M02R1000	
Metals Branch (RXLMP) University of Illinois at Urbana-Champaign, IL AFRL-RX-WP-TP-2009-4095 Metals AC Caramics and NDE Division Champaign, IL AFRL-RX-WP-TP-2009-4095 Materials and Manufacturing Directorate AFRL-RX-WP-TP-2009-4095 Sonoorsonko/MontorRing GAENCY NAME(s) AND ADDRESS(ES) II. SPONSORING/MONITORING AGENCY NAME(s) AND ADDRESS(ES) Air Force Research Laboratory AFRL-RX-WP-TP-2009-4095 Materials and Manufacturing Directorate AFRL/RXLMD Wright-Patterson Air Force Base, OH 45433-7750 AFRL-RX-WP-TP-2009-4095 Air Force Materiel Command Insponsoring/MonitorRing AGENCY ACRONYM(s) AfRL-RX-WP-TP-2009-4095 AFRL-RX-WP-TP-2009-4095 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES To be submitted to MEMS-2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated sparately from the MEMS-apparatus, a significant advancement from other test devices developed by	7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)						8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory AGENCY ACRONYM(S) Materials and Manufacturing Directorate AFRL/RXLMD Wright-Patterson Air Force Base, OH 45433-7750 Air Force Materiel Command United States Air Force In. SPONSORING/MONITORING AGENCY ACRONYM(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT AGENCY ARPORT NUMBER(S) Approved for public release; distribution unlimited. AFRL-RX-WP-TP-2009-4095 13. SUPPLEMENTARY NOTES To be submitted to MEMS 2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated separately from the MEMS-paparatus, a significant advancement from other test devices developed by some of the present authors [1]. Therefore the test methodology should be applicable to the study of a wide range of materials. Other advancements found in the methodology, fabricated, co-fabricated, force calibration 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 19a. NAME OF RESPONSIBLE PERSON (Monitor) Christopher F. Woodward 1	Metals Branch (RXLMP) Metals, Ceramics and NDE D Materials and Manufacturing Wright-Patterson Air Force B Air Force Materiel Command	-7750 Air Force	University of Illinois at Urbana- Champaign, IL			na-	AFRL-RX-WP-TP-2009-4095		
Air Force Research Laboratory Adence Actomym(s) Materials and Manufacturing Directorate AFRL/RXLMD Wright-Patterson Air Force Base, OH 45433-7750 AFRL/RXLMD Air Force Materiel Command AFRL/RXLMD United States Air Force AFRL/RXLMD 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(s) AFRL-RX-WP-TP-2009-4095 12. DISTRIBUTION/AVAILABILITY STATEMENT AFRL-RX-WP-TP-2009-4095 13. SUPPLEMENTARY NOTES To be submitted to MEMS 2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated separately from the MEMS-apparatus, a significant advancement from other test devices developed by some of the present authors (11). Therefore the test methodology should be applicable to the study of a wide range of materials. Other advancements found in the methodology, fabricated, co-fabricated, force calibration 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: 10 19a. NAME OF RESPONSIBLE PERSON (Monitor) Christopher F. Woodward 19b. TELEPHONE NUMBER (Include Area Code)<	9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)						10. SPONSORING/MONITORING		
Materials and Manufacturing Diffectorate AFRE/KALMD Wright-Patterson Air Force Base, OH 45433-7750 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) Air Force Materiel Command 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL/KALMD 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL/KALMD AFRL/KALMD 12. DISTRIBUTION/AVAILABILITY STATEMENT AFRL/KALMD Approved for public release; distribution unlimited. 4533-7750 13. SUPPLEMENTARY NOTES To be submitted to MEMS 2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated separately from the MEMS-apparatus, a significant advancement from other test devices developed by some of the present authors [1]. Therefore the test methodology should be applicable to the study of a wide range of materials. Other advancements found in the methodology, fabricated, co-fabricated, force calibration 15. SUBJECT TERMS MEMS, methodology, fabricated, co-fabricated. MEMS, methodology, fabricated, co-fabricated. 11. IMITATION OF ABSTRACT: SAR 19a. NAME	Air Force Research Laboratory								
In Force Materiel Command In Force Date, On Fords of For	Wright-Patterson Air Force Base OH 45433-7750								
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES To be submitted to MEMS 2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated separately from the MEMS-apparatus, a significant advancement from other test devices developed by some of the present authors [1]. Therefore the test methodology should be applicable to the study of a wide range of materials. Other advancements found in the methodology include a co-fabricated force calibration device, and a builtin thermocouple sensor to measure the stage temperature close to the sample. 15. SUBJECT TEMS MEMS, methodology, fabricated, co-fabricated, force calibration 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 10 19a. NAME OF RESPONSIBLE PERSON (Monitor) Christopher F. Woodward 10 19b. TELEPHONE NUMBER (Include Area Code) N/A	Air Force Materiel Command United States Air Force						AGENCY REPORT NUMBER(S) AFRL-RX-WP-TP-2009-4095		
13. SUPPLEMENTARY NOTES To be submitted to MEMS 2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated separately from the MEMS-apparatus, a significant advancement from other test devices developed by some of the present authors [1]. Therefore the test methodology should be applicable to the study of a wide range of materials. Other advancements found in the methodology include a co-fabricated force calibration device, and a builtin thermocouple sensor to measure the stage temperature close to the sample. 15. SUBJECT TERMS MEMS, methodology, fabricated, co-fabricated, force calibration 16. SECURITY CLASSIFICATION OF: Unclassified Unclassified Unclassified Unclassified NARE 19a. NAME OF RESPONSIBLE PERSON (Monitor) Christopher F. Woodward 19b. TELEPHONE NUMBER (Include Area Code) N/A	12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited.								
14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated separately from the MEMS-apparatus, a significant advancement from other test devices developed by some of the present authors [1]. Therefore the test methodology should be applicable to the study of a wide range of materials. Other advancements found in the methodology include a co-fabricated force calibration device, and a builtin thermocouple sensor to measure the stage temperature close to the sample. 15. SUBJECT TERMS MEMS, methodology, fabricated, co-fabricated, force calibration 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified Walks in the state i	 13. SUPPLEMENTARY NOTES To be submitted to MEMS 2009 PAO Case Number and clearance date: 88ABW-2008-0979, 14 November 2008. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 								
MEMS, methodology, fabricated, co-fabricated, force calibration 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified Unclassified C. THIS PAGE Main of the structure Main of the structure <	14. ABSTRACT We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM ($T > 500^{\circ}C$). Importantly, the test methodology allows for the samples to be fabricated separately from the MEMS-apparatus, a significant advancement from other test devices developed by some of the present authors [1]. Therefore the test methodology should be applicable to the study of a wide range of materials. Other advancements found in the methodology include a co-fabricated force calibration device, and a builtin thermocouple sensor to measure the stage temperature close to the sample. 15. SUBJECT TERMS								
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON (Monitor) a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON (Monitor) b. ABSTRACT Unclassified c. THIS PAGE Unclassified SAR 10 19b. TELEPHONE NUMBER (Include Area Code) N/A	MEMS, methodology, fabricated, co-fabricated, force calibration								
a. REPORT Unclassified Unclassified Unclassified SAR 10 Christopher F. Woodward 19b. TELEPHONE NUMBER (Include Area Code) N/A	16. SECURITY CLASSIFICATIO	SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON (Monit						RESPONSIBLE PERSON (Monitor)	
	a. REPORT b. ABSTRACT Unclassified Unclassified	c. THIS PAGE Unclassified	SAR		10	19b. 1	Christop FELEPHON N/A	her F. Woodward NE NUMBER (Include Area Code)	

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18

NOVEL MEMS APPARATUS FOR IN SITU THERMO-MECHANICAL TENSILE TESTING OF MATERIALS AT THE MICRO- AND NANO-SCALE

J. Han^{l} , M.D. Uchic² and <u>T. Saif^l</u>

¹University of Illinois at Urbana-Champaign, Illinois, USA

²Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright-Patterson AFB, OH,

USA

ABSTRACT

We present, for the first time, a MEMS-based test methodology that potentially enables elevated-temperature mechanical tensile testing of nano- and micro-scale samples within a SEM or TEM (T > 500°C). Importantly, the test methodology allows for the samples to be fabricated separately from the MEMS-apparatus, a significant advancement from other test devices developed by some of the present authors [1]. Therefore the test methodology should be applicable to the study of a wide range of materials. Other advancements found in the methodology include a co-fabricated force calibration device, and a builtin thermocouple sensor to measure the stage temperature close to the sample.

INTRODUCTION

At the micro- and nano-scale, materials behavior can strongly depend on the scale of both internal microstructural features as well as the external dimensions of the structure in question. Microstructural length scales may include features such the grain size, the distance between impurities [2], and the layer thickness in a multilayered material, to name a few. With regards to the sample geometry, decreasing size results in an increase in the surface-tovolume ratio of the material. These surfaces and interfaces can affect the active deformation mechanisms and their dynamics, which may introduce new mechanisms of deformation. These surface- dominated properties may also be time and temperature dependent. As a result, bulk material properties cannot be extrapolated to the diminutive size-scales that are of interest to MEMS and NEMS, and thus the mechanical properties of materials with micro- or nano-scale dimensions need to be directly measured. A major challenge lies in measuring such properties, and also in understanding the mechanisms that control sizedependent mechanical properties.

In an earlier study, some of the present authors developed a MEMS stage that allowed for uniaxial tensile testing of ultra-thin free standing films (30 nm thick and larger) that was capable of operation within either a SEM or TEM [3]. This previously-developed MEMS-stage enabled the measurement of the stress-strain response of the films while also allowing for direct visualization of the films during testing. The force on the sample was determined by image-based measurement of the deflection of a forcesensing beam, while the sample deformation was determined by image-based measurement of the change of position of two gauges attached to the ends of the sample. A unique feature of the stage is that any misalignment error in loading is reduced by five orders of magnitude through the use of alignment flexures. This ensures precise uniaxial loading of the sample. The stage was employed to test aluminum and gold film samples with grain sizes ranging from 10-300 nm, and film thickness ranging from 30-300 nm. The experiments revealed unusual properties in nanograined metal films, and helped uncover new fundamental mechanisms of deformation that occur in nanoscale microstructures; for example, the recovery of plastic strain with time [1], and non-linear elasticity in nanocrystalline metals [3].

However, the stage described above has some limitations because the sample and the stage are cofabricated. First, this limits the choice of materials to be tested to those that can be deposited or grown on silicon and patterned. Also, the sample thickness is constrained to the typical range of thin films. Furthermore, each stage can only be used once. The new MEMS apparatus presented in this paper overcomes these limitations.

THE NEW TESTING APPARATUS

The test methodology described herein allows for testing of samples that are fabricated separately from the MEMS stage. The test apparatus consists of a MEMS tensile stage and a heating stage. Figures 1a and 1b show the Si MEMS tensile stage without a sample. The stage contains two grips with etched or focused ion beam (FIB)-fabricated wedges to hold a dog-bone shaped sample that is manufactured separately. One of the wedge grips is attached to the force sensing beam, while the other is attached to a set of beams and a U-beam that ensure alignment and uniaxial loading of the sample. The tensile sample is placed into the wedge grips using a micro-manipulator. The large etched holes on the outer ends of the MEMS-stage connect the stage to a macroscopic piezo-electric actuated test frame using rigid pins. In order to apply uniaxial tension to the sample, one end of the stage is held fixed while the other end is moved by the piezoelectric actuator. Force on the sample is measured from the deflection of the force sensing beam (Figure 2). There are two gauges in the stage. One provides the displacement of the force sensing beam, the other provides the relative displacement between the two wedge grips.

Procedure for calibration of spring constant of the force sensing beam

The spring constant of the force sensing beam is calibrated using a co-fabricated calibration device (Figure 1a). The calibrator consists of a leaf spring. Its spring constant can be readily determined using a commercial

Figure 1. (a) SEM image of the MEMS tensile stage and the calibration device. The spring constant of the leaf spring of the calibrator is measured by a nano indenter. (b) Close-up image of the stage. (c) Schematic of sample loading. (d) Top view of the loading stage and the nickel-base superalloy sample fabricated by FIB.

Figure 2. An unloaded (left) and a loaded (right) sample. The dotted line on the right diagram shows the original length of the sample. The force on the sample and the strain are measured from the change in the gauge positions.

nanoindentation system. Once the spring constant of the calibrator is determined, the calibrator is placed in the designated space of the MEMS stage where it can be placed in direct contact with the force sensing beam. Next, the calibrator is pushed by a micromanipulator to displace the force sensing beam. The spring constant of the force sensing beam is simply determined from the force imparted by the calibrator divided by the relative deflection of the force sensing beam.

Heating stage

In order to provide a capability to measure material properties at elevated temperatures, a micro-heater has been designed and tested that works with the MEMS testing stage (Figure 3). The micro-heater consists of a Si substrate with a patterned Cr micro-coil for Joule heating. For an elevated temperature test, the MEMS-stage is placed on top of the heating stage, and both the stage and sample are heated primarily by conduction. The temperature of the MEMS stage is measured by a built-in thermocouple. It consists of a silicon cantilever coated on one side by Cr. The mismatch between the thermal expansion coefficients of Si and Cr results in bending of the cantilever with increasing temperature, and the temperature is calculated from the relative deflection of the cantilever tip. The thermocouple is calibrated by measuring the tip deflection when the stage is heated to known temperatures. For calibration experiments, the stage temperature can be easily varied by using a hot plate or a convection oven. In a separate experiment, we have qualitatively verified the accuracy of the cantileverbased temperature measurement by melting materials with known melting temperatures. These materials include solder wire and aluminum, and the results from these experiments are shown in Figure 3. In order to further push the temperature capabilities of this type of micro-heater device, a silicon carbide substrate was substituted for the Si substrate. Here silicon carbide also served as the resistor for Joule heating. This heater was used to melt glass (Soda lime glass, softening temperature: 720C, Gold Seal Microslide) (placed on the heater), indicating that temperature can exceed 700°C.

Fabrication

The stage is fabricated from single crystal silicon by deep reactive ion etching. The process flow is given in Figure 4 with the details listed in the figure caption.

EXPERIMENTS WITH THE NEW STAGE

As a demonstration of the applicability of the stage, a nickel superalloy sample was tested under uniaxial loading. The specimen was made by FIB milling from a bulk crystal using techniques similar to those shown in [4]. The dimensions of the specimen gage section were approximately 25 μ m in length, 10 μ m in thickness, and 5 μ m in width. The tensile axis of the sample was oriented

Figure 3. (a) The micro heater with Cr coils on a silicon substrate. The micro tensile stage is placed on top of the heater for uniaxial experiment. (b, c) Bimaterial (Si/Cr) temperature sensor built- in to the loading stage. The temperature is measured from the deflection of the beam (d). Temperature calibration of the sensor is shown (e) Al droplets produced by melting.

Figure 5. In situ, room temperature uniaxial test of a nickel-base superalloy sample using the MEMS-stage.

Figure 4. Schematic of process flow of the tensile stage: (a) Thermal growth of SiO_2 and deposition of aluminum layers on both sides of Si wafer; (b) Photoresist spin-coating on both sides of Si wafer; (c) Patterning of both sides by photolithography and liquid etching of metal layer (Here, the pattern of the bottom surface is a mirror image of the top pattern except for the patterns of the sample slot and the center gauge on top.); (d) Dry etching of SiO_2 layer on top and bottom by RIE; (e) Deep Si etching from bottom by ICP DRIE; (f) Shallow Si etching from top to form the sample slot and the center gauge by ICP DRIE and removal of Photoresist on top and bottom by O_2 plasma. Note that the metal layer is intended to serve as conductors for possible resistivity measurement of the sample.

parallel to the <123> direction, which corresponds to a single-slip orientation at the beginning of the experiment. Once the specimen was separated from the bulk crystal, it was transferred onto the wedge grips of the MEMS stage via micromanipulation within the FIB. The tension experiment was carried out in an SEM. The specimen and the displacement gauges were captured in the same SEM image so that both the stress-strain data and images of the deforming sample were captured together.

Figure 5(a-e) show images of the sample under increasing strains. After yielding, there is significant plastic flow with little strain hardening up to about 25% strain. Insitu SEM observation reveals that many slip lines are formed along the gage section that are consistent with activity from the primary slip system (white arrows). The sample then begins to strain harden until about 40% strain, at which time the stress begins to drop. The peak load coincides with the initiation of a second slip system (Figure 5e).

ACKNOWLEDGEMENTS

The work was supported by the US Air Force grants USAF-5212-STI-SC-0004, USAF-5215-FT1-SC-0032, and the National Science Foundation grants DMR 0237400, ECS 0304243. The tensile testing stage was fabricated at the Micro-Miniature Systems Lab and Micro-Nano Technology Laboratory of University of Illinois at Urbana-Champaign.

REFERENCES

- J. Rajagopalan, J. Han, and M. T. A. Saif. "Plastic Deformation Recovery in Freestanding Nanocrystalline Aluminum and Gold Thin Films", *Science*, 315, pp1831, 2007.
- [2] E. Arzt, "Size effects in materials due to microstructural and dimensional constraints: a comparative review," Acta Materialia, 46, 5611, 1998.
- [3] A. Haque, A., M. T. A. Saif. "Deformation Mechanisms in Free-standing Nano-scale Thin Films: A Quantitative In-situ TEM Study", *Proceedings of the National Academy of Science*, vol 101 (17), 6335-6340, (2004).
- [3] J. Rajagopalan, J. H. Han, M. T. A. Saif. "Bauschinger Effect in Unpassivated Freestanding Nanoscale Metal Films", *Scripta Materialia*, Volume 59, Issue 7, Pages 734 – 737, 2008.
- [4] M. D. Uchic and D. M. Dimiduk, "A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing," *Materials Science* and Engineering A, 400-401, 268, 2005.