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Abstract 

The Predictable Assembly from Certifiable Code (PACC) Initiative at the Carnegie Mellon Soft-
ware Engineering Institute is developing methods and technologies to enable the production of 
software with predictable behavior by making the application of analytic methods accessible to 
software engineering practitioners. The use of reasoning frameworks is a means to achieving this 
goal. A reasoning framework is a packaging of an analysis theory along with other important ele-
ments that are needed for its application, such as methods for creating analysis models and evalu-
ating them. 

Lambda-* is a suite of performance reasoning frameworks founded on the principles of General-
ized Rate Monotonic Analysis (GRMA) for predicting the average and worst-case latency of peri-
odic and stochastic tasks in real-time systems. Lambda-* can be applied to many different, uni-
processor, real-time systems having a mix of tasks with hard and soft deadlines with periodic and 
stochastic event interarrivals. Some examples include embedded control systems (e.g., avionic, 
automotive, robotic) and multimedia systems (e.g., audio mixing).  

This report provides an overview of the Lambda-* performance reasoning frameworks, their cur-
rent capabilities, and ongoing research. The Lambda-* reasoning frameworks have been imple-
mented as a part of the PACC Starter Kit (PSK), a development environment that integrates a col-
lection of technologies to enable the development of software with predictable runtime behavior.  
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1 Introduction 

Our society increasingly depends on software embedded in all kinds of systems, including not 
only the ubiquitous cell phones and cars, but also medical devices, avionics, industrial robots and 
the power grid. This reliance on software puts pressure on the software industry to produce soft-
ware that meets stringent quality requirements, such as safety conditions to prevent accidental 
overdoses by medical devices and performance requirements to assure the timely response to han-
dle critical events in the power grid. Although theories capable of analyzing software to check the 
satisfaction of these kinds of quality requirements have existed for several years, they are still not 
widely used because typical practitioners are not trained in their application, and even if they are, 
applying them is time consuming.  As a consequence, problems in meeting quality requirements 
are usually found—if they are found—by testing, and thus, late in the development lifecycle. In 
general, this implies costly rework and possible schedule and budget overruns.  

The Predictable Assembly from Certifiable Code (PACC) Initiative at the Carnegie Mellon Soft-
ware Engineering Institute is developing methods and technologies to enable the production of 
software with predictable behavior, making the application of advanced analysis methods accessi-
ble to software engineering practitioners. Making the use of advanced analysis methods accessible 
is a challenge itself. In the case of performance engineering, for instance, Woodside and col-
leagues cite the heavy effort required and the semantic gap between functional and performance 
concerns as some of the problems of the current practice [Woodside 2007]. The PACC approach 
to this problem is in packaging the expertise required to make use of analysis theories in quality 
attribute reasoning frameworks [Bass 2005]. The main elements of a reasoning framework are 

• an analytic theory that is the basis of the reasoning 

• analytic constraints that are based on the assumptions the theory relies on, and that define the 
essential invariants of systems that the reasoning framework can analyze 

• a representation to capture the aspects of the system that are important for the analysis in a 
notation that is semantically relevant for the theory 

• an interpretation that creates an analysis model from the specification of the system (archi-
tectural description, design specification, or source code), bridging the semantic gap between 
the software specification and the analysis model 

• an evaluation procedure that evaluates the analysis model using the theory to produce the 
results of the prediction 

A key characteristic of reasoning frameworks is that they are automated, making the details of 
interpretation, analytic representation, and evaluation transparent to the user. This automation 
supports the goal of predictability by construction. The behavior of a system can be predicted by a 
reasoning framework if it satisfies the analytic constraints of the reasoning framework. If the sat-
isfaction of those constraints can be enforced—through statical checking of the specification of 
the system, through imposition of the runtime environment, or by other means—then the system 
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is predictable by construction.1 In the same way that in a modern programming language certain 
memory safety attributes are guaranteed if a program passes the type checking, the vision of pre-
dictability by construction is to provide predictable behavior with respect to other quality attrib-
utes, such as performance or safety, if the program passes the checks for those theories. 

Lambda-* is a suite of performance reasoning frameworks founded on the principles of General-
ized Rate Monotonic Analysis (GRMA) for predicting the average and worst-case latency of peri-
odic and stochastic tasks in real-time systems [Klein 1993]. Lambda-* can be applied to many 
different, uniprocessor, real-time systems having a mix of tasks with hard and soft deadlines with 
periodic and stochastic event interarrivals. Some examples include embedded control systems 
(e.g., avionic, automotive, robotic) and multimedia systems (e.g., audio mixing). 

The Lambda-ABA and the Lambda-WBA reasoning frameworks focus on systems composed of 
components executing at varying priorities, and optionally communicating synchronously and 
asynchronously among themselves.2 Both can handle blocking effects between components. 
Lambda-ABA predicts average-case latency whereas Lambda-WBA predicts worst-case latency. 

The Lambda-SS reasoning framework supports predicting average-case latency of responses with 
stochastic (non-periodic) event interarrivals.3 These stochastic tasks can be part of real-time sys-
tems with periodic hard deadlines because their invasiveness on the hard-real-time part of the sys-
tem is bounded by the use of the sporadic server algorithm [Sprunt 1989].  

The Lambda-* reasoning frameworks make the use of existing and new analysis theories (e.g., 
GRMA and the theory behind Lambda-SS, respectively) accessible to software engineers by pro-
viding automated generation of analysis models and their evaluation. They have been imple-
mented as a part of the PACC Starter Kit, a development environment that integrates a collection 
of technologies to enable the development of software with predictable runtime behavior [Ivers 
2007, 2008]. These reasoning frameworks have been validated [Moreno 2002, Hissam 2002, 
Larsson 2004], and have been applied to industrial systems [Hissam 2005b, Hissam 2008]. The 
PSK can be downloaded from http://www.sei.cmu.edu/pacc/starter-kit.html. 

This report provides an overview of the Lambda-* performance reasoning frameworks, their cur-
rent capabilities, and ongoing research. The report is organized as follows. Section 2 provides 
some background on real-time systems, and the Pin component technology and CCL, whose se-
mantics are the foundation for the interpretation in the Lambda-* reasoning frameworks. Section 
3 describes the following elements that are common to all the reasoning frameworks in  
Lambda-*: performance metamodel, the basic constraints, and the interpretation. Section 4 de-
scribes the specifics of Lambda-WBA, Lambda-ABA, and Lambda-SS. Section 5 describes ongo-
ing research to extend the Lambda-* reasoning frameworks to address the predictability of sys-
tems with a mix of hard and soft real-time tasks using Real-Time Queueing Theory (RTQT) 
[Doytchinov 2001].  

 
1  Predictable does not mean that the system behaves as required. The prediction could be for example, that it is 

not going to meet a timing requirement. 
2  The names of the reasoning frameworks originated from the names used to represent their capabilities while 

they were evolving [Hissam 2002]. Lambda was used for latency, ABA means average-case with blocking and 
asynchrony, and WBA means worst-case with blocking and asynchrony. 

3  SS stands for sporadic server. 

http://www.sei.cmu.edu/pacc/starter-kit.html
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2 Background 

This section provides some background required for the rest of the report. An introduction of the 
terms used in performance analysis is given in Section 2.1. Section 2.2 presents the basics of Pin, 
a component technology that supports predictability and is closely related to the Lambda-* rea-
soning frameworks. Section 2.3 provides a brief introduction to CCL, a language used to specify 
Pin components and assemblies of components. 

It is important to note that the use of Pin and CCL is not a precondition to the use of the  
Lambda-* reasoning frameworks. For example, Lambda-WBA has been used to predict the tim-
ing behavior of a legacy real-time system that was not implemented using Pin [Hissam 2008], and 
has also been used in ArchE, an assistant tool for software architecture design [Diaz-Pace 2008]. 
However, using Pin and CCL provides high levels of confidence because the interpretation is 
based on the semantics of Pin and CCL. In addition, using Pin and CCL has the benefit of the 
automation provided by the PACC Starter Kit, where specification with CCL, analysis with the 
reasoning frameworks, and implementation with Pin are integrated together. 

2.1 Performance in Real-Time Systems 

Although performance is a quality attribute that is important to most systems, for some systems, 
the timing behavior is as important as the logical behavior. When the correctness of the system 
requires not only producing the right result but producing it at the right time, the system is called a 
real-time system. Klein and colleagues present a framework to describe and reason about real-
time systems [Klein 1993]. Here we provide a brief summary introducing the terms that are used 
through the rest of the report. 

The timing requirements in real-time systems are expressed relative to an event. An event is some 
sort of stimulus to which the system has to respond. An event can be environmental, such as the 
push of a button or data arriving from the network, or it can be timed, that is, generated at specific 
times or after a given amount of time elapses. 

Events can also be classified according to their arrival pattern. In this dimension, events can be 
periodic if the time between arrivals is constant or aperiodic when it is not. 

The computation that must be performed upon the arrival of an event is called the response. The 
amount of time it takes to complete the response to an event since the arrival of that event is 
called response time or latency. 

Timing requirements, then, can be expressed as requirements on the response time. Furthermore, 
when a requirement imposes an upper bound on a response time, the upper bound is referred to as 
a deadline. 
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In the literature on real-time systems [Buttazzo 1999, Bernat 2001, Laplante 2004], timing re-
quirements are usually classified as follows: 

• Hard: when deadlines must be met at all times because failing to do so has severe conse-
quences. For instance, reacting to a critical overcurrent condition to prevent damage on an 
electric motor has a hard deadline. 

• Firm: when deadlines have to be met most times but occasionally missing a deadline does 
not have severe consequences. In addition, once the response misses the firm deadline, there 
is no value in completing it. For example, in live video streaming, dropping a video frame 
once in a while is not a big problem, and it is better to completely drop a frame that is late, 
than trying to deliver it late. 

• Soft: when the value of responding to an event gradually decreases past the deadline, which 
is usually referred to as a soft deadline. For example, refreshing the display of some instru-
ment in a panel may have a soft deadline of 30ms; however, should the refresh occasionally 
take longer, it will not cause a failure—only degraded performance. 

In general, systems have a mix of the different kinds of timing requirements. For instance, a sys-
tem may have a hard deadline to respond to a critical condition, but also have some monitoring 
function with less stringent timing requirements.  

The focus of the performance analysis in the Lambda-* reasoning frameworks is to predict la-
tency in systems with different kinds of requirements. There are three main contributors to the 
latency of a response that have to be accounted for to predict it: 

1. Execution. The amount of time that the response takes to perform its computation without 
any interference from other tasks in the system. 

2. Preemption. The amount of time that the response is not able to execute because the proces-
sor is being used by a higher priority task. 

3. Blocking. The amount of time that the response is waiting—and consequently, not execut-
ing—for a shared resource to become available. 

2.2 Pin Component Technology 

PACC uses a strict form of component-based technology to achieve predictability by construction. 
In the Pin component technology applications—also called assemblies—are built by connecting 
components together without the need for “glue” code, an approach called pure assembly [Hissam 
2005a]. Assemblies are built in a way that closely matches the component-and-connector view 
[Clements 2003] of the application’s software architecture. Since the architecture of a software 
system largely determines the quality attributes of the system, having an implementation technol-
ogy that allows a direct mapping of the architecture to the implementation greatly supports the 
predictable satisfaction of quality attribute requirements. 

Pin components are purely reactive, that is, they execute only as a reaction to a stimulus. For this 
reason, the code that executes upon the reception of stimuli is called a reaction. The component 
receives stimuli through one or more sink pins, each of which has an associated reaction. The re-
action can in turn interact with other components by emitting stimuli through the component’s 
source pins. Components can interact both synchronously or asynchronously. The interaction 
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mode is determined by the pin type, and for a connection between a source pin and sink pin to be 
valid, both pins must have the same mode of interaction because the mode determines the interac-
tion protocol between them. Reactions to synchronous sink pins can be either threaded or un-
threaded, depending on whether they execute in their own thread of execution or in the caller’s 
thread. Reactions to asynchronous sink pins can only be threaded. Figure 1 shows how Pin com-
ponents are visually represented. 

 

Figure 1:  Pin Component 

When components interact, the stimulus that is emitted by a source pin and received by a sink pin 
can carry data with it. In the same way, the reply to a synchronous interaction can be accompanied 
by data. For this reason, pins have a signature of produced and consumed parameters. The con-
nection between pins is valid only if their signatures are complementary (i.e., the parameters pro-
duced by one are consumed by the other and vice versa). 

Pin provides services as interfaces to the environment. Services can have sink or source pins, so 
that assemblies can send stimuli to or receive stimuli from the environment respectively. Services 
represent, for instance, clocks, the network, the keyboard, the console, and audio devices. 

Pin supports predictability in several ways. Pure assembly is important because without the need 
for “glue” code, all the custom code is contained in components, and these communicate through 
predefined connector types. Reasoning frameworks can exploit the knowledge of the semantics of 
the connector types so as to transform design specifications to analysis models. For example, if an 
asynchronous source pin is connected to many sink pins in other components, for performance 
analysis, it is critical to know whether the dispatching of the stimulus to each of the connected 
sink pins can be preempted or not because the performance model would be different for each 
case. If implementation decisions like this were left to component developers instead of being 
bound by the component technology, predictability would be much harder to achieve. 

Pin uses a container idiom whereby the custom code in components is “wrapped” by prebuilt con-
tainers that mediate all the interactions of the component with other components and with its envi-
ronment. Containers provide basic services that would otherwise need to be implemented in each 
component. For example, for the component developer, making a reaction threaded or unthreaded 
is a simple matter of setting a flag; the container makes the interaction within or across threads 
completely transparent. In addition, containers can enforce policies on the components, such as 
scheduling or security policies [Hissam 2005b, Moreno 2006]. Further details about Pin can be 
found in work by Hissam and colleagues and by Moreno [Hissam 2005a, Hissam 2005b, Moreno 
2006]. 
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2.3 Construction and Composition Language (CCL) 

CCL is a language used to specify Pin components and assemblies [Wallnau 2003]. CCL specifi-
cations describe component types, with their pins and reactions, and assemblies of components 
consisting of component instances and the connections between them. Figure 2 shows the CCL 
specification of the Hello component, a component that upon receiving an event on its sink pin 
emits an event with the message “Hello world!” through its source pin. The component has an 
asynchronous sink pin called go that neither consumes nor produces parameters, and an asynchro-
nous source pin called message that produces a string. The component has one reaction, theReac-
tion, which is executed when a message arrives to the go pin. The reaction specification also indi-
cates that it uses the message source pin. 

 

Figure 2:  CCL Specification of the Hello Component 

A useful characteristic of CCL is that specifications can be valid with different levels of detail. 
Even if the specification in Figure 2 did not include the reaction code, the specification would still 
be valid, and with the addition of performance-specific annotations, that level of specification 
would be sufficient for performance analysis. This makes it possible to predict the performance of 
an assembly even in the early stages of development, when only estimates of execution time are 
available. It also permits predicting the performance of an assembly, including components for 
which a complete specification is not available, for example, a third-party component. CCL al-
lows for specifying the behavior of the reaction using statecharts and a C-like action language. 
This level of specification can be used to generate the implementation of the components in C 
language and is also required for behavior analysis [Ivers 2004]. 

Figure 3 shows the CCL specification of the HelloWorld assembly, and Figure 4 is a diagram of 
that assembly. This assembly prints out “Hello world!” every two seconds using an instance of the 
Hello component and two services provided by the Rtos environment. (Environments define the 
services provided by the runtime environment.) The assembly specifies in the assume section the 
services it needs from the environment to run. In this particular example, the HelloWorld assem-
bly requires two services, a Clock and a Console. The assembly can only be instantiated in an en-

component Hello() { 
 sink asynch go(); 
 source asynch message(produce string s); 
 
 threaded react theReaction (go, message) { 
 
  // reaction code  
  start -> wait {} 
  wait -> say { 
   trigger ^go; 
   action ^message("Hello World!"); 
  } 
  say -> wait { 
   trigger $message; 
   action $go(); 
  } 

} 

} 
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vironment that satisfies its assumptions. After the assume section in the listing in Figure 3, an in-
stance of the Hello component is instantiated. Following that, the components and services are 
assembled together by connecting their pins with the ~> operator. 

 

Figure 3:  CCL Specification of the HelloWorld Assembly 

 

 

Figure 4: HelloWorld Assembly 

CCL has a mechanism to annotate different elements to provide additional information. This an-
notation mechanism is used to include in a CCL specification the information needed by the rea-
soning frameworks to carry out their analysis. For example, one of the annotations that Lambda-* 
requires is the execution time of the components used in an assembly. The following annotation 
provides that information for the computation associated with the go pin in the Hello component.  

annotate Hello:go {"lambda*", 
const string execTime = "G(0.3, 0.5, 0.6)" } 

The first parameter inside the block delimited by the curly braces indicates a class of annotations. 
In this case, it indicates that this is an annotations used by Lambda-*. The second parameter de-
fines a typed constant, which is the specific property the annotation is providing. These properties 
are defined by the reasoning frameworks. In this case, execTime is an annotation understood by 
Lambda-* to indicate the execution time of the computation associated with a sink pin. The value 
assigned to execTime in this example, “G(0.3, 0.5, 0.6)” indicates a generic distribution with 

assembly HelloWorld() (Rtos) 
{ 
 assume { 
  Rtos:Clock clock(2000); 
  Rtos:Console console(); 
   
 } 
 
 Hello hello(); 
   
 clock:tick ~> hello:go; 
 hello:message ~> console:writeln; 
 
 expose {} 

} 
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minimum 0.3, mean 0.5 and maximum 0.6.  For a list of the annotations supported by Lambda-* 
see Appendix A. 

For further details about CCL such as the specification of reaction statecharts see the technical 
note by Wallnau and Ivers [Wallnau 2003]. 
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3 Common Elements of the Lambda-* Reasoning 
Frameworks 

This section describes the elements that are common to all the reasoning frameworks in the 
Lambda-* suite. Section 4 covers the specifics of each reasoning framework. 

3.1 Model Representation 

The performance model used in Lambda-* is based on the framework proposed by Gonzalez Har-
bour and colleagues [Gonzalez Harbour 1991]. In this framework, a system comprises a set of 
tasks that execute concurrently.4  The work carried out by each task is represented by a sequence 
of subtasks that execute serially. Each subtask represents a portion of the computation that exe-
cutes at a fixed priority level, does not voluntarily yield the processor, and does not access re-
sources for which it could block. In that way, the subtask does not introduce the opportunity of a 
scheduling point—a point in time at which the scheduler makes a scheduling decision—in the 
middle of its execution. Changing the priority level, acquiring and releasing shared resources, or 
entering and leaving critical sections is done at the boundary between subtasks.  The main attrib-
utes of a subtask are its execution time and priority level.  

The metamodel for the performance models in Lambda-* is shown in Figure 5. The three classes 
at the top (i.e., PerformanceModel, Task, and Subtask) directly correspond to the aforementioned 
framework. That is, a performance model has a collection of tasks, and each task in turn has a 
collection of subtasks. The rest of the metamodel includes elements that allow modeling other 
situations, such as tasks that are not periodic and non-constant execution times. 

The characterization of even interarrivals is done in two different ways depending on whether the 
task is a periodic task (PeriodicTask) or an aperiodic task (AperiodicTask). In the former, the pe-
riod attribute in the derived class PeriodicTask represents the period of the task or the event that 
triggers the task. For the latter, the event interarrival distribution is modeled with an instance of a 
Distribution, an abstract class representing different kinds of statistical distributions. 

The two most important attributes for the subtasks are the priority—a proper attribute in the 
class—and the execution time distribution, represented with an instance of the Distribution class 
as well. The SSTask represents an aperiodic task that is scheduled by a sporadic server [Sprunt 
1989]. 

Not all the concepts in the metamodel are used by the all the reasoning frameworks in Lambda-*. 
For example, unbounded statistical distributions cannot be used in worst-case latency prediction. 
The metamodel is more general than it needs to be for any particular reasoning framework so that 
it can be used across the reasoning frameworks in Lambda-*. 

 
4  In this report concurrent execution refers to logical concurrent execution because one assumption of the 

Lambda-* reasoning frameworks is the use of a single processing unit. Physical concurrency is out of the scope 
of this report. 
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Figure 5:  Performance Metamodel (notation: UML) 

3.2 Constraints 

Constraints are at the heart of predictability by construction. Despite the negative connotation of 
the word, constraints are enablers of predictability. First, they enable the applicability of the un-
derlying theory in the reasoning framework by ensuring that theory’s assumptions are invariants 
of the implemented software. Second, they help make the interpretation process tractable. Unless 
the semantic gap between the system specification and the analysis model is sufficiently small to 
allow a simple direct translation (i.e., a design specification entity directly mapped to an analysis 
entity), the interpretation has to be able to transform known specification constructs or patterns 
into constructs in the analysis domain. For example, a portion of the specification stating that 
component A synchronously invokes component B can be interpreted as subtasks a and b in the 
performance model, where both belong to the same task, and a precedes b. Since the interpreta-
tion is done by applying transformations to specific patterns, the interpretation cannot handle any 
arbitrary specification. Constraints can delimit the specification space so that only those specifica-
tions that can be interpreted are allowed. Therefore, constraints define the space of systems pre-
dictable by a reasoning framework, ensuring that they can be both interpreted and evaluated.   

The following are basic constraints of the Lambda-* performance reasoning frameworks. 

1. The assembly executes in a single processing unit. This means that the assembly is not dis-
tributed and it is executed in a single core, in the case of multi-core processors. 

2. The operating system uses preemptive fixed-priority scheduling.     

3. Components perform their computation first and then interact with other components. 
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4. Each sink pin in a component requests interaction on all the source pins in its reaction. 

5. There are no loops in the connection graph of components. 

6. Components do not suspend themselves during their execution. That means that they do not 
yield the CPU by sleeping or invoking operations that could block, such as I/O. 

7. Priority of mutex (i.e., synchronous non-reentrant) sink pins is assigned according to the 
highest locker protocol (a.k.a. priority ceiling emulation).  

8. If the computations corresponding to two sink pins within the same response can be ready to 
execute at the same time, they must have different priorities. 

These constraints exist for very specific reasons. For example, the use of preemptive fixed-
priority scheduling is an underlying assumption of GRMA. The rationale behind some of the other 
constraints is explained in the next subsection. 

3.3 Interpretation 

Interpretation is the process of transforming a design specification into an analysis model ex-
pressed according to the model representation of the reasoning framework. In the case of the 
Lambda-* reasoning frameworks, the interpretation is from a specification in CCL to a perform-
ance model corresponding to the metamodel described in Section 3.1. The interpretation bridges 
the semantic gap between the design notation and the concepts of theory used to make predic-
tions. In this particular suite of reasoning frameworks, the interpretation transforms a component-
and-connector design into a model of concurrent tasks. 

Although from the user’s perspective the interpretation in Lambda-* is from CCL to a perform-
ance model, there is an intermediate representation used in the process. The intermediate con-
structive model (ICM) simplifies the implementation of the interpretation by making it easier to 
programmatically navigate the design. The ICM removes details that are specific to the design 
notation and makes information relevant to analysis readily accessible. For instance, to determine 
some characteristics of a component instance from the abstract syntax tree created from its speci-
fication in CCL, one would have to find its component type and then look for the information 
there, whereas in ICM, there are no types, and consequently component characteristics such as the 
pins a component has are directly accessible from the instance. Another example is how attributes 
such as pin execution times are stored. In CCL, they are given as annotations; hence retrieving 
their value implies searching through all the annotations of the element and even doing so at both 
instance and type level. In ICM, on the other hand, such properties are first-class attributes. 

Another benefit of using the ICM is that the reasoning frameworks can be used with design nota-
tions other than CCL because the interpretation is isolated from a particular design language. 
Nevertheless, the CCL roots are obvious in ICM in that a system or application is represented as 
an assembly of services and components that have sink and source pins connected. The rest of this 
section focuses on the interpretation as the transformation from ICM to a performance model. 

Figure 6 shows the ICM metamodel. The top-level class in ICM is AssemblyInstance, a class rep-
resenting the assembly or application. An assembly has a set of services (IcmService) and compo-
nents (IcmComponent), which are collectively referred to as assembly elements (ElementIn-
stance). Assembly elements have pins (PinInstance), each of which is either a sink pin 
(SinkPinInstance) or a source pin (SourcePinInstance). Sink and source pins are further specified 
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by their mode (e.g., SinkPinMode::asynch for an asynchronous sink, SourcePinMode::synch for a 
synchronous source). The SSComponent class is used to represent components that are scheduled 
by the sporadic server algorithm. The prediction of latency involving these components is ad-
dressed by Lambda-SS (see Section 4.3). 

 

Figure 6:  ICM Metamodel (notation: UML) 

CCL, and therefore ICM, is based on a reactive component model—that is components only exe-
cute as a reaction to events. The only sources of external events are the source pins on services. 
Since knowing the event interarrival distribution of the events the assembly has to respond to is a 
precondition to performance analysis, source pins in services are instances of ServiceSour-
cePinIcm, a class that requires the specification of the event distribution via its eventDistribution 
association with the Distribution class. The Distribution class is an abstract super-class to repre-
sent different kinds of statistical distributions used to describe both execution and event interarri-
val times. The connections between assembly elements are represented by the association link-
Sources (and the reciprocal sinks association) between SourcePinInstance and SinkPinInstance. 

Thus far, the assembly elements and their connections have been described but nothing has been 
said about the inside of the components. In CCL, the inside of a component can be fully specified 
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by its reaction or reactions. Each sink pin is associated with a reaction that is triggered upon the 
activation of the sink pin. The reaction represents the computation carried out by the component. 
It is described as a state machine with state transitions and actions (including both computations 
and interaction with other components through the source pins of the components). ICM has far 
fewer details about the inside of the components. It has no notion of state or partial computation 
between interactions through source pins. Therefore, ICM makes the simplifying assumption that 
upon the activation of a sink pin, a computation is performed to completion, and after that the 
component interacts with other components via its source pins. This simplification allows the in-
terpretation to determine the order in which different components will be scheduled at runtime, 
something that would not be possible if computations and component interactions were state-
dependent. This is the reason for constraint number 3 described in Section 3.2. 

The internals of the component are represented by two pieces of information in ICM. One is the 
reactSources association (and reciprocal reactSinks) that indicate those source pins that partici-
pate in the reaction corresponding to a sink pin. Again, these source pins are assumed to partici-
pate not conditionally, but always, in the reaction. The second piece of information is the execu-
tion time distribution of a sink pin (execTimeDistribution). This is the time the component needs 
to execute the computation associated with the sink pin when there is neither preemption nor 
blocking effects. Variations in execution time due to alternative execution paths inside the com-
ponent can be accounted for by the statistical distribution used to represent the execution time.  

The ICM and the performance model are different in several aspects. For example, the ICM can 
model a complicated network of components, while the performance model only supports concur-
rent sequences of activities with no explicit connections between them. The next subsections de-
scribe transformation from ICM to performance model, starting with the basic case, and then add-
ing support for asynchronous connections and blocking. 

3.3.1 Overview and Basic Case 

The goal of the interpretation is to generate a performance model that supports predicting the la-
tency of the response to an event. In an ICM, a source of events is represented as a source pin in a 
service (i.e., a ServiceSourcePinIcm). Therefore, the goal translates into predicting the latency of 
all the components that are connected directly or indirectly to that service source pin. Since the 
response to an event is modeled as a task in the performance model, it follows that for each Ser-
viceSourcePinIcm in the ICM, a Task must be created in the performance model. The specific 
type of task depends on whether the event interarrival distribution of the service source pin is con-
stant or random. In the former case the corresponding task is a PeriodicTask and in the latter it is 
an AperiodicTask.  

The next step, and the most complex one, is transforming a response involving several compo-
nents and possibly multiple threads of execution into an equivalent sequence of serially executed 
subtasks, resulting from determination of the order in which the components in the response will 
be scheduled.5 This transformation deals with two main issues: the internal concurrency within a 
response and the blocking effects between responses.  

 
5  Although a component is not exactly an entity schedulable by the operating system, it carries out a computation 

that executes in the context of a thread, which is a schedulable entity. Since the interpretation is a transforma-
tion from the design domain into the performance analysis domain, it is natural to have two views of the same 
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Before delving into these two issues, let us start with a simple assembly, shown in Figure 7, with 
no asynchronous connections.  Since all the connections are synchronous, we can follow the call 
graph to determine the sequences of subtasks corresponding to the responses to the events from 
clock1 and clock2. The sequence for clock1is <A.s, B.s, C.s> and the sequence for clock2 is <D.s, 
E.s>,6 where A.s, for instance, refers to the subtask corresponding to sink s on component A. Each 
sequence can be obtained programmatically by doing a pre-order traversal of the call graph, and 
creating a subtask for each sink pin visited. In this case, the priorities7 of the sink pins do not have 
an effect on the order of execution within one response because on synchronous interactions com-
ponents block until the call is completed (i.e., the called component has completed its execution 
and returned the control to the caller). Therefore, even if a high-priority component calls a low- 
priority component, the latter will not be affected by the former. Also, the presence of threaded 
reactions in the components involved in a response does not introduce concurrency because com-
ponents block when they call other components, so in all the cases, the last called component is 
the only one ready to execute. 

It is worth noting that there is concurrency among the different tasks (or equivalently, responses) 
and priorities will have an effect on the scheduling of them. However, the interpretation only at-
tempts to determine the order in which components will be scheduled within a response; the 
evaluation procedure takes care of accounting for the effect that tasks cause on one another.  

 

Figure 7:  Assembly with Only Synchronous Connections 

                                                                                                                                                              

 
behavior. For example, a component executes at priority p, and its corresponding subtask in the performance 
analysis domain also executes at priority p. 

6  Source pins are used from top to bottom. For example, in component A in Figure 7, A.r1 is used before A.r2. 
7  A higher number indicates a higher priority. 



 

15 | CMU/SEI-2008-TR-020 

In this example and in the rest of the discussion of the interpretation in this section, components 
have only one sink pin.8 However, Pin and CCL allow having more than one sink in a component. 
As long as the constraints from Section 3.2 are satisfied, the interpretation algorithm works in 
those cases as well because it really looks at sink pins and their associated reaction as computa-
tional units, that is, it considers the sink pin and its reaction to be independent of other sinks and 
reactions in the component, if any. A consequence of this is that it is not possible to have two sink 
pins associated with the same threaded reaction. This is disallowed—indirectly—by constraint 
number 8 in Section 3.2. Another thing to note from this example is the omission of call unwind-
ing in the interpretation. A component that makes a synchronous call will continue to execute af-
ter it receives control back from the callee, even if it is only to return the control to the component 
that called it. Due to constraint number 3 described in Section 3.2, almost all of the execution time 
of the component (i.e., all except calling other components and call unwinding) is consumed be-
fore it makes the calls to other components. The amount of execution time after the control returns 
to the component is then negligible and therefore the interpretation does not introduce a subtask to 
represent call unwinding in a component. Nevertheless, the interpretation takes into account the 
effect that the priority of call unwinding could have on the order of execution of components in 
the presence of asynchronous interaction. 

3.3.2 Handling Asynchronous Connections 

When a response includes asynchronous interactions, there is concurrency within the response 
because the component that initiates the asynchronous connection is ready to continue executing 
because 

• It does not have to wait for the call to complete.  

• The called component becomes ready to execute as well, possibly to invoke other  
components. 

In this situation, the order the components will execute depends not only on the order in which 
they are invoked but also on the priorities at which they execute. For this reason, the preorder tra-
versal approach to determining the equivalent sequence of subtasks no longer works.  

Figure 8 shows an example of a response with asynchronous connections, and therefore concur-
rency. Component A asynchronously activates components B and C. Since B and C can execute 
concurrently, it seems that they cannot be serialized as a sequence of subtasks. However, because 
they have different priorities, and the application runs on a single processing unit (constraint 
number 1) they actually execute serially. The high-priority component C executes first followed 
by the low-priority component B, even when they are ready to execute at the same time. There-
fore, it is possible to determine the sequence of subtasks that represents the way the components 
in the response will be scheduled at runtime, in this case <A.s, C.s, B.s>. On the other hand, if the 
components that are ready to execute at the same time in the response have the same priority, the 
execution order is not deterministic. Consequently, the components within a response should be 
assigned unique priorities. However, this is a sufficient but not necessary constraint because two 
components can have the same priority as long as they are never ready to execute at the same 

 
8  For this reason, and for the sake of brevity, we can refer to the priority of the reaction associated with the one 

sink pin in the component as the priority of the component. 
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time. The interpretation algorithm flags situations where priority-level sharing is not allowed, so 
the necessary constraint, as expressed by constraint number 8, is that if two components within a 
response are ready to execute at the same time, they must have different priorities. The details of 
the algorithm that computes the sequence of subtasks corresponding to a response with asynchro-
nous connection is beyond the scope of this report, but they can be found in a report by Hissam 
and colleagues [Hissam 2002]. 
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Figure 8:  Response with Asynchronous Connections and Internal Concurrency 

3.3.3 Handling Blocking 

The other important situation the interpretation has to address is blocking between responses, as 
shown in Figure 9, where two responses use a shared component C. Since this component is not 
reentrant,9 the responses can potentially block each other. The interpretation must create one sub-
task in each response to represent the execution of this shared component. The resulting se-
quences of subtasks for clock1 and clock2 are <A.s, C.s> and <B.s, C.s> respectively. However, 
since there is no explicit synchronization between tasks in the performance metamodel, nothing 
would prevent the two tasks from reaching a point where both are executing the subtasks corre-
sponding to component C. Since the subtasks in the two tasks would have the same priority, they 
could potentially execute simultaneously. That behavior in the model would not be faithful to the 
behavior in the assembly, where component C would only execute for one of the responses at a 
time. 

The approach taken in the reasoning framework to overcome this issue was not to introduce syn-
chronization semantics to the performance metamodel. The performance metamodel was kept 
simple to support different evaluation procedures. Instead, blocking is addressed using the highest 
locker protocol [Klein 1993], also known as priority ceiling emulation [Sha 1990, Davari 1992]. 
The shared component is assigned a priority higher than the priority of all the components calling 
it. In addition, the component must not suspend itself during its execution. The benefit of these 
analytic constraints is twofold. First, they make the behavior more predictable because calling 
components are blocked at most once and priority inversion is bounded. Second, the non-reentrant 
component can be modeled as a subtask in each of the responses without the need to have special 

 
9  This component has a mutex synchronous sink pin, which means that this component will accept calls from 

other components one at a time. 
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synchronization elements in the performance metamodel because the highest locker protocol and 
the fixed-priority scheduling provide the necessary synchronization. 
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Figure 9:  Assembly with Blocking Between Responses 

3.3.4 Example 

We present here an example to show the performance model generated by the interpretation of a 
design that uses both synchronous and asynchronous interactions, and has two responses that can 
block each other when accessing a shared repository. This example, a simple robot controller, is 
based on an example included in the PACC Starter Kit and has been described elsewhere [Moreno 
2008]. 

The design of the robot controller is shown in Figure 10. The activities in the controller are peri-
odic, thus, they are driven by clocks. The period of the clocks is included in the name for simplic-
ity (e.g., clock130 is a clock with a period is 130ms). The trajectoryPlanner receives high-level 
work orders for the robot and translates them into sub-work orders, which are then put in the re-
pository. For each work order, three sub-work orders are created. To do this translation, the trajec-
tory planner needs to get information about the position of the robot, which is provided by the 
positionMonitor component. The movementPlanner component takes sub-work orders from the 
repository and translates them into low-level movement commands for the controllers that control 
the axes of the robot (controllerX and controllerY). It is critical that the movement planner never 
finds the repository empty because if it does, the robot operation has to be aborted. Therefore, the 
trajectory planner has a hard deadline of 450ms. At the same time, the robot must receive move-
ment commands every 150ms; consequently the movement planner has that deadline. The remain-
ing components in the assembly are a sensor that senses the position of the robot and a monitor 
component that does monitoring of the system at low priority. The CCL code for the components 
and their controller assembly are included in Appendix B. 

Table 1 contains the additional information needed to generate the performance model, that is, 
priorities and execution times. The interpretation takes the design as input and generates the per-
formance model shown in Figure 11 as a screenshot of the PACC Starter Kit. In the performance 
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model, each task is described as a sequence of activities without any reference to synchronous or 
asynchronous interactions or blocking. 

 

 
Figure 10: Robot Controller Example 

 

Table 1:  Priorities and Execution Times in Robot Controller 

Execution Time 
Component Pin Priority 

Minimum Average Maximum 

controllerX move 20 12.8 13.0 13.5 
controllerY move 20 12.8 13.0 13.5 
monitor go 2 0.25 0.3 0.5 
movementPlanner go 16 18.8 20.0 21.00 
positionMonitor input 12 9.8 10.0 10.8 
positionMonitor read 14 3.0 3.1 3.2 
sensor go 10 5.0 5.1 5.6 
trajectoryPlanner go 4 88.5 89.5 90.5 
repository access 18 19.8 19.9 20.8 
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Figure 11:  Performance Model for the Robot Controller 
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4 Specifics of the Reasoning Frameworks in Lambda-* 

The following subsections describe in detail the different reasoning frameworks in Lambda-*. 
Each one is described in terms of the elements of a reasoning framework, omitting those elements 
that have already been covered in Section 3.  

4.1 Lambda-WBA: Worst-Case, Blocking, and Asynchrony 

4.1.1 Measure of Interest 

Lambda-WBA predicts the worst-case latency for the response to an event. The computed value is 
an upper-bound for the latency because the worst-case component execution times, blocking, and 
preemption effects are assumed to occur simultaneously. Although this may seem overly pessi-
mistic, there are some real-time systems for which it must be assured that the responses to certain 
events are handled on time under all possible conditions. In these situations, Lambda-WBA can 
be used to predict whether the response to an event will complete before its deadline.  

4.1.2 Theory 

The underlying theory of Lambda-WBA is Generalized Rate Monotonic Analysis (GRMA), more 
specifically, a technique for analyzing the schedulability of a set of tasks with varying priorities 
[Gonzalez Harbour 1991]. According to this theory, each task or response is composed of a se-
quence of subtasks that have an associated execution time and priority level. This makes it possi-
ble to analyze situations in which the response to an event is composed of several computations 
executing at different priorities, which is the kind of response found in a component-based sys-
tem, where each component carries out a portion of the response and can execute at its own prior-
ity level if it has its own thread of execution. In this case, the assignment of priorities can be based 
on deadlines or the semantic importance of the component [Gonzalez Harbour 1991]. In addition, 
the theory can also account for the effect of the synchronization between responses when using a 
priority-based synchronization protocol. 

The most complex aspect of this theory involves computing the preemption effect. In regular rate 
monotonic analysis, each task executes at a fixed priority, so the set of tasks that can preempt the 
task being analyzed is constant, and they preempt every time. With the varying priorities method, 
priorities can vary throughout the execution of both the task being analyzed and the other tasks in 
the system. Therefore, the set of tasks that can preempt the task being analyzed is not constant. 
The algorithm for computing the worst-case latency for tasks with varying priorities classifies the 
other tasks in the system based on their ability to preempt each of the subtasks in the task being 
analyzed. First, the task being analyzed is transformed to canonical form, a special form of the 
task wherein the priority of consecutive subtasks does not decrease and that for worst-case analy-
sis is equivalent to the original task. If P is the priority of the subtask being analyzed, the rest of 
the tasks are classified in the following sets: 

• H: set of tasks whose lowest priority is higher than or equal to P. These tasks preempt every 
time (when they execute at a priority equal to P, they are assumed to preempt, the worst ef-
fect). 
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• HL: set of tasks that start at a priority higher than or equal to P and then drop below P. These 
tasks preempt only once because when they arrive they are higher priority, but once they 
drop to low priority they cannot complete until the task being analyzed completes. 

• LH: set of tasks that start at a priority lower than P and eventually rise over P. Only one of 
the tasks in this set can preempt since a task from this set can only preempt if it is already 
executing its high-priority segment when the subtask being analyzed starts; only one of them 
could be executing its high-priority segment at that time. 

• L: set of tasks whose priority is always lower than P. These never preempt. 

The algorithm then uses these sets in the process of computing the worst-case response time of the 
subtask being analyzed [Gonzalez Harbour 1991, Klein 1993]. 

4.1.3 Constraints 

In addition to the basic constraints of Lambda-*, Lambda-WBA has the following constraints. 

• Only lower bounded interarrival time distributions are allowed.  

• Only upper bounded execution time distributions are allowed.  

Only these bounded distributions are supported because for worst-case analysis, the worst interar-
rival and execution times are used. If they were described by unbounded distributions, then the 
analysis would assume events arrive with infinite frequency and components have infinite execu-
tion time, which of course results in the impossibility to schedule the tasks. 

4.1.4 Evaluation Procedure 

The evaluation procedure in Lambda-WBA is the GRMA method for determining the schedula-
bility of tasks with varying priorities [Gonzalez Harbour 1991, Klein 1993]. More specifically, the 
Lambda-WBA reasoning framework uses MAST [Gonzalez Harbour 2001], a worst-case analysis 
tool that implements that method. Since MAST has its own input language for performance mod-
els, the performance models generated by the interpretation in Lambda-WBA are translated to an 
input that allows MAST to evaluate the model. Nevertheless, the translation is straightforward 
because both the Lambda-* performance metamodel and the language of MAST are in the same 
domain and have very similar concepts. 

The worst-case latency is computed by constructing the worst possible alignment of preemption 
and blocking effects for each task. It is worth noting that the resulting worst case is an upper 
bound that may not actually be observed in the execution of the system if it is unlikely that all 
those worst effects will happen simultaneously. Figure 12 shows the output of MAST for the ex-
ample introduced in Section 3.3.4. The worst-case latency for each task is shown with a green or 
red background depending on whether the task is going to meet its deadline or not, respectively. 
In this case, the responses to clock130 and clock450 do not meet their deadlines. 
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Figure 12:  Results of the Lambda-WBA Evaluation Procedure with MAST 

4.2 Lambda-ABA: Average-Case, Blocking, and Asynchrony 

4.2.1 Measure of Interest 

During the execution of a system each job of a response (i.e., each instance of a response) can be 
affected differently by other tasks and thus exhibit different latencies as shown in Figure 13. 
Lambda-ABA predicts the average latency for the response to an event by taking into account 
how different jobs are affected by other tasks. Instead of creating an alignment of tasks that causes 
the worst case for a response, as in Lambda-WBA, Lambda-ABA uses the alignment that natu-
rally occurs from the arrival patterns and execution times of the different tasks. 

4.2.2 Theory 

The evaluation procedure of Lambda-ABA is based on discrete-event simulation, and conse-
quently there is no specific theory directly used to compute the latency prediction in the reasoning 
framework. Nevertheless, many of the concepts in Lambda-WBA that come from the GRMA 
technique for scheduling tasks with varying priority [Gonzalez Harbour 1991] are used to make 
the simulation very efficient. For example, the highest locker protocol is used to do priority-based 
task synchronization. In this way, the simulation does not need to handle synchronization specifi-
cally because it is handled by virtue of its simulation of fixed-priority preemptive scheduling. 

When all the sources of events in the assembly whose performance is being predicted are peri-
odic, Lambda-ABA makes an optimization to drastically reduce the length of the simulation. 
When all the tasks are periodic, it is possible to find a hyper-period, defined as the least common 
multiple (LCM) of the periods of all the tasks as shown in Figure 13. Hyper-period analysis can 
be used only if the execution times of the components are constant or have a negligible variance; 
in other cases, looking at a single hyper-period would not allow for the varying execution times of 
a component to be sampled. 
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Figure 13:  Example of Hyper-period with Three Periodic Tasks 

4.2.3 Constraints 

In Lambda-ABA, the interpretation does not impose any specific constraints other than the basic 
constraints of Lambda-* (Section 3.2). However, the different evaluation procedures supported by 
Lambda-ABA have some constraints regarding some of the elements in the performance model 
that they do not support, such as a specific statistical distribution. These constraints are only due 
to tool limitations rather than to concrete limitations of the theory. 

4.2.4 Evaluation Procedure 

Lambda-ABA supports three different evaluation procedures, all based on discrete-event simula-
tion. Simulation-based evaluation procedures make latency predictions by simulating the execu-
tion of the system, generating random event interarrival and execution times following the distri-
butions specified in the model. While running the simulation, they keep track of best, average, and 
worst latency. Lambda-ABA simulates the execution of the performance model instead of simu-
lating the execution of the system. The advantage of doing this is that the simulator does not need 
to handle blocking (other than the resulting from fixed-priority scheduling), nor does it need to 
maintain a call stack. The latter is due to the fact that the interpretation has transformed all the 
calls—both synchronous and asynchronous—into plain sequences of subtasks. That is, the sched-
uling within a task has already been done by the interpretation, leaving less work for the simula-
tion to do. This approach results in faster simulations. 

The following subsections describe the three simulation-based evaluation procedures of Lambda-
ABA. 
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4.2.4.1 Evaluation with SIM-MAST 

SIM-MAST is a discrete event simulator specially designed to simulate performance models [Lo-
pez Martinez 2004]. It is part of the MAST suite, so it accepts as input performances models ex-
pressed in the same language that MAST uses. 

The following constraints are specific to the use of SIM-MAST as an evaluation procedure for 
Lambda-ABA. 

• Only constant, exponential, and uniform interarrival time distributions are allowed.  

• Only constant, uniform, and generic10 execution time distributions are allowed.  

• Sporadic servers are not supported. 

Figure 14 shows the results produced by the evaluation with SIM-MAST for the example from 
Section 3.3.4. The results are presented in the same way as the results of the evaluation with 
MAST in Lambda-WBA, with the addition of the average response time. In this case, the worst 
response is the worst observed in the simulation, which is not as bad as the worst case predicted 
by Lambda-WBA. The difference may be due to several reasons. For example, missing a deadline 
may require that several components exhibit their worst-case execution time simultaneously, and 
the simulation may have not generated such a case. 

 

Figure 14:  Results of the Lambda-ABA Evaluation Procedure with SIM-MAST 

4.2.4.2 Evaluation with Qsim 

Qsim is a fast discrete event simulator specially designed to simulate performance models and 
queueing networks. As input, it takes a network of queues with potentially different queueing 
policies at each queue.  Jobs are introduced through “flow” declarations (representing tasks) that 

 
10  Generic distributions are described by their minimum, average, and maximum values. 
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specify the queues through which a stream of jobs pass, and the characteristics of those jobs. In 
addition to specifying the interarrival and execution time characteristics, flows may also be bound 
to a sporadic server. Although Qsim supports several queue disciplines such as earliest deadline 
first, Lambda-ABA uses Qsim with a single static-priority queue to simulate the fixed-priority 
scheduling. 

At the end of the simulation, Qsim reports the minimum, mean, and maximum latency for each 
flow, corresponding to the latency predictions for each task in the performance model generated 
by Lambda-ABA. 

4.2.4.3 Evaluation with Extend 

Extend is a commercial general-purpose simulation tool supporting continuous and discrete-event 
models [Krahl 2001]. Extend simulation models can be created by visually adding pre-built com-
ponents, setting their properties, and connecting them together. In addition to the components in 
the standard libraries, new components can be created with its ModL language. To simplify the 
creation of simulation models, a library of components was created especially for Lambda-ABA, 
including components such as Task, Subtask, and CPU. The evaluation procedure then takes the 
performance model created by the interpretation and translates it to an Extend model by pro-
grammatically instantiating components from the library and connecting them together. 

When using the Extend-based evaluation procedure in Lambda-ABA, the following constraints 
apply. 

• Only constant execution times are used. When other distributions are used for execution 
time, the average is used as a constant execution time in the generated simulation model. 

• Only constant, uniform, normal and exponential interarrival time distributions are supported. 

• Explicit deadline annotations are not supported. 

4.3 Lambda-SS 

4.3.1 Measure of Interest 

Lambda-SS predicts the average latency for the response to an event when the response is carried 
out by a component scheduled through use of the sporadic server (SS) algorithm [Sprunt 1989]. 

4.3.2 Theory 

The sporadic server scheduling algorithm provides a solution for scheduling aperiodic tasks in a 
system (i.e., tasks that respond to stochastic events). The need to respond to stochastic events of-
ten presents a dilemma. Due to the nature of the events, they could arrive in bursts, creating a high 
demand for processor time. If the response to the event is assigned a high priority, then it could 
prevent periodic tasks with hard deadlines from meeting those deadlines. To avoid that, the aperi-
odic tasks could be assigned a low priority that would prevent them from having an unbounded 
negative effect on the periodic part of the system. However, this would also relegate the aperiodic 
tasks to executing only in the background, that is, when no periodic tasks are executing or ready 
to execute.  
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The sporadic server algorithm provides a solution to this problem by reserving a budget of high-
priority execution time to be used by aperiodic tasks. When an event to be handled by an aperi-
odic task arrives, the sporadic server schedules the task to be run at high priority if there is execu-
tion budget left; otherwise it runs at background priority. In the former case, the budget is sched-
uled to be replenished one replenishment period later by an amount equal to the execution time 
consumed by the task. When the budget is replenished, if there are aperiodic tasks ready or run-
ning at background priority, they are promoted to high priority so that they can benefit from the 
reserved high-priority execution time that has just become available. 

The sporadic server algorithm provides a good quality of service to the aperiodic tasks and at the 
same time bounds their invasiveness on hard real-time periodic tasks in the system. In fact, when 
analyzing the hard real-time periodic part of the system, the aperiodic task scheduled by the spo-
radic server can be considered as a periodic task with execution time equal to the sporadic server 
budget and period equal to its replenishment period. That is, it retains the predictable timing be-
havior of the periodic part of the system, which can still be analyzed with Lambda-WBA. 
Lambda-SS focuses on the predictability of the aperiodic task in the sporadic server. 

The theoretical underpinnings of Lambda-SS are reported by Hissam and colleagues [Hissam 
2004]. Here, we present a short summary of its key concepts. Lambda-SS builds on queueing the-
ory to predict the latency of the response to a stochastic event. Basically, the expected or average 
latency E[W] can be computed as the sum of the mean queueing time E[Q] and the mean service 
time E[Sa] as shown in Equation (1). 

][][][ aSEQEWE +=  (1) 

Assuming exponentially distributed interarrival times, the mean wait time can be determined us-
ing the Pollacek-Khinchin formula [Kleinrock 1975] as shown in Equation (2): 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
][2
][

1
][

2

a

a

SE
SE

QE
ρ

ρ
 (2) 

where ρ = E[Sa]/E[T], in which T is the mean interarrival time of the aperiodic events. It is obvi-
ous then, that to compute the mean wait time, the mean service time is needed. However, the ser-
vice time of the aperiodic task in the sporadic server depends on the amount of high priority exe-
cution budget available during its execution. An important result presented by Hissam and 
colleagues [Hissam 2004] allows us to determine the mean service time from the point of view of 
the queue, that is, the one needed for Equation (2), in a special case called continuous back-
ground. Once the sporadic server budget is exhausted, the aperiodic task can execute when the 
periodic tasks are not executing, that is, at low priority in background. 

For example, if there is one periodic task with execution time 8ms and period 10ms, background 
execution time will be available for 2ms every 10ms. If the period of the periodic is reduced while 
keeping the same utilization, for instance execution time 0.2ms and period 1ms, background is 
available in smaller chunks but more often. If this is taken to the extreme of having an infinitesi-
mal period for the periodic task, background becomes available for infinitesimal periods of time 
infinitely often, hence the name continuous background. From the point of view of the aperiodic 
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task, it looks as if it were executing in a slower processor, and its “degraded” service time can be 
computed as in Equation 3: 

p
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where Up is the utilization of the periodic tasks.  

What is equally important is that from the point of view of the events waiting to be serviced in the 
queue, the apparent service time of the aperiodic task is always the one given by Equation 3, re-
gardless of whether the task is executed completely in the sporadic server at high priority, com-
pletely in background, or somewhere in between—a case called hybrid. This is because even if it 
executes at high priority, the task waiting in the queue still has to wait for the backlog of periodic 
work to be worked off before it can be executed. See the report by Hissam and colleagues for the 
proof [Hissam 2004]. 

Having taken care of the first term in Equation (1), the rest of the theory is concerned with com-
puting the mean service time for the aperiodic to use in the second term of Equation (1). This re-
quires computing the distribution of sporadic server, background, and hybrid arrivals, and also the 
distribution of high-priority execution in the latter. This is done drawing from results of queueing 
and renewal theory.  

In addition to providing a way to determine the average latency of the aperiodic task in the con-
tinuous background case, Lambda-SS provides a way to compute the average latency at the other 
end of the spectrum, when the period of the periodic task is significantly large [Hissam 2004]. 

4.3.3 Model Representation 

The performance metamodel shown in Figure 5 has a class named SSTask specifically used to 
model aperiodic tasks that are scheduled by a sporadic server. The attributes of this class corre-
spond to the parameters of the sporadic server, namely, execution budget, replenishment period, 
and background priority. 

4.3.4 Constraints 

In addition to the basic constraints of the Lambda-* reasoning frameworks, Lambda-SS has the 
following constraints.  

• There is exactly one sporadic server task.  

• The rest of the tasks are periodic.  

• The interarrival distribution of the sporadic server task is exponential.  

• The sporadic server task must have constant execution time.  

• The sporadic server budget must be equal to the sporadic server task execution time.  

• The background priority of the sporadic server is lower than the priority of any periodic sub-
task. 
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4.3.5 Interpretation 

The interpretation is the same as for the rest of the reasoning frameworks in Lambda-* with the 
addition of a post-processing step before the evaluation that computes the total utilization of the 
periodic tasks, a parameter needed for the evaluation. 

4.3.6 Evaluation Procedure 

The evaluation procedure for Lambda-SS has four equations that induce the “envelope” shown in 
Figure 15 [Hissam 2004]. The first equation in the figure computes the average latency for the 
case where there are no periodic tasks, that is, when the periodic utilization is zero (Up=0). The 
second equation computes the average latency when the periodic utilization is so high that there is 
no background processing left. For intermediate levels of periodic utilization, the third and fourth 
equations compute the average latency for the cases of very small and large periodic periods re-
spectively, thus providing lower and upper bounds for the expected latency of the aperiodic task. 
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Figure 15:  Lambda-SS Prediction Envelope 

If more precision than the bounds provided by this closed-formula evaluation procedure is re-
quired, a simulation-based evaluation procedure can be used. This evaluation, which is based on 
the Extend simulation tool, can simulate the aperiodic task in the sporadic server along with the 
complete set of periodic tasks in the application. That is, instead of being represented by a single 
utilization parameter, the periodic task set is modeled including the period and execution time of 
each of the periodic tasks.   
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5 Ongoing Work in Lambda-* 

In this section we present an overview of the ongoing research we are pursuing to extend the ca-
pabilities of the Lambda-* reasoning frameworks. 

In many real-time systems there is a need to address a mix of hard- and soft-real-time tasks. For 
example, hard real-time tasks may include tasks for monitoring power lines and shutting them 
down when faults are detected, in which missing a deadline can result in catastrophic failure. Firm 
real-time tasks, such as the data for a frame in a real-time video stream, may still have a deadline 
(the time at which the frame must be displayed), but do not suffer catastrophic failure in the event 
of a small number of missed deadlines. For these applications missed deadlines merely corre-
spond to reduced QoS. In a mixed system, we would like to ensure that the hard real-time periodic 
tasks never miss a deadline while minimizing the miss rate (i.e., the fraction of jobs that miss their 
deadline) of the firm real-time tasks.  

Toward this goal, we have been investigating the application Real-Time Queueing Theory 
(RTQT) [Doytchinov 2001] to predict the deadline miss ratio of firm real-time tasks in mixed sys-
tems. The deadline miss ratio is the fraction of jobs that miss their deadlines, typically expressed 
as a function of those deadlines. In the context of Lambda-*, we consider two classes of systems:  

• static priority systems in which the hard-real-time periodic tasks are assumed to have the 
highest priority and aperiodic background tasks that run at low priority  

• static priority systems with a sporadic server to improve the response times of the aperiodic 
background tasks  

Our research on these classes of systems includes experiments that can be categorized into three 
types: Two-Flow Static Priority, Two-Flow Sporadic Server, and Multi-Flow. The two-flow 
static-priority experiments are the simplest of these and set the baseline for expectations in static 
priority systems. The two-flow sporadic server experiments focus on evaluating the benefit of 
using a sporadic server on the background task. The multi-flow experiments investigate the ef-
fects when there are a large number of periodic tasks and a single background task (or an aggre-
gate of background tasks). In all experiments we assume that the high-priority periodic tasks are 
scheduled using RMA priorities and never miss deadlines.  

5.1 Two Flow Static Priority Experiments 

The goal of the two-flow static-priority experiments was to quantify the factors that affect the per-
formance against deadlines of a low-priority aperiodic task sharing the processor with a high-
priority task, and to develop a theory for predicting lateness in such systems. Simulation results 
were compared with two proposed analytical models, an RTQT-based model and a simpler “de-
graded processor” model in which the low-priority job is considered to be running on a system 
with a slowed clock. We found that the “degraded processor” model failed to accurately predict 
lateness of the low-priority task, except when the job size of the high-priority task was very small 
compared to that of the low-priority task. The RTQT-based formula, on the other hand, fit well 
over a wide range of conditions. We tested all 16 combinations of conditions in which the inter-
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arrival time and service time of the high-priority and low-priority tasks were either exponentially 
distributed or constant.   

The RTQT-based formula we used was  

Pr[low-priority task is late] PDe θ−=  (4) 

where θ is a workload parameter computed from the mean and standard-deviation of the service 
time and inter-arrival time for both tasks, P is the fraction of the CPU demand that is due to the 
low-priority task, and D is the deadline of the low-priority task. In simulations and analysis, we 
normally consider D to have an arbitrary “unit time” dimension, but if specific units are required, 
it will be the same as the units used to compute θ.  For example, if we use the mean and standard 
deviation of the inter-arrival and service time in microseconds to compute θ, then D will be the 
deadline in microseconds.  This is because the term θPD is a dimensionless constant with the units 
for θ and D cancelling each other out. 

Figure 16 shows a representative curve from our two-flow experiments showing the deadline miss 
ratio of a low-priority aperiodic task competing with an aperiodic high-priority task.  The high-
priority task is assumed to always meet its deadline.  Both tasks are assumed to have an exponen-
tially distributed interarrival time with a mean of 2 time units, and an exponentially distributed 
service time with a mean of 0.95 time units for a total traffic intensity of 0.95.  The boxes show 
the simulation results, the solid line shows the RTQT prediction, and the dashed line shows the 
degraded processor theory prediction.  We can see that while the “degraded processor” theory 
seriously underpredicts the miss ratio, the RTQT theory provides a close match with the simula-
tion results.  
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Figure 16:  Comparison of Simulation to Two Proposed Theory Curves 

5.2 Two Flow Sporadic Server Experiments 

The goal of the two-flow sporadic server experiments was to evaluate the effectiveness of using a 
sporadic server to decrease lateness of a low-priority aperiodic background task. A sporadic 
server is characterized by a budget and a replenishment period. As long as budget is available, the 
aperiodic task can execute at a temporary priority higher than the high-priority task, but when the 
budget is depleted, it must revert to low priority. The replenishment period controls how long the 
task must wait for the budget to be replenished.  

In these experiments we assumed the following conditions: 

• one high-priority periodic task with period Pp and a utilization of 0.45 

• one low-priority aperiodic task with a mean-interarrival time of Pa =1 and a utilization of 
0.45.  All time units in the experiments are relative to the constant Pa =1 value. 

• one sporadic server used by the aperiodic task with a replenishment period Pss = Pp, and a 
utilization of 0.55 

• total utilization held constant at 0.9 

We assume Pss = Pp because we want the sporadic server to have the highest priority but also a 
budget for as long as possible.  In order to ensure the sporadic server has the highest priority, we 
must choose Pss ≤ Pp to satisfy RMA constraints.  Pss = Pp  will give us the largest possible budget 
while satisfying the RMA constraints since the budget for a fixed workload level will scale with 
the period.   
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Figure 17 shows the results for a representative experiment comparing miss ratio of the aperiodic 
task with and without a sporadic server (labeled “Sporadic” and “No Sporadic,” respectively) as a 
function of the aperiodic task’s deadline.  We found that when the period of the high-priority task 
matched the mean inter-arrival time of the aperiodic task (i.e., Pp= Pa =1), there is no performance 
difference between using and not using the sporadic server.  As the period Pp of the periodic task 
was increased, the aperiodic miss ratio became higher when no sporadic server was used (curves 
above the Pp= 1 case), and lower when a sporadic server was used (curves below the Pp= 1 case). 

 

Figure 17:  Effect of Sporadic Server on Lateness 

  

The major findings of these experiments were as follows:  

• The miss rate of the aperiodic task is minimized when the replenishment period of the spo-
radic server is as long as possible (i.e., equal to the period of the periodic task). This is be-
cause the budget scales with the period, and a larger budget makes it less likely that an ape-
riodic task will waste budget. Wasted budget can occur when there is not enough remaining 
budget to complete a job of the aperiodic task. When this happens, the job consumes the 
budget, but is then forced to wait anyway, resulting in a negligible reduction in latency.  

• While holding the utilization of all tasks constant, as the period (Pp) of the high-priority task 
increases relative to the mean inter-arrival-time of the aperiodic task, the miss rate of the 
aperiodic task decreases when a sporadic server is used and increases when a sporadic server 
is not used. The increase in miss rate when the sporadic server is not used is due to the 



 

35 | CMU/SEI-2008-TR-020 

longer blocking periods causing all aperiodic arrivals to wait longer for the CPU. The de-
crease in miss rate when the sporadic server is used is likely due to the drop in wasted budget 
that occurs as the sporadic server replenishment period is increased (which is made possible 
by the increased period of the high-priority task).  

• The sporadic sever is more effective when most of the traffic is periodic. This occurs be-
cause for a given total utilization, the demand on the sporadic server goes down as the frac-
tion of traffic that is aperiodic goes down. For example, if the high-priority utilization is 0.8 
and the aperiodic utilization is 0.1, the demand (ratio of aperiodic utilization to sporadic 
server utilization) on the sporadic server will be 0.1/0.2=0.5. On the other hand, if high-
priority utilization is 0.1 and the aperiodic utilization is 0.8, the demand on the sporadic 
server will be 0.8/0.9=0.89. Even though a utilization of 0.9 is available for the sporadic 
server, there is much higher contention for the server in this case.  

5.3 Multi-Flow Experiments 

In our multi-flow experiments, we considered cases where there are multiple periodic tasks, and a 
single aperiodic task (or equivalently, an aggregate of aperiodic tasks). We also considered non-
heavy traffic cases. We found that interactions between the periods and computation times of the 
periodic tasks can have a significant effect on the performance of the background task.  

To simplify the problem, we first address the problem of determining lateness for background 
tasks with zero (or ε) execution time. This decouples the effects of the preemption periods caused 
by the higher priority periodic tasks, and the queueing effects of the background task. In this sim-
plified case, we found that the miss rate can be expressed by the piece-wise linear equation: 
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where H is the length of the hyper-period, N is the number of unique busy period durations occur-
ring over the hyper-period, and ni and bi are the number and duration of the busy periods, respec-
tively. Busy periods are periods of time over which the processor is continuously executing some 
task. The main idea underlying this equation is that the probability of missing a deadline D is the 
probability of arriving in a busy period with more than D time units until the end of the busy pe-
riod.  

Figure 18 shows this theory curve plotted against a simulation showing near-perfect agreement.  
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Figure 18:  Multi-Flow Example 

The next steps in this work are to relax the zero-execution-time assumption of the background 
task, and to consider the case with a sporadic server.   As a step in this direction, we have begun 
investigating the vacation server problem [Doshi 1986].  In a vacation server, the server can ran-
domly enter a vacation which persists for a random period of time.  During the vacation, no work 
is done.  Vacation servers can be used to model aperiodic tasks in a system with higher priority 
periodic tasks where the periodic execution time is considered the “vacation” from the perspective 
of the low-priority aperiodic.  By modeling the busy periods characterized by ni and bi as the va-
cations, we seek to incorporate the queueing delay into Equation (5). 

Another application of the vacation server model is as an abstraction of the sporadic server in 
cases where there is little or no background capacity.  In such a case, after the sporadic server ex-
hausts its budget, the aperiodic tasks will be unable to run until the replenishment period elapses.  
This can be viewed as a sporadic vacation problem where the duration of time in which the budget 
is exhausted is treated as a vacation.   
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6 Summary 

The Lambda-* reasoning frameworks encapsulate the specialized knowledge of performance 
analysis for real-time systems in a way that is accessible to software engineering practitioners. 
Even though reasoning frameworks require adhering to constraints, these restrictions enable pre-
dictability. They not only ensure that the assumptions of the underlying analysis theory are satis-
fied, but also make possible transforming designs into analysis models in a methodical way, 
which lends itself to automation. The Lambda-* reasoning frameworks automate the creation of 
the analysis models and their evaluation, two tasks that are very time consuming even for experts 
in the field. 

By supporting worst- and average-case prediction, the Lambda-* reasoning frameworks allow 
predicting of whether hard and soft timing requirements will be met. In addition, the ongoing re-
search in the use of RTQT to extend Lambda-* aims at predicting the probability of missing a 
deadline. Such predictions would make it possible to address firm timing requirements without 
going to the extremes of allocating resources to satisfy worst-case schedulability. 

The three reasoning frameworks, Lambda-WBA, Lambda-ABA, and Lambda-SS have been im-
plemented as part of the PACC Starter Kit [Ivers 2008]. 
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Appendix A Lambda-* Annotations 

To make performance predictions, the performance reasoning frameworks require information 
that is not typically present in a design specification, such as execution and event interarrival 
times. This information is added to a specification with the CCL annotation mechanism. The an-
notations supported by the Lambda-* performance reasoning frameworks are described here.  

Notation:  In the description of the annotations, we use italics to denote placeholders for values or 
other elements. For example, pin is a placeholder for a pin identifier. Note that these identifiers 
must have the right scoping according to CCL scoping rules. For instance, if component type 
Clock has a pin tick, the identifier could be expressed in different ways as shown in these exam-
ples, which are not comprehensive.  

• tick if the annotation is inside the component specification.  

• Clock:tick if the annotation is outside the component specification and applies to all in-
stances of the component.  

• clock150:tick if the annotation is inside an assembly specification and applies only to 
instance clock150.  

Time units:  In annotations that refer to timing, the units are not specified; however, the same 
unit must be used throughout the model. For example, one can choose to use milliseconds, or mi-
croseconds, or another unit of time, as long as all the time expressions are expressed in the same 
unit.  

Statistical Distributions:  The Lambda-* performance reasoning frameworks support several 
statistical distributions for execution and event interarrival time. They are specified as a string 
with a particular format, as described in Table 2.  

Table 2:  Notation for Statistical Distributions in Annotations 
Distribution  Format  Description  Example  
Constant  C(value)  

C(value,offset) 
A constant value. When used as an event interar-
rival distribution, it can have an offset. The offset 
is the time of the first event arrival.  

C(4.5)  
C(4.5,30)  

Uniform  U(min,max)  Uniform distribution between min and max  U(3.4,5)  
Exponential  M(mean)  Exponential distribution with mean mean  M(10)  
Normal  N(mean,stdDev)  Normal distribution with mean mean and stan-

dard deviation stdDev  
N(120, 6.4)  

Generic  G(min,avg,max)  Asymmetric uniform distribution, in which the 
average is not necessarily in the middle of the 
[min,max] interval. The distribution consists of 
two uniformly distributed intervals [min,avg] and 
(avg,max] with probability proportional to the 
interval size.  

G(3.5,4,8.2) 

 

Execution Time 

This annotation indicates the execution time distribution of the computation associated with a sink 
pin. The execution time is the CPU time the component takes to react to an event on the sink pin 
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when executing in isolation, that is, without accounting for preemption or blocking on possible 
interactions through synchronous pins. The value is any legal distribution string; however, some 
evaluation procedures may not handle certain distributions. Refer to the documentation of each 
evaluation procedure to determine whether it supports a particular execution time distribution.  

It is also possible to use this annotation to indicate the execution time of a service’s source pins, 
since services themselves take time to execute.  

Format    

annotate sinkPin {"lambda*", const string execTime = value }  

annotate serviceSourcePin {"lambda*", 
const string execTime = value }  

Required   Yes  

Examples    

annotate PositionMonitor:input {"lambda*", 
const string execTime = "G(9.99, 10.01, 10.84)" }  

annotate oneMonitor:read {"lambda*", 
const string execTime = "U(3.01, 3.25)" }  

Execution Overhead 

This annotation can be used to add an execution overhead in addition to the execution time indi-
cated for a pin. The value is a float number in the chosen unit of time.  

Format    

annotate sinkPin {"lambda*", const float execOverhead = value }  

annotate serviceSourcePin {"lambda*", 
const float execOverhead = value }  

Required   No  

Example    

annotate PositionMonitor:input {"lambda*", 
const float execOverhead = 1.15 }  

Event Interarrival 

This annotation indicates the event interarrival distribution of a service’s source pin. The value is 
any legal distribution string; however, some evaluation procedures may not handle certain distri-
butions. Refer to the documentation of each evaluation procedure to determine whether it supports 
a particular event interarrival distribution.  

Periodic events can be denoted by a constant interarrival distribution. However, a special annota-
tion for period can be used. The value in this case is the period expressed in units of time.  

The offset of a task is the time of the arrival of the first event. The reasoning framework automati-
cally computes the offset of each periodic task to match its offset in the Pin runtime environment. 
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In Pin, periodic tasks get their first event one period after the start of the assembly. The reasoning 
framework computes the offset of a task by subtracting the minimum period of all the periodic 
tasks from the period of the task. The offset can be overridden by specifying it as part of the event 
interarrival distribution (see the constant distribution with offset). If at least one offset is specified 
with an annotation, the reasoning framework does not attempt to compute the other offsets. If they 
have not been specified, they are assumed to be 0.  

Format    

annotate serviceSourcePin {"lambda*", 
const string eventDistribution = value }  

annotate serviceSourcePin {"lambda*", const int period = value }  
Required   Yes  

Examples    

annotate input:data {"lambda*", 
const string eventDistribution = "M(26.3)" }  

annotate clock450:tick {"lambda*", const int period = 450 }  

Priority 

This annotation specifies the priority level of a threaded reaction. The valid range is from 0 to 
254, where a higher value indicates a higher priority. This annotation is not strictly a performance 
annotation, because it is also used for code generation from CCL. However, since it is so impor-
tant for the performance reasoning framework, it is described here.  

Format    

annotate threadedReaction {"Pin", const int priority = value }  

Required   Yes  

Example    

annotate positionMonitor:reaction {"Pin", const int priority = 15 }  

Deadline 

This annotation can be used to specify a deadline for the response to an event, that is, a deadline 
for the computation triggered by a service’s source pin. By default, the deadline is assumed to be 
the end of the period in the case of periodic events, and events with random interarrival are as-
sumed not to have a deadline. Those default assumptions can be changed with this annotation. 
However, since this annotation is not supported by many evaluation procedures, it’s advisable to 
refer to the evaluation procedure documentation to see whether it is supported.  

Format    

annotate serviceSourcePin {"lambda*", const float deadline = value }  

Required   No  
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Example    

annotate timer1:go {"lambda*", const float deadline = 325.0 }  

Connection Overhead 

This annotation can be used to account for the connection overhead in a given environment. When 
used, this connection overhead is considered to be additional execution time preceding the execu-
tion of the reaction associated with a sink pin.  

Format    

annotate environment {"lambda*", 
const float connectionOverhead = value }  

Required   No  

Example    

Rtos env() {  

   Rtos:PSClock clk450(450);  

};  

annotate env { "lambda*", const float connectionOverhead = 100 }  

Sporadic Server 

This annotation specifies the parameters for a component scheduled by a sporadic server. These 
parameters are  

• budget: the execution budget of the sporadic server  

• backgroundPriority: the priority at which the component executes when there is not enough 
high priority execution budget left in the sporadic server  

• replenishmentPeriod: the amount of time the sporadic server waits after high priority execu-
tion is granted before it replenishes the budget by the previously granted amount  

This annotation is not supported by all evaluation procedures.  

Format    

annotate component {"SSContainer", 
const int backgroundPriority = value, 
budget = value, replenishmentPeriod = value }  

Required   No  

Example    

annotate trajectoryPlanner {"SSContainer", 
const int backgroundPriority = 1, 
budget = 10, replenishmentPeriod = 100 }  
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Scenarios 

Scenarios can be used to analyze different operational scenarios in the same design. For instance, 
a design could have some components that execute only upon a critical condition, and when they 
do, they will cause other parts of the system to miss their deadlines. In such a case, missing the 
deadline would be acceptable should the system be attending to a critical condition; however, one 
must be sure that deadlines are met in other situations. Both situations can be analyzed using the 
same design by creating scenarios. When the performance reasoning framework is launched, the 
user selects from the list of scenarios defined in the design to specify which are to be included in 
the analysis. When the performance model is generated from the design, only those pins belong-
ing to those scenarios are included.  

Scenarios are defined by first defining special constants that represent the scenarios, and then in-
dicating which pins belong to which scenarios. The scenario constants are of type int and their 
names must start with the prefix SCN_. The value can be any integer 2i, where i = 1,...,31, because 
the scenarios are considered bit masks.  

By default all pins in the assembly participate in all scenarios. If a pin participates only in some 
scenarios, then this must be specified using an annotation. The annotation can indicate a single 
scenario or a list of scenarios in which the pin participates.  

Format    

annotate pin {"scenario", const int scenario = value }  

annotate pin {"scenario", 
const intArrayType scenario = {value1,…,valuen} }  

Required   No  

Example    

const int SCN_MOV = 1;  

const int SCN_PLAN = 2;  

const int SCN_MONITOR = 4;  

typedef int ScenarioList2[2];  

annotate Robot:clock1:tick {"scenario", 
const ScenarioList2 scenario = 
{SCN_PLAN, SCN_MOV } }  

annotate Robot:clock2:tick {"scenario", 
const int scenario = SCN_MOV }  

Concentrator 

A concentrator reaction is a reaction that has all of the following characteristics:  

• two or more sink pins  

• one or more source pins  

• only one reaction  
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• interaction through its source pin(s) every time it has received a message on each of its sink 
pins.  

An example of a concentrator is an adder that has two sink pins, A and B, for its operands and a 
source pin C to output the result of A + B. It can produce a result only after it has received one 
input on each of the sink pins. It can receive a message on A first and when it receives a message 
on B, it computes the result and outputs it through C. It could also be the other way around.  

It is required that the concentrator reaction be the only reaction in the component. Therefore, the 
term concentrator is used interchangeably for reactions and components. However, the annotation 
refers to a reaction.  

The concentrator annotation is used to inform the performance reasoning framework that a com-
ponent behaves as a concentrator. In general, concentrators are non-deterministic: if the inputs are 
not constrained, it is not possible to determine which input will finally trigger the output source 
pin. To make predictable which input will trigger, special constraints must be satisfied so that the 
behavior becomes deterministic. These constraints are  

• All the sources of events leading to the concentrator must have the same distribution.  

• The concentrator must have one and only one sink for which the highest priority of all its 
callers is lower than the minimum preceding priority of all the other sinks in the concentra-
tor. This is the pin that will receive the event that will trigger the output of the concentrator.  

Format    

annotate reaction {"lambda*", const boolean concentrator = true }  

Required   No  

Example    

annotate reaction {"lambda*", const boolean concentrator = true }  
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Appendix B Robot Controller Code 

This appendix contains the CCL code for the robot controller example used in Section 3. The code 
for the component and the assembly is included. The specifications of the components do not in-
clude the actual internal logic that the components would need to perform their actual functions. 
Instead, the logic has been replaced with a synthetic load representative of the computation re-
sources that they would require. Nevertheless, the CCL specification for the components and their 
assembly is sufficiently complete to allow the generation of an implementation that can be run 
and measured. 

File controller.ccl 
#include "Support/Rtos.ccl" 
#include "components/TrajectoryPlanner.ccl" 
#include "components/MovementPlanner.ccl" 
#include "components/WorkOrderRepository.ccl" 
#include "components/AxisControllerSensor.ccl" 
#include "components/PositionMonitor.ccl" 
#include "components/Sensor.ccl" 
#include "components/Monitor.ccl" 
 
assembly Robot () (Rtos) 
{ 
 assume { 
  Rtos:PSClock clock130(130); 
  Rtos:PSClock clock450(450); 
  Rtos:PSClock clock150(150); 
  Rtos:PSClock clock2000(2000); 
 } 
 
 TrajectoryPlanner trajectoryPlanner(); 
 MovementPlanner movementPlanner(); 
 WorkOrderRepository repository(); 
 AxisController controllerX("X"); 
 AxisController controllerY("Y"); 
 Sensor sensor(); 
 PositionMonitor positionMonitor(); 
 Monitor monitor(); 
   
 clock450:tick ~> trajectoryPlanner:go; 
 trajectoryPlanner:put ~> repository:access; 
 
 clock150:tick ~> movementPlanner:go; 
 movementPlanner:get ~> repository:access; 
 movementPlanner:moveX ~> controllerX:move; 
 movementPlanner:moveY ~> controllerY:move; 
 controllerX:position ~> positionMonitor:input; 
 controllerY:position ~> positionMonitor:input; 
  
 clock130:tick ~> sensor:go; 
 sensor:position ~> positionMonitor:input; 
  
 trajectoryPlanner:read ~> positionMonitor:read; 
  
 clock2000:tick ~> monitor:go; 
  
 // priorities 
 annotate Rtos:PSClock:reaction {"Pin", const int priority = 254 }  
 annotate trajectoryPlanner:reaction {"Pin", const int priority = 4} 
 annotate movementPlanner:reaction {"Pin", const int priority = 16} 
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 annotate repository:reaction {"Pin", const int priority = 18} 
 annotate controllerX:reaction {"Pin", const int priority = 20} 
 annotate controllerY:reaction {"Pin", const int priority = 20} 
 annotate sensor:reaction {"Pin", const int priority = 10 } 
 annotate PositionMonitor:inputReaction {"Pin", const int priority = 12 } 
 annotate PositionMonitor:readReaction {"Pin", const int priority = 14 } 
 annotate monitor:reaction {"Pin", const int priority = 2 } 
  
 annotate TrajectoryPlanner:reaction {"Pin", const int queueLength = 1} 
 annotate MovementPlanner:reaction {"Pin", const int queueLength = 1} 
 annotate Sensor:reaction {"Pin", const int queueLength = 1} 
  
 expose {} 
} 
 
Rtos env() { 
 Rtos:PSClock clk130(130); 
 Rtos:PSClock clk450(450); 
 Rtos:PSClock clk150(150); 
 Rtos:PSClock clk2000(2000); 
}; 
 
Robot robot() { 
 Robot:clock130 = env:clk130; 
 Robot:clock450 = env:clk450; 
 Robot:clock150 = env:clk150; 
 Robot:clock2000 = env:clk2000; 
}; 
 
const int SCN_MOV = 1; 
const int SCN_PLAN = 2; 
annotate Robot:clock450:tick { "scenario", const int scenario = SCN_PLAN } 
annotate Robot:clock150:tick { "scenario", const int scenario = SCN_MOV } 
 
// lambda* annotations 
annotate Robot:clock130:tick {"lambda*", const string eventDistribution = "C(130)" } 
annotate Robot:clock450:tick {"lambda*", const string eventDistribution = "C(450)" } 
annotate Robot:clock150:tick {"lambda*", const string eventDistribution = "C(150)" } 
annotate Robot:clock2000:tick {"lambda*", const string eventDistribution = "C(2000)" } 
 
annotate Robot:clock450:tick {"lambda*", const float deadline = 450.0 } 
annotate Robot:clock150:tick {"lambda*", const float deadline = 150.0 } 
 

File components/TrajectoryPlanner.ccl 
#include "Support/SyntheticLoad.ccl" 
 
component TrajectoryPlanner() { 
 sink asynch go(); 
 source synch read(); 
 source synch put(produce int mode, produce string in, consume string out); 
 
 threaded react reaction (go, read, put) { 
  start -> listen {} 
  listen -> getPosition {  
   trigger ^go; 
   action { 
    syntheticLoad(90); 
    ^read(); 
   } 
  } 
  getPosition -> store { 
   trigger $read; 
   action ^put(1, "there"); 
  } 
  store -> listen { 
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   trigger $put; 
   action $go(); 
  } 
 } 
} 
 
annotate TrajectoryPlanner:go {"lambda*", 
 const string execTime =  "G(88.5, 89.5, 90.5)" } 

File components/MovementPlanner.ccl 
#include "Support/SyntheticLoad.ccl" 
 
component MovementPlanner() { 
 sink asynch go(); 
 source synch get(produce int mode, produce string in, consume string out); 
 source asynch moveX(produce int pos); 
 source asynch moveY(produce int pos); 
 
 threaded react reaction (go, get, moveX, moveY) { 
  string where; 
  start -> listen {} 
  listen -> retrieve { 
   trigger ^go; 
   action { 
    syntheticLoad(20); 
    ^get(0, ""); 
   } 
  } 
  retrieve -> controlX { 
   trigger $get; 
   action { 
    where = get.out; 
    //%{ Printf("Moving to: %s\n", $ccl$where); %} 
    ^moveX(10); 
   } 
  } 
  controlX -> controlY { 
   trigger $moveX; 
   action ^moveY(10); 
  } 
  controlY -> listen { 
   trigger $moveY; 
   action $go(); 
  } 
 } 
} 
 
annotate MovementPlanner:go {"lambda*", 
 const string execTime =  "G(18.8, 20.0, 21.00)" } 

  

File components/WorkOrderRepository.ccl 
#include "Support/SyntheticLoad.ccl" 
 
component WorkOrderRepository() { 
 sink synch access(consume int mode, consume string in, produce string out); 
 
 threaded react reaction (access) { 
  int items = 2; 
  start -> listen {} 
  listen -> putting { 
   trigger ^access; 
   guard access.mode == 1; 
  } 
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  listen -> getting { 
   trigger ^access; 
   guard access.mode == 0; 
  } 
  putting -> listen { 
   action { 
    items = items + 3; 
    //%{ Printf("\tPutting: remaining items %d\n", $ccl$items); %} 
    syntheticLoad(20); 
    $access(""); 
   } 
  } 
  getting -> listen { 
   guard items > 0; 
   action { 
    syntheticLoad(20); 
    //%{ Printf("\tremaining items %d\n", $ccl$items); %} 
    items = items - 1; 
    $access("there"); 
   } 
  } 
  getting -> listen { 
   guard items <= 0; 
   action { 
    %{ Printf("\n\n\tABORTING....no movement data to drive robot\n\n\n"); 
%} 
    alert(2, "Aborting...work order repository is empty"); 
    $access("n/a"); 
   } 
  } 
 } 
} 
 
annotate WorkOrderRepository:access {"lambda*", 
 const string execTime =  "G(19.8, 19.9, 20.8)" } 
 

 

File components/AxisControllerSensor.ccl 
#include "Support/SyntheticLoad.ccl" 
 
component AxisController(string name) { 
 sink asynch move(consume int pos); 
 source asynch position(); 
 
 threaded react reaction (move, position) { 
  start -> listen {} 
  listen -> moving { 
   trigger ^move; 
   action { 
    //%{ Printf("\tmoving axis %s\n", $ccl$name); %} 
    syntheticLoad(13); 
   } 
  } 
  moving -> sending { 
   action { 
    $move(); 
    ^position(); 
   } 
  } 
  sending -> listen { 
   trigger $position; 
  } 
 } 
} 
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annotate AxisController:move {"lambda*", 
 const string execTime =  "G(12.8, 13.0, 13.5)" } 

 

File components/PositionMonitor.ccl 
#include "Support/SyntheticLoad.ccl" 
 
component PositionMonitor() { 
 sink asynch input(); 
 sink synch read(); 
  
 threaded react inputReaction (input) { 
  start -> listen {} 
  listen -> listen { 
   trigger ^input; 
   action { 
    syntheticLoad(10); 
    $input(); 
   } 
  } 
 } 
 
 threaded react readReaction (read) { 
  start -> listen {} 
  listen -> listen { 
   trigger ^read; 
   action { 
    syntheticLoad(3); 
    $read(); 
   } 
  } 
 } 
} 
 
annotate PositionMonitor:input {"lambda*", 
 const string execTime =  "G(9.8, 10.0, 10.8)"  } 
  
annotate PositionMonitor:read {"lambda*", 
 const string execTime =  "G(3.0, 3.1, 3.2)"  } 

 

File components/Sensor.ccl 
#include "Support/SyntheticLoad.ccl" 
 
component Sensor() { 
 sink asynch go(); 
 source asynch position(); 
 
 threaded react reaction (go, position) { 
  start -> listen {} 
  listen -> sense { 
   trigger ^go; 
   action { 
    syntheticLoad(5); 
    ^position(); 
   } 
  } 
  sense -> listen { 
   trigger $position; 
   action $go(); 
  } 
 } 
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} 
 
annotate Sensor:go {"lambda*", 
 const string execTime =  "G(5.0, 5.1, 5.6)" } 

 

File components/Monitor.ccl 
component Monitor() { 
 sink asynch go(); 
 
 threaded react reaction (go) { 
  start -> listen {} 
  listen -> listen { 
   trigger ^go; 
   action { 
    %{ Printf("\nRobot working...\n"); %} 
    $go(); 
   } 
  } 
 } 
} 
 
annotate Monitor:go {"lambda*", 
 const string execTime =  "G(0.25, 0.3, 0.5)" } 
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