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Abstract

Self-localization of an underwater vehicle is particularly challenging due to the ab-
sence of Global Positioning System (GPS) reception or features at known positions
that could otherwise have been used for position computation. Thus Autonomous
Underwater Vehicle (AUV) applications typically require the pre-deployment of a set
of beacons.

This thesis examines the scenario in which the members of a group of AUVs
exchange navigation information with one another so as to improve their individual
position estimates.

We describe how the underwater environment poses unique challenges to vehicle
navigation not encountered in other environments in which robots operate and how
cooperation can improve the performance of self-localization. As intra-vehicle com-
munication is crucial to cooperation, we also address the constraints of the communi-
cation channel and the effect that these constraints have on the design of cooperation
strategies.

The classical approaches to underwater self-localization of a single vehicle, as
well as more recently developed techniques are presented. We then examine how
methods used for cooperating land-vehicles can be transferred to the underwater
domain. An algorithm for distributed self-localization, which is designed to take the
specific characteristics of the environment into account, is proposed.

We also address how correlated position estimates of cooperating vehicles can lead
to overconfidence in individual position estimates.

Finally, key to any successful cooperative navigation strategy is the incorpora-
tion of the relative positioning between vehicles. The performance of localization
algorithms with different geometries is analyzed and a distributed algorithm for the
dynamic positioning of vehicles, which serve as dedicated navigation beacons for a
fleet of AUVs, is proposed.

Thesis Supervisor: John J. Leonard
Title: Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology
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Chapter 1

Introduction

A new wave of robots has led to exciting scientific findings over the past decade. Long
after static manufacturing robots matured to become useful tools and common sights
on most factory work floors, highly mobile exploration robots reach places which
were previously hard or impossible to access by humans. They provide a platform
for their onboard sensors which collect data in an environment which has never been
previously visited.

Perhaps the best known examples of exploration robots are the two Mars Explo-
ration Rover (MER) vehicles that landed on Mars in 2003 and the earlier Pathfinder
mission vehicle Sojourner. Before Sojourner landed on Mars in 1997, a large number
of static space probes had been sent to several planets in the solar system since the
seventies, but Pathfinder ’s mobility greatly increased the number of possible appli-
cations. From Sojourner to MER the mobility of the planetary exploration rovers
was increased by three orders of magnitude from tens of meters to tens of kilometers
within six years. MER also demonstrated the improvements made in reliability with
the robots continuing to provide scientific data since 2003, after more than five years
of operation.

Another environment in which autonomous exploration robots have operated very
successfully that has gained much less attention is in the bodies of water covering
70 % of Earth’s surface. The dive of the Trieste, a manned submersible, reaching
the Challenger Depth1 in 1960, demonstrated the potential to create vehicles capable
of reaching every spot in the ocean. The amount of ocean floor explored by this
vehicle however was only a few square meters and no vehicle, manned or unmanned,
has returned to these depths since. Even today’s much more sophisticated craft are
not able to explore farther than a few kilometers beyond the vehicle’s position due
to the strong attenuation of electromagnetic and acoustic waves in the water body
which limits the footprint of the vehicles’ sensors. For example a single space probe,
Mars Express, was able, in just a few years, to obtain a much more detailed image of
the Martian surface, than a century of ocean exploration was able to create for the
Earth’s seafloor. While sensors for the ocean environment are continuously improving
and satellites can measure surface features such as temperature and wave height, it

1the deepest point in the ocean at 10916 m [55]
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24 Chapter 1. Introduction

Figure 1-1: MER and Seabed, two exploration robots in a hostile environment. Left:
Artist impression of MER on Mars. Courtesy NASA/JPL-Caltech. Right: Seabed
deployed during the Gakkel Ridge Expedition in July 2008. Photo courtesy of Hanu
Singh.

remains difficult for the foreseeable future to see through the water column.

The Earth’s oceans affect all of Earth’s inhabitants as they strongly influence
the climate and provide much needed resources (e.g. seafood as well as oil and
minerals). The influence on the climate and the effect of the ocean’s biomass are not
well understood, mostly due to the lack of available data. Classical ocean exploration
mostly relies on immobile buoys and manned surface and underwater vehicles. As
a result of the high cost and the inherent danger to people’s lives, the number of
people and vessels deployed for ocean research world-wide is relatively small. The
small footprint of ocean sensors, combined with the low number of vehicles carrying
them, limits the speed at which the water body can be explored.

With the footprint of each vehicle limited to a small area around its position,
the volume of ocean surveyed is proportional to the number of vehicles deployed.
The only option to strongly increase the spatial and temporal sample density is to
deploy a much larger number of vehicles. The high cost of manned vehicles prohibits
a large increase in their use, but autonomous underwater and surface robots provide
an attractive alternative. They only require a small amount of personnel during
deployment and recovery and their fuel and maintenance costs are marginal when
compared to those of conventional research vessels.

Having a good estimate of one’s location is critical for manned and unmanned
vehicles, but it is particularly important for autonomous vehicles as unsupervised
decisions are made based on the location estimate. Furthermore the quality of the
data collected is directly dependent on how well measurements can be referenced to
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a geographic location. The underwater environment makes determining a vehicle’s
position particularly difficult, as we will show in this thesis, requiring new strategies
for navigation. One such strategy, which we propose, is the concept of Coopera-
tive Navigation (CN) in which a group of autonomous vehicles exchanges navigation
information in order to improve the group’s overall position estimate. This thesis
investigates the challenges involved in implementing this concept and proposes solu-
tions.

1.1 Autonomous Marine Vehicles

In the last 20 years, research in autonomous marine platforms has led to a large and
ever growing number of different submarine vehicles. Autonomous Surface Crafts
(ASCs) have only recently received more attention and underwater platforms continue
to dominate the research. This thesis will show examples of how a joint deployment
of ASCs and Autonomous Underwater Vehicles (AUVs) can be beneficial, with a
focus on the underwater domain. The following sections will give an overview of
the various classes of underwater vehicles and their specific characteristics. We will
also illustrate some of the many applications for which AUVs are used today and
how these applications shaped their characteristics. The type of AUV determines
the accuracy of its on-board navigation sensors, while the application dictates the
required localization accuracy.

1.1.1 Platforms

Propelled Vehicles

The earliest and still most common type of AUV consist of a torpedo shaped body
with a single thruster. The diameter of larger models (Bluefin21 ) is often 533 mm
(21”) [17], the same as that of a heavy-weight torpedo while the smaller ones (Remus
600, Bluefin9 ) have the same diameter as a light-weight torpedo - 324 mm (12.75”).
Their lengths vary between 1 m and 7 m and several models consist of segments which
can be added or removed to adapt the payload section to the mission’s specific needs.
Note the transitions between the modules on the Bluefin21 and Gavia in figure 1-2.
The weight ranges between 20 kg for the very small and portable IVER (top left in
figure 1-2) and 900 kg for a large Remus 6000, but all vehicles are usually positively
buoyant. This is a security feature which ensures that a vehicle will return to the
surface if all power is cut. As a result this type of AUV needs to move forward to
stay submerged. The maximum achievable depth is 6000 m for the large vehicles and
around 100 m for the smaller ones. Cruising speeds range between 1-3 m/s. The
excellent hydrodynamic properties of the long slender body only require a relatively
low-power propulsion for a given cruising speed and payload. As a result, variations
of the torpedo-shaped AUV, such as the ones in figure 1-2 are the vehicle of choice
for many applications. Early AUVs were usually large, but with recent advances in
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Figure 1-2: Various torpedo-shaped AUVs. Top left: the low-cost, “human-portable”
IVER from Ocean Server. Top right: two Bluefin21 prior to being loaded onto the
Leonardo during the GOATS04 experiment. Bottom row: the Gavia AUV made by
Hafmynd.

miniaturization of the key components (battery, propulsion, navigation sensors) sev-
eral smaller, “human-portable”, models appeared recently. Other, more specialized
vehicles exist such as WHOI’s Seabed [79] shown in figure 1-4. This vehicle is specif-
ically designed for underwater imaging. To accomplish this, it needs to be able to
precisely control its altitude and to change its depth without forward motion. The
shape of this vehicle, with a large separation between the center of gravity and the
center of buoyancy, provides a very stable camera platform. An even more maneu-
verable AUV is the HAUV [91] shown in figure 1-5. Its eight thrusters allow it to
rotate around and move along every axis in 3D-space. Its main application is ship
hull inspection using a forward looking imaging sonar (figure 1-5). Another special-
ized design is Woods Hole Oceanographic Institution (WHOI)’s hybrid ROV/AUV
Nereus which will be able to reach full ocean depth [18].
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Figure 1-3: The Spray (top) and the X-Ray glider (bottom).

Buoyancy-Driven Vehicles

As the high power consumption of the propulsion system limits the range of propelled
AUVs to a few 100 km [40] the need for vehicles capable of crossing an ocean led to
the development of buoyancy driven gliders. All gliders such as the Spray or the
X-Ray, both shown in figure 1-3, are capable of changing their displaced volume to
become positively or negatively buoyant by pumping oil from an internal reservoir
to an outside bladder. As a result of the buoyancy change, the glider ascends or
descends within the water column. A set of “wings” then adds a forward component
to the otherwise purely vertical motion. The glider performs a sawtooth pattern
(figure 5-5b) which can take it to depths of more than 2000 m. The internal battery
pack can be shifted along the longitudinal axis to provide pitch control as well as
rolled around the longitudinal axis to provide yaw control in conjunction with a
set of vertical fins. A detailed description of Seaglider can be found in [30]. The
propulsion system only consumes power during the activation of the pump on the
sea surface or near the bottom. This type of propulsion is very efficient, requiring
only 0.5 W [30] averaged over the entire period of operation, and enables transects of
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StrobeCamera

Floatation
Battery

Figure 1-4: Jaguar Seabed’s sister ship. An AUV specifically developed for underwa-
ter imaging. Left: Seabed without fairings showing the large floatation (yellow) on the
top segment and the heavy battery compartment in the bottom segment. The flash is
mounted at the stern in a glass bowl and the camera in the bow. This ensures max-
imum separation between light source and camera axis to avoid backscatter. Right:
photo mosaic created from ≈100 pictures taken by an ROV of an iron age shipwreck
off Ashkelon, Israel. Photo courtesy of Hanu Singh.

several 1000 km [63]. However it limits the glider to speeds of 0.2-0.5 m/s, which can
become a problem in the presence of strong currents. The need to keep the total power
consumption around 1 W does not allow for sophisticated navigation equipment as
outlined in section 2.1.3. A recently developed glider, the X-Ray, shown in figure 1-3
and described in [1], mitigates some of the disadvantages of gliders. Being significantly
larger than other gliders it provides enough battery capacity for more sophisticated
payloads and navigation sensors. The X-Ray’s steeper ascent and descent angles cause
a forward speed of 0.75 to 1.5 m/s which is close to the cruising speed of propelled
AUVs.

1.1.2 Applications

Due to the increasing availability and reliability of AUVs they are now used for a wide-
spread range of applications. The following sections will illustrate a few examples
from the large and growing number of tasks performed by underwater vehicles today.
These applications increase in complexity which requires an increasing level in vehicle
autonomy. The examples also show how the different designs emerged out of task-
specific needs. The certainty of the vehicle’s position estimate determines the quality
of the results (e.g. maps) for all applications. Hence, these examples illustrate how
the utility of autonomous marine vehicles is directly tied to their ability to self-localize
and therefore use all available information to minimize the position uncertainty.

Mapping

The earliest and still most widespread application for AUVs is mapping. Early AUV
payloads would only contain sensors for physical and biological water properties such
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as temperature, salinity, turbidity and fluorescence, but the increased payload capa-
bility of today’s vehicles allows for sonars which provide micro-bathymetry (pencil or
multi-beam) [71], video-like acoustic images (DIDSON in figure 1-5) of underwater
structures (side scan figure 1-6) and even information about buried objects, such as
mines, from low-frequency sub-bottom profiling sonars [29].

More recently, cameras have been attached to AUVs. The absence of natural light,
except in very shallow waters, requires artificial illumination. Also, the strong atten-
uation of light underwater limits the distance between camera and the photographed
object, thus a single picture can only cover a few m2. To cover larger areas an AUV
typically takes several thousand pictures during a mission. Sophisticated mosaicking
techniques are then used to combine the individual frames to a complete picture of
the seafloor [80]. This technique has been used to map ancient shipwrecks [9] as well
as coral reefs [4].

Most mapping applications require the vehicle to run in a pre-programmed “lawn-
mower” pattern to ensure that the sensors cover a predefined area. The data collected
by the sensors is stored on-board. After the mission, sensor data is combined with
the vehicle’s navigation data in order to create a map. Consequently, mapping appli-
cations require the vehicle to have a very precise estimate of its position throughout
the entire mission as the navigation data is later used to globally reference the sensor
readings. This is particularly relevant for underwater imaging applications.

Inspection

A special case of a mapping mission is the inspection scenario. Here the AUV is
required to map one or several features such as oil rigs, harbor structures or ship hulls.
These features are mostly man-made and have a very complex shape. The inspection
requires the vehicle to be very close to the feature so that it can be mapped in
detail with underwater imaging or a high resolution sonar. Thus the vehicle needs to
adapt its trajectory to the feature’s shape to provide full sensor coverage. Figure 1-5
shows MIT/Bluefin’s Hovering Autonomous Underwater Vehicle (HAUV) mapping
the ship hull of a decommissioned cruiser. Future applications include the inspection
of Liquefied Natural Gas (LNG) tankers for explosives attached to their hulls prior to
entering port areas. An explosion of a ship with such cargo could have a catastrophic
effect. Today these inspections are carried out manually, requiring a large number of
divers. The HAUV would approach the ship on a preprogrammed track and would
then move in a complex lawnmower pattern along the hull. Using the forward looking
Doppler Velocity Log (DVL), it obtains information about its distance to the hull as
well as relative speed. By extracting features from the Dual Frequency Identification
Sonar (DIDSON) the HAUV ensures that it obtains a consistent map covering the
entire hull [90].
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Figure 1-5: Ship hull inspection using the HAUV to inspect the Salem in Quincy,
MA, USA. Top left: the HAUV in the pool at MIT. Note the eight thruster for
increased maneuverability, the forward looking DVL (black cone with red circles)
which provides distance and speed of the HAUV relative to the ship hull and the
forward looking DIDSON to the left of the DVL. Top right: output of the forward
looking DIDSON showing cooling systems and bio fouling on the hull of the Salem.
Bottom row: the decommissioned heavy cruiser USS Salem (CA-139) in Quincy, MA,
USA while inspected by the HAUV. Top pictures courtesy of Jerome Vaganay from
Bluefin Robotics.

Tracking

Unlike mapping applications in which the area of interest is usually static and the
vehicle trajectory can often be entirely preprogrammed, tracking applications require
a higher level of vehicle autonomy. In a typical tracking application the vehicle, after
being released, enters a search or loiter pattern until its sensors pick up signatures
of the feature which is to be tracked. It then breaks from its initial search/loiter
behavior and adapts its trajectory to maximize sensor effectiveness and information
gain about the feature.

In [28] Eickstedt et al. simulate an Anti-Submarine Warfare (ASW) scenario in
which an AUV with a towed array starts in a loiter pattern and listens for acous-
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Figure 1-6: Autonomous pipeline inspection. Left: sidescan transducers on the Gavia
AUV. Photo courtesy of the NOAA OE Bonaire 2008 Expedition. Right: sidescan
image of an undersea-pipeline taken by a Gavia AUV. The image shows echoes from
the raised pipeline as well as the acoustic shadow it casts on the sea floor. A vehicle
course that is not parallel to the pipeline creates a distorted image. Image courtesy
of Hamynd.

tic signatures of a potential target. After picking up a signature and obtaining an
estimate of the target’s course and speed it attempts to close the distance between
itself and the target and to align its array for optimal tracking. Later experiments
verified the feasibility of this approach. In [41] German et al. use the AUV ABE to
find hydrothermal vents, an often very small feature (few m2) on the sea floor. ABE
initially performs a “lawn-mower” search over a predefined area. After completing its
initial search it autonomously revisits all locations where chemical sensors suggested
the presence of a vent for a finer grid search. If required, this process of “revisit
and refine” is repeated until the vents are sufficiently well localized to warrant a
small-scale photo mosaicing to visually confirm the hydrothermal vent’s presence.

Another tracking application is shown in figure 1-6. The Gavia AUV is released
close to an underwater pipeline. While underway it obtains readings from its side
scan sonar which it synthesizes to the picture shown on the right side in 1-6. An
online feature detector tries to extract the pipeline from the sonar image and sets
a course which keeps the AUV parallel to the pipeline at a fixed distance. This is
particularly difficult when the pipeline is partially buried.
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1.2 Contributions of this Thesis

1.2.1 Problem Statement

The previous section showed the two reasons why almost all applications for underwa-
ter vehicles rely on the vehicle having a very accurate estimate of its position. First,
the vehicle continuously makes unsupervised decisions based on its position while the
mission is carried out. Second, the utility of the collected data is directly related to
the precision with which the samples can be localized in a global frame.

For almost all robots operating outdoors - on land and in the air - the localization
problem has been resolved with the advent of GPS. A very affordable receiver is
able to provide an absolute position at a high rate leading to estimates which are
accurate to a few meters. Using additional infrastructure such as differential GPS
the accuracy can be increased to a few centimeters. Robots operating indoors usually
do not have access to the GPS signal but modern sensors, such as laser scanners and
high resolution cameras can extract a rich set of features which can greatly alleviate
the localization problem.

This leaves underwater locations as the single largest domain excluded from to-
day’s most prevalent localization techniques. While underwater sensors continue to
improve, the strong absorption of almost the entire Radio-Frequency (RF) spectrum
in salt water will impose physical limitations on radio-based localization methods for
the foreseeable future, just as generally feature-poor marine environments will limit
the usability of natural feature based navigation methods. In the absence of these
classic options new strategies such as cooperation for navigation will play an impor-
tant role in ensuring that the navigation accuracy for underwater vehicles will be
similar to that which has become standard for outdoor robots.

The particular strength of cooperative navigation is the fact that it does not re-
quire any additional infrastructure or even instrumentation of the vehicle. The sensor
and communication package which is standard on today’s underwater vehicles is suf-
ficient and adding cooperative navigation requires merely a change in the vehicle’s
navigation and control software. The main requirement for this approach - deploying
more then a single vehicle - will be satisfied for most of the upcoming deployments
due through the increased reliability and availability of suitable platforms.

This thesis investigates the main shortcomings of conventional (non-cooperating)
vehicle navigation. It identifies and proposes solutions for the three key problems
which need to be resolved to successfully implement cooperative navigation.

1.2.2 Cooperative Localization Algorithm

The methods previously proposed for cooperative localization of land and air vehicles
make assumptions, particularly on the reliability and bandwidth of the communi-
cations channel which do not hold underwater. We propose an algorithm which is
specifically adapted to the underwater communication and messaging infrastructure
as well as to the vehicle’s sensor suites to provide a robust estimate of the actual
position.
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1.2.3 Maintaining Consistency

If a number of vehicles exchange navigation information, the position estimates of
the participating vehicles will become correlated and will, over time, suffer from
overconfidence. This is independent of the cooperative localization algorithm used
and must be mitigated as overconfidence in the vehicle’s position estimate can lead
to catastrophic results. One option is the use of dedicated navigation beacons as this
method ensures that the flow of navigation information is uni-directional. For the
more general case in which each vehicle participates in cooperative navigation actively,
by broadcasting, or passively, by receiving, we propose an algorithm which selectively
incorporates information while keeping the positions of all vehicles decorrelated. This
selective update algorithm works with any underlying navigation algorithm.

1.2.4 Motion Planning for Cooperating AUVs

The amount by which we can decrease the uncertainty in our position estimate
through cooperation depends not only on the certainty in the position estimate of
our cooperation partner, but also on the geometry between the vehicles. A special
case of cooperative navigation uses vehicles which are dedicated navigation beacons.
As the only purpose of these vehicles is to collectively minimize the position uncer-
tainty of the receiving vehicles they need to constantly adapt their position. We
propose a distributed algorithm which dynamically positions each of these designated
beacon vehicles to maximize the effect of their position broadcasts.

1.2.5 Experiments

We first tested the performance of the communication infrastructure used in order to
assess how well it is suited for cooperative navigation. We then carried out a series of
experiments to verify the performance and robustness of our cooperative navigation
algorithm. By first relying on surface vehicles only, which had access to GPS, but
would only communicate through the acoustic channel available to submerged AUVs,
we obtained ground-truth which the results of our localization algorithm could be
compared against. We then substituted one of the surface craft with an AUV featur-
ing a very sophisticated navigation suite and, in another experiment, with a glider
possessing very minimalist sensors. Both experiments showed that the cooperation
would lead to a noticeable reduction in the position uncertainty.

1.3 Thesis Outline

The remainder of the thesis is organized as follows:

Chapter 2: AUVs: Communication and Navigation Capabilities
We start by giving an overview of the state of the art in the two domains
which are most crucial to cooperative navigation: underwater communication
and vehicle navigation sensors. The most commonly used navigation sensors,
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along with their relevant performance parameters, are introduced as well as the
options for underwater communication.

Chapter 3: Cooperative Localization
This chapter establishes the probabilistic framework in which we will present the
cooperative localization problem. We introduce the two classical methods which
have been used for localization problems in general and the related work in which
they have been adapted for cooperative localization. Based on the shortcomings
of these two methods we propose our algorithm. This chapter also addresses
the problem of correlations arising from sharing navigation information and
the resulting overconfidence in the position estimate. Our method, the IU
algorithm, is a general solution for all cooperating navigation algorithms which
modifies their update step to keep all vehicle positions decorrelated and thereby
preventing overconfidence.

Chapter 4: Intra-Vehicle Geometries for Cooperating AUVs
The specific scenario, in which some vehicles serve as dedicated navigation bea-
cons, requires that these vehicles adapt their position in order to maintain an
advantageous relative position to all other vehicles for which they provide the
information for. We show how the geometry between beacon and receiving ve-
hicles has a strong influence and we propose an algorithm which positions the
beacon vehicles optimally based on locally available information.

Chapter 5: Experiments
This chapter shows the results of the experiments we carried out to validate
our cooperative navigation algorithm using different surface and underwater
platforms. We also compare the performance of our algorithm with the classical
approaches.

Chapter 6: Conclusion
The last chapter shows the direction for future research and summarizes the
contribution of this thesis.

Appendix A: Coordinate Systems
The appendix establishes the coordinate system used throughout the thesis.



Chapter 2

AUVs: Communication and
Navigation Capabilities

2.1 Underwater Navigation

2.1.1 Navigation Sensors

This section gives an overview of the sensors commonly used in underwater vehicles.
It outlines their particular characteristics and shows how several sensors are used
jointly to determine a vehicle’s position. It is important to note that our cooperative
navigation approach does not replace any of these instruments, but adds a “virtual”
sensor by combining the measurements of the physical sensors from its own and other
vehicles.

Depth Sensor

All submersible vehicles are outfitted with a pressure sensor which allows them to
determine their absolute depth with high accuracy and a high update rate. As a result
all other underwater navigation systems are only used to resolve the 2D position, (i.e.
longitude and latitude) and all underwater vehicle related localization problems are
stated in 2D.

Magnetic Compass

Like the pressure sensor, a compass is part of the basic navigation sensor suite of
every underwater vehicle as it is an inexpensive and low-power device. It provides
the 3D-vector of the local magnetic field. Before computing the heading from the
magnetic field vector it is necessary to carefully calibrate the compass each time the
vehicle’s area of operation changes, as the difference between the orientation of the 3D
magnetic field vector and the direction of true north (called “variation”) depends on
the geographic location. In addition to the spatially slow variation, there are highly
localized “magnetic anomalies”. The compass output is also affected by its position

35



36 Chapter 2. AUVs: Communication and Navigation Capabilities

in the vehicle as electrical currents create magnetic fields which cannot be discerned
from the Earth’s magnetic field.

Global Positioning System (GPS)

The GPS is able to provide absolute position information for outdoor land robots as
well as Unmanned Aerial Vehicles (UAVs), but the strong absorption of electromag-
netic waves by sea-water prohibits the use of the GPS by submerged AUVs. Nonethe-
less, almost all underwater vehicles today are equipped with a GPS receiver as it can
be used to get a position fix before the start of the mission or during intermittent
surfacings.

Flow meter

A flow meter consists of a tube, usually mounted in line with the main vehicle axis
and is open to the surrounding water on both sites. It contains a propeller which is
spun by the water running through the tube as the vehicle moves. A sensor attached
to the propeller determines the rotational speed which can be converted into flow
speed and thereby giving an indication of the vehicle’s speed relative to the water
body.

Beacon Techniques

The most commonly used way to obtain absolute position information underwater
is through the use of beacons. These beacons are at known locations and the AUV
obtains the range and/or bearing to several of these and then calculates its position
through trilateration or triangulation. Based on the location of the transceivers we
can identify three different baseline systems.

Standard Long Baseline (LBL): A typical LBL-configuration is shown in figure 2-1a.
Two or more beacons are deployed around the perimeter of the area in which
the AUV will operate. These beacons are anchored and float on the surface
or, particularly in deeper water, a few meters above the sea floor. Each unit
listens to acoustic query pings on a common receive channel. After receiving
a query ping from an AUV, each unit waits for a unique-specific Turn-Around
Time (TAT) tTAT and then sends out a reply ping on its individual transmit
channel. The AUV then receives the reply pings. The transmit channel as well
as the TAT are different for each unit. A unique TAT ensures that two beacons
will not interfere by transmitting at the same time and by using different trans-
mit frequencies the beacons provide a way for the AUV to identify from which
unit a reply ping was sent. The time difference ∆ti between sending out the
query ping and receiving a reply can then be used to determine the One-Way
Travel Time (OWTT) towtti .

towtti =
∆ti − tTATi

2
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Figure 2-1: Beacon-based underwater localization techniques.

The distance di between a beacon i and the AUV is then given by

di =
c

towtti

where the speed of sound c is either a pre-programmed value or measured on-
board. Using range measurements to several beacons and the beacon positions
stored in the vehicle before deployment, the AUV can now trilaterate its posi-
tion.

The maximum possible distance between the AUV and a beacon as well as the
localization accuracy depend on the the frequency band used for query and reply
pings. Long-range LBL-systems using the 12 kHz band work over distances as
long as 10 km [93] and can provide provide an absolute position with an error
between 1 m and 10 m. Short-range LBL systems using frequencies around
300 kHz band can achieve sub-centimeter precision, but the maximum range
is limited to 100 m [93]. The indicated errors assume that large outliers have
been filtered out. These outliers, which can be seen in figure 2-2, are due
to reflections from temperature and salinity discontinuities which are further
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Figure 2-2: Time-of-flight obtained from four LBL beacons. The plot shows significant
outliers for all beacons, particularly between 400 s and 600 s. This data was obtained
during the GOATS2002 experiment.

explained in section 2.2.2.

LBL variants: Standard LBL systems such as the one described above are not well
suited for large groups of AUVs because only one vehicle at a time can query the
beacon network and get a position update. Thus the position update interval
increases with the number of vehicles. Newer LBL systems, like the one recently
developed by ACSA [83] and shown in figure 2-1b, have synchronized clocks in
the beacons and the AUV transceiver units. The beacons broadcast a ping
containing a unique identifier at fixed time intervals. When the AUV receives
this ping, the beacon’s known broadcast schedule and the synchronized clock’s
time ensure that the vehicle knows when a ping was sent and can directly
compute the OWTT. The synchronized clocks thereby eliminate the need for
query pings and allow all vehicles within range of the beacons to get a range
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(a) DVL (b) REMUS AUV with up-(arrow) and downward looking DVL

Figure 2-3

to the broadcasting beacon. As a result the ping interval is independent of the
number of vehicles relying on the beacon network.

Another improvement over conventional LBL is the system depicted in fig-
ure 2-1c. Building on the setup in figure 2-1b the beacons now transmit their
GPS position along with the unique identifier. As with the system described
previously, the vehicles do not need to query the beacons. With the position
of the beacons embedded in the ping the beacons can float freely and it is not
necessary to store their coordinates in the AUV before deployment.

Ultra-Short Baseline (USBL): Another variant of beacon based navigation sys-
tems is USBL (figure 2-1d). Here the beacon is of the same kind as in a standard
LBL system, but the transceiver on the AUV contains several receiving elements
which are very close to each other. After querying the beacons the reply ping
is captured by all receiving elements. The phase difference between the signals
coming from the different receiving elements allows the AUV to compute a bear-
ing to the beacon. Combined with the beacon position stored in the AUV and
the distance d obtained from the OWTT, the vehicle can compute its absolute
position using only a reply from a single beacon.

Modern beacon-based systems such as the ones shown in figures 2-1b, 2-1c and
2-1d significantly decrease the pre-deployment effort when compared to early beacon-
based systems such as the standard LBL. However all beacon-based systems confine
the operating area of the vehicles to a polygon of beacons or, as in the case of USBL,
to the coverage radius of a single beacon. Thus beacon-based navigation is only
feasible for operating areas of O(10 km2) in size.

Doppler Velocity Log (DVL)

A DVL (figure 2-3a) is a device which typically has four transceiver units that emit
acoustic pulses. When a DVL is used for navigation purposes it is usually mounted to
a vehicle such that the transceivers are facing downward. If the DVL is close enough
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to the bottom, the transceiver will receive the reflected pulses (“bottom-lock”) and
as the transceivers are mounted at an angle with respect to the sea floor plane, the
received pulses will be subject to a Doppler-shift if the vehicle is moving. Combining
the measured Doppler-shifts from all 4 sensors with the built-in roll, pitch and heading
sensors the DVL can then compute the vehicle’s 3D-speed vector vv = [ẋ, ẏ, ż] in a
world-referenced frame.

The maximum distance between the DVL-unit and the sea floor depends on the
operating frequency of the transceivers. Low-frequency (150 kHz) DVL can obtain
bottom-lock for ranges up to 500 m, while a high-frequency DVL (1200 kHz) requires
less than 30 m.

The ranges indicated above can only be obtained under ideal conditions. A soft
sea floor or vegetation can absorb most of the energy of the incoming pulse and
thereby significantly decrease the maximum range. Another option is to mount the
DVL in an upward looking configuration such that the acoustic pulses are reflected
at the water/air interface (“surface-lock”). Then, the vehicle measures its speed
relative to the water surface, but this strategy may introduce errors in the case of
significant surface currents. Figure 2-3b shows a REMUS 100-AUV with a double-
DVL configuration. If bottom-lock cannot be obtained with the downward-looking
DVL the vehicle tries to determine its speed using the upward looking unit. Recent
developments greatly increased the accuracy of DVL-systems and errors as low as
0.2 % (1200 kHz) or 1 % (150 kHz) can be obtained.

Attitude Heading Rate Sensor (AHRS)

An AHRS unit typically consists of a 3-axis linear acceleration sensor as well as a
3-axis gyroscope and a heading sensor (magnetic compass). Combining the measure-
ments from these sensors, the AHRS can compute the 3 linear and 3 angular velocities
and accelerations (rates) as well as the attitude and heading from the windowed-
average of the linear acceleration sensor readings and the compass.

Inertial Navigation System (INS)

The sensors of an INS are the same as those of the AHRS described above. In addition
to the AHRS, the INS uses information from absolute position sensors (such as GPS
or LBL) and integrates the rate sensor readings to compute the actual position. This
process is called Dead-Reckoning (DR). As the linear and angular acceleration sensors
are subject to noise, the position derived from these sensors in the absence of GPS or
LBL is subject to a cumulative error and the obtained position will drift with respect
to the true position. The drift (error) e between the vehicle’s true position xtrue and
the position obtained with DR xDR are expressed as “drift over time” or “drift over
distance traveled”

e =
‖xtrue − xDR‖2

∆t
or e =

‖xtrue − xDR‖2
∆x

Typically the heading and rate sensors of an INS are less noisy than those of a
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comparably cheap AHRS which decreases the problem of accumulated drift. An INS
which fits into the hull of an AUV shows typical drift rates of 1 km/h [46]. The exact
performance of the most precise INS available, the ones found in nuclear submarines,
remains classified, but is expected to be O(0.01 km/h).

2.1.2 Sensor Fusion

The sensors described in 2.1.1 can be divided into three groups.

1. Absolute position sensors
The output of these sensors is the absolute position of the vehicle in a global
reference frame x = [x, y, z].GPS and LBL are examples of absolute position
sensors. Visually Augmented Navigation (VAN) is a method presented by Eu-
stice [31]. He shows that an AUV continuously taking pictures of the sea floor
while traveling can use these pictures to bound the navigation error introduced
by the DR-sensors. As a result this method can be considered an absolute po-
sition sensor. Walter uses a similar technique to bound the navigation error by
using the output of an imaging sonar navigating along a ship hull for inspec-
tion [90]. A special case of an absolute position sensor is the pressure sensor as
it resolves the position of an underwater vehicle for the z-dimension only.

2. DR-sensors
The output of these sensors is a speed vector uV =

[

vVx , v
V
y , v

V
z

]

for a DVL or

vVx for a flow meter, or an acceleration vector, aV =
[

aVx , a
V
y , a

V
z

]

in the case of
the AHRS.

3. Attitude and heading sensors
Compass or Fiber-Optic Gyroscopes (FOGs) provide the heading/yaw of our
vehicle. Combining this information with the 3D gravity vector, which is pro-
vided by the AHRS, we obtain the orientation of the vehicle in space described
by the yaw θ, pitch ψ and roll φ angle (see appendix A for the definition of the
axes and angles).

The Main Vehicle Computer (MVC) collects all incoming information from the
sensors and constantly computes the pose, the position and attitude of the vehicle.
This process is called sensor fusion and is the essential part of every navigation al-
gorithm. The following section describes a basic DR algorithm. More sophisticated
algorithms are introduced in section 3.4. The basic DR algorithm is shown in algo-
rithm 1 and explained below.

Initialization

Before being able to rely on DR-sensors the navigation algorithm needs to be initial-
ized with an absolute position x0 from an appropriate sensor (line 4). Usually this is
a GPS which is used on the surface before the vehicle submerges.
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1: repeat
2: wait
3: until x0 is available
4: x(t) = x0

5: loop {for each dτ}
6: uV

AHRS(t) =
∫ t+dτ

t
aVAHRS(t)dτ

7: u(t) = R ·
(

uVAHRS(t) + uV
DVL(t)

)

8: x(t+ 1) =





x
y
z



 = x(t) +
∫ t+dτ

t





u
v
0



 dτ +





0
0
z





9: if absolute position measurement xabs(t) is available then
10: x(t) = xabs(t)
11: end if
12: end loop

Algorithm 1: Simple DR which uses an initial position x0 and acceleration and speed
measurements to estimate the vehicles’s actual position x(t).

Dead Reckoning

Acceleration sensors such as an AHRS provide a vehicle referenced acceleration vec-
torn aVAHRS(t) which can be integrated to obtain the vehicle-referenced velocity vector
(line 6).

uV
AHRS(t) =

∫ t+dτ

t

aVAHRS(t)dτ

Other sensors such as the DVL or the flow meter directly provide the speed vector
uV (t) in vehicle coordinates. We combine the speed vector uV

DVL(t), with the speed
vector from the AHRS uV

AHRS(t) computed in the previous step. The information from
the attitude sensors is then used to compute R, the rotation matrix which converts the
joint vehicle-referenced velocity vector to a world-referenced velocity vector (line 7).

u(t) = R · uV (t) = R ·
(

uVAHRS(t) + uV
DVL(t)

)

Integrating the world-referenced velocity vector combined with the initial position
leads to the dead-reckoned position. Usually only the x and y-coordinate are obtained
using dead-reckoning, and the z-component (depth) is readily available from the pres-
sure sensor (line 8).

x(t+ 1) =





x
y
z



 = x(t) +

∫ t

0





u
v
0



 dτ +





0
0
z





Reinitialization

Whenever information from an absolute position sensor xabs(t) is available, the nav-
igation algorithm sets the current position to the obtained position (x(t) = xabs(t)).
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Cost, position drift, power consumption of navigation suite
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$30000
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Figure 2-4: Navigation accuracy, power consumption and price of various AUV sensor
suites (bottom to top): 1 Glider with compass and attitude sensor 2 Low-cost AUV
with compass, attitude sensor and flow meter 3 Medium-range AUV with INS, DVL
and LBL 4 High-end AUV with FOG-based INS, DVL and LBL 5 Special-task AUV
with with INS, DVL and VAN.
∗ Drift in mid water-column when DVL cannot obtain bottom or surface lock.
∗∗ Assuming a 10 % duty cycle during which the navigation sensors are powered.
∗∗∗ Assuming that the vehicle was close enough to the sea floor throughout the entire
mission to take pictures and revisit places.

2.1.3 State-of-the-Art in Underwater Vehicle Navigation

Every underwater vehicle contains a subset of the navigation sensors described in
2.1.1. Which sensors are used depends on the navigation accuracy required for the
mission as well as the available power, space and the cost constraints. Figure 2-4
shows five typical configurations.
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Glider with very low power sensor suite

Gliders must operate for extended periods of time without being able to recharge their
batteries. As a result power consumption is the limiting factor for the selection of
navigation sensors, and the navigation suites of a glider usually consists of a GPS, an
AHRS and a pressure gauge. While submerged the glider uses the AHRS combined
with a vehicle model to estimate its heading and forward velocity and dead-reckon its
position. The high noise and the unobservable variables in the vehicle model lead to
a very high drift of 30 % or even more if strong currents are present. On the surface
the vehicle resets its position estimate using GPS.

Low-cost AUV sensor suite

Low-cost AUVs such as the IVER use a flow meter to obtain a measurement of their
forward speed uVx . This information combined with an AHRS leads to a significant
improvement of the navigation accuracy when compared to that of a glider.

Standard AUV sensor suite

The standard AUV adds a DVL to the list of sensors. When the DVL is able to
obtain bottom lock a very accurate vehicle-referenced velocity vector uV is available
and the navigation accuracy improves by an order of magnitude. Drift rates as low as
1 % of the distance traveled can be obtained with a well calibrated magnetic compass.
Standard AUVs operating in a confined area are often outfitted with an LBL system.
When operating within the polygon established by the position of the LBL beacons,
the position drift will remain bounded.

High-end AUV

The dominant source of error in the standard AUV sensor suite described above, is in-
troduced during the transformation of vehicle-referenced velocities to world-referenced
velocities as a result of errors in the heading measurements. Replacing the simple
magnetic compass with a FOG improves the navigation by two orders of magnitude
(0.1 % of the distance traveled). When the DVL is not able to obtain bottom lock
all of the vehicles described so far can only rely on the vehicle’s linear acceleration
sensors to obtain velocities. Due to the large noise introduced by these sensors the
navigation accuracy decreases dramatically.

Special-task AUV using VAN

The special-task AUV has the same sensors as the standard AUV. Additionally, it
uses a bottom-looking camera to take a series of pictures of the sea-floor. When
revisiting a point it has taken a picture of before, it is able to recognize that fact and
the navigation algorithm is able to reset the drift. As a result the drift is bounded.
This technique has been described by Eustice in [31]. Figure 2-5 shows two consecutive
camera images with corresponding features. This method however requires the AUV
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Figure 2-5: Two consecutive pictures after being processed by the VAN algorithm.
From the several hundred features identified in each picture, only nine, marked by
the colored dots have correspondences in both pictures and fit within the epipolar
constraints. Figures courtesy of Ryan Eustice.

to revisit points and stay close enough to the sea floor (less than 10 m) to acquire the
pictures.

2.2 Underwater Communication

2.2.1 Technologies

Communication is vital for any collaborative effort such as cooperative navigation.
This section briefly describes communication based on electromagnetic waves (RF and
optical), the most common mode for untethered data exchange for land and air based
systems. As their applicability under water is limited to small niches, the second part
of this section addresses acoustic communication the most commonly used channel
under water.

Radio Communication

Using electromagnetic waves, particularly in the Ultra-High Frequency (UHF) spec-
trum around 900 MHz or 2.4 GHz, is the most common way of wireless communication
for land robots and UAVs. Radio communication enables these vehicles to communi-
cate over distances from a few meters to anywhere on the Earth, when using satellite
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communication, at comparably high speeds (kbps to Mbps).
Due to the strong attenuation of radio waves under water, radio communication

is only used in two niches in the realm of submersible vehicles.

1. Super Low Frequency (SLF) for long-range communication
The US-American Seafarer and the Russian ZEVS system each consist of a
single base station, transmitting at 76 Hz and 82 Hz respectively. The antenna
structures of the base stations are up to 90 km [61] in size while the submarines
tow a very long antenna. This setup allows one-way communication from the
shore station to submerged submarines anywhere in the world with data rates
O(bits/min). Due to the size and power requirements of the transmitter, the
submarines cannot accommodate these. Due to the low data rate provided by
this communication channel it is only used to signal a submarine to come to
the surface to initiate communication through a satellite.

2. Low Frequency (LF) for short range communication
Recently, several transceivers have been developed which operate in the LF-
band (30 kHz to 300 kHz) and can be used for two-way AUV communication.
Schill et al. developed a transceiver which is small enough to fit into a very small
AUV and is capable of data rates up to 8 kbps and communication ranges up to
10 m [39]. Rhodes et al. developed a similar system which is now commercially
available and suitable for mid-size AUVs [92].

While SLF communication is not feasible for AUV-communication the LF-band is
a viable option for short range (≤10 m) and medium data rates (≈30 kbps). Unlike
optical communication it does not require the two transceivers to be aligned and it
is not as bandwidth-constrained and susceptible to background noise as acoustical
communication.

Optical communication

Like radio communication, electro-magnetic waves in the visible spectrum are strongly
attenuated under water. Additionally, scattering from suspended particles further de-
creases the maximum possible range. Schill [39] and Vasilescu [89] both implemented
a low-cost optical modem using powerful LEDs as transmitters and photo-diodes,
achieving data rates around 50 kbps over distances of 3 m. If the two transceivers
can be perfectly aligned, the maximum distance can be increased up to 10 m by
adding focusing lenses to the transmit LED.

By using a steered laser beam as a transmitter and a photo-multiplier as a receiver
Farr et al. [33] hope to increase the distance to 100 m and the transmission rate to
10 Mbps.

Acoustic Communication

Given the range restrictions of electromagnetic waves in the optical and RF spec-
trum, acoustic communication is the only available technology today for underwater
communication over longer ranges.
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(a) WHOI micromodem (b) Modem transducer mounted to towfish

Figure 2-6: The WHOI micromodem. Left: the base board and an additional DSP
board to process high data-rate message. Right: the transducer (black cylinder)
mounted into a towfish.

2.2.2 Acoustic Communication Constraints for Underwater
Vehicles

Acoustic communication has been the subject of research for over three decades. Due
to the advent of low-power Digital Signal Processors (DSPs) acoustic modems suitable
for deployment in AUVs have been developed and are now commercially available.

The acoustic modem which we will refer to in this thesis, the micromodem, has
been developed by the Woods Hole Oceanographic Institution. Figure 2-6a shows
the base board (top) and the additional DSP. The transducer for transmitting and
receiving is either directly mounted to the vehicle’s hull (figure 5-1a) or attached to a
towfish (figure 2-6b). The transducer consists of a piece of ceramic which in transmit
mode expands and contracts and creates a transversal pressure wave which travels
through the water body. The incoming pressure wave excites the transducer of the
receiving modem which creates an electric signal that is interpreted by the modem.

Synchronized Data Transmission

An important feature provided by the WHOI micromodem is its ability to synchronize
data transmission to an external signal. A timing board with a very precise oscillator
can provide a Pulse Per Second (PPS) signal. This oscillator is synchronized to
the global clock signal of the GPS when the vehicle is on the surface. During data
transmission the modem ensures that the start of the message is synchronized to
the PPS signal. A receiving modem on a different vehicle which also has access to
the globally synchronized PPS signal can determine the Time-of-Flight (TOF) by
registering the time at which the first symbol of the incoming message was received.
The PPS feature can only resolve the TOF within one second, but by embedding
a time stamp in the data message longer TOF can be resolved. The syncing of
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Figure 2-7: Range estimate from globally synchronized data transmission. On the
surface all vehicles synchronize their clock to the global GPS-time. When AUV 1
transmits a message it is synchronized to the full second (here t=100 s). AUV 2
receives the message 0.210 s later and uses he measured speed of sound to calculate
the distance. AUV 3 receives the message 1.386 s after it was broadcast and uses the
time stamp in the message to de-alias.
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Figure 2-8: Multi-path propagation: in addition to the direct path (1) there are
longer paths due to reflection on sea bottom (2), sea surface (3) and a temperature
discontinuity (4) (thermocline).

the vehicle’s local oscillator and the time-synchronized transmission is illustrated in
figure 2-7.

The Acoustic Communication Channel

The speed of sound in water is around 1500 m/s, which is significantly lower than
the transmission speed in RF or cable based communication. Additionally the speed
depends on the depth as well as the water’s temperature and salinity. As a result,
discontinuities in temperature and salinity, as well as the sea floor and the air-water
interface reflect the pressure waves. For a given physical separation of the transmitter
and receiver there often will exist several paths with different lengths along which the
pressure wave travels. Figure 2-8 shows four different paths, all with different lengths.
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Effects of the Channel on the Communication Performance

The properties of the acoustic communication channel adversely affect data transmis-
sion in several ways.

Due to the slow transmission speed, the different path lengths in figure 2-8 will
cause interference. For example a symbol s0 transmitted at time t0 traveling along
path 1 in figure 2-8 will be received at time t2. Then a symbol s1 transmitted at time
t1 also traveling along path 1 will collide at the receiver at time t3 with a “delayed
copy” of symbol s0 which traveled along path 2.

The modem’s carrier frequency is directly related to the size of the transducer.Thus
frequencies below ≈5 kHz are infeasible as the required transducer would be too large
for most AUVs. As the attenuation of sound underwater increases linearly with fre-
quency the upper bound of the spectrum which still provides useful communication
ranges is approximately 40 kHz. To avoid interference as described above, acous-
tic modems often cycle through frequency slots transmitting consecutive symbols in
different frequency bands. This makes modem communication more robust by avoid-
ing interference, but further limits the usable bandwidth. Due to these bandwidth
constraints, data rates for acoustic communication will be limited to O(10 kbps).

Another source of interference is the presence of background noise. Surface waves
and marine mammals as well as the noise caused by the vehicle’s propulsion and
navigation system often occupy the same part of the spectrum as the one used by the
acoustic modem.
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Chapter 3

Cooperative Localization

3.1 Probabilistic State Estimation

The goal of any localization technique is to maintain an estimate of the vehicle’s
current pose using information obtained from vehicle sensors and control commands
issued to the actuators of the vehicle. As the readings from real sensors are noisy and
the effect of a control command cannot be predicted perfectly, the noise needs to be
modeled accordingly and the resulting uncertainty in the pose estimate needs to be
represented.

3.1.1 State Representation

In the most generic case of a vehicle operating in 3D-space, such as AUVs and UAVs,
the state is treated as a vector of random variables comprised of the vehicle’s pose
which is its position in a (global) reference frame [x, y, z]T and the orientation. For
the rest of the discussion we assume that the orientation is given in Euler angles
(φ, ψ, θ). The pose vector at time t is then x(t) = [x, y, z, φ, ψ, θ]T . Beside the pose,
the state vector can also contain the first and second time derivatives of the pose
vector. Appendix A illustrates the pose vector of a typical AUV.

3.1.2 Motion Model

To evaluate the effects of control inputs ut
1 on the pose vector, we need a motion

model that can predict a future pose xt2 based on the current pose xt1 and the current
control inputs ut1 . The continuous-time model for the vehicle state’s speed and rate
components is

ẋt = f(xt,ut) (3.1)

The function f(·) in equation 3.1 is usually non-linear and can be very complex.
It depends on the vehicle’s

1For the remainder of section 3.1 we denote the time dependency by a subscript, i.e. xt=x(t)

51
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Figure 3-1: Simple AUV motion model

• shape

• size

• weight

• actuators

• operating environment (air, water, vacuum, . . . )

The more complex the model, the more accurately it can represent the vehicle
dynamics and provide a better prediction of the future pose, but obtaining such a
model requires detailed knowledge of the structure as well as the parameters listed
above. A large body of literature exists specifically to provide models for AUVs
[36],[45],[44],[70],[53].

Figure 3-1 shows a simple kinematic 2D-model for an AUV in which the control
input is given by the commanded forward speed ẋt = ut and rudder setting leading
to a turning rate θ̇t.

Equation (3.1) represents an ideal motion model. As even the most complex
model, however, cannot fully represent a real robot operating in a real environment,
uncertainties will remain. In an underwater scenario, these could be currents which
cannot be observed. Therefore we need to include a noise term wt that accounts for
these uncertainties. Equation (3.1) then becomes

ẋt = f(xt,ut,wt) (3.2)

As the state estimation is normally carried out on a digital computer, we need
to operate in discrete time space. We choose a sampling period ∆T small enough
such that x and u and can assumed to be constant within that interval. In a real
system, the frequency fu = 1

∆T
is usually the same as the update frequency of the

control loop. High-frequency components not captured by fu are modeled as noise
and contribute to w. The sampling period is constant and known and we represent
the time tk simply by the index k with tk = k ·∆T . The discrete version of (3.2) is
then
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xk+1 = xt(k+1) = f(xk,uk+1,wk) (3.3)

3.1.3 Measurement Model

Each robot usually carries various sensors that provide information about its own
state (proprioceptive) as well as about the environment (exteroceptive). Many of the
sensors used on AUVs are described in chapter 2.1.1. Measurements provided by these
sensors are denoted zik, where i is the sensor number. We combine the measurements
from all sensors at time k into the measurement vector zk. While the proprioceptive
measurements only depend on the state of the robot xk, the exteroceptive measure-
ments also depend on the state of the observed feature. We use mi

k as a description
of the feature. A detailed explanation of the structure of mi

k will be presented in
section 3.2.2. As a result the, usually non-linear, function g representing all sensors
is dependent on the state of the robot xk and all observed features mk.

zk = g(xk,mk) (3.4)

As every real sensor measurement is subject to error (with the characteristics often
provided by the sensor’s manufacturer), the error needs to modeled. This requires an
additional sensor noise term vk such that the true sensor model becomes

zk = g(xk,mk,vk) (3.5)

3.1.4 Probabilistic Representation

In order to solve the problem of localization in the presence of model errors as well as
noisy control and measurement data, we choose a probabilistic formulation. The pose
xt as well as the control inputs ut and the measurement zt are modeled as random
variables. The evolution of the pose xt is now modeled in two steps. First, the state
transition probability and second, the measurement probability.

State Transition Probability

The state transition probability models the effect of the control inputs ut on the
robot state xt. As the state xt is stochastically generated from the state xt−1 its
distribution can be expressed by the conditional probability p(xt|x0:t−1,z1:t−1,u1:t).
By properly defining the state, we can enforce conditional independence [84] such
that

p(xt|x0:t−1,z1:t−1,u1:t) = p(xt|xt−1,ut) (3.6)

If (3.6) applies, xt is complete [84].
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Measurement Probability

Similarly, the the stochastic measurement model can be expressed as a conditional
probability p(zt|x0:t,z1:t−1,u1:t) and if xt is complete we have

p(zt|x0:t,z1:t−1) = p(zt|xt) (3.7)

3.1.5 Bayes Filter

A general algorithm to track the new state xt based on a posterior distribution xt−1, a
control input ut and observations (measurements) zt is the Bayes filter. It implements
the state evolution

p(xt|ut−1,zt−1)
ut,zt−→ p(xt+1|ut,zt)

as a two step process, the predict and update step shown in algorithm 2.

1: for all t do
2: p(xt|ut,zt−1,xt−1) =

∫

p(xt|ut−1,xt−1)p(xt−1)dxt−1

3: p(xt|ut,zt,xt−1) = ηp(zt|xt)p(xt|ut,zt)
4: end for

Algorithm 2: The Bayes filter

In the predict step (line 2) the filter processes the control input ut. The probability
distribution over the state xt−1 is updated by integrating (summing in the discrete
case) over the state xt−1 times the probability that the control input ut applied to
the motion model causes a transition to xt.

The update step (line 3) multiplies the hypothesis of the prior state distribution
xt by the probability that the measurement zt may have been observed. As the
integral over this updated posterior state distribution may not integrate to 1, the
normalization factor η is applied [84].

Note that there does not need to be an update step for every prediction step. If
no measurements are available, the update step will be omitted.

The Bayes algorithm iterates recursively over the predict and update step. It needs
an initial distribution x0. If the initial position is perfectly known, the distribution
over x0 is a single realization of the state vector with a probability of 1 or a uniform
distribution over the state space if it is perfectly unknown but finite.

3.2 Cooperative Navigation in the Context of SLAM

The problem of localization can be viewed in the more general context of Simultaneous
Localization and Mapping (SLAM). As a large body of literature addresses the SLAM
problem, by phrasing CN in the context of SLAM, we can leverage the results of
research in that area to develop effective localization methods. We will describe the
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(a) Human-readable Map (b) Grid-based Map
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Figure 3-2: Three representations of the same environment. A human readable street
map (3-2a) and its grid-based (3-2b) and feature-based (3-2c) parametrization.

general formulation of the SLAM problem and a particular representation which is
equivalent to the problem of CN. A thorough description of the various aspects of the
SLAM problem is beyond the scope of this thesis, but a detailed introduction as well
as various implementations of a solution are presented by Thrun [84], Walter [90],
Olson [65], Eustice [31] and Frese [38].

3.2.1 General Formulation of the SLAM Problem

The objective of SLAM is to enable a mobile robot to use its sensors to build a map
of its environment, while at the same time localizing itself within this map.

As the robot uses noisy sensor readings to build a local map, the map M itself
has to be expressed in a probabilistic framework. SLAM addresses this problem by
adding the map to the estimated posterior.

p(xt+1,M |ut,zt) (3.8)

3.2.2 Map Representation

To represent the environment sensed by the robot, various parametrizations are possi-
ble. The two most common representations are grid -based and feature-based. Figure
illustrates how the same human-readable map (fig. 3-2a) can have the two represen-
tations described below (fig. 3-2b and fig. 3-2c).
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Grid-based representation

In the most common type of grid-based representation, the environment is discretized
into a finite number of cells. The map M then becomes a set of n grid cells, where each
element mi is a binary occupancy value indicating if this cell is occupied (blocked) or
free (traversable) and p(mi) indicates the probability of the cell mi being occupied.
Grid maps assume the probabilities p(mi) to be independent [84].

M = {m0, . . . ,mi, . . . ,mn} mi =

{

1 “occupied”
0 “free”

Figure 3-2b shows a grid-based map representation. The gray-scale value of each
cell encodes p(mi).

Feature-based representation

Feature-based representations parameterize the environment into a set of landmarks,
where the type of extracted landmarks is usually constrained by the sensor’s capa-
bilities. The map M = {m0, . . . ,mi, . . . ,mn} is then a set of vectors mi as each
feature can have several parameters describing it such as position, orientation and

color. Each element mj
i of mi =

[

m1
i , . . . ,m

j
i , . . . ,m

n
i

]T
is a random variable for

parameter j.
A special case of a feature is a point feature which is assumed to be infinitely small

in size and is represented by its position and a unique identifier. The feature vector
mi for a point feature consists of a distribution over its position and the unique id
with p(mj

i = id) = 1.
In figure 3-2c two kind of features were extracted from by the robot, the roads

ri = {r1, . . . , r5} and the intersections ii = {i1, i2}. The intersections are represented
as point features.

While CN does not explicitly track a feature map M like SLAM does, the fol-
lowing sections will illustrate how the concept of localization in a feature-based map
is an adequate description of the CN problem. Also, the problems encountered in
feature-based maps, such as the possible correlations of their pose [90], have their
correspondence in the CN problem and need to be addressed.

3.3 Probabilistic Representation of CN

After introducing the concept of probabilistic state estimation, its general solution,
the Bayes filter, and map representations, we now phrase CN as a localization problem
in a feature-based map. The nomenclature introduced in this section will be used
throughout the following discussion.

Figure 3-3 shows a set of 5 vehicles V i = {1, . . . , 5} in the CN setting. All
vehicles maintain a distribution of the estimate of their state xi

2. During a broadcast,

2For the remainder of the thesis the subscript will denote a vehicle, i.e. x3 represents the state
of vehicle 3.
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Figure 3-3: A set of 5 vehicles in a CN setting, with each vehicle i maintaining a
distribution over its state xi and obtaining measurements from other vehicles which
consist of the state estimate, the unique id of the other vehicle and the range between
the two vehicles.

a vehicle (v2 in fig. 3-3) sends a parametrization of this distribution along with its
unique id. The receiving vehicles (only v1 in fig. 3-3) receive this broadcast and
also obtain an intra-vehicle range. Each receiving vehicle treats the reception as the
exteroceptive measurement of a known feature represented by the feature vector m.
At each reception the probability distribution over the transmitting vehicle’s pose
(here x2) is contained in the data packet and the range to the transmitting vehicle
z1,2 = r1,2 is obtained from onboard sensors (e.g. modem). As a result, no vehicle
needs to add a feature map M to its state vector, unlike vehicles performing SLAM
where M is part of the posterior (3.8). Just as in SLAM however, measurements can
become dependent and we may need to store and transmit additional information in
the feature vector in order to integrate the measurements such that these correlations
are accounted for. Section 3.6 addresses the problem of dependent measurements.

3.4 Localization Algorithms

In this section, we will introduce the two most popular implementations of the Bayes
filter, the Kalman and the Particle filter, which are widely used for localization and
in the SLAM context. The main difference between the filters is how the distribution
of the state is represented. The different representations of the distribution also lead
to different implementations of the predict and update step.

We will also examine the computational requirements and the amount of infor-
mation that needs to be transmitted in the CN scenario outlined in 3.3. The latter is
particularly important as the low bandwidth of the acoustic communication channel
severely constrains the amount of data that can be transmitted in the m.
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Figure 3-4: A set of 5 vehicles performing CN using an EKF. Each vehicle i maintains
the distribution over its state (red) through a mean vector µi and the associated
covariance matrix P i. This information, along with the unique id is broadcasted to
other vehicles.

3.4.1 Extended Kalman Filter

The original Kalman Filter (KF) [51] requires the function f(·) (3.3) and g(·) (3.5)
to be linear, but as even the simple motion model shown in figure 3-1 is non-linear
we use the EKF which linearizes equations f(·) and g(·) [81].

The EKF [47] filter is a member of the family of Gaussian filters and the proba-
bility density over the state x is assumed to be normally distributed. The Gaussian
distribution

p(x) =
1

√

2 π |P |
exp

(

−1

2
(x− µ)TP−1(x− µ)

)

can be fully described by its mean and covariance. The state x is characterized by
a mean vector µ ∈ R

n, with the same dimensionality n as the vector x, and the
covariance matrix P ∈ R

n × R
n which is positive and semidefinite [84]. As a result

only uni-modal distribution centered around µ can be modeled.

When applying the EKF to solve the problem of CN, we assume that all n vehicles
of the set of participating vehicles V i = {1, . . . , i, . . . , n} maintain a vector which con-
sists of the mean vector xi(k) = [xi(k), yi(k), zi(k)]

T = µi(k) = [µxi(k), µyi(k), µzi(k)]
T

that contains the an estimate of their position at time k, as well as P i

P i(k) =





σxx
2(k) σxy

2(k) σxz
2(k)

σyx
2(k) σyy

2(k) σyz
2(k)

σzx
2(k) σzy

2(k) σzz
2(k)





the covariance matrix describing the uncertainty associated with that estimate.

In the following description the line numbers refer to algorithm 3.
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Prediction

Whenever vehicle i = 1 obtains proprioceptive measurements u1(k) from its dead-
reckoning sensors, µ1(k) and P 1(k) are propagated3

µ1(k + 1) = g(u1(k),µ1(k)) (3.9)

P 1(k + 1) = G1(k + 1)P 1(k)G
T
1 (k + 1)

+Q1(k + 1) (3.10)

where Q1(k + 1) is a matrix where the elements contain the variances of the motion
model (w in eq. (3.1)) which is modeled as zero-free Gaussian noise and G1(k+ 1) is
the Jacobian containing the partial derivatives of g (line 3 and 4).

∂g(u1(k + 1),x1(k))

∂x1(k)

∣

∣

∣

∣

x1=µ1(k+1)

Update

If vehicle 1 receives a broadcast from vehicle 2 at k that contains µ2(l) and P 2(l)
together with an intra-vehicle range measurement r1,2(k) (line 6), it uses this infor-
mation to update its estimate of its own position as follows:

First, it computes what the predicted range z1,2(k) between the two vehicles would
be, based on their estimated position.

z1,2(k) = ‖µ1(k)− µ2(k)‖2 (3.11)

The difference between the predicted measurement and the measured distance z1,2(k)−
r1,2(k) represents the innovation (line 7).

The covariance matrix of vehicle 1 and vehicle 2 are combined (line 8) into

P 1,2(k + 1) =

[

P 1(k + 1) 0
0 P 2(k + 1)

]

. (3.12)

Note that P 1(k + 1) and P 2(k + 1) are assumed to be deindependent (P 1,2(k + 1)
is diagonal). This is not generally true and if the non-zero off-diagonal elements of
P 1,2(k + 1) are ignored, the EKF can become overconfident and diverge. As keeping
track of these elements in CN is very difficult, however, we propose a method in
section 3.6 which keeps P 1(k + 1) and P 2(k + 1) independent.

We compute the Jacobian H1,2(k + 1) that contains the derivatives of the range
measurement with respect to the position of vehicle 1 and 2 (time index k omitted
on matrix components) (line 9).

H1,2(k + 1) =
[

∂r
∂µx1

∂r
∂µy1

∂r
∂z1

∂r
∂µx2

∂r
∂µy2

∂r
∂z2

]

3 µ and P denote the state after the predict step, but before the update step.
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Using the residual covariance (line 10) and the variance

S1,2(k + 1) = H1,2(k + 1)P 1,2(k + 1)HT
1,2(k + 1) + σ2

r

and σr associated with the exteroceptive (range) sensor we compute the Kalman gain
(line 11)

K1,2(k + 1) = P 1,2(k + 1)HT
1,2(k)S

−1
1,2(k + 1)

that represents a weighting factor for how much the measurement will affect the
updated position. Using the innovation z1,2(k) − r1,2(k) and the Kalman gain, the
updated position estimate is

µ1(k + 1) = µ1(k + 1) + K1,2(k + 1)
(

z1,2(k)− r1,2(k)
)

(3.13)

(line 12) and the combined covariance is

P 1,2(k + 1) =

[

P 1(k + 1) P 12(k + 1)
P 21(k + 1) P 2(k + 1)

]

=
(

I6×6 −K1,2(k + 1)H1,2(k)
)

P 1,2(k + 1) (3.14)

from which we can extract the updated covariance estimate for vehicle 1 P 1(k + 1).
Note that we also obtain an updated estimate for the position and covariance of
vehicle 2 P 2(k + 1) and µ2(k + 1).

Characteristics

Under the assumption that the initial state error as well as all noises entering into
the system have a Gaussian distribution and that the underlying model is linear,
the KF is the optimal estimator in the sense that it minimizes the Minimum Mean
Squared Error (MMSE) [10]. As a result and because of its simplicity, tractability
and robustness, the EKF is the most common algorithm used today for tracking
and estimation. For the particular case of underwater CN, several key assumptions
necessary to guarantee optimality in the MMSE-sense cannot be made and can lead
to very large position estimation errors.

Non-linear Motion and Measurement Model Even the most basic motion model,
represented by f in (3.3) which maps body velocities into a global coordi-
nate frame has non-linear components (see fig. 3-1). Similarly the measurement
model g (3.5) used in the update step (3.11) is non-linear. These non-linearities
can lead the EKF to be unstable [48].

Non-Gaussian Noise The sensors used for underwater navigation often have very
non-Gaussian noise characteristics. Particularly the various components con-
tributing to the error in a heading measurement derived from a magnetic com-
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Require: µ1(0),P 1(0)
1: µ1(0),P 1(0)
2: loop {do this at each time step k}
3: µ1(k + 1) = g(u1(k),µ1(k))
4: P 1(k + 1) = G1(k + 1)P 1(k)G

T
1 (k + 1) + Q1(k + 1)

5: if measurement m2(k) is available then

6: m2(k) =









µ2(k)
P 2(k)
id = 2
r1,2









7: z1,2(k) = ‖µ1(k)− µ2(k)‖2
8: P 1,2(k + 1) =

[

P 1(k + 1) 0
0 P 2(k + 1)

]

9: H1,2(k) =
[

∂r
∂µ1

∂r
∂y1

∂r
∂z1

∂r
∂µ2

∂r
∂y2

∂r
∂z2

]

10: S1,2(k + 1) = H1,2(k)P 1,2(k + 1)HT
1,2(k) + σr

11: K1,2(k + 1) = P 1,2(k + 1)HT
1,2(k)S

−1
1,2(k + 1)

12: µ1(k + 1) = µ1(k + 1) + K1,2(k + 1)
(

z1,2(k)− r1,2(k)
)

13:
P 1,2(k + 1) =

[

P 1(k + 1) P 12(k + 1)
P 21(k + 1) P 2(k + 1)

]

=
(

I6×6 −K1,2(k + 1)H1,2(k)
)

P 1,2(k + 1)

14: end if
15: end loop

Algorithm 3: EKF algorithm for a vehicle 1 initialized with a pose µ1(0) and associ-
ated uncertainty P 1(0), moving in 2D by executing control commands and occasion-
ally receiving range/position pairs m2(k) from another vehicle 2.

pass (see section 2.1.1) are hard to fit to a Gaussian noise model. For exterocep-
tive measurements Olson et al. show that for LBL beacons (see chapter 2.1.1)
Gaussian noise is a very poor approximation due to the large number of out-
liers [67].

Uni-modal probability distribution As the probability distribution for the EKF
is only modeled by the mean and covariance of a single Gaussian, the Kalman
filter can only track a single hypothesis of the state vector. If the initial state
µ(0) is not known and needs to be represented by a uniform distribution over a
finite state space or the initial information about the state contains ambiguity,
the resulting distributions cannot be tracked by an EKF.

Computation and Bandwidth Requirements

The predict step of the EKF is computationally efficient for very large state vectors,
but the computation and memory requirement for the update step grows with O(n2)
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where n is the size of the state vector. Fortunately the state vector for underwater CN
is small and updates are very infrequent O(0.1 Hz). As a result, the computational
requirements on a vehicle performing EKF-based CN are very small. Additionally
the compact formulation of the state distribution leads to a message size of only a
few bytes, which is well suited for the low-bandwidth channel.

3.4.2 Particle Filter

The Particle Filter [26] is a member of the family known as Monte Carlo methods and
fundamentally differs from the EKF in the way the probability distribution over the
state is represented. The distribution is represented by a fixed number (n) of samples
from the distribution. Each sample ci of set C = {c1, . . . , ci, . . . , cn} consists of an
instantiation of the state vector xi and an associated weight wi.

ci = [xi, wi] i = [1, . . . , n]

The probability distribution is recursively updated by a two step process. First the
motion model is applied, then the measurement update. At each time step every
particle is affected.

Several variations of the algorithm exist and we show one possible implementation
particularly addressing the CN scenario outlined in 3.3. Here each vehicle maintains
its own particle filter only to track its own state.

The following section explains the individual steps and the line indications refer
to algorithm 4.

Initialization

The set C(0) which we use to initialize our PF is generated by drawing n samples
xi with i = [1, . . . , n] from the distribution representing the initial assumption about
our state X (line 2). The distribution function can be completely arbitrary. We can
sample from a uniform distribution over the entire state space, as long as it is finite,
in case we are ignorant of our initial state, or all n samples are the same instantiation
of the state vector in case our initial state is perfectly known. Independent of the
distribution function from which we are sampling from, we assign an equal weight to
all particles wi = 1

n
∀i (line 3).

Prediction

For a single prediction step, the motion model is applied to each particle ci individu-
ally.

In order to update a single particle we draw a sample from the individual distri-
bution of each variable from the control space U (line 8) and apply the motion model
using these samples (line 9). Note that the distribution over state variables can be
different for each component of the state vector and arbitrary.
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Update

If a measurement mj(k) =
[

Cj(k), id = j, rj(k)
]

, as shown in figure 3-5, is available we
evaluate the function e(xi(k),m

j(k)) for each particle. The function e(.) computes
a likelihood of each particle xi(k) belonging to the distribution represented by Cj

transformed along rj.

A possible implementation of e(xi,m
j(k)) is to compute the weighted average

µj(k) of all particles c
j
i from the distribution Cj(k)

µj(k) =
n

∑

i=1

x
j
i (k) w

j
i (k) (3.15)

and assume a normal distribution of the range error with r̃ = N (0, σr). The likelihood
then becomes

wi(k) = e(xi(k),µ(k)j) = p(xi(k)) =
1√

2 π σr
exp

(

−1

2

(‖xi − µj‖2 − rj)2

σr

)

∀ xi(k)

Note that only the weights wi(k) are updated, not the particle positions. As the
sum of all weights in the set does not necessarily add up to 1 the particle weights are
renormalized to enforce

∑n
i=1wi = 1 (line 14).

Resample

Each update reevaluates for all particles how likely the hypothesis is that the vehicle’s
state is xi as represented by the particle ci. This likelihood is represented by the
weight wi. After a series of updates, the distribution of weights across the particles
can become very uneven which means that the set Ci has very strong hypotheses
(high weight) and many very weak hypotheses (low weight). The goal of the particle
filter, to track the distribution of the state through a set of instantiations, is best
achieved if all samples have very similar weights.

To maintain an even distribution of the particle weights we determine the number
of “effective particles” Neff = [0, 1] with

Neff =
1

n
∑n

i=1w
2
i

which is a measure of how well the weights are distributed. If Neff drops below a
threshold γ, we resample by building a new set C(k) by drawing n samples from
C(k− 1) where each particle ci(k− 1) is drawn with a likelihood wi(k− 1) (line 20).
The new set C(k) now represents single strong particles from C(k − 1) by a number
of equally weighted particles in C(k) while very weak particles might not be drawn
at all, they “die” (line 17). This is a problem particular to the PF.
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1: for i = 1:n do {initialize all particles}

2: xi(0) =





xi(0) = sample(Xx)
yi(0) = sample(Xy)
θi(0) = sample(Xθ)





3: wi(0) = 1
n

4: ci(0) = [xi(0), wi(0)]
5: end for
6: loop {do this at each time step k}
7: for i = 1:n do {predict}
8: ui(k) =

[

ui(k) = sample(Uu)
θi(k) = sample(Uθ)

]

9: xi(k) =





xi(k) = xi(k − 1) + ui(k) cos(θi(k))
yi(k) = xi(k − 1) + ui(k) sin(θi(k))
θi(k) = θi(k)





10: ci(k) = [xi(k), wi(k − 1)]
11: end for
12: if measurement m(k) is available then
13: for i = 1:n do {update}
14: wi(k) = e(xi,m(k))
15: end for
16: for i = 1 : n do {normalize particle weights}
17: wi(k) = wi(k)

1
∑n

i=1 wi(k)

18: end for
19: if Neff < γ then {resample if necessary}
20: C(k) = resample(C(k − 1))
21: end if
22: end if
23: end loop

Algorithm 4: PF algorithm for a vehicle initialized with a pose sampled from X ,
moving in 2D by receiving control commands u1(k) sampled from U and occasionally
receiving range/position pairs.

Characteristics

By representing arbitrary probability distributions over the state and to incorporate
non-linear motion and measurement models without linearization, the PF avoids two
of the main disadvantages of the EKF. The PF only maintains a finite set of discrete
hypotheses about the vehicle’s position, unlike the Gaussian distribution in the EKF
which is continuous and covers the entire state space. To avoid “particle depletion”,
the absence of particles near the true solution, the weighting function e(.) (line 14 in
algorithm 4) must be carefully chosen. Other techniques add random samples [84] or
add additional noise to the samples [34]. It is important to note that while the EKF
inherently provides a “best guess” for the actual position (the mean), the PF does
not. A control algorithm on a vehicle however, that is tasked to guide the vehicle
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to a specific location, normally requires an estimate which is a single instantiation of
the state distribution. A simple way to provide a single position estimate which can
be used by the control algorithm of the vehicle, is to compute the weighted mean of
the distribution over the state space (3.15) along with a weighted covariance (3.16).

σ(k) =
n

∑

i=1

(xi(k)− µ(k))2 wi(k) (3.16)

A more complex method first discretizes the space, where the likeliest position is
assumed to be, into grid points. It then instantiates a Gaussian distribution on every
particle and sums up the contributions of all Gaussians to the set of grid points. The
grid point with the the highest combined contribution is the filter’s estimate of the
actual position [32].

Computation and Bandwidth Requirements

The computational complexity is linear in the number of particles. The computa-
tion required to carry out the update and the predict step for each particle depends
entirely on the complexity of the motion and measurement model respectively, but
with the scenario given in typical underwater-CN application PFs with tens of thou-
sands of particles are feasible. Transmitting the entire state space distribution (C2 in
figure 3-5) for CN has been done by Fox et al. [37], but given the low bandwidth avail-
able in underwater communication, this is only feasible for a very small number of
particles. Therefore, in order to apply the PF-based CN underwater the distribution
needs to be parameterized before being transmitted to the other vehicle. If the distri-
bution is parametrized by computing the weighted mean (3.15) and covariance (3.16)
the transmitted data is the same as in the EKF case. This is the most compact way
to represent the distribution which makes it particularly suited for low bandwidth
communication at the expense of being able to model multi-modal distributions. One
way to maintain the multi-modality of the transmitted distribution, while maintain-
ing a small set of information which needs to be transmitted, is to represent it as a
Gaussian Mixture Model (GMM) as proposed by Merwe and Wan [59].

3.5 Multi-Robot Localization

As AUVs have only recently become reliable enough to allow for multi-vehicle de-
ployments, only a small number of experiments involving more than one vehicle have
been carried out. However a much larger body of literature for land vehicles and, to
a lesser degree for air vehicles, exists. The following two sections provide an overview
over the previous work carried out in the field of cooperative localization for land and
air (3.5.1) and underwater vehicles (3.5.2).

We then present our CN-algorithm in section 3.5.3. It is particularly designed to
work with the navigation information available on AUVs and the infrequent broad-
casts obtained from other vehicles through the underwater communication channel.
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Figure 3-5: A set of 5 vehicles performing CN using a Particle Filter. Each vehicle
i maintains the distribution over its state (red) through a set of particles Ci =
{c1i , . . . , cmi }. This information, along with the unique id is broadcasted to other
vehicles.

3.5.1 Land and Air Vehicles

Roumeliotis et al. have contributed a large body of work to the field of CN using indoor
land robots. Early work relies on a central site for data storage and processing [72].
With this setup, the authors make useful insights into the relationship between the
number of cooperating robots and the individual position uncertainty. The result is an
analytical expression for an upper bound on the growth rate of the overall positioning
uncertainty for the group [75]. In another experiment, the central filter that keeps
track of the state and covariance of all vehicles is replaced by distributed filters that
run on the individual members. Agents now only need to exchange local data, but as
both vehicles are required to transmit, this approach does not scale as well as others
that rely only on one-way broadcasts [73]. Caglioti et al. [19] also use a distributed
filter approach. While they only require one-way data exchange (broadcast), these
broadcasts occur very frequently and their method relies on perfect communication
as each vehicle is required to receive every broadcast for the successful application of
their method.

Nettleton uses a group of UAVs to build a map of observed features locally on each
vehicle while relying only on broadcast traffic without the requirement that each ve-
hicle receives all transmissions [62]. While the UAVs do not exchange information for
navigation the cooperative map building provides insights into the problem of fusing
information from mobile platforms using an unreliable communication channel. The
problem of fusing measurements from several sources while properly keeping track of
common information has been addressed by Grime [43]. Unlike the work of Roumeli-
otis et al. Grime and Nettleton’s work tracks the information parametrization of the
Gaussian rather than the standard form. In the information form, the update step
is simply an addition, and joint information, which models co-dependencies among
different states, can be subtracted if the communication topology is known. As the
update step is computationally inexpensive the information form is well suited to
integrate large amounts of information from cooperating vehicles [90].
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The previous work presented thus far relies on the KF/EKF, or its inverse, the
information filter, to compute an estimate. Fox et al. [37] use a PF to perform co-
operative localization. They represent the distribution by a large number of samples
rather than as a Gaussian distribution. Section 3.4.2 outlines the advantages of the
PF over the KF. However transferring the distribution consisting of many particles
between vehicles requires a comparably fast communication channel which is avail-
able on land with RF communication, but the slow acoustic communication channel
limits the applicability of this approach underwater. Additionally Fox’s approach also
requires (half-)duplex communication such that broadcast-based approaches cannot
be used, which further increases the necessary bandwidth.

3.5.2 Underwater Vehicles

Eickstedt and Schmidt [29] proposed deploying two AUVs equipped with an active
sonar in which the sources were synchronized to a global clock and were transmitting
orthogonal chirp sequences. This enabled one vehicle to use the ping emitted by the
other to perform acoustic tomography and bi-static target detection. While no data
was exchanged through the acoustic channel, it was one of the first times globally
synchronized transceivers could be used for intra-vehicle range measurements under-
water. Leonard et al. [57] and Paley et al. [69] used a fleet of gliders to jointly survey
a large body of water. When on the surface, the gliders connected to a central com-
puter and offloaded the data they collected during their last dive as well as their
actual GPS-derived position. The data and the position information was used by
the central computer to calculate an individual track for each glider which allowed
optimal data collection. This track was sent to the glider via satellite and each vehicle
was unaware of all others. No data was exchanged while they were submerged.

The idea for CN was mostly inspired by earlier work done in single-beacon lo-
calization. Single-beacon navigation uses a single LBL beacon instead of a network
of three or more as shown in section 2.1.1 to obtain a position estimate. While
classic LBL provides an absolute position every time the beacon network is queried,
single-beacon navigation requires several range measurements obtained from the same
beacon combined with dead-reckoning information collected between range measure-
ments. The earliest work in the field was presented by Scherbatyuk [76]. He used a
Least Squares (LSQ) algorithm to combine three or more range readings with dead-
reckoning information to solve for a position in the horizontal plane while the depth
was provided directly through a pressure gauge. Vaganay et al. used an EKF similar
to the one presented in section 3.4.1 to initially solve the “homing problem” in which
a vehicle attempts to get as close as possible to a point which is marked by an acous-
tic beacon [87]. Baccou and Jouvencel later applied that approach to general vehicle
navigation [5],[6]. Another EKF-based single beacon approach called Synthetic Long
Baseline (SLBL) was presented by Larsen [56].

Combining the concept of a mobile LBL-beacon [24], which not only provides
a range to the interrogating vehicle but also its position, with the idea of using
consecutive range measurements combined with dead-reckoning information led to



68 Chapter 3. Cooperative Localization

LBL derived range

GPS
AUV with

DVL, compass

GPS

0 1000 2000 3000 4000 5000 6000

0

1000

2000

Eastings [m]

N
or

th
in

gs
[m

]

 

 

Start

AUV surfacing (GPS)

AUV surfacing (EKF)

CNA1
CNA2
AUV (EKF)

Figure 3-6: Setup and results of the AOFNC2003 MLBL experiment. Top: Setup.
Two boats outfitted with GPS and LBL beacons and an AUV (with DVL and com-
pass) interrogating both beacons. Bottom: GPS-track of the boats (CNAs) and the
AUV’s position estimate using an EKF. Note the difference between the estimated
(×) and the true surfacing position (+).

the concept of Moving Long Baseline (MLBL). This concept was first expressed
by Vagany et al. [88]. They used a single AUV outfitted with an AVTRAK LBL
interrogator and two boats, each carrying a conventional LBL beacon (figure 3-6).
The AUV was sent on a pre-programmed mission and interrogated both ship-side
beacons every 3 seconds. While the AUV logged the TOF/range, the boats, serving
as beacons vehicles, logged their GPS-derived position at the time their beacons were
interrogated. By combining the log-files from the AUV and the two boats, the pure
DR track from the AUV was corrected with the MLBL-algorithm. The algorithm
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used is proprietary and no information on how the range/position pairs were fused
with the DR track is available.

3.5.3 The CN-Algorithm

Due to the shortcomings of the two classical approaches described in section 3.4 we
propose our CN algorithm. The CN algorithm uses consecutive range measurements
which it forward propagates to align in time. The intersections of the range circles are
hypotheses for possible positions. By combining the latest range measurement with
several range measurements forward propagated from the past, the CN algorithm ob-
tains a number of hypotheses for the AUV’s position. Using available dead-reckoning
information it searches for the most consistent path through the sets of hypotheses
generated whenever a new range measurement was received. Unlike the EKF it in-
herently maintains several hypotheses about its position which are all reevaluated
whenever a new range measurement is available. This allows it to recover after a
measurement with a large error was received. The individual intersections are sim-
ilar to the particles in a PF in that they represent hypotheses about the vehicle’s
position. Unlike the particles in the PF however they are not sampled, but represent
the outcome of an intersection. As intersections will always instantiate hypotheses
near the true position (assuming a bounded error) this algorithm will not suffer from
“particle depletion” close to the correct position which is possible with the PF. The
CN algorithm works as follows.

With each successful transmission at time k the AUV receives an estimate of
the CNA’s position xC(k) = [xC(k), yC(k)]T , the covariance matrix, P C(k), which
accounts for the confidence the CNA has in each component of xC(k), a depth zC(k)
and the range r(k) between the AUV and the CNA.

P C(k) =

[

σCxx
2
(k) σCxy

2
(k)

σCyx
2
(k) σCyy

2
(k)

]

The state xC(k) and the covariance P C(k) can be a snapshot from the navigation
filter running on the CNA or from the GPS in the case that the CNA is at the sur-
face. The range r(k) is directly obtained by the AUV through the PPS-synchronized
transmission feature (see section 2.2.2). Many experiments have shown that the error
in the range measurement r(k) is only weakly range-dependent and can be modeled
as a Gaussian with mean r(k) and a fixed variance σ2

r .
Furthermore, the AUV builds a matrix D where each entry D(n,m) contains

the distance traveled dn,m = [dxn,m, dyn,m]T between receiving a transmission at t(n)
and at t(m) as obtained from proprioceptive measurements as well as the covariance
matrix Qn,m associated with that measurement.

Qn,m =

[

σdxn,m

2 0
0 σdyn,m

2

]

Figure 3-7 shows how the AUV uses information received at t(n) and t(m) to
compute two possible solutions for its position at t(m): The circle with radius r(n)
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xA(n), yA(n)

xA1 (m), yA1 (m)

xA2 (m), yA2 (m)

dxn,m, dyn,m

AUV

xC(n), yC(n)

xC(m), yC(m)

r(n)

r(m)

CNA1

CNA2

Figure 3-7: Computing two possible positions of the AUV at t(m) (xA1 (m), yA1 (m) and
xA2 (m), yA2 (m)) using the dead-reckoning information dxn,m, dyn,m and the informa-
tion xC(n), yC(n) and r(n) received at t(n) from CNA1 and xC(m), yC(m) and r(m)
received at t(m) from CNA2.

defines all possible positions at t(n). Shifting the center of this circle by [dxn,m, dyn,m]T

(dashed black line in figure 3-7) and solving the resulting quadratic equation, we
obtain a set XA(m) of 0, 1 or 2 intersections with the circle around xC(m) with
radius r(m).

XA(m) = F(x(n)C ,x(m)C , r(n), r(m),dn,m) (3.17)

with

XA(m) = ∅ or XA(m) = xA1 (m) or XA(m) =

(

xA1 (m)
xA2 (m)

)

Using other values for n (n = [1, . . . ,m − 1]), we can compute up to 2(m −
1) solutions for xA(m). For the upcoming computations we assume that we use q
solutions. The Jacobian of the intersection function F with respect to the measured
and transmitted parameters xC(n), xC(m), r(n), r(m), dn,m is Jn,m and can be used
to compute P A(m) the covariance of xA(m). P A(m) is given by

P A(m) =

[

σAxx
2
(m) σAxy

2
(m)

σAyx
2
(m) σAyy

2
(m)

]

= Jn,mGn,mJT
n,m (3.18)

with
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Gn,m =



























σCxx
2
(n) σCxy

2
(n) 0 0 0 0 0 0

σCyx
2
(n) σCyy

2
(n) 0 0 0 0 0 0

0 0 σCxx
2
(m)σCxy

2
(m) 0 0 0 0

0 0 σCyx
2
(m)σCyy

2
(m) 0 0 0 0

0 0 0 0 σr
2(n) 0 0 0

0 0 0 0 0 σr
2(m) 0 0

0 0 0 0 0 0 σdx
2(n,m) 0

0 0 0 0 0 0 0 σdy
2(n,m)



























and

Jn,m =

[

∂xA(m)
∂xC(n)

∂xA(m)
∂yC(n)

∂xA(m)
∂xC(m)

∂xA(m)
∂yC(m)

∂xA(m)
∂r(n)

∂xA(m)
∂r(m)

∂xA(m)
∂dxn,m

∂xA(m)
∂dyn,m

∂yA(m)
∂xC(n)

∂yA(m)
∂yC(n)

∂yA(m)
∂xC(m)

∂yA(m)
∂yC(m)

∂yA(m)
∂r(n)

∂yA(m)
∂r(m)

∂yA(m)
∂dxn,m

∂yA(m)
∂dyn,m

]

All possible solutions for xAv (m) and their respective covariances P A
v (m) are com-

bined into a matrix S(m), where v is the index for all solutions at time t(m).

S(m) =

















xA1 (m) yA1 (m) σA1xx

2
(m)σA1xy

2
(m) σA1yx

2
(m) σA1yy

2
(m)

...
...

...
...

...
...

xAv (m) yAv (m) σAvxx

2
(m)σAvxy

2
(m) σAvyx

2
(m) σAvyy

2
(m)

...
...

...
...

...
...

xAq (m) yAq (m) σAqxx

2
(m)σAqxy

2
(m) σAqyx

2
(m) σAqyy

2
(m)

















, v = [1 . . . q]

We also define a position matrix T (m− q) which stores all possible past positions
of the AUV, going back to t(m − q), i.e. xAu (m − o) ; ∀u = [1 . . . q], o = [1 . . . q],
their respective covariances P A

u (m − o) and an associated accumulated transition
cost cu(m − o) at t(m − o), where u indexes all possible positions, covariances and
costs at t(m− o).
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T (m− q) =















































































xA1 (m− 1) yA1 (m− 1) σA1xx

2
(m− 1) . . . σA1yy

2
(m− 1) c1(m− 1)

...
...

...
...

...
...

xAu (m− 1) yAu (m− 1) σAuxx

2
(m− 1) . . . σAuyy

2
(m− 1) cu(m− 1)

...
...

...
...

...
...

xAq (m− 1) yAq (m− 1) σAqxx

2
(m− 1) . . . σAqyy

2
(m− 1) cq(m− 1)

...
...

...
...

...
...

xA1 (m− o) yA1 (m− o) σA1xx

2
(m− o) . . . σA1yy

2
(m− o) c1(m− o)

...
...

...
...

...
...

xAu (m− o) yAu (m− o) σAuxx

2
(m− o) . . . σAuyy

2
(m− o) cu(m− o)

...
...

...
...

...
...

xAq (m− o) yAq (m− o) σAqxx

2
(m− o) . . . σAqyy

2
(m− o) cq(m− o)

...
...

...
...

...
...

xA1 (m− q) yA1 (m− q) σA1xx

2
(m− q) . . . σA1yy

2
(m− q) c1(m− q)

...
...

...
...

...
...

xAu (m− q) yAu (m− q) σAuxx

2
(m− q) . . . σAuyy

2
(m− q) cu(m− q)

...
...

...
...

...
...

xAq (m− q) yAq (m− q) σAqxx

2
(m− q) . . . σAqyy

2
(m− q) cq(m− q)















































































,

u = [1 . . . q],

o = [1 . . . q]

If a known position xA(0) (obtained on the surface through GPS) is available in the
beginning it can be used to initialize T (0) = [xA(0) c(0) = 0]. If no initial position is
available, the first set of solutions S(0) initializes T (0) and position estimates become
available when subsequent information packages are received.

Our cost function Cu,v(m − o,m) computes the cost (inverse of likelihood) of the
AUV having traveled from xAu (m−o) to xAv (m) given xAu (m−o), P A

u (m−o), xAv (m),
P A
v (m), dm−o,m, Qm−o,m.

This cost is expressed by the “distance” between (xAu (m−o)+dm−o,m), a solution
at t(m− o) forward propagated by the dead-reckoning information dm−o,m), with the

associated covariance (P A
u (m− o) + Qm−o,m) and xAv a solution at t(m) with the as-

sociated covariance P A
v . The distance metric used is the Kullback-Leibler divergence

given by
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Cu,v(m− o,m) =
1

2

(

ln

(

det(P A
v )

det(P A
u (m− o) + Qm−o,m)

)

+

+ trace
(

(P A
v )−1(P A

u (m− o) + Qm−o,m)
)

+

+
(

xAv − (xAu (m− o) + dm−o,m)
)T

(P A
v )−1

(

xAv − (xAu (m− o) + dm−o,m)
)

− 2

)

(3.19)

Using 3.19 we now compute the total cost cu,v(m − o,m) by computing the cost
Cu,v(m− o,m) for all q3 possible transitions from T (m− q) to S(m) and adding the
new transition cost Cu,v(m− o,m) to the accumulated cost cu(m− o).

cu,v(m−o,m) = Cu,v(m−o,m)+cu(m−o) ∀ u = [1 . . . q], v = [1 . . . q], o = [1 . . . q]
(3.20)

We then form a new position matrix T (m)

T (m) =

















xA1 (m) yA1 (m) σA1xx

2
(m) σA1xy

2
(m) σA1yx

2
(m) σA1yy

2
(m) c1(m)

...
...

...
...

...
...

...

xAv (m) yAv (m) σAvxx

2
(m) σAvxy

2
(m) σAvyx

2
(m) σAvyy

2
(m) cv(m)

...
...

...
...

...
...

...

xAq (m) yAq (m) σAqxx

2
(m) σAqxy

2
(m) σAqyx

2
(m) σAqyy

2
(m) cq(m)

















v = [1 . . . q]

where cv(m) is the smallest accumulated cost associated with the transition to
solution xAv (m) from of all q2 possible positions xAu (m− o).

cv(m) = min
∀u

(cu,v(m− o,m)) ∀ v = [1 . . . q], o = [1 . . . q]. (3.21)

All solutions xAv (m) are now hypotheses for possible positions of the AUV at
t(m) and weighted by the associated accumulated transition cost cv(m). The likeliest
position xAw(m), i.e. our computed solution for t(m), is the one with the smallest
accumulated transition cost

xAw(m) with w s. t. cw(m) = min
∀v

(cv(m)) (3.22)

3.5.4 Example

A single iteration of algorithm 5 is shown in the following example. Figure 3-8 shows
a snapshot at t(33) during a cooperative navigation experiment. The AUV (here
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1: Initialize position matrix T (0) = [xA(0) c(0) = 0]
2: loop {compute position}
3: m+ +
4: Wait for new range/position pair xC(m),zC(m),P C(m),r(m) from CNA
5: Use zC(m) to project xC(m) to a plane at the AUV’s depth zA(m)
6: for j = 1 to q do {Calculate intersection solution between now (m) and j steps

in the past}
7: n = m− j
8: xAj (m)← (3.17)|x(n)C ,x(m)C ,r(n),r(m),dn,m

{Position}
9: P A

j (m) = Jn,mGn,mJT
n,m {Covariance}

10: S(m)← xAj (m),P A
j (m) {Add solution xAj (m) and its covariance P A

j (m) to
solution matrix:}

11: end for
12: for o = 1 to q do {Iterate through all past time steps}
13: for u = 1 to q do {Iterate through all positions}
14: for v = 1 to q do {Iterate through all solutions}
15: cu,v(m−o,m)← cu(m−o)+(3.19)

∣

∣

∣

∣ xAu (m− o),P A
u (m− o),xAv (m),

P A
v (m),dm−o,m,Qm−o,m

16: end for

17: T (m)
cv(m)=min∀u(cu,v(m−o,m))← [xAv (m) P A

v (m) cv(m)]
18: end for
19: end for
20: The computed position at t(m) is : xAw(m) = xAv (m) with w s. t. cw(m) =

min∀v(cv(m))
21: end loop

Algorithm 5: The Cooperative Navigation (CN) algorithm.

simulated by an ASC which also provides GPS for ground-truth) has just received
a position/range-pair from the CNA (full circle). This circle intersects with the
position/range-pair received at t(32) (dashed circle) and forward propagated by the
dead-reckoned distance d32,33 to xC(32′). It also intersects with other position/range-
pairs received at t(k), (1 ≤ k < 32) (positions of CNA not shown) forward propagated
to xC(k′) by the corresponding dead-reckoned distance dk,33. All intersections and
therefore possible solutions at t(33) are shown with their corresponding accumulated
transition cost. The inset in figure 3-8 shows the detailed view near the ground-truth
(GPS) position. The computed position at t(33) (marked with a large ”X”) is the
one with the smallest accumulated transition cost selected out of all possible positions
xAv (33). In this case it is not the one closest to the GPS-derived position.

The complexity to compute a single position is O(q3) where q is the number of past
measurements taken into account. The maximum frequency at which this computa-
tion step is invoked is limited by the duration of a data packet transmission. As the



3.6. Maintaining Consistency 75

700 750 800 850 900

400

450

500

550

600

32

32’

33 24.132224.238224.3895
24.5309
24.7723

25.3186

26.0009
26.570527.8064

33.1137

42.7116

97.6495
99.5288

135.4581

Eastings [m]

N
or

th
in

gs
[m

]

 

 

GPS (Kayak)

CNA position

Computed position (Kayak)

746 748 750 752 754 756
434

436

438

440

442

444

24.1322
24.1846

24.2782

24.4304

24.5309

Figure 3-8: All possible solutions for solution #33 with accumulated transition cost;
Inset: Detailed view of selected solution and GPS ground-truth.

transmission of a data packet takes 10 s the highest frequency at which algorithm 5
is called is fmax = 0.1 Hz. For q ≈ 10 the time to compute a new position is t=0.1 s
on a 1 GHz PC. This makes this algorithm well suited to run on the computer of
today’s AUVs.

3.6 Maintaining Consistency

When robot 1 uses the position estimate of robot 2 to update its own, their position
estimates become dependent. This can be observed in the evolution of the covariance
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matrix from P 1,2(k + 1) to P 1,2(k + 1) during the EKF update (eq. (3.14)). In

P 1,2(k + 1) =

[

P 1(k + 1) P 12(k + 1)
P 21(k + 1) P 2(k + 1)

]

the elements P 12(k + 1) and P 21(k + 1), which were 0 in equation (3.12), indicating
that the two positions were not dependent, become non-zero meaning that the two
positions are now dependent.

If at a later time robot 2 uses the information from robot 1 to update its own
position, P 2,1(k + 1) in (3.12) is not longer a diagonal matrix. If the off-diagonal
elements are then assumed to be 0, P 2,1(k + 1), and, after the update P 2,1(k +
1), will not properly represent the uncertainty of the position estimate µ2(k + 1).
The EKF will become overconfident in the estimate of µ2 and can diverge [2]. In
section 3.6.5 we show an example of EKF-based CN in which the correlations are not
taken into account and lead to an overconfident position estimate. Properly modeling
the correlations and determining the correct values for P 12(k + 1) and P 21(k + 1)
requires robot 1 to have exact information about the evolution of x2 which is difficult
to achieve in a de-centralized system.

Various approaches have been devised to either properly account for the corre-
lation or to use very conservative uncertainty bounds to avoid overconfidence, but
many of the algorithms impose additional requirements which make them unfeasible
for many CN-scenarios.

3.6.1 Covariance Intersection

A general approach to the problem of fusing dependent estimates has been proposed
by Julier and Uhlmann [49], [50]. Their Covariance Intersection (CI) algorithm fuses
two different estimates for a random variable, each represented by their estimated
mean and covariance much like the update step in the Kalman filter. The result is a
posterior covariance that guarantees consistency under the assumption of Gaussian
noise. Arambel et al. present an application of the CI algorithm for a group of
space vehicles, in which relative position measurements are communicated in a ring
topology [2]. Each of these works has examples of how the state estimator can diverge
if estimates are fused with a simple Kalman update without accounting for correlation
among the estimates.

A disadvantage of the CI algorithm is that it can only fuse two state estimates.
Additionally, unlike the standard Kalman Filter, it cannot perform a partial update
such as those that apply to vehicles that only have a range or bearing sensor. As a
result, robots that only have a bearing sensor, such as a monocular camera, or have
only range information from time-of-flight-based techniques cannot participate in a
setup which relies on CI for the update of position estimates.



3.6. Maintaining Consistency 77

3.6.2 The IU Algorithm

We propose the IU algorithm which ensures that position estimates do not become de-
pendent as outlined in the previous section. The IU algorithm requires that each robot
includes additional information within its status broadcast. The receiving robots can
then use this information to ensure that the correlations are properly accounted for.
The approach does not require centralized data storage and processing as all updates
are done locally on each vehicle using only data from the broadcasting vehicle. It
does not enforce a particular communication hierarchy or topology and individual
members can join and leave the group and do not need any awareness of previous
communications or the size of the group. In contrast to other methods, broadcasts
within the IU algorithm framework do not need to be received by all participating ve-
hicles as each transmission contains all the information that is required for a position
update which accounts for the correlations.

Concept

The basic concept of the algorithm is to maintain a filter for each subset of vehicles
from which it received updates and ensure that only information from these vehicles
is used to update that particular filter. During broadcast the transmitting vehicle
sends the estimates from all filters. On a receiving vehicle the IU algorithm matches
the results from the filters of the transmitting vehicles to its own bank of filters and
updates them accordingly. It is important to note the that the IU algorithm does
not do the update itself, but is an information arbiter. The algorithm is thus able to
work with any type of Bayes filter. Figure 3-9 compares the two approaches for a set
of three vehicles.

Initialization

For the IU algorithm, each vehicle i now maintains a set X i(k) of state estimate
vectors together with a set P i(k) of associated covariance matrices. As we will explain
later, the maximum size of the set is 2n where n is the total number of vehicles
cooperating for navigation.

X i(k) =
{

x1
i (k), . . . ,x

q
i (k), . . . ,x

2n

i (k)
}

P i(k) =
{

P 1
i (k), . . . ,P

q
i (k), . . . ,P

2n

i (k)
}

Before vehicle i receives information from any other vehicle the only contents of
X i(k) and P i(k) are x1

i (k) and P 1
i (k).

X i(k) =
{

x1
i (k)

}

P i(k) =
{

P 1
i (k)

}
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Figure 3-9: Comparison between the standard EKF (left) and the IU update (right).
In both cases vehicle 1 (gray box) receives a broadcast from vehicle 2 and broadcasts
information to vehicle 3. Left: The standard EKF maintains a single filter which is
updated by all other vehicles and therefore dependent to all other vehicles. Right:
The IU algorithm maintains a filter for each subset of vehicles such that there is always
a filter which is not dependent to at least one vehicle and broadcasts all estimates.

Prediction

Each time vehicle i receives proprioceptive sensor readings it uses the Kalman Filter
prediction steps for state and covariance (eq. (3.9) and (3.10)) to propagate x1

i (k)
and P 1

i (k).

x1
i (k)

(3.9)−→ x1
i (k + 1)

P 1
i (k)

(3.10)−→ P
1

i (k + 1)

First Update

When vehicle i receives a broadcast from vehicle j at time l, it first instantiates a
second filter by copying the state and covariance matrix.
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x2
i (l) = x1

i (l)

P
2

i (l) = P
1

i (l)

The vehicle also instantiates a matrix T i in which each row represents a filter and
each column represents a vehicle number. The entry in matrix T i(q, i) is the time
when vehicle i was last used to update filter q.

Using the Kalman update equations (eq. (3.13) and (3.14)), we now only update

x2
i (l) and P

2

i (l). After this update, our sets X i(l), P i(l) and the matrix T i(l) are

X i(l) =
{

x1
i (l),x

2
i (l)

}

P i(l) =
{

P 1
i (l),P

2
i (l)

}

T i(l) =

[

0 . . . l 0 . . . 0 0 . . . 0
0 . . . l 0 . . . l 0 . . . 0

]

↑ ↑
i j

Subsequent Predictions

The first prediction for vehicle i after the update, propagates both filters using
eq. (3.9) and (3.10) to X i(l + 1) and P i(l + 1) and all elements in column i in
T i(l + 1) are set to l + 1.

T i(l + 1) =

[

0 . . . l + 1 0 . . . 0 0 . . . 0
0 . . . l + 1 0 . . . l 0 . . . 0

]

↑ ↑
i j

Matrix T i therefore keeps track of which vehicles have been used to update a partic-
ular filter as well as the age of the updates. Predictions after l + 1 up to the next
update are propagated the same way, both filters are propagated and all elements in
column i of T i are set to the actual time. All other columns remain unchanged.

Broadcast

Every time vehicle i sends out a broadcast, the transmitted data consists of X i, P i

and T i. By maintaining a state x1
i on vehicle i which is continuously propagated and

has not been updated with information from vehicle j, we make sure that a future
broadcast from vehicle i received by vehicle j contains a state which is not dependent
with vehicle j and can therefore be used by vehicle j for an update.



80 Chapter 3. Cooperative Localization

Subsequent Updates

The general update case in which vehicle i receives a broadcast from j after both
vehicles have received broadcasts from various other vehicles and have incorporated
those to update their navigation filters unfolds as follows.

We define Si as the set of all m vehicle ids from which vehicle i received updates.
Si not only contains the ids of from which vehicle i has directly received broadcasts,
but also those ids which have been propagated to it through other vehicles. The
power set 2Si then contains all 2m possible subsets of these ids. Each subset

A
1

i , . . . ,A
q

i , . . . ,A
2m

i ⊆ (2Si ∪ i) (3.23)

then corresponds to a filter maintained in x
q
i ,P

q

i which maintains a state that has
been updated by the ids in the corresponding subset A

q

i and therefore has correlations
with these vehicles. The information about which ids are in the individual subsets is
maintained in line q of T i as each line in T i corresponds to a subset of Ai.

Similarly there is a set Sj for all o ids from which vehicle j has received broadcasts.

A
1

j , . . . ,A
p

j , . . . ,A
2o

j ⊆ (2Sj ∪ j)
When vehicle i receives X j,Pj and T j from vehicle j it first adds entries in X i,P i

and T i for all elements of Aj which are not in Ai. As a result vehicle i then maintains
filters for a new set Ai

Ai ∪Aj → Ai

Each filter x
q
i ,P

q

i represented by A
q

i is now updated without introducing any addi-
tional correlations. This means that A

q
i = A

q

i . To update x
q
i ,P

q

i we now find all
possible combinations of sets from Ai and Aj such that

A
g

i ∪A
h

j → A
q
i (3.24)

Each of these combinations represents a possible update for x
q
i ,P

q

i

x
g
i

(3.13) with xh
i−→ x

q
i (3.25)

P
g

i

(3.14) with P
h
i−→ P

q
i (3.26)

We now select g and h such that P
q
i has the smallest trace of all possible combinations.

(g∗, h∗) = argmin
g,h s.t. (3.24)

(

trace
(

P
q
i

)

)

(3.27)

Using g∗ and h∗ determined through eq. (3.27), we use eq. (3.25) to update the state.

x
g∗
i

(3.13) with xh∗

i−→ x
q
i

Line q in T i is updated to reflect the age of updates.
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T
q
i (i, u) = T

g∗

i (g∗, u) ∀u ∈ A
g∗

i

T
q
i (i, u) = T

h∗

j (h∗, u) ∀u ∈ A
h∗

j

All steps in section (3.6.2) are repeated for all 2n filters on vehicle i, and all other
vehicles that overheard the broadcast, update their local filters accordingly.

3.6.3 Enforcing Constant Set Size

The amount of information which needs to be transmitted during each broadcast, as
well as the number of local prediction and update steps, grows with O(m2) where
m is the size of set Si as defined in section 3.6.2. The amount of data which needs
to be transmitted per filter however is fairly small if the state is parameterized with
a mean and a covariance (≈ 10 bytes) and the update of each filter only requires 4
[2× 6] · [6× 6] matrix multiplications for a 3D environment where range and heading
measurements are available. Assuming a data packet size of 10 kBytes, set sizes up
to 30 ids are feasible.

For a large group of cooperating robots with the same level of uncertainty in their
proprioceptive measurements, Roumeliotis et al. show in [74] that the uncertainty
growth is inversely proportional to the number of robots. Thus the contribution of
each additional robot follows a law of diminishing return. This suggests that set sizes
of 30 and less are sufficient to obtain an improvement of navigation accuracy which is
close to the theoretical maximum obtained when broadcasts of all available vehicles
are incorporated.

Based on our available communications bandwidth and available processing cycles
we can choose an upper bound b for the size of Si. If our set size grows larger than
b we can incorporate the new broadcast according to section 3.6.2 and then resize
Si by eliminating the id which contributes the least amount of information. The
resize process then consists of two steps. First we determine the vehicle (id) which
contributes the least amount of information. Second we remove this id from Si and
modify X i,P i and T i accordingly.

Compare

One method to determine the vehicle with id q which contributes the least amount
of information is to compare the trace difference between the filter that was only
updated by {q, i} with the filter that has the dead reckoning result only {i}.

q∗ = argmin
q

(

trace
(

P
g
i

)

− trace
(

P h
i

)

)

∀q ∈ Si, q 6= i

P
g
i s.t. Ag = {i, q}

P h
i s.t. Ah = {i}
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Table 3.1: Contents of X ,P and T at time k = 1

T 1(1) X 1(1)P1(1)

1 x1
1(1) P

1

1(1)

T 2(1) X 2(1)P2(1)

1 x1
2(1) P

1

2(1)

T 3(1) X 3(1)P3(1)

1 x1
3(1) P

1

3(1)

T 4(1) X 4(1)P4(1)

1 x1
4(1) P

1

4(1)

Eliminate

After we determine q∗ we remove all filters depending on q∗ from our sets X i,P i and
obtain our new sets X

−
i and P

−
i and our updated matrix T−

i by removing all lines
which have a non-zero entry in column q∗.

X i

xh
i if q∗ /∈Ah−→ X

−
i (3.28)

P i
P h

i if q∗ /∈Ah−→ P
−
i (3.29)

T i
T i(g,h) ∀g, with T i(g,q

∗)=0−→ T−
i (3.30)

3.6.4 Example

The four frames in figure 3-10 and the tables I through IV show how the sets X i,P i

and the matrix T i evolve over time.

k=1

Up to this point all four vehicles have only used dead-reckoning information so
none of their positions are dependent. All sets X i,P i only contain a single state
and covariance matrix.

k=2

Vehicle 1 broadcasts its state x1(2) which is received by vehicle 2 and 3. Both
vehicles instantiate a second filter x2

2(2),P 2
2(2) and x3

2(2),P 2
3(2) respectively

which are updated with the broadcast and range received from vehicle 1, while
the other filter in both vehicles are not.

k=3

Up to k=3 all filters (filter 1 in vehicle 1 and 4, filter 2 in vehicle 2 and 3) are
propagated using the Kalman time prediction step. At k=3 the broadcast from
2 is received at 4. As 2 has been previously updated with 1 the set of filters
received by 4 contains 2 new ids (1 and 2). Vehicle 4 therefore instantiates 3
additional filters, each containing a possible permutation of S4 as specified in
eq. (3.23).
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1
x1(1)

2
x2(1)

3

x3(1)

4
x4(1)

1
x1(2)

2
x1(2), x2(2)

3

x1(2), x3(2)

4
x4(2)

1 1
x1(3)

2
x1(2), x2(3)

3
x1(2), x2(3),

x3(3)

4
x1(2), x2(3)
x4(3)

x1(4)

2
x1(2), x2(4)

3
x1(2), x2(3)

x3(4), x4(4)

4
x1(2), x2(3)
x4(4)

Figure 3-10: Four vehicles exchanging navigation information for Cooperative Navi-
gation from time k=1 (top left) to k=4 (bottom right). The arrows indicate which
vehicle broadcasts during a particular time step and which vehicles received the broad-
cast. Below each vehicle are the states which were used to update this vehicle’s various
position filters.

Table 3.2: Contents of X ,P and T at time k = 2

T 1(2) X 1(2)P1(2)

2 x1
1(2) P

1

1(2)

T 2(2) X 2(2)P2(2)

2 x1
2(2) P

1

2(2)

2 2 x2
2(2) P

2

2(2)

T 3(2) X 3(2)P3(2)

2 x1
3(2) P

1

3(2)

2 2 x2
3(2) P

2

3(2)

T 4(2) X 4(2)P4(2)

2 x1
4(2) P

1

4(2)

k=4

At k=4 vehicle 3 receives a broadcast from vehicle 4. After the update vehicle
3 now maintains the maximum set of 8 filters.

3.6.5 Simulation Results

To evaluate the algorithm we set up a simulation with three vehicles. All three
vehicles had a very accurate initial position estimate. After the start of the mission
they continuously estimated their positions using forward (u) and starboard (v) speed
as well as heading measurements (θ) from very noisy sensors. The sensor noise was
assumed Gaussian and the standard deviations are show in table 3.5. Using these
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Table 3.3: Contents of X ,P and T at time k = 3

T 1(3) X 1(3)P1(3)

3 x1
1(3) P

1

1(3)

T 2(3) X 2(3)P2(3)

3 x1
2(3) P

1

2(3)

2 3 x2
2(3) P

2

2(3)

T 3(3) X 3(3)P3(3)

3 x1
3(3) P

1

3(3)

2 3 x2
3(3) P

2

3(3)

3 3 x3
3(3) P

3

3(3)

2 3 3 x4
3(3) P

4

3(3)

T 4(3) X 4(3)P4(3)

3 x1
4(3) P

1

4(3)

2 3 x2
4(3) P

2

4(3)

3 3 x3
4(3) P

3

4(3)

2 3 3 x4
4(3) P

4

4(3)

Table 3.4: Contents of X ,P and T at time k = 4

T 1(3) X 1(4)P1(4)

4 x1
1(4) P

1

1(4)

T 2(4) X 2(4)P2(4)

4 x1
2(4) P

1

2(4)

2 4 x2
2(4) P

2

2(4)

T 3(4) X 3(4)P3(4)

4 x1
3(4) P

1

3(4)

2 4 x2
3(4) P

2

3(4)

3 4 x3
3(4) P

3

3(4)

2 3 4 x4
3(4) P

4

3(4)

4 4 x5
3(4) P

5

3(4)

2 4 4 x6
3(4) P

6

3(4)

3 4 4 x7
3(4) P

7

3(4)

2 3 4 4 x8
3(4) P

8

3(4)

T 4(4) X 4(4)P4(4)

4 x1
4(4) P

1

4(4)

2 4 x2
4(4) P

2

4(4)

3 4 x3
4(4) P

3

4(4)

2 3 4 x4
4(4) P

4

4(4)

sensors each vehicle dead-reckoned its position using the EKF prediction equations
for state and covariance (3.9),(3.9).

Table 3.5: Variance of sensor noise for the simulated vehicles.

Vehicle σu,σv σθ σr

1 0.3 m/s 10 ◦ 0.1m
2 0.3 m/s 10 ◦ 0.1m
3 0.2 m/s 2 ◦ 0.1m

Figure 3-11 shows two typical runs. Past true positions are indicated by small “×”
and the actual true position at t=2000 s with a large “×”. The vehicle’s position
estimate is indicated by a large “+” together with the 3σ-covariance ellipse. The
enlarged sections in the insets show clearly how for all three vehicles the true position
is outside 3σ-bound, i.e. the 99.6 % confidence interval when using the standard
EKF-update (figure 3-11 left), but well within it when using the EKF with the IU-
algorithm for the update (figure 3-11 right).

Figure 3-12 shows how the the error x̃ in the position estimate for the x component
develops over time. As no outside position fix is available to any of the three vehicles
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Figure 3-11: True (×) and estimated (+) position with 3σ-covariance ellipse of three
vehicles navigating cooperatively using an EKF and naively incorporating all updates
(left) or selectively updating using the IU algorithm (right). Note the change of scale
between of the enlarged sections on the left and on the right plot.

the error grows. The selective updating used in the IU-algorithm incorporates fewer
measurements than the standard EKF and as a result the error grows faster, but the
error accumulated through the IU-algorithm is properly accounted for and the error
x̃ remains well within the 3σxx-bound (figure 3-12 right) while the standard EKF
algorithm is overconfident. This overconfidence can cause the standard EKF-filter to
diverge.

To asses the consistency of the position estimate of standard a EKF vs. that of
the IU algorithm we computed the Normalized Estimation Error Squared (NEES) as
described in [10] for 20 runs (ten standard EKF and ten IU).

ǫ(k) = x̃(k|k)T P (k|k)−1 x̃(k|k)

For each time k we compute the N = 10 average NEES ǫ(k).

ǫ(k) =
1

N

N
∑

i=1

ǫi(k) (3.31)

Under the hypothesis H0 that the filter is consistent and under the linear-Gaussian
assumption Nǫ(k) will have a chi-square density with N nx degrees of freedom, where
nx is the dimension of x. The hypothesis H0, that the state estimation errors are
consistent with the filter-calculated covariances, also called chi-square test, is accepted
if
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Figure 3-12: Error in x-position (blue) and 3σ bound (red) of vehicle 1 navigating
cooperatively using an EKF and naively incorporating all updates (left) or selectively
updating using the IU algorithm (right).

0 500 1000 1500 2000
0

10

20

30

40

50

Time [s]

10
−

ru
n

av
er

ag
ed

N
E

E
S

 

 
Vehicle 1

Vehicle 2

Vehicle 3

0 500 1000 1500 2000
0

2

4

6

8

10

Time [s]

10
−

ru
n

av
er

ag
ed

N
E

E
S

 

 
Vehicle 1

Vehicle 2

Vehicle 3

Figure 3-13: Averaged NEES for 10 runs as shown in fig 3-11 using the standard EKF
(left) and the EKF with the IU algorithm (right).

ǫ(k) ∈ [r1, r2]

where the acceptance interval is determined such that
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P {ǫ(k) ∈ [r1, r2] |H0} = 1− α
The two sided 95% region for a 20 degree of freedom (Nnx = 10 · 2 = 2 = 20)

chi-square distribution is

[

χ2
20(0.025), χ2

20(0.975)
]

= [9.60, 34.2] (3.32)

Dividing the interval in (3.32) by N we obtain

[

χ2
20(0.025)

N
,
χ2

20(0.975)

N

]

= [0.96, 3.42] . (3.33)

Figure 3-13 shows the 10-run average NEES according to (3.31) and the boundaries
determined in (3.33). For the standard EKF update the NEES quickly grows above
the upper bound (figure 3-13 left) and indicates that this approach not only leads
to inconsistent results, but that this inconsistency is growing. For the IU algorithm
between 5% and 9% of the values fall outside the 95% region which is acceptable [10].

3.6.6 Conclusion

Simulations such as the one in section 3.6.5 show that not properly accounting for the
correlations between vehicles can quickly cause the navigation filter to diverge. Our
proposed IU algorithm ensures that a filter is only updated with a measurement that it
is not dependent to, thus ensuring that the position estimate of all individual filters
will not suffer from overconfidence. We also propose a method that maintains an
upper bound on the additional cost in computation and communication bandwidth.
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Chapter 4

Intra-Vehicle Geometries for
Cooperating AUVs

When a heterogeneous group of vehicles exchanges navigation information two sce-
narios are possible. In the first case, every vehicle broadcasts information and every
other vehicle receiving the message incorporates it to improve its own position esti-
mate. Each vehicle can at any point transmit navigation information or receive and
incorporate it. We refer to this scenario as “organic cooperation” and it is outlined
in section 4.1.1. The second one, described in section 4.1.2 is a more hierarchical
approach in which a dedicated set of Communication and Navigation Aid (CNA)
vehicles exists. These vehicles maintain a very accurate position estimate throughout
the entire mission and broadcast it so that all other vehicles may use this information
to improve their position estimate.

In both scenarios, the achievable improvement of the position estimate strongly
depends on the relative position of the participating AUVs with respect to each
other. However only in the hierarchical scenario in which dedicated beacons in the
form of CNAs exist, this geometry can be controlled by positioning the CNAs. This
is illustrated in a simulation in section 4.2.1. Before introducing an algorithm for
dynamic positioning of CNAs to minimize the navigation uncertainty of all receiving
vehicles, in section 4.3.6, we will first discuss previous work related to error metrics in
4.3.2. Various error metrics which can be used to parametrize the position uncertainty
are shown in section 4.3.3. To address the problem of dynamically planning optimal
beacon positioning we briefly investigate the case of simultaneous trilateration from
static beacons in section 4.3.4. Section 4.3.5 explains the assumptions made by our
algorithm in controlling the CNAs and 4.3.7 presents the results for two simulated
runs.

89
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AUV 1
AUV 2

Solar AUV
(charging)

Glider

Communication
Buoy

GPS satellite

Figure 4-1: Organic CN scenario: AUV 1 and AUV 2 use “beacons of opportunity”
such as a recently submerged glider which still has a very good dead-reckoned estimate
or a recharging solar AUV or a communications buoy which both have access to GPS.

4.1 Vehicle Task Hierarchies for CN

4.1.1 Organic Cooperation

Figure 4-1 shows a possible scenario of a heterogeneous group of vehicles in which all
vehicles can at one point in time participate actively (by transmitting) or passively
(by receiving) in cooperative navigation. For example a solar powered AUV, such
as the one described by Blidberg [16] and Crimmins [22], can serve as a navigation
beacon while recharging its batteries on the surface while also having access to GPS.
A glider (see section 1.1.1) as described by Eriksen in [30] penetrates the surface at
the end of each dive to obtain a GPS fix, as well as to communicate over satellite.
During its time at the surface with access to GPS, the glider can serve as a navigation
beacons= for submerged vehicles in the area.

4.1.2 Dedicated Navigation Beacon Vehicles

The concept of dedicated CNA was first proposed in [88] for a mine-hunting scenario
(shown in figure 4-2) with the underlying idea that a very small number of CNAs
(one or two) with a very accurate estimate of their positions could be used to provide
a much larger group of Search, Classify and Map (SCM)-vehicles with navigation
information. These SCM-vehicles would be equipped with a special sonar payload to
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Figure 4-2: Hierarchical cooperation scenario where a small number of CNAs main-
tains a very accurate position estimate while a much larger group of SCM-vehicles
with specialized sonar equipment searches the sea floor for mines. Graphic courtesy
of Bluefin Robotics.

detect buried or free-floating mines. The CNAs would be either surface crafts with a
permanent access to GPS or AUVs with a very accurate (and expensive) navigation
suite. To maintain a bounded uncertainty on their position estimates, these CNAs
would move at a very shallow depth and surface for a GPS fix whenever necessary.
The SCMs outfitted with much simpler (and cheaper) navigation sensors would be
able to maintain a bounded uncertainty on their position estimates without surfacing
over the entire duration of the mission.

The sole mission objective of the CNAs is to minimize the overall uncertainty of
the SCM vehicles. To accomplish this, their first objective is to maintain a very good
estimate about their own position, as in Cooperative Navigation any uncertainty in
the CNA’s position directly translates into an uncertainty in the SCM’s position. In
addition, the relative position between the CNA and SCM will also strongly affect the
position uncertainty of the SCM as we will show in the following section. Therefore
the second objective of the CNA is to adjust its position such that the CNA-SCM
geometry is optimal for CN.

4.2 Beacon Geometries for Cooperating AUVs

The hierarchical scenario shown in figure 4-2 allows us to position CNAs as dedicated
navigation beacons for our AUV. In this section we examine the effect of the relative
position between the CNAs and a single AUV. We ran two simulations in which
the relative position between the CNAs and the AUV was the only parameter we
changed.
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Table 4.1: Variance of sensor noise for the simulated vehicles for geometry comparison
(figure 4-3)

Vehicle σu,σv σθ σr Notes

CNA 1 0 m/s 0 ◦ 1 m
CNAs have GPS

CNA 2 0 m/s 0 ◦ 1 m
AUV 0.2 m/s 10 ◦ 1 m

4.2.1 Simulation

To illustrate the effect of different geometries between the CNAs and the SCMs on
the position accuracy obtainable through CN we simulated two CN missions in this
section. The only difference between the missions was the relative position between
the CNAs and the SCM1. For both simulations we assumed the CNAs to be surface
crafts with access to GPS. We simulate the CNAs’ access to an absolute position
estimate by setting the variance of the measured forward σu and starboard speed σv
as well as the heading variance σθ to zero. As a result the CNAs have a constant
position uncertainty which only depends on the quality of the GPS signal. The AUV’s
sensor variances correspond to those of a very simple navigation suite (table 4.1). For
both simulated runs all vehicles traveled over a distance of 500 m at a speed of 1 m/s,
while maintaining the initial geometry.

4.2.2 Results

Figure 4-3 shows the results for both simulated runs. Each marker “×” shows the
position of all vehicles at one point in time and the big markers “×” mark an arbitrary
instant to illustrate the relative position between the vehicles. As all vehicles moved
at the same speed and on the same course, this relative position was maintained
throughout the entire mission. Every ten seconds one of the two CNAs broadcast
its position. The AUV used all of these broadcasts to update its position running
an EKF (as described in section 3.4.1) and a PF (as described in section 3.4.2) in
parallel. At each time instant marked by “×” the covariance ellipse as well as the
particle set at that time instant are shown. The bottom plots for both runs show
how the uncertainty evolves by representing the trace of the covariance matrix P . In
the case of the Particle Filter (PF) the covariance was obtained by computing the
weighted variance for the entire particle set as described in equation (3.16).

The two top plots in figure 4-3 show the results for a run with a very disad-
vantageous relative position between the CNAs and the AUV throughout the entire
mission. As a result of the near-collinear configuration the updates received by the
AUV only “fixed” the position in the east-west direction, while the uncertainty in the
north-south direction continued to grow without bound, as illustrated in the trace

1For the remainder of the chapter we refer to the SCM simply as AUV to illustrate that this
approach is not just applicable to the specialized mine-hunting scenario
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plot of the EKF. For the PF the mission duration is too short to see if the uncer-
tainty of the position estimate, represented by the spread of the particle set, would
have kept growing unbounded as in the case of the EKF. The two bottom plots show
a run in which the AUV was consistently at the tip of a perpendicular triangle. This
geometry led to a small and bounded position uncertainty for both filters.
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Figure 4-3: Simulated runs with two CNAs and one AUV. Top plots: A near-colinear
(“bad”) geometry causes the EKF’s uncertainty to grow unbounded and the PF’s
uncertainty to remain high. Bottom plots: A “good” geometry keeps the EKF’s and
PF’s uncertainty bounded.
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4.3 Dynamic Positioning for Dedicated Beacon Ve-

hicles

In the previous section, we showed how the intra-vehicle geometry has a great effect on
the position accuracy obtainable with CN. In a hierarchical scenario with dedicated
CNA-vehicles we want to control the position of the CNAs such that the overall
position uncertainty of the participating AUVs is minimized. In this section we
present a decentralized algorithm which runs on each CNA. It attempts to minimize
the overall position uncertainty by dynamically computing future waypoints based on
the position uncertainty of the participating AUVs and the predictable trajectory of
other CNAs. We first introduce different metrics which can be used to quantify the
position uncertainty and then explain the assumptions made for our algorithm. The
remaining sections then present our algorithm and simulation results.

4.3.1 Motivation

Figure 4-3 illustrates how, by just choosing the relative position between CNAs and
AUVs one can bound the AUVs’ position uncertainty allowing the AUVs to remain
submerged during long missions, or how the CNAs can have very little positive effect,
requiring the AUVs to surface for a position fix to enforce a bounded uncertainty.
This motivated the active positioning of the CNAs.

The special case of a hierarchical CN scenario in which vehicles use consecutive
range/position pairs from moving beacons combined with dead-reckoning information,
has not been the subject of substantial research. This reflects the reality that robots
outside the underwater realm can usually obtain range or bearing measurements
to several known landmarks at one time and combine them to a position estimate.
Results from the large body of research carried out for static trilateration2 to (certain
or uncertain) landmarks can provide insights into the problem of motion planning
for dedicated beacon vehicles (CNAs). As range measurements are usually readily
available underwater we will focus on trilateration.

4.3.2 Related Work

In particular, GPS navigation relies on trilateration to satellites at known positions,
and hence there is a large body of work that addresses the uncertainty of trilat-
eration fixes. The metric most frequently employed is the geometric dilution of
precision (GDOP). A single dimensionless number which captures the influence of the
geometry on the error of the position estimate. Examples of work that investigates
error metrics for GPS trilateration includes Chaffee and Abel [20] and McKay and
Pachter [58]. This literature typically assumes precise knowledge of the positions of
satellites, and hence the impact of the beacon position error is not analyzed. Early
work in multi-robot localization, which used the concept of “portable landmarks”, in

2Estimating a position is called trilateration if range measurements to landmarks at known
positions are used and triangulation if the position is obtained by using angle measurements.
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which a stationary group of robots would serve as landmarks to a moving group of
landmarks, did not take the trilateration and triangulation-error into account [54].
Later, more dynamic scenarios were investigated in which all robots tried to improve
their position estimates through range or angle measurements to other robots [74].
Here the uncertainty estimate of the landmarks (other robots) was used implicitly
during the position estimate, but no attempt was made to explicitly analyze its mag-
nitude and its dependence on the geometry. In feature-based Simultaneous Local-
ization and Mapping (SLAM), the environment is typically represented in terms of
discrete landmarks, and hence in such a formulation uncertainty in the landmark lo-
cation is incorporated explicitly. Feature-based SLAM from range-only measurements
has been addressed by several authors, including Djugash et al. [25], who developed
SLAM algorithms for range-only measurements using custom sensor nodes, and Wijk
and Christensen [94], who performed SLAM via trilateration using range measure-
ments from ultrasonic sensors. In a SLAM formulation, the position estimate for the
vehicle implicitly accounts for the (correlated) uncertainty in the position estimates
of the landmarks. As the position of the landmarks in the range-only SLAM research
cannot be controlled the topic of actively positioning the beacons to minimize the
uncertainty has not yet been addressed.

Trilateration is a central component of methods to calibrate the positions of net-
works of sensors with range-only measurement capabilities. Moore [60] presents an
algorithm which selects landmarks for trilateration such that the resultant geometry
ensures a unique solution in the presence of measurement noise.

Research that specifically investigates the error of trilateration- (or triangulation)
based localization techniques is fairly sparse. Kelly [52] provides a useful and intuitive
insight into the relationship between robot/landmark-geometry and the resulting po-
sition accuracy, but he does not take the uncertainty of the landmarks into account.
Easton and Cameron [27] explicitly assume noisy landmarks for triangulation-based
algorithms, but their method does not consider the effects of strongly skewed error
distributions (as shown in figure 4-4) and their effect on the optimal triangulation
geometry. As a result, the uncertainty of the triangulated position chosen by their
algorithm is affected by the sensor noise, but the point at which triangulation leads
to the smallest possible error for given landmark uncertainties does not vary.

The special case where beacon vehicles are actively positioned to improve self-
localization of other vehicles has not been the subject of much previous work. A
similar case however is investigated by Trawny [86]. Using a single monolithic filter
he chooses a path which minimizes the joint covariance matrix for all vehicles. In
addition there is a large body of work where a single robot or a group of robots is
positioning itself to track a target (Zhou and Roumeliotis [96]) explore an environ-
ment (Feder and Leonard [35]) or determine the location of a source (Christopoulos
and Roumeliotis [21]). In the underwater domain Paley [68] presents several dis-
tributed control mechanisms for efficient ocean sampling. Results from this research
can provide insights into the beacon positioning problem.
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4.3.3 Metrics for Position Uncertainty

Three metrics are widely used to describe the error ellipse of a bivariate Gaussian
distribution with a single parameter [27].

Area of the Covariance Ellipse The area A of the 3σ-error ellipse which is related
to the covariance matrix P by A = π ∗

√

det(P ).

Ratio of the Semi-minor to the Semi-major Axis The ratio of the semi-minor
to the semi-major axis of the error ellipse ρ = σ1

σ2
, (σ1 < σ2)

Trace of the Covariance Matrix trace(P ).

As these three metrics assume that the distribution of the position estimate
is Gaussian, we propose as an additional metric a variation of the Circular Error
Probable (CEP). The majority of published research defines the CEP as the proba-
bility, p(R), that a single realization of a mean-free, bivariate Gaussian distribution
N(0,P ) is within a circle with radius R [42]. A variation which defines the CEP
as the radius R(p) of the circle which contains half the realizations (for p = 0.5) of
N(0,P ) is described by Torrieri [85].

∫∫

R

F(x)dx = 0.5 R = {|x− E [x]| ≤ CEP} (4.1)

While most applications which use the CEP assume a bivariate Gaussian for the
distribution F in equation (4.1) the key advantage of this metric is that it can be
used for any 2D probability distribution.

There is no closed form solution for p(R) or R(p), but Shnidman provides an effi-
cient algorithm to compute R(p) in case F is a bivariate Gaussian [78]. Shnidman’s
algorithm can also be generalized for p 6= 0.5, but R(p = 0.5) provides a parameter
with an intuitive understanding of an “average error”. For ρ ≪ 1 Shnidman’s algo-
rithm can run into underflow problems, but as in this case the bivariate approaches
a one-dimensional Gaussian with variance σ2, we can compute R using the inverse
error function

R =
√

2 ∗ σ2 ∗ erf−1(P ) (4.2)

A function to evaluate the inverse error function is provided in MATLAB and is also
described in [95].

4.3.4 Trilateration from Uncertain Static Beacons

To gain insight into the effect of geometry between CNAs and AUVs on the uncer-
tainty of the AUVs’ position estimate we examine the case in which two CNAs are
held in a fixed position and an AUV can position itself freely in the 2D plane (fig-
ure 4-4). The AUV then localizes itself in the plane using two range measurements
(one to each CNA)3. Both CNAs have uncertainty associated with their positions.

3We assume that the ambiguity has been resolved and the correct solution of the two has been
selected.
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Figure 4-4: Optimal trilateration positions for different error distributions. green,
solid: σ1 = σ2 and P 1 = P 2. red, dashed: σ1 ≪ σ2 and P 1 6= P 2

We then compute the error associated with the AUV’s position estimate. The metric
used is the CEP as described in the previous section. We then determine the optimal
trilateration point xopt, i.e. the point with the smallest CEP. In the special case in
which σ1 = σ2 for P 1 and P 2 the optimal position of the robot is the corner of a right-
angled triangle, with the landmarks in the two other corners (green in figure 4-4) as
shown by [52]. However in all other cases, in which σ1 6= σ2 for P 1 or P 2 the optimal
position strongly depends on the shape and orientation of the error ellipses (red in
figure 4-4). We show in [7] that there is no closed form solution to obtain xopt even
for the simple scenario shown in figure 4-4.

4.3.5 Assumptions

Our algorithm computes the optimal future position of a CNA such that position in-
formation broadcast from this position by the CNA will reduce the combined position
uncertainty of all AUVs by the largest amount. The algorithm is decentralized and
as such only incorporates information which is locally available or overheard through
the acoustic channel. Using decentralized algorithms is a key requirement in the
underwater domain as the reliable communication channel to a single controller, as
required by centralized topologies, is not available.

The metric which is minimized in this version of the algorithm is the sum of the
trace differences between the prior and posterior covariances of the AUVs’ position
estimates. This metric assumes that the navigation algorithm running on all vehicles
is an EKF as described in section 3.4.1. The algorithm however can accommodate
other Bayes filters and any state representation by modifying line 6 in algorithm 7 and
line 6 in algorithm 8 accordingly. Also, the metric which is minimized can be changed
to other metrics such as those proposed in 4.3.3 by modifying line 5 in algorithm 9.

The following assumptions are made by the adaptive positioning algorithm:



4.3. Dynamic Positioning for Dedicated Beacon Vehicles 99

0 500 1000
0

200

400

600

800

1000

Eastings [m]

N
or

th
in

gs
[m

]

 

 

200

400

600

800

1000

0 500 1000
0

200

400

600

800

1000

Eastings [m]

N
or

th
in

gs
[m

]

Figure 4-5: CEP and covariance ellipses for trilateration solutions. Left: the CEP
for positions obtained through trilateration from the two static and uncertain CNA
positions. Right: covariance ellipses for selected trilateration solutions for the same
scenario. In both figures the point with the smallest CEP is marked with a magenta
“×”.

Vehicles

There are two groups of vehicles. A group of AUVs, A, which carry out a mission
and a group of CNAs, C, which serve as moving navigation beacons. Optimizing
the relative position between CNA and a AUVs is entirely left to the CNAs as it is
assumed that each AUV’s track is solely controlled by its mission objective. No CNA
needs to be aware a priori of all members of the set of participating AUVs and CNAs.
The sets A and C can be updated dynamically.

Communication

Each member of A and C shall be outfitted with an acoustic modem for data trans-
mission and intra-vehicle ranging. As only one vehicle can transmit at any given time,
there will be a schedule S which assigns a time slot during which a vehicle (CNA or
AUV) can broadcast a status message. The schedule S is, either, provided to all ve-
hicles before the mission starts or, in the case of a central communications controller
which initializes communication through polling, the vehicles “learn” the schedule
as they overhear polling requests. It is assumed that the schedule is repetitive and
does not change over a longer period of time such that predictions about the time
of future transmissions are possible once S is known. Each entry in S consists of a
vehicle identification number, i, and a broadcast time, tbi , which is relative to the start
of the schedule. When a vehicle i broadcasts, its transmission mi not only contains
the actual distribution over its pose estimate xi, but also its course θi and speed vi or



100 Chapter 4. Intra-Vehicle Geometries for Cooperating AUVs

even a short description of the upcoming mission plan. This will enable every other
vehicle overhearing this message to compute a short-time prediction of the vehicle’s
future position. The message also contains a unique vehicle identification number i.
Each vehicle also stores the predicted positions of CNAs and AUVs in the according
entries in A or C. While section 3.4 outlines several ways to represent the distribution
of the state estimate, we chose to parametrize it through a mean and a covariance
P i as this is the most compact representation and therefore most suitable one for
acoustic communication.

Sensors

Optionally, the CNAs may have available to them a sensor table N which contains
a set of tuples, in which each tuple ni ∈ N contains information about the i-th
sensor’s capabilities. If this information is available to the CNA it can also carry out
short-term predictions about the future position and uncertainties of the AUVs and
CNAs.

4.3.6 Algorithm

The adaptive positioning algorithm consists of four modules (Algorithm 6, 7, 8 and
9), which are run on each CNA individually when the appropriate conditions are met.
Algorithm 7 and 8 both call the function algorithm 9 which computes the optimal
CNA position for a given setup of CNAs and AUVs.

Algorithm 6 is run whenever the CNA receives a broadcast from an AUV.

Algorithm 7 is run whenever the CNA receives a broadcast from another CNA.

Algorithm 8 is run whenever the schedule S indicates that the CNA should broad-
cast.

Algorithm 9 is a function which computes an optimal future CNA position when
the position and associated uncertainties of all CNAs and AUVs have been
predicted for this time.

Message Reception from an AUV (Algorithm 6)

When a CNA receives a broadcast from an AUV, aj, it decodes the message (line 3)
and uses it to update its estimate of the future positions and associated uncertainties
of aj up to the next time tbi (line 4) at which the CNA is scheduled to broadcast. It
achieves this by forward projection using aj’s actual position course and speed (line 5)
and the information about aj’s sensor quality which is retrieved from Ni(j). If the
received message mA

j (t0) from aj contains a description of its short term mission plan
an even more accurate prediction can be made. For the scenario we use to illustrate
the algorithm, all predictions are based on available course and speed information.
The functions g(·) and h(·) in line 5 also use the information locally stored in Ci so
as to consider the message broadcasts from all other CNAs which occur between the
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current time (t0) and tbi and how they will affect the AUVs’ position estimate at the
time tbi . The updated information about aj is stored in Ai(j, tbi) (line 6).

Require: Ai, Ci,Si,Ni
1: loop
2: if message mA

j received from AUV aj ∈ Ai then

3: mA
j (t0) =













xAj
P A
j

vAj
θAj
j













4: tbi = f(t0,Si(i))
5:

xAj (tbi) = g(xAj (t0), v
A
j (t0), θ

A
j (t0), t

b
i , Ci)

P A
j (tbi) = h(xAj (t0),P

A
j (t0), v

A
j (t0), θ

A
j (t0), t

b
i ,Ni(j), Ci)

6: tbi ,x
A
j (tbi),P

A
j (tbi)→ Ai(j, tbi)

7: end if
8: end loop

Algorithm 6: Executed on CNA whenever a message from an AUV is received.

Message Reception from Another CNA (Algorithm 7)

When a message is received from CNA cj it shall contain a more recent estimate of
the CNA’s state estimate xCj , the associated uncertainty P C

j as well as the actual
course and speed (estimates) vCj and θCj (line 3). The algorithm then locally emulates
the effect that that specific broadcast would have had on the positioning estimate of
all AUVs assuming that all AUVs received the message. This is carried out as follows:

Firstly, it fetches the predicted position, xAk , and uncertainty estimate, P
A

k , for the
actual time t0 for each AUV in Ai from its AUV table (line 5). It then updates the
position and uncertainty of each AUV using the Kalman state update (3.13) and the
uncertainties using the Kalman covariance update (3.14) (line 6) and then stores the
the resultant estimate back into the table Ai(k) (line 7).

Algorithm 7 then duplicates the decision making process taking place at CNA cj.
Using the communications schedule Si(j), it computes the point in time, tbj, at which
CNA cj will broadcast again (line 9). Calling the function compute opt CNA position
(algorithm 9) with the actual position of cj obtained from mC

j (t0) and our local
knowledge of the future positions of the AUVs and the CNAs, we can compute the
optimal position xCj opt(t

b
j) for cj (line 11). If all information transmitted through the

acoustic modems was received by all vehicles, then CNAs ci and cj will have the same
positioning information available and xCj opt(t

b
j), computed locally by cj, should be

the same location computed by ci. If not all values were equally shared, ci and cj
will compute different values, but in the absence of any other information xCj opt(t

b
j)

is the best prediction for cj’s position at tbj. Additionally we use the table entry
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Require: Ai, Ci,Si,Ni
1: loop
2: if message mC

j received from CNA cj ∈ Ci then

3: mC
j (t0) =













xCj
P C
j

vCj
θCj
j













4: for all ak ∈ Ai do

5: Ai(k, t0)→ xAk (t0),P
A

k (t0)

6:
xAk (t0)

(3.13),xC
j ,P

C
j→ xAk (t0)

P
A

k (t0)
(3.14),P C

j ,Ni(k)→ P A
k (t0)

7: xAk (t0),P
A
k (t0)→ Ai(k, t0)

8: end for
9: tbj = f(t0,Si(j))

10: xCj opt(t
b
j)← compute opt CNA position

(

tbj,x
C
j (t0),Ai(tbj), Ci(tbj)

)

{Alg. 9}
11: P C

j (tbj) = h(xCj (t0),P
C
j (t0),x

C
j opt(t

b
j),Ni(j))

12: tbj,x
C
j opt(t

b
j),P

C
j (tbj)→ Ci(j, tbj)

13: end if
14: end loop

Algorithm 7: Executed on a CNA whenever a message from another CNA is received.

for cj’s sensor noise characteristics Ni(j) to predict the future position uncertainty
at xCj opt(t

b
j) (line 11). The new estimate about cj’s future positions is updated in

Ci(j, tbj) (line 12).

CNA broadcast (Algorithm 8)

When the actual time, t0, matches its scheduled broadcast time, tbi , CNA ci first
broadcasts a message mC

i (t0) containing its actual position estimate xCi , associated
covariance P C

i as well as its actual course θCi and speed vCi (line 3) in a similar
manner to that of algorithm 7. First, the effect that this CNA’s position broadcast
would have on each AUV is modeled, in which it is assumed that each received the
latest broadcast mC

i (t0) (line 5, 6 and 7). Then using the schedule Si the next
broadcast time tbi is computed (line 9). At this time all available information about
the positions of each CNA and AUV at tbi (from Ai(tbj) and Ci(tbj)) is used to determine
the optimal position, xCi opt(t

b
i) at which the CNA’s next broadcast should take place

(line 10). The position uncertainty accumulated up to xCi opt(t
b
i) is predicted based

on the actual position and uncertainty, as well as the future position and the sensor
noise Ni (line 11). All updated information is stored in Ci(i, tbj) (line 12).
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Require: Ai, Ci,Si,Ni
1: loop
2: if t0 = tbi then

3: broadcast mC
i (t0) =













xCi
P C
i

vCi
θCi
i













4: for all ak ∈ Ai do

5: Ai(k, t0)→ xAk (t0),P
A

k (t0)

6:
xAk (t0)

(3.13),xC
i ,P

C
i→ xAk (t0)

P
A

k (t0)
(3.14),P C

i ,Ni(k)→ P A
k (t0)

7: xAk (t0),P
A
k (t0)→ Ai(k, t0)

8: end for
9: tbi = f(t0,Si)

10: xCi opt(t
b
i)← compute opt CNA position

(

tbi ,x
C
i (t0),Ai(tbi), Ci(tbi)

)

{Alg. 9}
11: P C

i (tbi) = h(xCi (t0),P
C
i (t0),x

C
i opt(t

b
i),Ni)

12: tbi ,x
C
i opt(t

b
i),P

C
i (tbi)→ Ci(i, tbj)

13: end if
14: end loop

Algorithm 8: Executed on a CNA whenever it is scheduled to broadcast.

Determining the Optimal CNA Position (Algorithm 9)

This function computes the optimal CNA position for a desired time, tbi , assuming
that the predicted position of all other CNAs in Ci and the positions for all AUVs in
Ai are available.

As we showed in 4.3.4 that there is no closed form solution to find the optimal
beacon point, we chose a brute-force approach. The function first computes a grid of
discrete positions M which could possibly be reached by the CNA before the next
broadcast (line 1). The number of grid positions in M depends on the maximum
speed of the vehicle, vmax, the time between now (t0) and the next broadcast tbi and
the spacing of the grid points. As the runtime of the function is linearly dependent
on the number of grid points, the grid spacing can be varied depending on vmax, t

b
i

and the available CPU cycles.
For each grid point, xCp in M , we now compute by how much the overall position

uncertainty would be reduced if it would broadcast from this point at tbi . It does this
by fetching the position xAk (tbi) for each AUV ak (line 4) and computing the differ-

ence between the trace of the prior P
A

k (tbi) and posterior covariance matrix P A
k (tbi),

assuming a Kalman update (3.14) by ci from position xCp . The trace differences for
all AUVs are summed up and stored in K (line 5). K has the same size as M . After
the total achievable improvement has been computed for all xCp (tbi), we determine the
largest entry in K. The position which maps to this entry is the optimal position
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Require: tbi ,x
C
i ,Ai, Ci

1: M =
{

xC1 , . . . ,x
C
p , . . . ,x

C
q

}

∀ xCp s.t.
∥

∥xCi − xCp
∥

∥

2
≤ vCimax(t

b
i − t0)

2: for all xCp ∈M do
3: for all ak ∈ Ai do

4: Ai(k, tbi)→ xAk (tbi),P
A

k (tbi)

5: K(p) =
∑

k

trace

(

P
A

k (tbi)− P A
k (tbi)

∣

∣

∣

∣

P
A
k (tbi )

(3.14),xC
p ,P C

i
→ P A

k (tbi )

)

6: end for
7: end for

8: M
max (K)→ xCp opt(t

b
i)

9: return xCp opt(t
b
i)

Algorithm 9: Compute the optimal position xCopt for a CNA ci for a predicted time
tbi . It assumes that the position and uncertainties for all other vehicles (CNAs and
AUVs) are given by Ai and Ci.

Table 4.2: Sensor noise and maximum speed of the simulated vehicles used in the
adaptive positioning simulation (figure 4-6 and 4-7).

Vehicle σu,σv σθ σr vmax Notes

CNA 1 0 m/s 0 ◦ 2 m 1.5 m/s
CNAs have GPS

CNA 2 0 m/s 0 ◦ 2 m 1.5 m/s not in scenario 1
AUV 1 0.2 m/s 10 ◦ 1 m 1 m/s
AUV 2 0.2 m/s 10 ◦ 1 m 1 m/s not in scenario 1

xCp opt to which the CNA should move so as to maximally reduce the uncertainty of
the AUV set (line 8).

4.3.7 Results

To test this adaptive positioning algorithm we simulat two scenarios. The first sce-
nario (figure 4-6) consists of one AUV and one CNA, in which both vehicles start at
the same point and the AUV mission takes it on a straight west-east trajectory for
400 m. The second scenario (figure 4-7) uses two AUVs and two CNAs. All vehicles
start at the same point with AUV 1 moving north for 100 m and AUV 2 moving
south for 100 m. Both AUVs then move on a west-east trajectory while maintaining
their 200 m separation. The simulated sensor noise is equivalent to an AUV with an
inexpensive navigation suite. The variances of the sensor noise for both simulations
are the same as those used in section 4.1.2 and are shown in table 4.2.
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One AUV, One CNA

Figure 4-6 shows the simulation results for the most basic possible CN setup, one CNA
and one AUV. Every 60 seconds the CNA broadcasts its position and then computes
the optimal position for the next broadcast. As there are no other CNAs present,
the CNA only needs to take the effect of its own updates and the vehicles’ sensor
performance into account. The top plot, at t=20 s, shows the situation directly after
the mission commenced. The CNA has just broadcast its position and the position
it predicts for the AUV at the next broadcast which is marked with red “+”. The
semi-transparent circle with radius r = ∆t · vmax = 60 s · 2 m/s = 120 m marks all
positions which the CNA could reach at maximum speed. Our algorithm discretizes
this circle into grid points with 5 m spacing. It then computes, for each grid point,
the position uncertainty which the AUV would have after a hypothetical update
broadcast by the CNA from this grid position. The difference between the prior
and posterior trace of the AUVs’ position estimate is represented by the color of the
semi-transparent circle. Positions marked blue would lead to a very small decrease
in overall uncertainty and positions marked red would lead to a very high overall
decrease. The mapping between the absolute value of K(p) and the color is scaled,
each time the circle is plotted, to span the maximum color space. Thus we cannot
provide a legend which maps colors to absolute values for K(p). The position which
corresponds to the maximum of that difference is selected as the future position for
he CNA.

As the AUV has a high variance in its heading direction it accumulates the highest
uncertainty in the direction perpendicular to the direction it is traveling in. As shown
by Zhou and Roumeliotis in [96], the biggest decrease in the trace of the covariance
can be achieved if the beacon vehicle is somewhere along the semi-major axis of the
AUV’s covariance ellipse. Brute-force computation confirms this, by highly favoring
positions perpendicular to the direction in which the AUV is traveling, illustrated
in dark red, for the first update. At t=72 s (middle plot) the CNA has reached its
planned position. The AUV has reached its predicted position and the CNA has
transmitted its message and computed a new optimal broadcast position for its new
message. As the previous broadcast, at t=70 s, strongly reduced the error in the
north-south direction, the along-track error will dominate the position uncertainty
and the optimal position is in line with the vehicle traveling. The bottom plot, at
t=320 s, shows the vehicles after the fifth broadcast. At this stage a “saw-tooth”
pattern has been established, in which the CNA oscillates between the two relative
positions which can be seen in the top and middle plot.

Due to the much larger distances that the CNA has to travel in this scenario,
compared to those of the AUV, the distance between the CNA and the AUV slowly
increases, as reaching the optimal relative position is the CNA’s only goal. Section 4.4
addresses how the course and speed of the CNA can be determined if reaching the
optimal position is only one of the CNA’s objectives. Another objective, for example,
would enforce a minimum distance between the vehicles.
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Two AUVs, Two CNAs

A more complex CN-scenario is shown in figure 4-7. Here, two CNAs try to jointly
optimize their trajectory to improve the position uncertainty for two AUVs. All
four vehicles start at the same position and both CNAs broadcast their position
every 30 s. After CNA 1 broadcasts its first message, at t=10 s, it determines that
the position marked by the blue “+” is the optimal position for its next broadcast.
Meanwhile CNA 2 waits until its first broadcast, at t=40 s, and then determines its
optimal position for its next broadcast at t=100 s (cyan “+”). When computing
the trace difference represented by the semi-transparent circle in the middle plot (the
corresponding circle for CNA 1 is not shown as they would overlap), CNA 2 takes the
effects of the broadcast from CNA 1 at t=70 s into account, as otherwise it would also
head for the optimal position previously computed by CNA 1, leading to a redundant
update. Shortly after CNA 2 reaches its computed position, all four vehicles achieve
the stable position of a quadrilateral which is maintained throughout the mission
and can be seen in the bottom plot. The bottom plot also shows the two predicted
positions for both AUVs.

4.4 Optimal Positioning in a Multi-Objective De-

cision Scenario

The “one AUV, one CNA scenario” depicted in figure 4-6 shows how optimizing
the trajectory for the short-term optimal broadcast position alone can lead to a sub-
optimal long-term solution as the distance between the vehicles constantly grows until
the distance is too long for transmission. Therefore we would also like the dynamic
positioning of our CNAs to be influenced by other objectives such as maintaining a
minimum distance to all vehicles. If the acoustic propagation conditions are known,
choosing the broadcast position such that the transmission loss to all vehicles is
minimized could be another possible objective.

The problem of selecting an action for an agent, in our case the speed and course
of our CNA, in a situation in which several objectives have to be satisfied has been the
subject of extensive research [8], [3]. These methods typically switch between satis-
fying the different goals individually or perform averaging which does not necessarily
lead to the optimal solution as illustrated in [12].

More recently Benjamin developed the Interval Programming (IVP)-method which
can compute an optimal solution for a set of piece-wise linear objective functions [13,
14]. This method was implemented in the Mission Oriented Operating Suite (MOOS)-
environment, a software suite developed by Newman [64] and used by MIT to control
various land, surface and underwater robots. This implementation was tested in sev-
eral different scenarios and has demonstrated an ASC successfully reaching a waypoint
while observing the “rules of the road” [11] and tracking underwater targets with a
towed array while ensuring that its maneuvers would not damage the array [15].

The output of our adaptive positioning algorithm can be directly expressed as an
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objective function which the IVP method controlling the CNA could combine with
other objective functions.
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Figure 4-6: One CNA one AUV in an adaptive motion control simulation. The CNA
automatically adapts its position to be in a position during the broadcast which
minimizes the position uncertainty of the AUV.
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Figure 4-7: Two CNA, two AUV in an adaptive motion control simulation. The
CNAs automatically adapt their position to be in a position during the broadcast
which minimizes the position uncertainty of both AUVs.
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Chapter 5

Experiments

The following chapter shows the results of a series of experiments which were part of
the CN research. As the modem’s capability to precisely measure the distance between
two vehicles outfitted with them is key for all CN experiments we first carried out
an experiment to determine the ranging accuracy as well as the maximum obtainable
vehicle-vehicle distance. In the following experiments we collected the necessary data
to run the localization algorithms outlined in 3.4 in post processing to asses their
performance and detect possible failure modes.

The first of these experiments used surface crafts as CNAs such that the algo-
rithms’ results could be compared against ground truth (GPS). The second and
third experiments involved two types of underwater vehicles using a surface craft as
CNA. One was a buoyancy driven glider, the other a propelled AUV. All three
vehicles and their capabilities are described in the following sections.

5.1 Modem Ranging Test

5.1.1 Setup

All Cooperative Navigation approaches outlined in this thesis require the participating
vehicles to communicate their position and obtain intra-vehicle range measurements.
As a result the performance of all CN-algorithms will be strongly dependent on the
performance of the WHOI acoustic modem, which will be used for all upcoming CN
experiments. In order to asses the accuracy of the modem’s ranging capability we
set up a test in Lake Grey, ME. with three “SCOUT” ASCs. The ASCs are shown
in figure 5-1b and 5-3a and described in [23]. They consist of a commercial kayak
hull outfitted with a thruster, a mini-ATX PC, GPS and the WHOI acoustic modem
which is also used on the AUVs and glider. The vehicle dynamics of the ASC are
comparable to those of a mid-sized AUV. By using only the acoustic modem to
exchange information and estimate ranges between the two vehicles, we have applied
the same restrictions which are encountered in an AUV-only scenario while at the
same time we are able to compare the algorithm’s navigation performance against
the “true” GPS position. Figure 5-1a shows the modem transducer strapped onto
the hull. This was the configuration used during the Lake Grey test. Having the
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(a) Modem transducer strapped to the hull (b) Two kayaks moored on the pier while the a
third one moves and determines its distance to
the moored ones using the acoustic modem

Figure 5-1: Setup for modem test on Lake Grey, ME, October 2004

transducer closely coupled to the vibrating hull and close to the water surface limited
the maximum possible range to 500 m. As a result, all future experiments with the
ASCs had the transducer mounted into a towfish which was hanging about 2 m below
the keel (figure 5-3b).

During the first experiment, two of the ASCs (“Bobby” and “Charlie”) were
moored in the open water at a 100 m distance while the third kayak (“Andy”) first
moved away and then toward the two ASCs in an east-west direction (top plot in
figure 5-2) . The distance between “Andy” and both other ASCs was between 100 m
and 700 m. During the entire run “Andy’ alternated between sending query pings to
“Bobby” and “Charlie”. If a reply was received, Andy was able to obtain the TOF.

5.1.2 Results

The moving ASC (“Andy”) was able to reliably obtain ranging information to both
vehicles for a distance of up to 400 m. During a short transition period between 400 m
and 500 m around half of the ranging attempts were successful, but no ranging was
possible beyond 500 m (figure 5-2 center plots). The fact that the maximum obtain-
able range was surprisingly low was mostly attributed the mounting of the transducer
which, as a result, was later changed to the towfish configuration (figure 5-3b).

The two center plots in figure 5-2 show the range between “Andy” and “Bobby”
as determined by the modem (“◦”) and by the GPS. We first note that the 109
intra-vehicle range measurements (“Andy”-“Bobby”: 60; “Andy”-“Charlie”: 49) do
not contain a single outlier. If the range between the vehicles as derived by the GPS
position is taken as ground-truth the relative range error is around 1 %.

We concluded that the range accuracy obtained in this experiment was sufficient
for Cooperative Navigation, but that different transducer mounting was necessary if
the ASCs were to be used as CNAs.
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Figure 5-2: Modem range test. One kayak (“Andy”) traveled on a U-shaped mission
while ranging to the two other moored kayaks (“Bobby” and “Charlie”). The top
plot shows the trajectory of Andy, the bottom plots show the range as determined
by the acoustic modem and the ground truth (GPS).
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(a) Three kayaks navigating co-
operatively

(b) Towfish with modem transducer

5.2 CN Using Surface Crafts Only

5.2.1 Setup

To obtain a data set which also contained ground-truth for CN in the form of GPS
measurements, three ASCs as described in the previous section were set up to run
in formation along a trackline while broadcasting their position information over the
acoustic modem. Each ASC in the formation was able to participate actively, by
sending information, and passively by computing its position estimate based on the
information obtained from the other two, but the results are only shown for one
ASC of the formation. In this case two kayaks act as the “CNAs” while the other
kayak acts as the “AUV”. In the setup shown in figure 5-3a the center kayak ran a
preprogrammed mission using its GPS for navigation. The other two kayaks followed
in a predetermined formation in order to stay within range of the acoustic modems.
The position/range-pairs obtained from the two CNAs over the acoustic modem were
logged by the AUV-kayak and the algorithm was used to compute position fixes in
post-processing. The data set was obtained during AUVFest 2005 in Seattle, WA.

5.2.2 Results

Post-processing the data logged on the ASC acting as a surrogate for an AUV we
computed the position estimate whenever a broadcast from any of the two CNAs was
successfully received. Figure 5-3 shows the GPS track of the ASC and the computed
positions with their associated error ellipses. The tracks of the CNAs are not shown.
Figure 5-4 shows the error of the computed position, the distance between the com-
puted and the GPS position. When comparing the GPS derived distance with the
modem derived one we noticed larger errors for measurements obtained at position
#6, #15 and #16 which then led to larger errors in the computed position.
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(a) Seaglider on deck after recovery

GPS fix
Data uplink
Mission downlink

(b) Seaglider dive profile. Illustration courtesy
of APL-University of Washington

Figure 5-5: University of Washington - Applied Physics Lab’s Seaglider

5.3 ASCs and an underwater glider

5.3.1 Setup

The second CN experiment which took place during the MB06 experiment in Mon-
terey Bay, CA in August 2006 involved two ASCs as described in the previous sections
and an underwater glider operated by the Applied Physics Lab of the University of
Washington (APL-UW) (see section 1.1.1 for a detailed description of a glider). The
low power consumption (≈ 1 W) makes for very long duration missions which can
last up to half a year. While on the surface, the glider can reset its navigation using
a GPS, but during the dive the very small power budget only allows for very simple
navigation sensors such as a depth sensor and a compass. The information from these
sensors together with a vehicle model is used to compute dead-reckoning navigation
information. The position estimate derived from these sensors can drift at a rate of
up to 30 % of distance traveled, especially when underwater currents are present. As
a result the drift rate can lead to a large cumulative navigation error during a dive
which can typically last up to several hours. This makes a glider particularly suited
for cooperative navigation as in a scenario with several gliders, a surfaced glider with
access to GPS could provide navigation information for every submerged glider within
communication range. While the power consumption of an acoustic modem is very
high during transmission (≈ 20 W), only a small number of these transmissions would
occur while the glider is on the surface which takes place about every 2 h. In receive
mode the power consumption drops to 0.1 W. As a result an acoustic modem would
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only add about 10-15 % to a glider’s power budget. During the MB06 experiment
a modem was added to a glider for the first time. As the modem was only capable
of logging information and did not have access to the glider’s main vehicle computer
(which provides the dead-reckoning information), on-board processing was not possi-
ble. The ASCs measured the range to the glider and by combining the logs from the
kayaks, the glider’s Main Vehicle Computer and the glider’s log of the modem traffic
it was possible to compute post-processed solutions of the glider’s positions. The
shallow water of Monterey Bay prohibited dives deeper than 30 m. As the distance
traveled in horizontal direction during a single dive is directly proportional to the
maximum achievable depth, the depth limit only allowed for transects which were
about 100 m long. The main goal of the experiment was to demonstrate the feasibil-
ity of glider communication for navigation purposes. Future experiments will involve
longer and deeper dives leading to longer transsects.

5.3.2 Results

As described earlier, the shallow depth of Monterey Bay only allowed for shallow
diving depths and, as a result, very short transects of the glider. Figure 5-6a shows
the positions of the two ASCs (acting as CNAs) as well as the dead-reckoned and
computed positions of the glider. The inset shows a detailed view of the glider track
(dead-reckoned and computed). The GPS fixes mark the last GPS derived position
before the glider submerged as well as the first one after it surfaced. Figures 5-6b
through 5-6d show the depth, the dead-reckoned position and the computed position
of the glider as well as the associated uncertainties for different time instances during
the mission. Due to the short transect the cumulative error of the dead-reckoned
position is not significantly above the uncertainty of the computed position, however
the computed position just before surfacing is much closer to the GPS surfacing
position than the dead-reckoned one (figure 5-6d). Future experiments involving
longer dives with transects of several kilometers in length should lead to significant
differences between the dead-reckoned and the computed position.

5.4 ASCs and an AUV

5.4.1 Setup

During a demonstration at the Naval Surface Warfare Center (NSWC) in Panama
City, FL, USA in December 2006, two ASCs and a Bluefin 12” AUV (figure 5-7) ran
several missions in which the ASCs acted as CNAs and followed the AUV while send-
ing their GPS-derived positions over the acoustic modem. The AUV also obtained
distances to the transmitting ASC and stored both information for post processing.
Ground truth was not directly available, but by post-processing (provided by Bluefin)
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(b) Glider/ASC mission at t=123 s. The uncertainty of the initial esti-
mate of the CN algorithm is large when compared to the dead-reckoning
uncertainty.

data from the sophisticated and well calibrated sensor package and including the po-
sition obtained through the GPS after surfacing, accurate navigation information was
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(c) Glider/ASC mission at t=337 s. The uncertainty of the computed posi-
tion remains bounded while the uncertainty of the dead-reckoned estimate
grows without bound.
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(d) Glider/ASC mission at t=564 s (after surfacing). The ground-truth po-
sition is significantly closer to the computed position then the dead-reckoned
position.

Figure 5-6: Glider/ASC mission.

available which was used to compare the results of the CN algorithm.

A total of 16 cooperative navigation missions were run during which the AUV
received the CNA’s position and measured the CNA-AUV range. During these runs
the AUV acted as a master and requested a new position every 30 seconds switching
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Figure 5-7: Two MIT ASCs and one Bluefin 12” AUV.

between the two CNAs. Of all positions requested the AUV would receive about
60 %. For the remaining 40 % of the queries the CNA did either not receive the
request or the AUV did not receive the CNA’s answer. Sometimes the AUV would
also suspend requesting positions because it needed to transfer other mission specific
information over the acoustic modem. As a result the update rate for position/range
pairs was about one per minute.

After requesting a position/range from both CNAs, the AUV would send its own
position estimate over the acoustic modem. Furthermore, the CNAs would contin-
uously broadcast their GPS-derived position over the radio such that both CNAs
were aware of where the other one is. Knowing where the AUV and the other CNA
is, enabled the CNAs to follow the AUV in a way that was optimal for cooperative
navigation:

• In order to maintain optimal acoustic communication, the AUV would try to
stay 150 m behind the AUV.

• To minimize the covariance of the computed solution the CNAs would try to
form a right-angled triangle with the AUV in the corner with the right angle
and the CNAs in the other two.

As the AUV’s position updates were received at a rate of only O(1/min), it was
very difficult for the CNAs to maintain the triangular formation when the straight
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Figure 5-8: AUV/ASC mission 1: Dead-reckoned track and computed positions of
AUV, GPS positions of CNAs; Inset: Detailed view of position #8.

transects were short (figure 5-8). During the second mission (figure 5-9) CNA1 was
able to maintain an aft-starboard position with respect to the AUV while, CNA2
maintained an aft-port position. Even when the formation was not maintained the
AUV’s broadcast enabled the CNAs to stay close enough to maintain the acoustic
communication channel. The navigation error was modeled using sensor noise as
provided in [31]. While the results for only two runs are shown in figure 5-8 and
figure 5-9 the quality of the results computed by the algorithm was the same for all
16 runs.

5.4.2 Results

Figure 5-8 and figure 5-9 show two of the missions carried out. The first mission
consisted of a U-shaped trackline of about 1 km length. After initializing its position
with GPS the AUV submerged to a depth of about 12 m and ran the mission at
a constant speed of 1.5 m/s. The detail in figure 5-8 shows the computed position
#8 and its covariance ellipse. Also shown is the “ground-truth” track as well as
the “ground-truth” position estimate at the time of the computed solution. As the
“ground-truth” position is based on post-processed dead-reckoning data the distance
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between it and the computed position can only provide a qualitative assessment of
the algorithm’s performance. As a result we did not compute the Euclidean distance
between the two positions. Also, the post-processed track is the result of a non-linear
optimization so no covariance estimate can be provided.

The second mission consisted of a 4 km east-to-west trackline. During this mission
the kayaks were able to maintain the triangular formation for most of the time. On
five occasions during this mission the AUV would spend four minutes transmitting
mission specific data. During this time no positions were queried from the CNA which
lead to the wide gaps between the computed solutions (e.g. between #19 and #20
as well as #27 and #28). The two insets in figure 5-9 show two magnified views of
the track at the same scale. The bottom one near the beginning (eastern end) of
the mission and the top one of the end (west). These illustrate how beneficial the
information from the CNAs is for navigation accuracy. In the beginning the dead-
reckoned position is very close to the “ground-truth” and the computed solution
while at the end of trackline the “ground-truth” as well as the computed position
have consistently moved away from the dead-reckoned position. The dead-reckoning
error, represented by the growing error ellipse, depends on the distance traveled and
will grow without bound if the AUV is submerged, while the error of the computed
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but while the CN algorithm has fully recovered at the next step, EKF and particle
filter only converge slowly towards the correct solution.

solution only depends on the position error of the CNAs and the geometry. It is
bounded if the position error of the CNAs is bounded and if positions which were
computed from collinear or near collinear geometries are filtered out. Toward the end
of the second mission, the CNAs were not able to keep up with the AUV which led to
less favorable geometries resulting in slightly larger error covariances of the computed
solution than in the beginning. As in the first mission, the algorithm’s performance
is hard to quantify. Qualitatively, the computed solutions are consistently very close
to the “ground-truth” throughout the entire track while the dead-reckoned position
drifts over time.

5.5 Comparison with Bayesian Estimators

In order to compare the performance of our CN algorithm with common classical
approaches, an EKF and a PF with 300 particles, we computed the position using all
three methods at each time instant k when a new range/position pair was available.
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CN showing a very large peak at k = 5 which would enable one to filter out this
inconsistent range measurement.

Because of the high quality dead-reckoning measurements and absence of range mea-
surements outliers in the available kayak/AUV data sets, each of the three methods
performed similarly and the results were within the accuracy of the ground truth.

Large underwater range measurement outliers can occur in more challenging ex-
perimental scenarios. In such a scenario the Gaussian noise assumption does not
hold [66]. For this reason we simulated a typical outlier measurement by using the
mission shown in figure 5-8 and setting the range measurement obtained by the AUV
at k = 5 from r(5) =116.86 m to r(5) =60 m. All subsequent range measurements
were unchanged. The computed tracks are shown in figure 5-10. Upon receipt of the
fifth measurement the error of the position estimate “jumps” for all three methods,
most significantly for the CN algorithm. However at k = 6 the CN algorithm in-
stantly recovers to the correct position, while the EKF and particle filter only slowly
converge towards the correct path. This is due to the very low measurement update
frequency. The erroneous position produced by our CN algorithm at k = 5 is par-
ticularly large because our approach may only select from the solution set provided
in S(5) (see appendix 3.5.3). This range measurement is however inconsistent with
the previous range measurements and the dead-reckoned track and as a result has a
much higher accumulated cost C(5), shown as a single peak in figure 5-11. Therefore
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it would be possible to use C to detect and filter out false range measurements.
In summary an EKF is unsuitable for this application. However a more advanced

particle filter with a sufficiently large number of particles could possibly provide
similar performance to our proposed algorithm.
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Chapter 6

Conclusion

In order to maintain a bounded position error, an individual underwater vehicle has
to occasionally surface for a GPS-fix or operate within a small area surrounded by
pre-deployed localization equipment. This is independent of the vehicle’s size and the
sophistication of its navigation sensors. Cooperative Navigation provides a framework
for future deployments which cannot rely on external infrastructure and it minimizes
the number of surfacings as long as two or more vehicles operate sufficiently close to
each other.

6.1 Contributions

This thesis starts by examining the constraints which the underwater domain im-
poses on Cooperative Navigation. Its first major contribution is an algorithm which
is designed to take these constraints into account. The algorithm provides a robust
estimate of the vehicle’s location when supplied with navigation information from
cooperating platforms. It was extensively tested in a series of experiments using Au-
tonomous Surface Crafts, propelled Autonomous Underwater Vehicles and a buoyancy
driven glider. The results from these experiments show that it compares favorably
against the two classical methods which are also presented in this thesis.

For a group of vehicles sharing information, two cooperation strategies can be
devised. The first one does not assume any structure in the flow of navigation infor-
mation. All vehicles occasionally broadcast their position estimate and incorporate
messages which they receive from others. The second one assumes a hierarchy in
which only a special subset of vehicles broadcasts information which all others use,
thereby enforcing a uni-directional flow of information. Our algorithm, as well as
the two classical approaches we present, can work in both scenarios without modi-
fication. If a vehicle however uses information from another one to update its own
position, the estimates between the two vehicles become cross-correlated. This is not
a problem as long as it remains a uni-directional cross-correlation. However in the
case of the first scenario, in which the flow is omni-directional, information shared by
a vehicle may at a later time be presented to that vehicle again as the information
has been incorporated by others which now broadcast their position estimate. For all
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navigation algorithms presented, this can lead to an over-confidence in the position
estimate which can cause all of them to diverge.

An algorithm that ensures that the cross-correlations remain uni-directional, re-
gardless of the direction of the information flow, and thereby prevents over-confidence,
is the second major contribution of this thesis. It can be combined with any localiza-
tion algorithm we present. While the algorithm requires additional information to be
transmitted as well as additional computation we show how omitting this step can
cause the navigation filters of all participating vehicles to diverge even in a very simple
simulated scenario. We also propose an extension of the algorithm which trades off
computation and bandwidth requirements against the improvement in the position
estimate obtained through cooperation.

The quality of the position estimate obtained through measurements to beacons
at known locations, in our case broadcasting vehicles, depends on the relative po-
sition between the beacons and the estimating vehicle. This is independent of the
algorithm. The hierarchical scenario, in which the objective of the beacon vehicles
is to minimize the position uncertainty of all others, we can control the geometry
by actively positioning the beacon vehicles. Our third contribution is a distributed
algorithm which runs on all beacon vehicles and positions them such that they jointly
minimize the the uncertainty of all receiving vehicles. The algorithm does not assume
a central controller and instead only relies on information which is locally available.

6.2 Future Work

Autonomous Underwater Vehicles have been successfully deployed for over a decade,
but only the last few years have seen experiments involving several at a time. Even in
the few experiments which involved multi-vehicle deployments, the individual mem-
bers of the group were often not aware of each other and only communicated to a
central control station or lacked underwater communication equipment altogether.
As a result, only a very limited amount of data sets are available which can be used
to test algorithms by post-processing data. Even fewer experiments have been carried
out specifically with cooperation in mind, be it for navigation or any other purposes.
More recently however an acoustic modem with access to a globally synchronized
time signal, the key piece of equipment for the successful implementation of any CN
algorithm, has become a standard feature on all new marine platforms, and many
older ones have been retrofitted with this equipment. In addition, great progress was
made in standardizing the communications protocol to ensure that a heterogeneous
group of vehicles can successfully share information [82]. Experiments planned for
the near future will offer many opportunities to verify and test the proposed algo-
rithms in real-time. Results from these experiments will drive future research. As a
navigation error can lead to the loss of a multi-million dollar vehicle, most research
for cooperative navigation algorithms will focus on robustness. The emergence of
new platforms and sensors not considered in this thesis will lead to new possibilities
as well as constraints to which the navigation algorithms have to adapt. For the
hierarchical approach which has a set of dedicated beacon vehicles there is a lot of
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room for future research to optimize the path of these vehicles. Due to the strong
variability of the acoustic communication channel, maximizing the likelihood that a
transmission is successful, is a necessary additional objective. Recent advances in
predicting the modem performance in real-time from in situ measurements [77] can
provide additional information which is used in the path planning process.

With the necessary hardware infrastructure being available on all underwater
platforms soon, a mature set of cooperative navigation algorithms will become a
commodity in underwater navigation ensuring that every vehicle uses all available
information to localize itself.
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Coordinate Systems

A.1 Reference Frames
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A.2 Vehicle Body Pose and Velocities

Table A.1: Vehicle Body Pose

Linear Angular

x =





x
y
z





φ (roll)
ψ (pitch)
θ (yaw)
ϑ (heading) ; ϑ = π

2
− θ

Table A.2: Vehicle Body Velocities

Linear Angular

u =





u
v
w





u=ẋV =∂xV

∂t
(forward velocity) φ̇=∂φ

∂t
(roll rate)

v=ẏV =∂yV

∂t
(starboard velocity) ψ̇=∂ψ

∂t
(pitch rate)

w=żV =∂zV

∂t
(vertical velocity) θ̇=∂θ

∂t
(yaw rate)
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positions that could be used for position computation. This typically requires the pre-deployment of a set of beacons.

This thesis examines the scenario in which the members of a group of AUVs exchange navigation information with one another 
so as to improve their individual position estimates.  We describe how the underwater environment poses unique challenges to 
vehicle navigation and how cooperation can improve the performance of self-localization. We also address the constraints of the
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