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Executive Summary 
 
A workshop was held in San Antonio, Texas, from April 24 through 26, 2007 to promote an 
active discussion of ongoing research focused on the role of in situ biogeochemical 
transformation of chlorinated solvents, defined here as processes where contaminants are 
degraded by abiotic reactions with naturally occurring and biogenically-formed minerals in the 
subsurface. This workshop was convened to discuss the current understanding of these 
processes and identify research and demonstration needs among researchers, practitioners, site 
owners, and regulatory agencies. Prior to the workshop, participants were provided 
background material on the purpose and goals of the workshop, including a list of charge 
questions for their consideration and to stimulate discussion. A combination of whole group 
meetings and breakout sessions were used at the workshop in order to maximize participation 
and information exchange. 

The participants identified key issues in each of the following topic areas:  

 Fundamental understanding of in situ biogeochemical transformation 

 Characterization of in situ biogeochemical transformation 

 Implementation of remediation systems based on in situ biogeochemical transformation 

 Regulatory acceptance of remediation using in situ biogeochemical transformation 

Based on the key issues, research and demonstration needs were identified for remediation of 
chlorinated solvents using in situ biogeochemical transformation. In total, seven research and 
two demonstration needs were identified, with most of them focused on improving the 
fundamental understanding of mechanisms and processes that contribute to chlorinated solvent 
degradation. These research and demonstration need topics include: 

 Biogeochemical mechanisms of chlorinated solvent degradation  

 Geochemical and microbiological requirements for formation of active mineral phases  

 Sampling and analysis requirements and protocols for characterization and monitoring of in 
situ biogeochemical transformation  

 Geochemical modeling for predicting the development, effectiveness, and sustainability of in 
situ biogeochemical transformation 

 Data mining, sampling, analysis, and geochemical modeling of existing sites to facilitate 
understanding of in situ biogeochemical transformation in the field 

 Methods for selection of in situ amendments to promote formation of biogeochemically active 
mineral phases  

 Applicability of in situ biogeochemical transformation to other contaminants 
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 Demonstration of a sampling and analysis protocol for characterization and monitoring of in 
situ biogeochemical transformation in the field 

 Pilot-scale demonstrations with selected amendments that promote development of in situ 
biogeochemical transformation 

Overall, the workshop participants have a positive view of using in situ biogeochemical 
transformation for remediation of chlorinated solvents. It is an emerging remediation approach 
that has promise for wide application at solvent-contaminated sites, but needs a fairly 
significant amount of research in order to improve the basic understanding of mechanisms 
involved.  

Workshop participants agreed that additional bench- and pilot-scale testing of remediation 
based on in situ biogeochemical transformation should be performed, and data should be mined 
from the relatively small number of existing sites where this approach has been applied. 
Ultimately, sampling procedures and analytical methods, design guidance, and operation and 
maintenance (O&M) protocols need to be developed in order to maximize application and 
regulatory acceptance of technologies based on in situ biogeochemical transformation.  

In situ biogeochemical transformation is a promising remediation technology that operates at 
the interface of physical, chemical, and biological phenomena. The interdisciplinary nature of 
environmental science and engineering has fostered cognizance of the power of this interface 
and will be a critical component in further development and application of this innovative 
technology. Future application of in situ biogeochemical transformation will result in more cost-
effective ways of mitigating the risks associated with inorganic and organic contamination of 
soil, groundwater, and sediment. 
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Section 1 
Introduction 
 
Chlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are found at 
approximately 80 percent of all Superfund sites with groundwater contamination, and more 
than 3,000 Department of Defense (DoD) sites in the United States [Strategic Environmental 
Research and Development Program (SERDP), 2006]. The life-cycle costs to remediate these 
sites are uncertain, but are likely to exceed several billions of dollars nationally. DoD alone 
could spend more than $100 million annually for hydraulic containment at these sites using 
pump-and-treat technologies, and estimates of life-cycle costs exceed $2 billion (SERDP, 2006). 
Chlorinated solvents are also among the most difficult contaminants to clean up, particularly 
when their dense non-aqueous phase liquid (DNAPL) sources remain in the subsurface.  

Because of this, the DoD and the U.S. Environmental Protection Agency (EPA) have a keen 
interest in technology development in the area of chlorinated solvent remediation. For example, 
SERDP and the Environmental Security Technology Certification Program (ESTCP) have 
funded a number of basic and applied research projects through their DNAPL Source Zone 
Initiative and Chemical Oxidation Initiative, as well as many other projects related to dissolved 
phase solvent remediation. The Air Force Center for Engineering and the Environment (AFCEE) 
and analogous departments of the Army and Navy have funded many projects in the areas of 
bioremediation and natural attenuation of chlorinated solvent-contaminated groundwater. EPA 
performs management, oversight, and remediation at thousands of sites across the country, and 
also has its own internal research programs. 

In situ bioremediation has become a widely-used technology for remediating chlorinated 
solvent sites, as a result of several recent technological advances. Some of the first applications, 
in the late 1980s and early 1990s, were based on stimulating aerobic cometabolism, particularly 
for TCE contamination. However, the vast majority of bioremediation applications for 
chlorinated solvents have involved stimulating anaerobic reductive dechlorination, a process 
known as enhanced anaerobic bioremediation (EAB). This technology, also known as enhanced 
in situ bioremediation (EISB), in situ reactive zone (IRZ), and in situ bioremediation (ISB), has 
been applied at hundreds of sites across the country. As bioaugmentation, an enhancement of 
EAB that involves addition of microorganisms, has become more common, advancements have 
been made in the ability to characterize microbial communities, individual bacterial species, and 
even enzymes and metabolic functions of interest.  

A related area of research and development that has been receiving increased attention recently 
is the role of abiotic processes in chlorinated solvent degradation. Understanding and exploiting 
these processes has the potential to improve the performance and cost-effectiveness of EAB, or 
increase the use of monitored natural attenuation (MNA) at sites where it may be appropriate.  

Iron-mediated abiotic reactions are of particular significance. It has long been known that iron 
can donate electrons and degrade chlorinated solvents abiotically, as this approach has been 
used in zero valent iron (ZVI) permeable reactive barriers. However, recent studies have shown 
that reactive iron minerals formed under anaerobic conditions during EAB can also abiotically 
degrade chlorinated solvents. 
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1.1 Overview of Abiotic Transformation 
A thorough review of developments in abiotic degradation of chlorinated solvents by ferrous-
iron containing minerals is provided in Brown et al., 2006. A summary from that reference is 
provided here. 

Early in the development of ZVI technology, the potential role of ferrous iron in reductive 
dechlorination was considered. Ferrous iron, formed by the corrosion (reaction) of ZVI, was 
thought also to react with chlorinated solvents (Matheson, 1994; Tratnyek, 2006). Additionally, 
parallel to the investigation of ferrous iron associated with ZVI technology, other researchers 
specifically investigated the reductive reactivity of reduced iron minerals such as pyrite. They 
demonstrated that a suspension of pyrite was able to dechlorinate carbon tetrachloride 
(Kriegman-King, 1994) and reduce dinitrotoluene (DNT) (Jiayang, 1996). Additional research 
has shown that chemically precipitated ferrous iron is also an active reductant for chlorinated 
volatile organic compounds (CVOCs) (Brown, 2005). 

One of the key advances in the development of biogeochemical transformation has been the 
discovery that surface-bound ferrous iron can react directly with chlorinated solvents by 
mechanisms similar to those observed for ZVI. Chloroacetylenes were observed as products in 
the reaction of TCE with reduced iron-containing sediments (Szecsody et al., 2004). Subsequent 
work on reductive reactions with ferrous iron has shown that the reactions are surface catalyzed 
(Elsner, 2002). The reactivity of bound ferrous iron was found to be a function of the surface 
area and of the geochemical conditions. In general, iron sulfides and oxides were the most 
reactive reduced minerals.  

Recent studies have suggested that soluble ferrous iron has a role in the activity of certain iron 
minerals. The reduction of cis-1,2-dichloroethene (cis-DCE) with magnetite was enhanced in the 
presence of soluble ferrous iron (Ferrey, 2004). The role of the soluble ferrous iron is unknown 
but may be related to the regeneration of active sites (Scherer, 2005). A comprehensive list of 
references related to abiotic transformation processes is provided in Section 9 of this document.  

1.2 In Situ Biogeochemical Transformation 
The interface between biological and abiotic processes is just beginning to be tapped for 
potential application to treatment of chlorinated solvents and other contaminants. Because of 
the overlapping and synergistic effects of biological, abiotic, and geochemical processes 
involved, the term "in situ biogeochemical transformation" is used in this document. As defined 
here, in situ biogeochemical transformation refers to processes where contaminants are 
degraded by abiotic reactions with minerals formed that are either naturally occurring or are 
biogenically produced in the subsurface. These reactive minerals are thought to include reduced 
sulfide minerals such as iron monosulfide (e.g., Butler and Hayes, 1999 and 2000), green rusts 
which are layered structures composed of mixed divalent and trivalent iron oxides interspersed 
with water and anions including sulfate, chloride, and carbonate (Christianson and Stipp, 2003, 
Lee and Batchelor, 2002), or magnetite which is a ferromagnetic mineral composed of mixed 
divalent and trivalent iron with the formula Fe3O4 (e.g., Ferrey et al., 2004). In many cases these 
minerals are formed by, at least in part or indirectly, from anaerobic biological processes. For 
example, chlorinated solvents such as PCE and TCE may be reduced in an abiotic reaction with 
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iron monosulfide that is formed in the subsurface under iron- and sulfate-reducing conditions. 
Alternatively, cis-DCE may be oxidized by reaction with magnetite, which could be a product of 
anaerobic biological ferric iron reduction. An advantage of these transformation reactions is 
that, in general, regulated intermediate dechlorination products are not produced.  

Figure 1 is a conceptual model of some of the myriad biogeochemical processes and reactions 
that play potential roles during in situ biogeochemical transformation. Iron sulfide mediated 
transformation (Butler and Hayes, 1999 and 2000), ferrous iron chemisorption mediated 
transformation (Williams and Scherer, 2004), green rust mediated transformation (Lee and 
Batchelor, 2002), and magnetite mediated transformation (Ferrey et al., 2004) are shown here 
and demonstrate how both biochemical and geochemical reactions can be linked to result in the 
generation of reactive surfaces. The interplay of these reactions and their implications for 
remediation of contaminated environments is just beginning to become understood. 

1.3 Workshop Objectives  
A workshop of more than 20 experts was convened in April of 2007 in San Antonio, Texas, to 
discuss the current understanding of biogeochemical transformation processes affecting 
chlorinated solvents and to identify research and demonstration needs among researchers, 
practitioners, site owners, and regulatory agencies. This workshop was hosted by the Air Force 
Center for Engineering and the Environment (AFCEE), the Naval Facilities Engineering Service 
Center (NFESC), the Environmental Security Technology Certification Program (ESTCP), and 
the United States Environmental Protection Agency (EPA). Specifically, the objectives of the 
workshop were to accomplish the following: 

 Promote an active discussion of ongoing research focused on the interface between biotic and 
abiotic mechanisms (i.e., biogeochemical) of chlorinated solvent transformation 

 Document the current understanding of these processes 

 Identify data gaps and possible discrepancies in current research 

 Identify future research needs to resolve these discrepancies with a focus on practical 
application of technologies based on in situ biogeochemical transformation 

This document summarizes the methods, conclusions, and recommendations that resulted from 
this workshop.
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Section 2   
Method 
 
A workshop on the use of in situ biogeochemical transformation for degradation of chlorinated 
solvents was held in April 2007 at AFCEE Headquarters (see Appendix A for a list of the 
attendees). More than 30 participants were invited with the goal of including knowledgeable 
experts in the fields of microbiology, biochemistry, geochemistry, analytical chemistry, and 
remediation engineering and science. This mix represented a broad range of perspectives, 
including academic researchers, regulators, remedial project managers, consultants, and 
government agency representatives.  

Prior to the workshop, participants were provided background material on the purpose and 
goals of the workshop, including a list of charge questions for their consideration. The agenda 
(see Appendix B) was designed to identify the most pressing needs in a focused manner, while 
ensuring that all participants could express their views. Meetings of the entire group of experts 
and smaller breakout groups were used to maximize participation and information exchange. 

The workshop opened with several presentations intended to provide background information 
on in situ biogeochemical transformation and its current applications, as well as to highlight key 
issues. These presentations are included in Appendix C. Participants were then divided into 
three smaller working groups to address the specific charge questions. These breakout groups 
were facilitated by discussion leaders, and extensive notes were taken in each session.  

The first breakout session was convened for 5 hours spread over 2 days. During this first 
breakout session, participants in each group were asked to identify key issues in each of the 
following topic areas:  

 Fundamental understanding of in situ biogeochemical transformation 

 Characterization of in situ biogeochemical transformation 

 Implementation of remediation systems based on in situ biogeochemical transformation 

 Regulatory acceptance of remediation using in situ biogeochemical transformation 

Following the first breakout session, the discussion leaders presented the discussions held in 
each session to the entire group. After these presentations, a second 3-hour breakout session 
was held in which participants identified research and development needs related to the topic 
areas listed above. Each discussion leader again summarized their sessions in presentations to 
the entire group. The entire group then participated in the final discussions and the selection of 
the key issues and the research and demonstration needs.  

The remainder of this document presents the results of the breakout sessions and whole group 
meetings. Section 3 presents the charge questions and issues identified related to the 
fundamental understanding of the mechanisms involved in biogeochemical transformation; 
Section 4 discusses issues related to characterizing the relevant processes; Section 5 presents 
issues related to design and implementation of remediation based on in situ biogeochemical 
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transformation; and Section 6 discusses relevant regulatory issues.  In each of these sections, the 
charge questions given to the group are presented followed by the key issues identified by the 
participants. The charge questions were intended to stimulate thinking and discussion rather 
than to elicit specific answers. Therefore, the identified key issues comprise many of the topics 
addressed by the charge questions but each key issue is not tied to any specific charge question.  
Section 7 presents the research and development needs identified by participants. These 
research and development needs are designed to address the key issues identified in Sections 3 
through 7. Conclusions are presented in Section 8; and Section 9 provides references, those cited 
in this document, as well as additional references. 
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Section 3   
Fundamental Understanding of In Situ 
Biogeochemical Transformation 
 
The first topic for discussion in the breakout groups was the fundamental understanding of in 
situ biogeochemical transformation. Section 3.1 presents the charge questions that were posed to 
the participants, and Section 3.2 describes the key issues identified at the workshop related to 
the charge questions. 

3.1 Charge Questions 
The charge questions posed to the participants pertained to the current scientific understanding 
of biological, abiotic, and biogeochemical reactions; the connection and potential synergies 
between biological and abiotic reactions; and their importance/role in both MNA and 
engineered approaches. Specifically, participants were asked to review and/or identify the 
following: 

 Enhancing bioremediation of chlorinated solvents – the role/importance of novel reactions 

 Biotic and abiotic mechanisms playing a role in the remediation of chlorinated solvents – 
what is known? 

 Identify data gaps related to the enhancement of the role of biogeochemical reactions in the 
remediation of chlorinated solvents 

 Identify data gaps for potential future work in the laboratory and in the field where in situ 
biogeochemical transformation could be manipulated and/or enhanced. 

3.2 Key Issues 
Several key issues were identified at the workshop related to 
these charge questions. These issues are discussed in detail 
below. 

3.2.1 Defining In situ Biogeochemical 
Transformation Relevant to Chlorinated 
Solvent Degradation  
Participants agreed that the individual processes relevant to 
chlorinated solvent degradation are not sufficiently 
understood, and better definition of these processes is 
needed. Evidence to date suggests that abiotic mechanisms 
can play an important role in chlorinated solvent 
remediation. However, several different but related processes can occur, and each may be 
important to the desired activity. For example, magnetite has been shown to be capable of 
degrading cis-DCE at rates comparable to biological reductive dechlorination (Ferrey and 
Wilson, 2002). The magnetite can be biogenically-formed, produced during ferric iron reduction 

In situ biogeochemical 
transformation refers to 
processes where contaminants 
are degraded by abiotic 
reactions with minerals formed in 
the subsurface. These reactive 
minerals are thought to include 
reduced sulfide minerals such as 
iron monosulfide, carbonate and 
sulfate green rusts (layered 
multivalent iron minerals), and 
magnetite. In many cases these 
minerals are formed, at least in 
part or indirectly, by anaerobic 
biological processes.  
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by iron-reducing bacteria. This combination of biological iron reduction, magnetite formation, 
and subsequent abiotic degradation is one example of biogeochemical transformation, and it 
may occur naturally or as a result of EAB.  

Another approach to using biogeochemical degradation is the deliberate addition of iron 
minerals to electron donor formulations in order to stimulate biological and abiotic degradation 
simultaneously. AFCEE has used this approach during installation of several biowalls, by 
amending mulch or compost with iron minerals, to attempt to increase the reactivity and 
longevity of the biowalls (Parsons, 2007b). Yet another approach that has been proposed is the 
addition of iron chlorides to precipitate sulfides and relieve inhibition of dechlorinating 
bacteria. Finally, some investigators have proposed the injection of electron shuttle compounds 
to increase the rates of chlorinated solvent degradation. 

One of the most significant challenges related to detection of abiotic degradation is that, 
currently, the predominant evidence for its occurrence is a lack of accumulation and 
disappearance of daughter products as observed in biological reductive dechlorination. The 
basis for this is that reduction of chlorinated solvents by iron minerals may be mechanistically 
similar in some ways to reduction by zero valent iron, which can produce a wide range of 
products in addition to ethene and ethane, but generally results in very low percentages of 
reductive daughter products (Brown et al., 2006). However, it is important to keep in mind that 
the lack of daughter products is suggestive of, but not conclusive evidence of abiotic 
degradation. 

Nevertheless, it is often assumed that abiotic degradation is occurring simply because known 
biological processes are not sufficient to explain contaminant disappearance. However, other 
processes (e.g., anaerobic oxidation, aerobic cometabolism, or electron shuttle-mediated 
transformation) may also cause contaminant degradation without daughter product 
accumulation (Wymore et al., 2007). Therefore, detection or proof of abiotic or in situ 
biogeochemical transformation using standard characterization methods can be challenging, 
and represents a significant data gap. 

While all chlorinated solvents are amenable to degradation by in situ biogeochemical 
transformation, the mechanisms can vary greatly depending on the specific compound. For 
example, chemical elimination, a purely abiotic reaction, is important in the transformation of 
chlorinated ethanes but not for the ethenes. Biogeochemical reactions, such as those promoted 
by biogenically produced green rust, may be important in the transformation of chlorinated 
ethenes. Also, in situ biogeochemical transformation likely has an important role in the 
transformation of other contaminants such as nitrate and N-nitrosodimethylamine, which are 
known to be chemically reducible. 

3.2.2 Current Understanding of Mechanisms Contributing to Chlorinated 
Solvent Degradation 
It is known that reduced iron minerals are responsible for abiotic degradation of chlorinated 
solvents. These minerals can be naturally present in the aquifer matrix, or they can be 
microbially generated (either naturally or artificially induced) in situ under anaerobic conditions 
(Butler and Hayes, 1999; Elsner et al., 2004a and 2004b; Ferrey et al., 2004; Kriegman-King and 
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Reinhard, 1994; Lee and Batchelor, 2003; Lee and Batchelor, 2004; Macalady et al., 1986; Scherer, 
2005). While it appears that microbially generated iron minerals are the most effective at 
contaminant degradation, the biogeochemical mechanisms of in situ mineral formation are not 
well understood. For example, microbes can form different minerals under different 
geochemical conditions (Drzyzga et al., 2002; Elsner et al., 2004a; Elsner et al., 2004b; Erbs et al., 
1999; Lovley, 1991), but it is not known how to manipulate redox conditions prescriptively for 
optimal mineral formation while maintaining biological degradation capabilities. Also, it is not 
known which minerals are optimal for chlorinated solvent degradation.  

Significant uncertainty exists regarding the interplay between biological and abiotic 
mechanisms as they contribute to in situ biogeochemical transformation. Quantitatively 
allocating degradation to specific biological and abiotic mechanisms is difficult to impossible 
using standard characterization approaches and parameters. Yet, despite these difficulties, it is 
important to determine what the rate limiting step or mechanism is within the overall 
biogeochemical process. Remediation systems based on in situ biogeochemical transformation 
can then be designed or optimized to overcome the rate limitation. 

Workshop attendees agreed that the mechanisms that contribute to in situ biogeochemical 
transformation are not fully understood. As discussed in the previous section, degradation is 
attributed to abiotic mechanisms when it is apparent that biological mechanisms cannot explain 
all of the disappearance. However, other novel degradation mechanisms/factors need to be 
considered, such as anaerobic oxidation, the role of electron shuttles, and aerobic cometabolism. 
Developing a better understanding of these mechanisms, their effects on chlorinated solvents, 
and how they collectively contribute to what occurring at a given site is essential in order to 
determine the contribution of each. 

3.2.3 Types of Active Iron Mineral Phases Involved in In Situ 
Biogeochemical Transformation 
Workshop attendees concurred that several forms of iron minerals can be involved in in situ 
biogeochemical transformation that are relevant for chlorinated solvents. Some examples of iron 
minerals that can play a role in in situ biogeochemical transformation are iron sulfides, pyrite, 
magnetite, and green rust, among others. The reactivity of these minerals toward chlorinated 
solvents is different for the various iron minerals, and even depends on the interaction between 
these minerals and the surrounding environment. For example, chemisorption of soluble 
ferrous iron onto mineral surfaces appears to promote electron transfer and generate a reactive 
complex more powerful than the mineral surface in the absence of chemisorbed ferrous iron 
(Amonette et al., 2000; Elsner, 2002; Elsner et al., 2004a, Elsner et al., 2004b; Williams and 
Scherer, 2004). Also, biologically derived iron sulfides may be more reactive than naturally 
occurring iron minerals, possibly because of increased surface area. 

In addition to the inherent variability of the reactivities of the different iron minerals, the 
reactivity of a given mineral may decrease over time as iron is oxidized, or iron monosulfide is 
transformed to iron disulfide. The mechanisms causing loss of reactivity and the overall 
sustainability of the reactivity are not well understood, nor is the ability to predict when the 
reaction rates will decrease. 
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Identification and characterization of active mineral species is just beginning to occur. While 
species including iron sulfides, magnetite, and green rust have been identified as prime 
candidates, further research into the specific forms of these minerals that promote in situ 
biogeochemical transformation is needed. In addition, other mineral species that have not been 
identified may also exist. Finally, the relationship between groundwater chemistry and the 
mineral phases insofar as it affects reactivity is in need of further research. 

3.2.4 Microbiological and Geochemical Conditions for Active Mineral 
Formation 
It is well established that in order to stimulate biological reductive dechlorination, anaerobic 
conditions need to be established. Anaerobic conditions are also needed to form the reactive 
iron minerals that abiotically degrade chlorinated solvents. Redox conditions need to be at least 
iron reducing in order to form soluble ferrous iron, which can then react with other species to 
form reactive minerals. Minerals can also be formed under sulfate reducing conditions, when 
sulfide is produced.  

However, workshop attendees agreed that these processes are complex, and not easily 
predictable. For example, the mechanisms for mineral formation may be different under iron-
reducing conditions than under sulfate-reducing conditions. Also, different electron donors 
may stimulate mineral formation at different rates, even under the same redox conditions at the 
same site. Finally, the significance of the mechanisms for mineral formation in redox transitions 
zones (i.e., transitions between aerobic and anaerobic) is not well understood. 

3.2.5 Representativeness of Laboratory Studies to the Field  
The final key issue related to the fundamental understanding of in situ biogeochemical 
transformation discussed at the workshop is the representativeness of laboratory studies to field 
conditions. As is the case for most in situ technologies, it is difficult to extrapolate the 
quantitative laboratory results to the field, especially degradation rates. One approach that may 
be of use is to develop a common method for rate calculations that can be applied to multiple 
laboratory studies of in situ biogeochemical transformation. Possible options include a rate per 
unit mass of minerals or per unit active mineral surface area. Issues with these approaches may 
include: lack of understanding which minerals are significant; unavailability of standard 
analytical methods for their measurement; and a requirement to measure surface areas of 
specific minerals which is difficult if not impossible in a complex matrix such as soil. 

Another issue that complicates extrapolation to the field is that the biogeochemical degradation 
rates observed in lab studies have varied widely. While these variations are dependent on the 
specific conditions tested, some general observations can be made. First, it appears that 
microcosm studies designed specifically to investigate abiotic degradation have yielded slow 
rates, but have generally provided reasonably good mass balances of reactants and products 
(Butler and Hayes, 2000). In contrast, abiotic column studies appear to show faster degradation 
rates, possibly because they better simulate a dynamic system where ferrous iron is 
continuously produced, transported with groundwater, and then deposited on mineral surfaces 
to generate biogeochemically reactive species such as green rust, iron sulfides, or magnetite 
(Elsner et al., 2004b). However, the column studies also tend to yield worse mass balances 
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compared to microcosms. Overall, long duration studies may be required in order to elucidate 
degradation mechanisms whether microcosm or columns are used because of the potential for 
slow degradation rates. One potential method for accelerating degradation rates observed in lab 
studies is to use minerals in a form with higher surface area. This theoretically has the potential 
to increase rates, but again, it needs to be determined how to extrapolate rates observed under 
these conditions to the field, where surface area of the minerals may not be the limiting factor, 
and where it may not be possible to generate a significant amount of high surface area minerals. 

The final significant issue related to lab studies is the fact that biological and abiotic reactions 
are dependent on each other during in situ biogeochemical transformation. In fact, de-coupling 
abiotic and biological mechanisms is difficult to do in lab studies. For example, sterilizing 
samples from field sites in order to kill the microorganisms can actually alter the structure of the 
minerals that are being studied, which can bias the experiment. Of currently available methods 
for sterilization, irradiation appears to be the least intrusive, but it still is not benign toward the 
iron minerals. Because of these factors, it may not be appropriate to de-couple the mechanisms. 
De-coupling of biological and abiotic mechanisms is likely to eliminate beneficial synergisms 
and makes study of the overall process less representative of what is observed in the field. 
Overall, methodologies used in laboratory studies for in situ biogeochemical transformation 
have varied widely, as have the results, and this variation is possibly attributable to dissecting 
the individual processes rather than taking a holistic approach. More consistent approaches for 
conducting these studies and for interpreting results need to be developed. 
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Section 4 
Characterization of In Situ Biogeochemical 
Transformation 
 
The second topic for discussion in the breakout groups at the workshop was characterization of 
in situ biogeochemical transformation. Section 4.1 presents the charge questions that were posed 
to the participants, and Section 4.2 describes the key issues identified at the workshop. 

4.1 Charge Questions 
The charge questions posed to the participants related to what site parameters need to be 
evaluated in to order to perform a field assessment of biogeochemical transformation rates. 
Specifically, participants were asked the following: 

 What biogeochemical parameters need to be measured? What would be the most effective 
and accurate methodologies to measure these parameters in the field? How would the results 
be interpreted? How can the results be used to estimate biogeochemical sustainability within 
the system? 

 Identify fundamental questions on whether one could modify systems based on in situ 
biogeochemical transformation. Identify how one would recognize if a site is a candidate for 
remediation through manipulation/enhancement of 
biogeochemical transformation, either through field 
assessment or laboratory analysis.  

 Discuss reactivity of metal sulfide materials depending 
upon different regimes (e.g., iron dominated and 
sulfate dominated), etc.  

 Identify what would need to be monitored in the field 
to successfully enhance in situ biogeochemical 
transformation, either through an engineered system or 
MNA. Will credibility be tied to being able to predict 
biogeochemical potential? Discuss the disparity 
between current published biogeochemical rate 
constants and experienced rate constants in the field.  

 Identify needs for instruction on identification of 
sampling locations (e.g., discreet sampling versus 
homogenization, tools for identifying sampling 
locations, etc.), proper field sampling techniques, 
sample shipment and preparation, analytical 
procedures, etc., all aimed at providing true readings of 
reactivity of a site, to more accurately predict the 
biogeochemical potential of a site. 

Characterization of in situ 
biogeochemical transformation 
requires an interdisciplinary 
approach. For example, 
geochemical analyses of 
groundwater facilitate 
understanding of the 
microbiological potential for 
various electron accepting 
reactions and the 
electrochemical potential for 
production of certain active 
mineral phases. Geochemical 
analyses of sediments or other 
solid phases facilitate 
identification and quantification 
of specific active phases that 
promote the transformation 
reactions. Microbiological 
analyses facilitate identification 
of specific bacteria or enzymatic 
activities that are able to use 
certain geochemical species in 
energy producing reactions and 
are able to produce precursors 
of biogeochemically active 
phases. 
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4.2 Key Issues 
Several key issues were identified at the workshop related to these charge questions. These 
issues are discussed in detail below. 

4.2.1 Types of Data Needed 
There is a wealth of parameters that can be monitored to assess/characterize active in situ 
biogeochemical transformation, many of which are similar to those that are sampled for an EAB 
site. However, it is not known which parameters are the most critical and valuable to 
understanding in situ biogeochemical transformation. A better understanding of these 
parameters and more specific guidelines for the specialty analytical methods are needed. Table 
1 is a comprehensive but not necessarily exhaustive list of analyses that could be included in a 
sampling program whose goal is to characterize in situ biogeochemical transformation. This list 
is not intended to be a presentation of recommended analytes, nor is it presented in order of 
importance; rather, it is a list of parameters to consider. Also, interpretation of data generated 
from these analyses is not discussed here. Finally, these parameters vary in commercial 
availability, cost, ease of use, and the number of applications. 

Table 1 Monitoring Parameters 

Data Type 
Examples of Specific 

Parameters General Purpose/Data Interpretation 
Standard Groundwater Parameters (widely available among commercial labs) 
Redox-Sensitive Parameters Dissolved oxygen (DO), 

oxidation-reduction potential 
(ORP), ferrous iron, sulfate, 
nitrate, and dissolved 
methane 

General indication of dominant terminal 
electron accepting process and 
important factors affecting geochemistry 

Contaminants and Degradation 
Products 

Chlorinated ethenes, 
chlorinated methanes, 
chlorinated ethanes, ethene, 
ethane, acetylene, chloride 

Indication of biodegradation pathway 
and extent of degradation 

Electron Donor Parameters volatile fatty acids (e.g., 
butyrate, propionate, acetate), 
total or dissolved organic 
carbon, and chemical oxygen 
demand 

Indication of carbon source; potential for 
sustained biological reduction 

Water Quality Parameters Specific conductance, 
temperature, total dissolved 
solids, pH, alkalinity 

Important factors affecting geochemistry 
and biological activity 

Dissolved Gases Dissolved hydrogen, 
hydrogen sulfide 

Indicator of dominant terminal electron 
accepting process in natural 
environments; product of sulfidogenesis 
and precursor to production of iron 
sulfides; sometimes observed byproduct 
of abiotic chlorinated solvent 
degradation 

Other Groundwater Parameters – generally available commercially, but less common 
Trace metals/complete anion-cation 
analysis 

Sodium, calcium, potassium, 
aluminum, copper, 
magnesium, etc. 

Important geochemistry parameters 

Compound specific stable carbon 
isotopes 

Isotope analysis for 
chlorinated ethenes, 
methanes, and ethanes 

Specialty analysis that may indicate 
dominant degradation mechanisms 
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Table 1 Monitoring Parameters 

Data Type 
Examples of Specific 

Parameters General Purpose/Data Interpretation 
Microbial analyses – becoming more commonly used for EAB sites 
Bacterial cell membrane 
characterization 

Phospholipid fatty acid 
(PLFA) analysis 

General bacterial analysis that is very 
dependent on environmental conditions 

Community level profiling Terminal restriction length 
polymorphism (T-RFLP) 

Analysis that characterizes the diversity 
and relative abundance of bacteria 
present; can be used in conjunction with 
clone libraries to identify members of the 
community  

Metabolic assessment Fluorescent in situ 
hybridization (FISH)] 

Analysis of active enzymes in bacterial 
community 

DNA Analysis Quantitative polymerase 
chain reaction (qPCR) for 
targeted species or enzymes 

Detection and quantification of key 
organisms and genes 

Soil/biowalls matrix parameters – Varying commercial availability 
Iron species analyses Bioavailable iron and 

manganese; weak 
acid/strong acid extraction of 
iron 

Presence of precursors that can be 
biologically reduced and subsequently 
converted to active mineral species; 
quantification of various forms of iron 
with differing bioavailability 

Total metals Metals associated with 
sediment matrix 

Important parameters for geochemistry 
analysis 

Electron donors Total organic carbon Source of carbon for biological reduction 
Electron shuttles  Humic acids (no 

commercially available 
method) –  

Potential accelerators of biogeochemical 
processes. 

Sulfide minerals Acid volatile sulfide (AVS), 
chromium reducible sulfide 
(CRS) 

Potential indicators of active mineral 
species 

Iron minerals/speciation Mossbauer or Raman 
spectroscopy; X-Ray 
absorption near edge 
structure (XANES) 
spectroscopy speciation of 
iron 

Measurement of iron valence and 
mineral type 

Mineral composition Electron microprobe  using 
wavelength dispersive and 
energy dispersive 
spectrometers (WDS and 
EDS); specific surface area 

Measurement of mineral composition, 
morphology, size, and surface area. 

 

4.2.2 Sample Collection, Handling, and Preservation Requirements 
From the list of parameters above, sampling is required from both groundwater and 
soil/sediment matrices. Protocols for groundwater sample handling are generally well-
developed, although samples that consist of anaerobic water, as well as samples for microbial 
testing, require care not to disturb or aerate the sample unnecessarily during transport or 
analysis.  

Because the minerals that appear to be involved in in situ biogeochemical transformation are 
labile, workshop attendees agreed that soil and groundwater sample collection, handling, and 
preservation are very important. Sampling and preservation procedures for groundwater are 
well established. This is not the case for soil containing reactive minerals produced under 
anaerobic conditions. Oxidation of the solid phases readily occurs and must be prevented to the 
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extent possible. This is important both for collection of samples to be used in laboratory studies, 
and for collection of samples for specific analyses. Along these lines, the analytical procedures 
to be performed on the samples must also take the labile nature of these species into account. 
There is a need to develop procedures for collection, preservation, and handling of solid matrix 
samples. One approach is to freeze core samples in liquid nitrogen, except for those samples to 
be used in microcosms. A protocol outlining this approach has been developed by EPA (EPA, 
2006). 

4.2.3 Field Data Quality, Interpretation, and Use 
Workshop attendees noted that another issue related to characterization of in situ 
biogeochemical transformation is that of data quality and interpretation for samples collected 
from field sites. Standard groundwater parameters analyzed using EPA methods have well 
established procedures and data quality requirements that are widely accepted throughout the 
U.S. (EPA, 2008). Conversely, data generated from innovative mineralogical (e.g., XANES, AVS, 
and CRS) and microbial analyses (e.g., FISH, PLFA, and qPCR) do not have established data 
quality procedures. While it may not be appropriate to institute quality measures of the same 
rigor as exists for groundwater samples, workshop attendees agreed that some form of 
guidelines and requirements needs to be established. 

Regarding the collection and use of data from field sites, another issue identified at the 
workshop is data interpretation. This can be similar to an EAB project for many of the 
parameters collected (e.g., redox parameters, bioactivity indicators, water quality samples, etc.) 
where simultaneous evaluation of multiple data types must be conducted to develop a complete 
understanding of the in situ processes. Similarly, biogeochemical process evaluation will likely 
require simultaneous evaluation of multiple data types and multiple lines of evidence including 
soil or biowall geochemical parameters to develop a comprehensive understanding. A challenge 
associated with analysis of soil or biowall geochemical parameters is that the exact roles, 
degradation mechanisms, and kinetic parameters of active mineralogical species (e.g., iron 
sulfides, green rust, magnetite, etc.) are not yet understood. These challenges complicate 
interpretation of analytical data and illustrate the need for development of practical methods of 
sample analysis and data interpretation. 

Another aspect of data interpretation is the expected trends in contaminant and daughter 
product concentrations. As discussed in Section 3.2.1, abiotic degradation generally does not 
produce significant concentrations of reductive daughter products. Because of this, 
accumulation and disappearance of chlorinated daughter products at sites where both 
biological and abiotic mechanisms are active may not occur. However, both degradation 
mechanisms can result in production of ethene, ethane, or methane, depending on the type of 
chlorinated solvent present. Still, these final end products may not accumulate to expected 
levels for other reasons (e.g., volatilization). Because of these factors, less common mineralogical 
analyses and/or compound specific stable carbon isotope analysis may be useful for 
documenting active degradation mechanisms. 
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4.2.4 Need to Leverage Existing Sites for Data 
Workshop attendees agreed that the number of field sites where in situ biogeochemical 
transformation have been tested or implemented is relatively small, especially compared to 
other in situ technologies. These sites include but are not limited to AFCEE biowall sites (e.g., 
see Table 2), biogeochemical reductive dechlorination (BiRD) sites, and possibly some 
monitored natural attenuation (MNA) sites. Several electron donor substrates have been used 
on these sites, including vegetable oil, emulsified vegetable oil, and mulch, among others. Some 
of these sites involved addition of iron minerals in the form of iron oxide-coated sands. Other 
sites including those where EAB has been implemented may prove to involve in situ 
biogeochemical transformation reactions even though their stimulation was not the original 
intent. In many cases, these projects were initially undertaken with the intent of stimulating 
biological degradation only. The abiotic reactions were not purposely stimulated, except at 
some of the AFCEE sites (Table 2). 

Despite this, these sites can be invaluable for furthering technology based on in situ 
biogeochemical transformation through additional characterization and investigation. There is a 
need to mine the existing data from these sites in order to begin to develop correlations between 
certain conditions/parameters and performance. In some cases, it may be appropriate to collect 
samples for additional laboratory studies from these sites. Also, because the degradation 
pathways may be similar at zero valent iron sites and in situ biogeochemical transformation 
sites, it may be appropriate to examine some zero valent iron sites and sites that use 
combinations of electron donors and zero valent iron as a source of biogeochemical process 
data. 

 



Section 4 
Characterization of In situ Biogeochemical Transformation 

  4-6 
 

Table 2 Summary of DoD Permeable Mulch Biowall Applications 

Site Location Installation Date Dimensions Backfill Material 
Contaminants 

(µg/L)a/ 
Background 

Geochemistryb/ References 
TCE:  8,000 DO: 0 to 2 mg/L 
DCE:  1,800 ORP: 0 to +150 mV 

OU-1 Altus AFB, 
Oklahoma 

July 2002 (pilot) 455 feet long by 24 feet 
deep by 1.5 feet wide. 

Tree mulch, cotton 
gin compost, river 
sand VC: Non-detect 

prior to 
installation 

Sulfate: 1,500 to 
2,000 mg/L 

Appendix D.2 of 
AFCEE Protocol;  
Parsons, 2007a; 
Kennedy and 
Everett, 2003 

TCE:  31,800 DO: 0 to 2 mg/L 
DCE:  6,400 ORP: 0 to +150 mV 

SS-17 Altus AFB, 
Oklahoma 

March-May 2005 
(full-scale) 

5,400 feet wide by 35 feet 
deep by 2 feet wide. 

Tree mulch, cotton 
gin trash, river sand 

VC:  11,600 Sulfate: 1,500 to 
2,000 mg/L 

Parsons, 2007b 

PCE:  3,400 DO: 1 to 5 mg/L 
TCE:  930 ORP: +200 to +400 

mV 
DCE:  2,000 

WP-14  Dover AFB, 
Delaware 

December 2004 
(pilot) 

Dual Wall 250 feet long by 
25 feet deep by 2 feet 
wide. 

Tree mulch, silty river 
sand, and limestone. 
Gypsum added to half 
of each biowall 
section. VC:  63 

Sulfate: <25 mg/L  

Parsons, 2007c; 
Kennedy et al,. 
2006. 

TCE:  860 DO: 2 to 4 mg/L 
DCE:  980 ORP: 0 to +100 mV 

Ash 
Landfill 

Seneca 
Army Depot, 
New York 

August 2005 
(pilot) 

Dual Biowall 200 feet long 
by 32 feet deep by 2.0 
feet wide. 

Mulch and Sand. 
Upgradient biowall 
mulch coated with 
vegetable oil. 

VC:  86 Sulfate:  400 to 
800 mg/L 

Appendix D.1 of 
AFCEE Protocol; 
Parsons, 2006 

TCE:  2,000 DO: 2 to 4 mg/L 
DCE:  960 ORP: 0 to 100 mV 
VC:  95 Sulfate:  500 to 

900 mg/L 
DCE: <1.0  ORP: <0 mV 

Ash 
Landfill 

Seneca 
Army Depot, 
New York 

October 2006 
(full-scale) 

Single Double-Wide and 
Dual Biowall System. 
1,500 linear feet, 10 to 15 
feet deep by 3.0 to 6.0 
feet wide. 

Mulch and Sand. 
Upgradient biowall’s 
mulch coated with 
vegetable oil. 

VC: Non-Detect Sulfate: 10,470 

Unpublished data. 

a/  Contaminants are maximum concentrations prior to treatment or upgradient of treatment zone in micrograms per liter (µg/L). 
b/  Background geochemistry is an average or range. 
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Section 5   
Implementation of Remediation Systems Based 
on In Situ Biogeochemical Transformation 
 
The third topic for discussion in the workshop breakout groups was implementation of 
remediation systems based on in situ biogeochemical transformation. Section 5.1 presents the 
charge questions that were posed to the participants, and Section 5.2 describes the key issues 
identified at the workshop. 

5.1 Charge Questions 
The charge questions posed to the participants were related to progress in the field: e.g., pilot- 
and full-scale engineered systems based on biogeochemical transformations. Specifically, 
participants were asked the following: 

 Provide an understanding of progress to date and identify/review case studies where 
biogeochemical transformations have been observed 
and manipulated. Cite examples of engineered 
biogeochemical systems. Has anyone really 
attempted to "engineer" the process at full-scale?  

 What materials have been used? What results have 
been observed? What are the potential reasons for 
what was observed? 

 What sites are available for further investigation, 
either via lab experiments or in the field?  

 Identify hurdles to implementation of conceptual 
engineered systems where in situ biogeochemical 
transformation are maximized and relied upon for 
site remediation. 

 Identify future needs for understanding 
biogeochemical mechanisms in MNA and engineered 
systems where biogeochemical transformations are 
heavily relied upon. For example, what is the 
longevity of such a system, what are the cheapest and 
easiest ways to create it, how does it change over 
time, etc. 

5.2 Key Issues 
Several key issues were identified at the workshop 
related to these charge questions. These issues are 
discussed in detail below. 

Implementation of a remediation 
system based on in situ 
biogeochemical transformation 
requires several steps including 
determination of whether the site 
is suitable, development of 
engineering design criteria, 
identification of operation and 
maintenance approaches for the 
system, and establishment of 
reasonable performance criteria. 
Considering the relatively young 
state of the science for in situ 
biogeochemical transformation, it 
is premature to develop each of 
these steps fully. Nevertheless, 
initial progress can be made by 
identifying the specific site 
characteristics or the niche 
where in situ biogeochemical 
transformation has been 
observed to date, understanding 
rate limiting steps in the 
transformation process that will 
drive system design, applying 
lessons learned from potentially 
analogous treatment systems 
including biowalls, and 
development of reasonable 
performance expectations for the 
technology. 
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5.2.1 Determination of Site Conditions that Support In situ 
Biogeochemical Transformation  
Workshop attendees agreed that the field experience with remediation using in situ 
biogeochemical transformation is limited at this time. Because of this, such remediation has not 
been tested under a wide range of field conditions. Based on current field experience, a "niche" 
definition needs to be created for such remediation. In other words, the workshop attendees 
agreed that the site conditions and characteristics that are supportive of in situ biogeochemical 
transformation must be identified.  

This niche may include sites where reactive iron minerals are most likely to be formed or sites 
where significant accumulation of daughter products is not observed. The niche may also 
include sites where EAB has been used for an extended time, and significant contaminant 
removal rates are still being observed even though the biodegradation rates have decreased. In 
any case, workshop attendees agreed that parameters that would indicate good potential for in 
situ biogeochemical transformation at a site (including longevity and sustainability) need to be 
determined. 

5.2.2 Design of Remediation Systems Based on Biogeochemical 
Requirements 
While some field applications of remediation using in situ biogeochemical transformation have 
been successful including some of the sites listed in Table 2, workshop attendees agreed that the 
remediation community is far from having standard design protocols for such approaches. The 
lack of basic understanding of the biological and abiotic components of these systems makes 
design and engineering difficult at this time. For example, designs can be much more successful 
if the rate limiting step or mechanism is known. The key geochemical parameters that indicate 
amenability still need to be defined (see section 5.2.1). In addition, it is unknown what materials 
are best included in a biowall or biobarrier that is intended to promote contaminant 
degradation using in situ biogeochemical transformation under various conditions. Materials 
that have been used include mulch, sand, iron-coated sands, emulsified vegetable oil, and 
gypsum. While these materials have been used, there is no clear understanding of whether 
these are the best materials, what other materials should be considered, and what material 
mixtures should be used under various specific site conditions. For example, groundwater 
containing high sulfate concentrations may warrant use of a different material mixture 
compared to groundwater containing low sulfate concentrations. 

Workshop participants also identified the need to evaluate and develop a better understanding 
of the hydraulics of permeable reactive barriers in general. This has been done to some extent 
for ZVI barriers, but it also needs to be applied to biowalls and biobarriers. Also, the 
microbiological aspects of in situ biogeochemical transformation need to be better defined, 
especially as they relate to mineral formation (see section 3.2.2). This needs to be done at a 
molecular level and at the community level. Ultimately, the need exists for engineering design 
standards or guidelines for implementation of in situ biogeochemical transformation, but the 
technology is likely still too young to develop such a resource. Once basic design criteria are 
known, a remediation system based on in situ biogeochemical transformation can be designed 
to optimize conditions, overcome limitations, and maximize degradation rates. 
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5.2.3 Operation and Maintenance of Remediation Systems Based on 
Biogeochemical Requirements 
As with design of remediation systems using in situ biogeochemical transformation, workshop 
attendees agreed that operation and maintenance (O&M) requirements are not well defined. 
Still, some observations can be made based on the existing projects (see Section 4.2.4). For 
barriers, experience has shown that they potentially need to be designed with the capability for 
"recharging" the barrier either with carbon or potentially with iron minerals in order to sustain 
the processes. The frequency of recharge events is dependent on contaminant loading and flux 
of competing electron acceptors through the walls. Also, the hydraulics of barriers can change 
unfavorably over time and may need to be modified (ITRC, 2005a). 

For projects where amendments are delivered throughout the treatment area (e.g., using rows 
of injection wells rather than a barrier configuration), similar considerations for recharging 
carbon sources and possibly iron minerals exist. While carbon addition for EAB is relatively 
well known, requirements for such systems performing injections to stimulate in situ 
biogeochemical transformation will likely be different in terms of injection frequency, 
concentration, and volume. Overall, O&M standards and guidance need to be developed for 
remediation system based on in situ biogeochemical transformation. 

5.2.4 Expected Performance of Remediation Systems Based on 
Biogeochemical Requirements 
Workshop attendees agreed that experience with remediation based on in situ biogeochemical 
transformation needs to be significantly more developed in order to be able to predict 
performance. At this point, performance is not predictable or reproducible even at the current 
sites where such systems are being implemented (see Section 4.2.4). For example, single 
biowalls appear to have variable performance at different sections of the wall. Data from more 
sites is needed in order to begin building an ability to predict performance reliably (refer to 
Section 3.2.5). 
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Section 6   
Technology Transfer for Remediation Systems 
Based on In Situ Biogeochemical 
Transformation 
 
The fourth topic for discussion in the workshop breakout groups was regulatory acceptance of 
remediation systems based on in situ biogeochemical transformation. Section 6.1 presents the 
charge questions that were posed to the participants, and Section 6.2 describes the key issues 
identified at the workshop. 

6.1 Charge Questions 
The charge questions posed to workshop participants were related to discussions of the 
potential impact to existing protocols (i.e., MNA, biowall, EAB, etc.) by both the current and 
expected future developments related to in situ biogeochemical transformation. Attendees were 
also asked about the need for new protocols, and the assessment of overall regulatory views 
regarding remediation using in situ biogeochemical transformation. Specifically, participants 
were asked to consider the following: 

 Need for a stand-alone biogeochemical protocol. What 
would it include?  

 Need for a sampling protocol 

 Identify ways to help site owners be comfortable in 
amending engineered systems to biogeochemical 
reactions or to design new systems based on 
biogeochemical transformation 

6.2 Key Issues 
Several key issues were identified at the workshop related 
to these charge questions. These issues are discussed in 
detail below. 

6.2.1 Site Assessments Should Include 
Evaluation of In Situ Biogeochemical 
Transformation  
As discussed throughout this document, remediation using 
in situ biogeochemical transformation is an emerging 
technology that needs a fairly significant amount of 
research, development, and testing. Still, workshop 
attendees agreed that the current evidence for the 
prevalence and effectiveness is sufficient such that it should 
be discussed with regulatory agencies as another possible 

In situ biogeochemical 
transformation as a remediation 
technology is just beginning to 
be understood, documented, and 
applied. Understandably, few 
practitioners, remedial project 
managers, and regulators are 
familiar with the technology. 
Therefore a key step towards 
technology acceptance and 
implementation must include 
education and technology 
transfer. While the technology is 
not sufficiently developed to 
allow technology implementation 
protocols to be written and 
implemented, concepts 
associated with the technology 
can be introduced to regulatory 
agencies in the context of 
conceptual site models. 
Protocols for sampling and 
analysis can and have been 
written that can foster regulatory 
acceptance of the data used to 
develop these conceptual site 
models. 
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degradation mechanism that may be occurring at sites. In some cases, it may be worth 
considering as an enhancement of other technologies. In addition, monitoring for 
biogeochemical transformation should be considered using some of the parameters described in 
Section 4.2.1, at least at sites where the data are otherwise confounding.  

6.2.2 Remediation Technology is Not Ready for a Protocol 
The primary thrust of this set of charge questions was related to an assessment of impacts to 
existing protocols, as well as whether a stand-alone protocol for remediation using in situ 
biogeochemical transformation is warranted at this time. The consensus of the participants at 
the workshop is that not enough is understood to begin developing a protocol for 
implementation at this time. In addition, the existing protocols should not be modified until 
more experience is gained with the technology. The results from the workshop and the 
recommendations of the participants are intended to identify activities that can fill the data gaps 
identified herein; once these data gaps have been addressed, it is likely that a new protocol, or 
perhaps updates to existing protocols, will be needed.  

6.2.3 Dynamic/Evolving Protocol for Sampling and Analysis of In Situ 
Biogeochemical Transformation Parameters is Possible 
Workshop attendees agreed that one area where protocols would be useful is in the area of soil 
and biowall matrix sampling and analysis. One sampling protocol already has been developed 
by EPA (EPA, 2006); however, alternative methods for preservation and transport should be 
examined and protocols developed as appropriate. Protocols for analysis including 
recommended analyses should also be developed as appropriate.  

6.2.4 Technology Acceptance Requirements 
An aspect of regulatory assessment of remediation using in situ biogeochemical transformation 
is overall recognition of this approach by regulatory entities as a viable remediation approach. 
One specific aspect is that some chemicals injected as a part of the process may be of regulatory 
concern [e.g., dithionite, sulfate (at high concentrations), pesticides, and agri-chemicals that are 
residues in mulch used in biowalls, as well as some electron shuttles]. Despite this, sites with 
significant abiotic contributions to degradation could gain regulatory acceptance as long as 
adequate data have been collected and are presented appropriately to regulators, in the context 
of a sound conceptual site model (CSM). In order to achieve this, practitioners need to be better 
educated about in situ biogeochemical transformation and the processes involved. Also, the 
long-term sustainability of the processes needs to be demonstrated in order to convince all 
parties involved that it can be relied upon as a long-term remedy. Finally, workshop attendees 
agreed that regulators need to be provided with the current understanding and experience 
written up in the form of sources that can be referenced (i.e., peer-reviewed publications, EPA 
reports and guidance documents, etc.).  

Once the technologies based on in situ biogeochemical transformation are more proven and 
have an established niche, then they will likely be suitable for implementation at more types of 
sites. For example, there may be sites where EAB is discarded as a remedial alternative because 
sulfate is too high. In that case, remediation using in situ biogeochemical transformation may be 
appropriate. Another might be a site where degradation is occurring under intrinsic conditions 
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at rates sufficient for natural attenuation, but the mechanism is not reductive dechlorination. An 
example is a site with a cis-DCE plume was shown to be degrading abiotically (Ferrey and 
Wilson, 2002). 

Finally, significant advances toward widespread regulatory acceptance can be made through 
the Interstate Technology & Regulatory Council (ITRC, www.itrcweb.org). An appropriate 
ITRC team should be contacted regarding ongoing and upcoming field projects where 
remediation using in situ biogeochemical transformation is being implemented. Ideally, an 
ITRC team would include this technology to be within their purview, and would establish 
contact with regulators and individual principal investigators and project managers for those 
projects. 
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Section 7 
Identification of Research and Development 
Needs 
 
The final topic for discussion in the workshop breakout groups was identification of research 
and development needs for remediation using in situ biogeochemical transformation. Section 
7.1 presents the charge questions that were posed to the participants. Section 7.2 describes the 
research needs identified at the workshop, and Section 7.3 describes the demonstration needs. 

7.1 Charge Questions 
The charge questions posed to the workshop participants were related the future outlook for 
biogeochemical transformation research and development and applied efforts over the next 5 
years. Specifically, participants were asked the following questions: 

 Can these identified needs be prioritized? Which are near-term? Which are long-term? Near-
term referring to within 2 years and long-term within next 5 to 10 years. From what has been 
identified, what can be most easily transitioned to the field? 

 Which organizations/efforts should be involved/tapped who are not represented at this 
workshop? To what audience should future efforts be targeted?  

 This workshop concentrates on biogeochemical reduction of chlorinated solvents; should the 
effort be expanded to other contaminants? What contaminants could be addressed in the 
short-term? The long-term? Near-term referring to within 2 years and long-term within next 
5 to 10 years. 

 What, if anything, needs to be considered in regard to biogeochemical reactions in order to 
obtain regulatory approval, either for MNA based on biogeochemical reactions or engineered 
biogeochemical systems? 

 Identify three to five specific opportunities that can be monopolized as a result of this 
workshop with immediate implementation. Discuss the benefits. How can these best be 
realized? 

7.2 Research Needs 
Several basic research needs were identified at the workshop based on the key issues described 
in Sections 3 through 6. These are described in detail below. 

7.2.1 Biogeochemical Mechanisms of Chlorinated Solvent Degradation  
Much is unknown regarding the mechanisms of biogeochemical chlorinated solvent 
degradation and the supporting processes that are important. Investigation is needed into 
degradation mechanisms and pathways for in situ biogeochemical transformation, as well as the 
variations of those processes under different redox conditions and at sites with different 
geochemical compositions. This broad research need is intended to encompass basic laboratory 
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work whose goal is the elucidation of both biological and abiotic mechanisms, the interface 
between these two mechanisms, and associated processes related to chlorinated solvent 
degradation. This research also needs to compare biogeochemical process rates relative to rates 
of purely biological or abiotic processes and identify rate-limiting steps. Finally, this research 
should identify and characterize the active mineral species responsible for solvent degradation 
using in situ biogeochemical transformation (refer to Sections 3.2.1., 3.2.2, and 3.2.5). 

7.2.2 Geochemical and Microbiological Requirements for Formation of 
Active Mineral Phases  
The current understanding of in situ biogeochemical transformation suggests that active mineral 
phases are formed under certain geochemical and microbiological conditions (e.g., iron-
reducing or sulfate-reducing conditions, within certain pH range, etc.). However, the optimal 
geochemistry conducive to production of the most reactive mineral species is unknown. The 
microbial community structure and activity that is most favorable for active mineral formation 
also is not well understood. This research need includes investigation of microbial ecology and 
metabolism and geochemical conditions that are conducive to formation of active minerals 
(refer to Sections 3.2.3 and 3.2.4). 

7.2.3 Sampling and Analysis Requirements and Protocols for 
Characterization and Monitoring of In Situ Biogeochemical 
Transformation  
Many parameters can be measured to assess the geochemical and contaminant profiles in 
groundwater. However, it is not known which parameters are key indicators of active in situ 
biogeochemical transformation. The utility of innovative analyses for other sample matrices 
(e.g., soil, sediment, biowall material) has not been fully explored. Also, the procedures for 
collection and handling of samples derived from matrices other than groundwater are not well 
established or demonstrated. This research need encompasses investigations related to 
elucidation of key parameters that can be used to characterize and assess the performance of in 
situ biogeochemical transformation. It also includes establishment and verification of sample 
collection and handling techniques (refer to Sections 4.2.1 and 4.2.2). 

7.2.4 Geochemical Modeling for Predicting the Development, 
Effectiveness, and Sustainability of In Situ Biogeochemical 
Transformation 
Geochemical models have been developed that can predict the formation of various mineral 
phases based on groundwater and solid-phase chemistry. These models are typically 
equilibrium based models and do not take biological processes into account. Nevertheless, 
geochemical models based on kinetics are being developed. 

Collection and analysis of solid samples for active biogeochemical phases is difficult and not 
always practical or inexpensive. Because of the difficulty in measuring and monitoring active 
biogeochemical phases, development of geochemical models that can predict the formation and 
fate of all active biogeochemical phases including green rusts in addition to iron sulfides and 
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magnetite is needed. This research need would involve development of models that ideally 
would integrate aspects of equilibrium and kinetic geochemical models, microbiological 
processes, and both groundwater and solid-phase chemistry (refer to Sections 3.2.2, 3.2.3, 3.2.4, 
5.2.2, and 5.2.3). 

7.2.5 Data Mining, Sampling, Analysis, and Geochemical Modeling of 
Existing Sites to Facilitate Understanding of In Situ Biogeochemical 
Transformation in the Field 
Several sites exist where in situ biogeochemical transformation has been stimulated using 
biowalls, biobarriers, or other configurations (Table 2). These sites should be thoroughly 
investigated to begin to develop correlations between certain conditions/ parameters and 
performance. This research need includes data mining, additional sampling and analysis, 
creation of geochemical models to simulate site conditions, and comparison of model results to 
observed field results (refer to Section 4.2.4).  

7.2.6 Methods for Selection of In Situ Amendments to Promote 
Formation of Biogeochemically Active Mineral Phases  
Much has been learned about amendment selection to promote biological reduction of 
chlorinated solvents at a variety of sites, including how to select amendments with the most 
favorable characteristics for a given application (ITRC, 2005b). A similar body of knowledge, 
including methods for selecting among amendments, is needed for in situ biogeochemical 
transformation. This research need involves evaluation and testing of amendments and in situ 
mineral formation to optimize biogeochemical degradation processes (refer to Section 5.2.2). 

7.2.7 Applicability of In Situ Biogeochemical Transformation to other 
Contaminants 
Applications of in situ biogeochemical transformation to date have been for remediation of 
chlorinated solvents. However, in situ biogeochemical transformation may be applicable to 
other contaminants, particularly those that are chemically reducible. This research need 
involves bench-scale testing of in situ biogeochemical transformation for degradation of other 
contaminants (refer to Section 3.2.1). 

7.3 Demonstration Needs  
Two demonstration needs were identified at the workshop related to the key issues described in 
Sections 3 through 6. These are described in detail below. 

7.3.1 Demonstrate a Sampling and Analysis Protocol for Characterization 
and Monitoring of In Situ Biogeochemical Transformation in the Field 
Once protocols are developed for sample collection, handling, and analysis of media for 
biogeochemical process evaluation (see Sections 4.2.3 and 6.2.3), field demonstration of the 
protocols is required. In addition, once the key parameters that are indicators of success for in 
situ biogeochemical transformation are determined (see Sections 5.2.1 and 5.2.4), the associated 
analytes need to be measured at field sites to verify whether they are indicative of success at 
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real sites. This demonstration need includes activities related to validation of any protocols that 
are developed related to collection, handling, and analysis of samples from field sites. It also 
includes the application of key parameters that are intended to assess performance of in situ 
biogeochemical transformation, in order to verify whether the parameters provide the 
information needed to assess and predict performance. 

7.3.2 Perform Pilot-Scale Demonstrations with Selected Amendments 
that Promote Development of In Situ Biogeochemical Transformation 
Finally, well-controlled pilot-scale demonstrations are needed in order to verify design and 
O&M requirements for remedies that rely on in situ biogeochemical transformation. This 
demonstration need encompasses any aspect of pilot testing for engineered remedies relying on 
in situ biogeochemical transformation. This includes amendment testing and comparison, iron 
mineral addition, assessing performance under different redox regimes, etc. Results from these 
pilot studies, combined with bench-scale findings documenting degradation mechanisms and 
other important processes, will ultimately establish remediation using in situ biogeochemical 
transformation as a treatment technology that is available to clean and close sites. 

 



 

  8-1 

 

Section 8 
Conclusions 
 
Overall, the workshop participants expressed a positive view of the potential for using in situ 
biogeochemical transformation for remediating chlorinated solvents. It is an emerging 
technology, but it has considerable potential both to increase the performance and cost-
efficiency of enhanced in situ bioremediation, as well as to provide a technical basis for 
monitored natural attenuation at some sites. However, there is still a limited basic 
understanding of the processes involved, and a significant amount of research and 
development is needed. 

Specifically, the hypothesized degradation mechanisms or pathways need to be confirmed, 
mechanisms of active mineral formation need to be defined, and the interplay between abiotic 
and biological degradation processes requires more investigation. This interplay is especially 
important, as the production and continuous regeneration of high surface area mineral phases 
with high activity is dependent on biological activity (thus the use of the term "in situ 
biogeochemical transformation" as opposed to abiotic processes).  

Workshop attendees agreed that guidance is needed for field sample collection, analysis, and 
data interpretation, including a determination of which parameters are indicators of success at 
field sites. Guidance is also needed with respect to identification of materials and amendments 
that can be used to promote in situ biogeochemical transformation for chlorinated solvent 
degradation for the purposes of developing and designing a remediation system for the field. 

In order to fill these data gaps, additional bench- and pilot-scale testing should be performed to 
elucidate mechanisms and confirm performance, and data should be mined from the relatively 
small number of existing sites where the technology has been applied. Ultimately, sampling 
procedures, design guidance, and O&M protocols need to be developed in order to maximize 
application and regulatory acceptance of the technology.  

In situ biogeochemical transformation is a promising remediation technology that operates at 
the interface of physical, chemical, and biological phenomena. The interdisciplinary nature of 
environmental science and engineering has fostered cognizance of the power of this interface 
and will be a critical component in further development and application of this innovative 
technology. Future application of in situ biogeochemical transformation will result in more cost-
effective ways of mitigating the risks associated with inorganic and organic contamination of 
soil, groundwater, and sediment.  
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Enhanced Biological Technologies (FY97)

Physical/Chemical Technologies (FY98)



77FY02 FY03 FY04 FY05 FY06

Chlorinated Solvents Workshop

FY01

ISCO

Impacts of Treatment

Characterization & Delineation

Thermal Treatment

Detection (FY97 Start)

FY00

Enhanced Source Removal (FY94 Start)

DNAPL Workshop

Thermal Treatment

Characterization & Delineation

Biological Treatment

ISCO

Flushing (FY97 Start)

Combined Approach

Monitoring and Assessment

S&
T

D
em

/V
al

Distribution of
Amendments

FY07 FY08 FY09

Fractured Rock
(ER-1553, ER-1554, ER-1555)

DNAPL

88

Relevant ProjectsRelevant Projects

Web Pages
Project listings with fact sheets
ESTCP projects also have document links
http://www.serdp.org/Research/er-chlorinated-
solvents.cfm
http://www.estcp.org/Technology/ER-Chlorinated-
Solvents.cfm

On-Line Library
http://docs.serdp-estcp.org/
Search by project number or key word

99

Sample 
Fact 
Sheet

1010

Overview of SERDP & ESTCP Overview of SERDP & ESTCP 
ProjectsProjects

Categories
New Understanding of Microbial Processes
New Understanding of Abiotic Processes
MNA Evaluations
Development of Approaches to EISB
Not included: tools to assist with EISB (i.e., 
monitoring, design tools, etc)

SERDP projects in orange, ESTCP in 
green

1111

New Understanding of Microbial New Understanding of Microbial 
Processes: Completed ProjectsProcesses: Completed Projects

Aerobic and Anaerobic Transformation of cis-DCE and 
VC: Steps for Reliable Remediation (ER-1167, Frank 
Löffler: Georgia Tech)
Characterization of the Aerobic Oxidation of cDCE and 
VC in Support of Bioremediation of Chloroethene-
Contaminated Sites (ER-1168, Jim Gossett: Cornell 
University)
Factors Affecting cis-DCE and VC Biological 
Transformation Under Anaerobic Conditions (ER-1169, 
Alfred Spormann: Stanford University)
Mass Transfer from Entrapped DNAPL Sources 
Undergoing Remediation: Characterization Methods and 
Prediction Tools (ER-1294, Tissa Illangasekare: 
Colorado School of Mines)

1212

New Understanding of Microbial New Understanding of Microbial 
Processes: Ongoing ProjectsProcesses: Ongoing Projects

Development of Assessment Tools for Evaluation of the Benefits of 
DNAPL Source Zone Treatment (ER-1293, Linda Abriola: Tufts 
University)
Investigation of Chemical Reactivity, Mass Recovery and Biological 
Activity During Thermal Treatment of DNAPL Source Zones (ER-
1419, Kurt Pennell: Georgia Tech)
Characterization of Microbes Capable of Using Vinyl Chloride as a 
Sole Carbon and Energy Source by Anaerobic Oxidation (ER-1556, 
David Freedman: Clemson Univ)
Elucidation of the Mechanisms and Environmental Relevance of cis-
Dichloroethene and Vinyl Chloride Biodegradation (ER-1557, Evan 
Cox: GeoSyntec)
Microbial Dichloroethene and Vinyl Chloride Oxidation and the Fate 
of Ethene and Ethane Under Anoxic Conditions (ER-1558, Paul 
Bradley: USGS)



1313

New Understanding of Abiotic New Understanding of Abiotic 
ProcessesProcesses

Abiotic Reductive Dechlorination of 
Tetrachloroethylene and Trichloroethylene 
in Anaerobic Environments (ER-1368, Liz 
Butler: Univ of Oklahoma) (ongoing)
Sustainability of Long-Term Abiotic 
Attenuation of Chlorinated Ethenes (ER-
1169, Michelle Scherer: Univ of Iowa) 
(complete)

1414

MNA EvaluationsMNA Evaluations
Using Advanced Analysis Approaches to Complete 
Long-Term Evaluations of Natural Attenuation Processes 
on the Remediation of Dissolved Chlorinated Solvent 
Contamination (ER-1348, Mark Widdowson: Virginia 
Tech) (near completion)
Integrated Protocol for Assessment of Long-Term 
Sustainability of Monitored Natural Attenuation of 
Chlorinated Solvent Plumes (ER-1349, Steve Brauner: 
Parsons) (near completion)
Assessment of the Natural Attenuation of NAPL Source 
Zones and Post-Treatment NAPL Source Zone 
Residuals (ER-0705, Paul Johnson: Arizona State Univ) 
(new start in FY07)

1515

Development of Approaches to Development of Approaches to 
EISB: Completed ProjectsEISB: Completed Projects

Development of Permeable Reactive Barriers Using Edible Oils (ER-
1205, Bob Borden: NCSU)
Low-Volume Pulsed Biosparging of Hydrogen for Bioremediation of 
Chlorinated Solvent Plumes (ER-1206, Chuck Newell: GSI)
Treatability Test for Reductive Anaerobic Biological In-Situ 
Treatment Technology (RABITT) (ER-9719, Bruce Alleman: Brown 
& Caldwell)
Molasses-Induced Reactive Zones to Treat Chlorinated 
Hydrocarbons (ER-9920, Chris Lutes: ARCADIS)
Biodegradation of DNAPLs through Bioaugmentation of Source 
Areas (ER-0008, NFESC)
Evaluation of Performance and Costs Associated with Anaerobic 
Dechlorination (ER-0125, NFESC)

1616

Development of Approaches to Development of Approaches to 
EISB: Ongoing ProjectsEISB: Ongoing Projects

In Situ Bioremediation of Chlorinated Solvent Source 
Areas with Enhanced Mass Transfer (ER-0218, Kent 
Sorenson: CDM)
Edible Oil Barriers for Treatment of Chlorinated Solvent 
and Perchlorate-Contaminated Groundwater  (ER-0221, 
Bob Borden: Solutions IES)
Enhanced Oxidative Bioremediation of Cis-
Dichloroethene and Vinyl Chloride Using Electron 
Shuttles (ER-0316, NFESC)
Reductions in DNAPL Longevity Through Biological Flux 
Enhancement (ER-0438, Herb Ward: Rice University)
A Low-Cost, Passive Approach for Bacterial Growth and 
Distribution for Large-Scale Implementation of 
Bioaugmentation (ER-0513, NFESC)

1717

Development of Approaches to Development of Approaches to 
EISB: Ongoing Projects (contEISB: Ongoing Projects (cont’’d)d)

Bioaugmentation for Groundwater Remediation (ER-0515, Rob 
Steffan: Shaw)
Enhancing Natural Attenuation Through Bioaugmentation with 
Aerobic Bacteria that Degrade cis-1,2-Dichloroethene  (ER-0516, 
Dave Major: GeoSyntec)
Enhanced Monitored Natural Attenuation of Dichloroethene Through
Manganese Addition (ER-0625, Bob Borden: NCSU)
Improving Effectiveness of Bioremediation at DNAPL Source Zone 
Sites Applying Partitioning Electron Donors (ER-0716, NFESC)
Combining Low-Energy Electrical Resistance Heating With Biotic 
and Abiotic Reactions for Treatment of Chlorinated Solvent DNAPL
Source Areas (ER-0719, U.S. Army COE)

1818

Questions?Questions?



Summary of 
AFCEE

Enhanced In Situ 
Bioremediation (EISB) Initiative

Chief, Environmental Restoration Div (TDE)
Technical Directorate
Air Force Center for

Environmental Excellence (AFCEE)

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Where We StartedWhere We Started

2.2.1.2.3 Type 3 Behavior
Type 3 behavior dominates in areas that are characterized by 
inadequate concentrations of native and/or anthropogenic 
carbon, and concentrations of dissolved oxygen that are 
greater than 1.0 mg/L. Under these aerobic conditions, 
reductive dechlorination will not occur.

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

What We DidWhat We Did

2.2.1.2.3 Type 3 Behavior
Type 3 behavior dominates in areas that are characterized by 
inadequate concentrations of native and/or anthropogenic 
carbon, and concentrations of dissolved oxygen that are 
greater than 1.0 mg/L. Under these aerobic conditions, 
reductive dechlorination will not occur.

Edible Oil 
Hydrogen 
Molasses 
In-situ Bioreactors
Biowalls
Biogeochemical Reductive 

Dechlorination
I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Where We Went

Sites (45); Bases (29)Sites (45); Bases (29)
as of 4/19/07

Cape CanaveralCape Canaveral

Edible Oil InjectionEdible Oil Injection
Hydrogen InjectionHydrogen Injection
BiowallBiowall
Molasses InjectionMolasses Injection

OffuttOffutt

AltusAltus

WhitemanWhiteman

DoverDover
TravisTravis

EdwardsEdwards

NewarkNewark

VandenbergVandenberg

HanscomHanscom

ArnoldArnold

In Situ BioreactorIn Situ BioreactorRedstoneRedstone

FE WarrenFE Warren

TinkerTinker

CarswellCarswell

HickamHickam

Badger AAPBadger AAP

Treasure Treasure 
IslandIsland

BealeBeale

Seymour JohnsonSeymour Johnson

EglinEglin

HomesteadHomestead

RobbinsRobbins

BiogeochemicalBiogeochemical

EllsworthEllsworth

McClellanMcClellan

ElmendorfElmendorf

KeeslerKeesler

RickenbackerRickenbacker

GentileGentile

WurtsmithWurtsmith

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Resources ProducedResources Produced

AFCEE EISB Web Site
• www.afcee.brooks.af.mil/products/techtrans/

bioremediation/defaut.asp

Online Resources
• AFCEE Enhanced In Situ Bioremediation

Technology Roadmap
• AFCEE Technology Transfer Workshops

EISB Protocols
• Aqueous & Mineral Intrinsic Bioremediation 

Assessment (AMIBA) Protocol
• Principles and Practices of Enhanced Anaerobic 

Bioremediation of Chlorinated Solvents
• Enhanced Anaerobic Bioremediation of Chlorinated 

Solvents Cost Estimating Tool
• Technical Protocol for Enhanced Anaerobic Bioremediation 

Using Permeable Mulch Biowalls, May 07
• Protocol for In Situ Bioremediation of Chlorinated Solvents 

Using Edible Oil, May 07

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Current IssuesCurrent Issues

• Long lag times
• DCE stall 
• VC accumulation
• Need to bioaugment
• Mass balance limitations
• Preferential flow paths 
• Insufficient residence time
• Inhibitory conditions
• Monitoring limitations
• Competing electron acceptors
• Contaminant bypass
• Depth limitations
• Sustainability: Carbon limited

• More “Art” not “Science”
• Lack of “How to Manuals”
• Limited Site Selection Criteria 
• On-going patent arguments
• Vendor claims and “over selling”
• High cost of mobilization
• High monitoring costs
• Need for Microcosms
• Regulatory Concerns
• Infrastructure issues
• Indoor vapor intrusion
• Increased interests in PBC
• Inaccurate CSMs

So then why the continued interests?



I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

AF Remedial System Inventory
- CY05

AF Remedial System Inventory
- CY05

Oxidation/Reduction - 
15, 4% Wall/Barrier - 10, 2%

Enhanced 
Bioremediation - 68, 

17%

Soil Vapor Extraction 
(SVE) - 62, 15%

Pump and Treat - 119, 
29%

Other - 29, 7%

Monitored Natural 
Attenuation (MNA) - 89, 

22%

LNAPL Recovery - 16, 
4%

System Number by Technology – All MAJCOMs

Enhanced 
Bioremediation

$8,830,091
17%

Soil Vapor 
Extraction (SVE)

$6,266,306
12%

Pump and Treat
$25,635,052

49%

LNAPL Recovery
$1,617,791

3%

Monitored Natural 
Attenuation (MNA)

$4,476,985
9%

Wall/Barrier 
$910,314

2%

Oxidation/Reduction
$2,115,484

4%

Other
$1,931,095

4%

System Cost by Technology – All MAJCOMs

Natural Attenuation  89 (22%) $  4.4M ($  50K/site)

Enhanced Bioremediation 68 (17%) $  8.8M ($130K/site)

Bioremediation Subtotal 157 (39%) $13.2M ($  84K/site)

Pump & Treat 119 (29%) $25.6M ($215K/site)

Technology                         Frequency     Costs          Avg Annual Costs

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Vance AFB -Industrial zone
SS07 TCE Plume (Conc vs Time)

Vance AFB -Industrial zone
SS07 TCE Plume (Conc vs Time)

Dechlorination 
rate prior to RIP

7 Kg/Yr

Dechlorination 
rate post-RIP

12 Kg/Yr
$12M Capital Costs
$0.5M Annual O&M
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North SS-07 RA Installed (8 well system)

Extension of mass trend 

before NS7 RA was operatedDechlorination 
rate prior to RIP

7 Kg/Yr

Dechlorination 
rate post-RIP

12 Kg/Yr
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Fuels Solvent + 
Fuels

Solvents

FY05 Air Force
Remedial Systems by COC and Technology

= FY05 Annual O&M Cost

= Number of Systems

PnT
8 X Cost 
of MNA

MNA        
½ # of PnT
Systems

* *

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Average Lifetime System 
Operation and O&M Cost by 

Technology 

*Based on FY05 RIPS Inventory

All MAJCOMs

10.2 yrs
$1,208,658

13.2 yrs
$1,608,030

27 yrs
$7,814,224

24.8 yrs
$2,099,176

2.5 yrs

$417,340

12.2 yrs
$1,762,177

20 yrs
$1,511,023

23.5 yrs
$1,458,462

Enhanced
Bioremediation

Soil Vapor Extraction
(SVE)

Pump and Treat (P&T)

Other System Types 

Oxidation Reduction

LNAPL Recovery

Monitored Natural
Attenuation

Permeable Barrier Walls

= Average Lifetime Operation

= Average Lifetime O&M Cost*

= Average Lifetime Operation

= Average Lifetime O&M Cost*

*

*
*

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Questions?

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Vegetable Oil 
Successes

Vegetable Oil 
Successes

Source Area under Bldg to Right

0.0

2.0

4.0

6.0

8.0

10.0

12.0

11/14/2001 2/22/200
2

6/2/2002 9/10/2002 12/19/200
2

3/29/200
3

7/7/2003 10/15/200
3

Date

C
E 

(u
M

)

Ethene
Ethane
Acetylene
VC
cDCE
tDCE
TCE
1,2-DCA



I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Biowall
Successes

Biowall
Successes

0
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) July 2002
Sept 2002
March 2003
November 2003
July 2004

Biowall →

Direction of Groundwater Flow →

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Bioreactor
Successes
Bioreactor
Successes

Baseline Conditions Results at 8 months 

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

LTM Programs
$24,769,237

32%
Remediation 

Systems
$51,783,118

68%

Program Status  
Percent of Program by Phase

IRP = 6,615 Sites
MMRP = 239 Sites
ERA Cleanup Total = 6,854 Sites

74% PROGRAM COMPLETE

No Further Response 
Action Planned: 

4,293 Sites 
63%

Investigation:
1,570 Sites

23% RIP:
752 Sites

11%

MMRP Investigation:
239 Sites

3%
No Further Response 

Action Planned: 
4,293 Sites 

63%
Investigation:

1,570 Sites
23% RIP:

752 Sites
11%

MMRP Investigation:
239 Sites

3%

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

FY06 Air Force
Remedial Systems Types

Soil-Vapor Extraction 
(SVE), $5,067,797

 11%

Enhanced 
Bioremediation 

$5,385,877
 12%

Wall/Barrier System 
$459,240

 1%

Oxidation/Reduction 
$2,824,425

 6%

Monitored Natural 
Attenuation, $4,281,163

9%

Other, $1,364,500
 3%

LNAPL Recovery 
$1,083,267

 2%

Pump & Treat 
$25,117,381

 56%

Remediation System Cost and Percentage by 
System Type

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

FY06 Air Force

Number of Remediation Systems by Type

Wall/Barrier System 
9, 3%

Soil-Vapor Extraction 
(SVE) - 43

 13%

Pump & Treat - 103, 
30%

LNAPL Recovery - 12 
3%

Monitored Natural 
Attenuation - 80

23%

Oxidation/Reduction 
18, 5%

Other- 21
 6%

Enhanced 
Bioremediation - 58 

17%

I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Vance AFB Extraction System 
Effectiveness

Vance AFB Extraction System 
Effectiveness

1.88TOTAL
0.1397NS7-ICT3
0.0427NS7-ICT2
0.0644NS7-ICT1
0.5026EW7-11
0.8441EW7-10
0.2035EW7-9
0.0556EW7-8
0.0235EW7-7

TCE Mass Removal Rate 
(kg/yr)Extraction Well



John T. Wilson
Rick Wilkin
Cherri Adair

Summit on Biogeochemical Processes
in the Degradation of Chlorinated Solvents

School of Aerospace Medicine, Brooks City-Base, 
Texas

25 – 26 April 2007

Trichloroethylene Removal from Ground Water in Flow-
through Columns Simulating a Permeable Reactive 
Barrier Constructed with Plant Mulch (Supporting 

Information)

Hai Shen and John T. Wilson

In Press, Environmental Science & Technology
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Butler, E.C., and K.F. Hayes. 1999.
Kinetics of the transformation of trichloroethylene 

and tetrachloroethylene by iron sulfide. 
Environ. Sci. Technol. 33:2021-2027.

Rate = 5.0 x 10-4 per hour at pH 7 in presence of 
10 g/L FeS

Rate = 0.067per day in presence of 1.0 FeS in 
contact with 1.0 liter of water (M*)

0.900.53793

0.067 (Butler and Hayes)

1.62.3578

1.81.6383

normalized rate constant associated with 
FeS (d-1M-1)

Column with 
Mulch and 

Hematite and 
Limestone

Column with 
Mulch and 
Hematite

Time of 
Operation

(d)

Permeable Mulch Biowall at Landfill 3, 
Operable Unit 1, Altus Air Force Base, 

Oklahoma.  Table 4

Appendix D2 in 

Technical Protocol for Enhanced Anaerobic 
Bioremediation Using Permeable Mulch 

Biowalls and Bioreactors

2007, Version 1

Air Force Center for Environmental 
Excellence



1.17,40020,0000.7820SB2-20

1.39,40018,0000.7815SB2-15

1.314,00023,0000.677SB-2-7

0.66,90021,0000.6420SB1-20

1.113,00041,0000.6310SB1-15

1.013,00029,0000.605SB-1-5

M*mg/kg
Dry Wt.

mg/kg
Dry Wt.

Dry Wt.
basis

feet

AVSAVSOrganic 
Carbon

Fraction 
Solids

DepthSample 
Location
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At least 14 sampling dates in 2004-2006

0.1113281197OU1-01

0.086101171171UMP1

0.086110521273U106

Fraction 
Remaining

Down 
Gradient

In BiowallUp
Gradient

Location

TCE 2004-2006

0.00380.531.120SB2-20

0.00080.531.315SB2-15

0.00090.531.37SB-2-7

0.04180.530.620SB1-20

0.00300.531.110SB1-15 0.11
to 

0.086

0.00460.531.05SB-1-5

10 days d-1 M-1M*feet

Achieved 
C/Co

Predicted 
C/Co

Normalized 
Removal

AVSDepthSample 
Location

0.490.0672.120SB2-20

0.410.0672.715SB2-15

0.410.0672.37SB-2-7

0.670.0671.020SB1-20

0.480.0671.710SB1-15 0.11
to 

0.086

0.510.0671.55SB-1-5

10 days d-1 M-1M*feet

Achieved 
C/Co

Predicted 
C/Co

Normalized 
Removal

AVSDepthSample 
Location

S + FeS → FeS2   0.42 per year


