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Abstract We present a successful design approach for so-
cial robotics based on a computational cognitive architecture
and mental simulation. We discuss an approach to a Theory
of Mind known as a “like-me” simulation in which the agent
uses its own knowledge and capabilities as a model of an-
other agent to predict that agent’s actions. We present three
examples of a “like-me” mental simulation in a social con-
text implemented in the embodied version of the Adaptive
Control of Thought-Rational (ACT-R) cognitive architec-
ture, ACT-R/E (for ACT-R Embodied). Our examples show
the efficacy of a simulation approach in modeling perspec-
tive taking (identifying another’s left or right hand), team-
work (simulating a teammate for better team performance),
and dominant-submissive social behavior (primate social ex-
periments). We conclude with a discussion of the cognitive
plausibility of this approach and our conclusions.

Keywords ACT-R · Theory of Mind · Embodied
cognition · “Like-me” simulation · Cognitive plausibility

W.G. Kennedy (�) · M.D. Bugajska · A.M. Harrison ·
J.G. Trafton
Naval Research Laboratory, 4555 Overlook Ave. SW,
Washington, DC 20375, USA
e-mail: WKennedy@GMU.edu

M.D. Bugajska
e-mail: Magdalena.Bugajska@NRL.Navy.mil

A.M. Harrison
e-mail: Anthony.Harrison.ctr@NRL.Navy.mil

J.G. Trafton
e-mail: Greg.Trafton@NRL.Navy.mil

1 Introduction

How can we design and build social robots? We have pre-
viously suggested that if a system uses representations and
processes analogous to those of humans, it will be able to
interact more “naturally” with humans than one that does
not [54]. Such a system will also be less likely to exhibit
“alien” behaviors [10], those that lay outside social norms.
This representational hypothesis prompted us to make use of
findings from cognitive science research to guide the design
of our robotic system and to implement the design using a
cognitive architecture.

A cognitive architecture was defined by Allen Newell as
a “fixed (or slowly varying) structure that forms the frame-
work for the intermediate processes of cognition perfor-
mance and learning” [36]. The concept is most recently de-
fined as “a specification of the structure of the brain at the
level of abstraction that explains how it achieves the func-
tion of the mind” [2, p. 7]. We based the design of our so-
cial robotic system on the computational cognitive architec-
ture called ACT-R for Adaptive Control of Thought-Ratio-
nal [2–4] rather than Markov random fields as discussed in
the previous issue of this journal [12].

Most of ACT-R’s history has been concerned with cog-
nitive functions of the mind such as memory, problem solv-
ing, attention, and visual search [2, 4]. We extended ACT-R
to control a physical robot (ACT-R/E, “E” for embodied).
This required addressing the challenges of real sensor capa-
bilities, localization, motion control, and the general noise
inherent in real environments.

Cognitive science research tells us that successful mod-
eling of social behavior, from imitative behavior to interper-
sonal communication, requires consideration of the knowl-
edge, abilities, goals, and even feelings of others. The ability
to infer that information and use it effectively is referred to
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as having a Theory of Mind [42], perspective-taking [18]
having a shared mental model [13], mind-reading [20], and
“like-me” simulation [33]. This research points to the im-
portance of mental simulation functionality within human
cognition and led us to believe it should have a role in of our
approach to social robotics.

Imitation, i.e., copying the actions of another, is proposed
to lead to “an understanding of other minds” [32, p. 56].
Breazeal has used imitation for her robotics work on so-
cial robotics [7, 8]. Implementing and extending Meltzoff
and Moore’s theoretic model of how infants learn facial im-
itation [35], Breazeal and her team developed a humanoid
robot called Leonardo that learns through imitative interac-
tions and explores imitation as social interaction [9]. Their
architecture employs a sensory system, a perception system,
an action system, and a motor system that is comparable to
ACT-R’s modules, but their focus is on social interaction it-
self, and the communication facilitated by imitation, not the
mental simulation nor cognitive plausibility on either side of
the interaction. In contrast, we model the agent’s ability to
simulate another agent’s decision-making by presuming the
other agent is “like me” in physical and mental capabilities.

A “like-me” mental simulation capability is the ability
to understand and predict the behavior of another based on
your own capabilities. A “like-me” mirror neuron system
has been hypothesized to explain the ability of infants, in
the second half of their first year, to predict the goal of other
people’s actions and it has been hypothesized to be the basis
of early social cognition [17]. There is also evidence that
this capability is dependent on some learned knowledge.
Falak-Ytter, et al. [17] also hypothesized that infants seem
to require having learned a method of accomplishing a goal
themselves before they can use their “like-me” simulation
mechanism to recognize the same method in others, which it
is why the capability is not seen until the second six months
after birth. This simulation ability is the focus of this paper
and our premise is that humans base their models of others
on themselves, their own capabilities and knowledge, and by
using a cognitively plausible system to provide this capabil-
ity, we can build cognitively plausible, social robots.

The following sections give a brief overview of the
ACT-R cognitive architecture as well as our embodiment of
it on a robotic platform and its “like-me” simulation capabil-
ity. We then present our work with models that incorporate
mental simulation into reasoning about perspective taking,
specifically handedness, simulation of another in support of
efficient teamwork, and simulation of another to decide so-
cially appropriate behavior in a competitive situation. We
end with the discussion of cognitive plausibility of the men-
tal simulation approach to social robotics and draw some
conclusions.

2 Cognitive Architecture and Robot Control

ACT-R is a hybrid symbolic/sub-symbolic production-based
system. Its modules are intended to represent specific cog-
nitive faculties including declarative (fact-based) and proce-
dural (rule-based) memory, visual and auditory perception,
vocalization, manipulation, and time perception. Based on
latest fMRI data, these cognitive faculties have anatomical
correspondences [2]. The theory constrains the functional-
ity and the integration of the modules in the actual com-
putational implementation to facilitate cognitively plausible
processing; notably, it enforces a serial memory access and
execution and imposes bounds on the speed of processing of
external inputs.

A cognitive model within the ACT-R architecture con-
sists primarily of its initial declarative and procedural mem-
ories. The architecture is of a collection of functional mod-
ules, each of which exchanges information with the central
procedural module through their respective buffer. During
the execution of a model, ACT-R repeatedly: (1) matches
the conditions of all productions against the current state of
the buffers, (2) performs conflict resolution to select a sin-
gle production to fire, and (3) as consequence of a produc-
tion firing, changes the ACT-R state by modifying buffers’
content or making a module request for an update. These
updates can cause actions upon the world, e.g., grasping ob-
jects, navigation, etc., as well as internal state changes, e.g.,
changing intentions, deliberation, etc. The standard ACT-
R’s capabilities for interacting with the environment are lim-
ited to interacting with desktop computer environments.

ACT-R/E (for ACT-R Embodied), shown in Fig. 1, ven-
tures beyond traditional computer displays and mouse/key-
board manipulation to establish embodied presence by first
and foremost extending the representation of the visual and
aural modules to enable 3D object and sound localization
[28, 57]. We also extended ACT-R’s capabilities to incor-
porate a locomotion faculty (the “moval” module) and a
cognitive-map based spatial reasoning capability (the “spa-
tial” module).

The “spatial” module maintains a representation of the
space near the robot as a 2D map made up of rectangular
cells but it does not maintain precise metric localizations for
objects in those cells. The current cell location of the ro-
bot in this representation is maintained through interactions
with the robot’s “moval” module. To reason about objects
observed in the environment, the module transforms each
object’s visual location coordinates into a cell in the inter-
nal map. The map is not available for reasoning directly, but
on request to the spatial module, the module provides the
identification of the closest object to the robot (or another
reference agent) and the object’s spatial relationship is in
terms of cardinal headings, north, south, east, or west, from
the robot or reference agent [27].
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Fig. 1 ACT-R/E architecture
(partially/fully shaded boxes are
modifications/additions to
ACT-R)

Table 1 Mapping of cognitive
faculties to robot software Cognitive Software Hardware

faculty

Locomotion Localization, collision Zero-turn-radius drive system

avoidance, path Wheel encoders (odometers)

planning, and map Laser range finding system

learning [45] Sonars

Vision Person-tracking system [19] Omni-directional camera

Color-blob detection [11] High resolution forward facing camera

Laser range finding system

Hearing Sound localization [31] 4-microphone sound array

IBM Via Voice™ (commercial speech Wireless microphone (for the speaker)

recognition)

Speech Cepstral Swift Text-to-Speech System Animated-lip synchronization

(commercial speech generation) Speakers

Our robot, an iRobot B21r, is a human-scale, zero-turn-
radius robotic platform best suited for use in indoor environ-
ments. The robot is equipped with an array of sensors and
effectors including an animated face displayed on a robot-
mounted LCD [39, 46], which allow it to perceive and inter-
act with the environment. Table 1 shows our system-specific
mapping of cognitive faculties to robotic software and cor-
responding sensors and effectors. The raw sensors’ input,
such as video and sound, are processed by the low-level ro-
botic software and translated into feature-based, symbolic
representations used by ACT-R/E modules as the data be-
comes available. Requests to the moval module in the form
of relative or absolute motion-commands are passed onto
our motion control subsystem, WAX [45]. Similarly, speech

module requests are forwarded to a commercial speech gen-
eration system, Cepstral. Finally, the animated face is syn-
chronized with the speech output and indicates a change in
the visual attention by turning to face the desired direction.

3 Mental Simulation and its Use as a Strategy

Mental simulation is incorporated in our models as part of
the process of social reasoning. The overall modeling ap-
proach is based on cognitive science research: when hu-
mans are unsure of what to do, i.e., can not recall a previ-
ous instance of the current situation with previously decided
action, they will try simulation to solve the problem [58].
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Therefore, simulation can be viewed as a weak method to
solve a problem [37]. In this section, we will discuss details
of mental simulation itself and then how it is used as the
foundation of a social strategy within our models.

Simulating the cognitive processes of another agent re-
quires dealing with multiple states of reality. The best known
examples are the problem spaces in Soar [30, 36] and alter-
nate worlds in Polyscheme [14]. Soar’s problem spaces fa-
cilitate automatic “subgoaling” and have been used to antic-
ipate opponent’s behavior in the game of Quake [29]. In the
Quake system, Laird used some of the agent’s own tactics to
predict the tactics of the enemy in a manner similar to what
we will describe more generally here. Polyscheme’s worlds
are a general construct and allow for instantiation and ma-
nipulation of hypothetical, counterfactual, and even stochas-
tic simulations. The alternate worlds in Polyscheme have
been used to build models of spatial perspective-taking [15]
and a Theory of Mind [5]. ACT-R can build and maintain
multiple representations of its world as well, to perform
a cognitively plausible mental simulation of the decision-
making of another agent.

We focus our paper around simulation in the spatial/em-
bodied world, but the general mechanism we describe works
in other domains as well. The “like-me” mental simulation
uses the robot’s own reasoning process to determine what
it would do in the other agent’s situation. The model pre-
pares for this by effectively swapping places with the other
agent: it creates a hypothetical or imagined representation of
a transposed world in which it is located in the position of
the other agent and the other agent is in its position with the
information marked as imagined. To model some behaviors,
additional transformations are necessary. To initiate the sim-
ulation, the model establishes a goal to determine the next
action for the imagined situation. Its own productions then
fire without modification to achieve this goal. Upon comple-
tion, the system has the next action for this imagined situa-
tion. It is a “like-me” simulation in that it uses it own ca-
pabilities, i.e., knowledge and reasoning process, to predict
what the other agent will do.

The “like-me” mental simulation capability is imple-
mented as the foundation of a strategy within our cognitive
models. The simulation of another agent provides additional
information used in the strategy to decide what action the
agent will take. The design of such a model is shown in
Fig. 2. The model has two strategies, an “individual” strat-
egy and a “socially-aware” strategy. The “individual” strat-
egy is the one the model would use to decide its next action
without simulation. The “socially-aware” strategy is the one
using a simulation of the other agent. When the simulation
decides what the robot would do in the other agent’s situa-
tion, the strategy uses that information to decide what it will
do.

More formally, if an agent has a strategy, �i , that, in a
context, c, determines its next action, A, as represented as:

�i(c) ⇒ A

then, using a “like-me” simulation and an appropriate trans-
formation of the context c into ct , the agent can have another
strategy, �j , given by:

�j(c
′) ⇒ �j(�i(c

t ) + c) ⇒ A′

where c′ is the expansion of the original context to include
the “like-me” prediction of the action of another agent in the
transformed original context, ct , and the process results in a
potentially different action, A′, based on using that knowl-
edge.

This is a powerful mechanism because for any “individ-
ual” strategy the agent has, it can reason about another agent
having that strategy and, further, by creating hypothetical
situations (transposed or other transformation), it can pre-
dict the actions it would take under hypothetical conditions.
Using that capability, the agent can change or adapt its own
future actions, plans, and strategies with respect to the other
agent. We will demonstrate some of this power and efficacy
of this “like-me” mental simulation in three social scenarios
beginning with a spatial perspective-taking task.

4 Cognitive Simulation of Spatial Perspective Taking

Spatial perspective taking is essential to the interpersonal
communication associated with social robotics. Perspective
taking aids in resolving spatial references [40] and is an as-
sumed capability of other intelligent agents. In addition, the
ability to resolve spatial references within different coordi-
nate frames and to switch between reference frames is es-
sential to efficient spatial task performance [60]. For exam-
ple, spatial perspective taking is necessary to play “hide and
seek” well [55, 56].

4.1 Perspective Taking Task

In our first scenario, the robot uses a “like-me” mental sim-
ulation to identify the spatial relation between entities in the
environment. For this scenario, the space contained the ro-
bot, a person, and a box. The direction the person was facing
was varied as was the location of the box with respect to the
person., e.g., on the person’s left, or on the person’s right.
The robot knows what those relationship terms mean with
respect to itself, but not for the other person in this scenario.
As a proof of concept, we simplified the problem to having
the box placed to the east or west of the person and allowed
the person to face one of four cardinal directions, north,
south, east, or west. This provided eight possible problems
that were generated randomly (with replacement) and four
possible results: left, right, in front, and behind.
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Fig. 2 Diagram of a cognitive
model implementing “like-me”
simulation

4.2 Cognitive Modeling Approach

The cognitive modeling approach is shown in Fig. 2. The
ACT-R’s basic reasoning process would first fire the com-
piled productions for the specific current situation, if any
exist. However, when the model begins, it will not have such
productions; they must be learned. Otherwise, the model at-
tempts to recall a previously saved, declarative memory of
a situation that matches the current situation. If successful,
the response for that earlier situation is applied to this situa-
tion. If the attempted recall is unsuccessful, the model uses a

“like-me” simulation to perform the perspective taking. We
started with the assumption that the robot knows the spatial
relationship for an object near itself, either left of, right of,
in front, or behind, as provided by our robot’s spatial repre-
sentation system. The model prepares for the “like-me” sim-
ulation by creating an imagined representation of the world
with itself at the location of the other person by modifying
its own location to be that of the person and marking the
representation as imagined. It then establishes a goal for the
simulation, to determine the relationship to the box. Its own
productions then fire simulating the decision-making of the
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person. Upon completion of the simulation, a new declara-
tive fact is created for the specific situation and the response
is saved for potential future use. Thus, the general pattern is
using a simulation to learn an instance, then remembering
that instance, and finally, with multiple uses, compiling that
knowledge into a new production [26].

4.3 Perspective Taking Results

Our model was able to determine the relationship between
the box and the person reliably and its performance im-
proved with experience. It began by simulating novel situ-
ations, then retrieved previous solutions as the situation was
repeated, and finally, it used learned new productions for
specific situations. Each of these processes takes a differ-
ent amount of time based on our cognitive model. (ACT-R
predicts human performance times.) Our model accurately
solved the perspective-taking problems and had three re-
sponse times. Performing the mental simulation to deter-
mine the response takes 5.5 seconds in human terms. Using
retrievals of previous situations takes an average of 3.8 sec-
onds, and when productions were available, the model re-
sponds in 2.3 seconds.

4.4 Perspective Taking Discussion

In experiments testing human subjects in three groups by
age (7–8, 12–13, and 18–22 years old), Ofte and Hug-
dahl [38] asked participants to perform a similar task (to
identify a person’s left or right hand in a variety of poses).
Participants were timed as they responded. Our hypothesis
is that with age the reliance on mental simulation for such
a simple task is replaced with recall and then with fast, pro-
ceduralized knowledge. Figure 3 shows data from the orig-
inal experiment with 95 percent confidence intervals (CI)
and our model’s performance comparing the human sub-
ject age groupings for the three different strategies: simula-
tion (7–8 years), recall of previous situations (12–13 years),
and using productions that encode previous experience
(18–22 years).

The model results are consistent with the human subject
data based on the model’s predictions being within the 95
percent confidence intervals. The model’s different mecha-
nisms generate different response times, which align with
the response times of the age groupings of the human sub-
jects. This successful data match suggests that our imple-
mentation of “like-me” simulation with the associated learn-
ing process, is cognitively plausible and we can use this
as strong encouragement for the plausibility of our mech-
anisms. It also provided the confidence to attempt a more
significant task, developing a model of the behavior of a
teammate.

Fig. 3 Human and model data in perspective taking (with 95% CI)

5 Cognitive Simulation to Predict Another’s Behavior

Since the “like-me” simulation capability, in general, and its
implementation in ACT-R/E, has been shown to match hu-
man data and therefore have a degree of cognitively plausi-
bility, we next turn to a more challenging functional demon-
stration of simulation, teamwork.

5.1 Teamwork Domain and Task

5.1.1 Teamwork: The AI Perspective

General models of teamwork and collaboration within the
field of Artificial Intelligence (AI) include: STEAM and
TEAMCORE [52], SharedPlans [21], COLLAGEN [43],
and RETSINA [51]. Key issues in multi-agent systems re-
search include the organization and make up of teams, task
allocation among team members, multi-agent planning (in-
cluding recognizing and resolving conflicts among agents
and within plans), managing limited resources, communica-
tions among agents (including contingencies for when there
is no communication), adaptation and learning in the team,
and agent tracking and monitoring. For a broad overview of
teamwork in multi-agent systems, see [47, 49, 50].

Of particular importance to our interests are systems that
develop and use models of their teammates and then use that
knowledge to improve collaboration. Kaminka et al. [24]
presents a technique that allows one agent (a coach) to pre-
dict the future behavior of other agents (its own team and
the opponent team) in order to coordinate activities by ob-
serving those agents and building a model of their behavior.
Observations are translated into a time series of recognized
atomic behaviors, and these into subsequences that charac-
terize a team (although not necessarily a single agent). Other
researchers investigated just how much monitoring of an-
other agent is sufficient for an agent to be an effective team-
mate [23].
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Our approach is to model the other agent in order to re-
duce the amount of monitoring that is required, and to do
so in a cognitively plausible way by having the robotic team
member perform a “like-me” mental simulation of the other
agent.

5.1.2 Teamwork: The Psychology Perspective

There are many studies on what makes an effective team
[13, 16, 32, 48]. This research addresses the same key is-
sues as the AI research. Their research methodology also
included examining how high and low performing teams
accomplish team-related tasks. The results suggest that the
knowledge employed by a good team member has three
components [13]:

(1) Knowledge of own capabilities [meta-knowledge],
(2) Knowledge of the task, and
(3) Knowledge about the capabilities of their teammates.

Most researchers have suggested that these three compo-
nents are deeply inter-related; i.e., without any one of these,
a person is not a good team member. The sharing of the
necessary understanding among teammates is frequently re-
ferred to as having a shared mental model and has been sug-
gested to be key to understanding team performance [13].

We believe the first two components are addressed if the
agent is competent in individual components of the task. The
third component, the knowledge of a teammate’s capabili-
ties, focusing on the teammate’s cognitive processes can be
addressed in a cognitive model using a “like-me” simulation.

5.1.3 Laboratory Scenario

As a test bed for our research, we created a task for a
human-robot team that focuses on the need to simulate the
decision-making of a teammate. The scenario takes place
in a warehouse, where teammates can frequently see each
other and move freely throughout the area. In this scenario,
the robot and human are a security team charged with pa-
trolling the area and responding to alarms. If, while the hu-
man and robot are separately patrolling inside the area, an
alarm sounds, their task becomes “manning” the two widely
separated guard stations as soon as possible.

To complete this task successfully, both team members
must be inside different guard stations. If both go to the
same guard station, there is a cost to the team’s response
time for one of them to then go to the other station. We did
not include communication between team members during
the response to keep the model simple. Such a constraint is
often useful in team sports and military domains. For the ro-
bot, the task requires several capabilities. It must know the
whereabouts of its teammate while it is patrolling to be pre-
pared for the alarm. It must know the spatial locations of

Fig. 4 Security team’s alarm response decisions

the guard stations. It must be able to perform spatial reason-
ing to judge the distances to the guard stations (specifically
which station is closer). Finally, the focus of this research,
it needs to predict where the human will go based on the
human’s location. Figure 4 depicts the decisions for the two
teammates.

5.2 Cognitive Modeling Approach

The robot’s security guard behavior is made up of four dis-
tinct general strategies: patrolling the perimeter, maintaining
spatial situation awareness, listening for the alarm, and re-
sponding to the alarm. To patrol the perimeter, the model
uses the localization information obtained from ACT-R/E
personal buffer, retrieves from memory the next waypoint
for the current location, and then issues a command to the
moval module to go to that point. To maintain spatial situa-
tion awareness during the patrolling task, the robot period-
ically locates its teammate, and updates its cognitive map.
The spatial module continuously maintains the robot’s own
location automatically, but updates to the location of the
teammate in the cognitive map are made only in response
to explicit requests in productions and are based on visual
information. While patrolling, ACT-R/E continuously mon-
itors the aural buffer for the alarm event and, in response to
an alarm detection, it initiates the alarm response strategy.
The response strategy involves the robot choosing which se-
curity station to “man,” retrieving its location from declara-
tive memory, and issuing a command to the moval module to
navigate to the recalled location. If the robot later detects its
human teammate in the same guard station (a “conflict”), as
part of the response strategy, it proceeds to the other guard
station to complete the task. The conflict detection is based
solely on short-range vision, but could have been designed
to involve any form of perception or explicit communica-
tion.

We use the following two strategies for choosing which
station to go based on the model diagram shown in Fig. 2:

(1) Individual strategy. An agent determines the station
closest to its own position and goes there.
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(2) Socially-aware (collaborative) strategy. An agent pre-
dicts its teammate’s choice of destination and goes to
the other station to avoid conflicts.

Both strategies are part of the robot’s cognitive model and
just like in the perspective-taking scenario, the robot cre-
ates and reasons about the hypothetical representation of the
world with the position of the agents switched to determine
its team member’s destination. Once the robot concludes the
simulation, it selects the other destination to avoid the con-
flict. The effect is that the robotic agent yields to what it
believes will be the human’s choice.

5.3 TeamBot Performance

We ran our ACT-R/E system both on a physical robot in
our lab and in a desktop simulator to get performance data.
In all runs, prior to the alarm, the robot kept track of the
whereabouts of its teammate by periodically looking at the
teammate every 10–15 seconds. This was indicated by a
movement of the face shown on the robot’s LCD monitor
to turn and look at (attend to) the teammate. When the alarm
sounded, the robot would respond using either the individual
or the collaborative strategy depending on what was being
tested.

5.3.1 The No Teamwork Case

The default case is that both the robot and human guards op-
erate independently, i.e., both follow the individual strategy,
and each would go to their closest guard station. In this case,
their decision-making often results in both of them going to
the same guard station, depending on the spatial situation at
the time of the alarm.

Figure 5 is a trace of the locations of the human and robot
during a run with each operating independently. The human
began the run in the top of the diagram and the letters in-
dicate the sequence of locations moving to the left: a, b, c,
etc. The robot started at the bottom moving to the right. Both
patrolled by moving counter-clockwise near the outer edges
of the warehouse. At step “p” the alarm occurred and both
started moving toward guard station #1 because it was clos-
est to each of them at the time of the alarm. At time “u,”
the robot detected the conflict and started toward station #2.
The conflict delayed completion of the alarm response task
so that it ended at step “z.”

5.3.2 The Teamwork Case

A trace of the second case is shown in Fig. 6. When the
alarm occurred, the robot evaluated what the human would
do by using a “like-me” simulation of the human’s decision-
making. It placed itself in the human’s position and then
used the same knowledge it would use to decide where to go,

Fig. 5 Track of the human (starting at top) and the robot (starting
at the bottom) “manning” two guard stations (numbered squares) with
a conflict. Both began at their respective “a” locations and patrolled
counter-clockwise until the alarm occurred at “p.” Then both moved
toward guard station #1 until, at step “u,” the robot detects the conflict
and goes to station #2

i.e., to the closest. Then knowing where the human would
go, it immediately started toward the other guard station,
thereby avoiding the conflict of both going to the same sta-
tion. In this run, the team completed its task at step “x.”

A series of desktop simulations of the scenario were run
varying the starting positions of the robot and its human
teammate along the top and bottom of the patrol area and
with the human always going to the closest station, to put
the human in the safest place and expose the robot to po-
tential risk. The runs demonstrated that the performance
with the robot simulating the decision-making of its human
teammate was significantly faster in achieving the goal of
“manning” both guard stations after the alarm. Specifically,
with 25 simulated runs each, when the robot simulated the
decision-making of its teammate, it took 3.28 fewer steps
than the system that did not, t (27.7) = 8.1492, p < .001
with the Welch correction for unequal variances. Experi-
mental results are reported using desktop simulations and
the actual robot’s behavior was very similar.

We also ran the same cognitive model on the iRobot
B21r in our laboratory and demonstrated the successful em-
bodiment of the system. A video of each case is avail-
able on our public website (www.nrl.navy.mil/aic/iss/aas/
CognitiveRobots.php).

http://www.nrl.navy.mil/aic/iss/aas/CognitiveRobots.php
http://www.nrl.navy.mil/aic/iss/aas/CognitiveRobots.php
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Fig. 6 Track of the human (starting at top) and the robot (starting
at the bottom) avoiding a conflict by simulating the human’s deci-
sion-making. Both began at their respective “a” locations and patrolled
counter-clockwise until the alarm occurred at “p”. The robot then, in
accordance with the shared plan, determined where the human would
go by simulating the human’s decision-making using its own knowl-
edge and therefore immediately started toward the other station

5.4 Discussion

The “like-me” simulation of a teammate within an embod-
ied cognitive model facilitated the teamwork aspect of so-
cial robotics. Our robot reasoned about its teammate based
on its own understanding of the situation and projected the
decision-making of the human based on its own processes
for appropriate teamwork behavior. The performance of the
robot demonstrated that integrating a “like-me” simulation
into a cognitive model can result in improved team perfor-
mance.

The differences between the two test cases in the ware-
house scenario are, of course, sensitive to the distances be-
tween the guard stations. We did not exhaustively test al-
ternate configurations. In a more advanced scenario, com-
munication between the team members or longer range de-
tection of conflicts could reduce the difference between the
two cases examined although in many teamwork situation,
teammates do not communicate frequently (i.e., covert mil-
itary operations).

While this model of teamwork allows us to demonstrate
the concept and the implementation of the “like-me” simula-
tion of the human teammate, it should be noted that the capa-
bility is more general than shown. Many other strategies can

be accommodated because the agent’s simulation is capable
of applying to the simulated agent decision-making simula-
tion any strategy the agent is capable of. For example, if the
host is able to apply a game theoretic approach to the situ-
ation, it can simulate the other agent having that capability
and act accordingly. However, there is a caution applicable
here concerning Russell’s Paradox [59], i.e., the difficulty
of allowing a set to have itself as member. We must deal
with the possibility that one of the strategies the other agent
could have is to simulate the original agent, which could
result in an infinite recursive loop. Similar to Russell’s reso-
lution of paradox, we did not allow this to occur by restrict-
ing the strategies that can be simulated to those that do not
involve simulation. Additionally, the same simulation capa-
bility could be used to implement the cognitive equivalent
to the minimax algorithm with total distance traveled by the
team as the cost function, or any other strategy. The point
of this discussion is that the simulation capability allows an
agent to predict the reasoning of another agent based on its
own capabilities and that is a very powerful mechanism. Al-
though the teamwork model implicitly considered the social
standing of team members, i.e., the robot yielded to the hu-
man, the next example addresses behavior of primates where
social dominance drives the behavior to be modeled.

6 Cognitive Simulation to Model Social Dominance
Behavior

Not long ago, a debate developed within the animal cogni-
tion community over whether chimpanzees are capable of
perspective taking when competing for food in social situ-
ations. The debate was primarily centered on data and in-
terpretations from two laboratories. Before the debate, most
researchers agreed that chimpanzees had no perspective tak-
ing ability [41, 53].

However, in 2000, Hare et al. [22] suggested, based on
their experiments, that chimpanzees do know what others
can and can not see. Two years later, another laboratory re-
ported that chimpanzees do not understand what others can
and can not see, but use a variety of competitive strategies
in social settings with competition for food [25]. This later
study failed to replicate the results of the previous work.
Five years after that and the most recently published work
in this area [6], reasserted that chimpanzees really do have
some perspective taking capabilities. The authors of the lat-
est study observed that the size of the test area significantly
affects the behavior of the chimpanzees and that they could
explain why the intervening study failed to reproduce their
results because it had used a significantly smaller test area.

We set out to model this social behavior using a cognitive
model using a “like-me” simulation on our robot and focus-
ing on only the relative social standing and spatial distances
involved, not perspective taking or gaze following capabili-
ties.
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6.1 Social Dominance Task

Using different combinations of pairs of chimpanzees with
known social dominance rankings, Bräuer et al. [6] reported
the subordinate’s behavior for food placed in two differ-
ent locations which they hypothesized resulted in different
“competitive intensities.” The food was either placed in a
“less competitive location” that was closer to the submissive
or in a “competitive location” that was closer to the domi-
nant. Additionally, the food was either hidden from the dom-
inant behind an occlusion or visible to both chimpanzees. In
the less competitive situation, they reported that the subor-
dinate chimpanzee was able to reach the food quickly and
chose the hidden or the visible food with equal likelihood
(i.e., it did not take what the dominant could see into ac-
count). In the more competitive situation, the explanation
was that the subordinate needed to take more time to get to
the food and therefore went for the food that was hidden
from the dominant more often than the food that was vis-
ible to the dominant. These results suggest that in the less
competitive situation, the subordinate used a “grab and go”
strategy because the dominant was less likely to be able to
get to the food before the submissive, but in the more com-
petitive situation, the submissive had to take what the dom-
inant saw into account. In this experimental setup, the sub-
ordinate chimpanzee preferred to reach for the food hidden
from the dominate chimpanzee. Note there was always a po-
tential “cost” to the subordinate chimpanzee of getting too
close to the dominant chimpanzee: physical punishment by
the dominant. Also, note that dominant/submissive relations
change depending on the pairs involved. We also assume
that all chimpanzees have had experience as both a subordi-
nate and dominant.

We endeavored to accurately replicate the scenarios and
the effect of size of the test area reported by Bräuer et al.;
however, we used a robot and a person as substitutes for
the submissive and dominant chimpanzees. A diagram of the
spatial layout of the two physical arrangements is provided
in Fig. 7. The key features of the experimental setup were the
fixed initial distance between the two chimpanzees, the rel-
ative distances of the food to each chimpanzee, and whether
the food was observable by both chimpanzees or only the
subordinate. Our system determined visibility based on spa-
tial locations in the cognitive map, not based on geometric
calculation of the line-of-sight for the agents, i.e., whether
the food or a visually obstructing box was closer to the
chimpanzee in question.

6.2 Cognitive Modeling Approach to Social Dominance

Our cognitive modeling of social dominance uses the same
strategy selection approach as the previously discussed
model of perspective taking (see Fig. 2). To decide what

Fig. 7 Physical layout for social competition for food task

the robot acting as a subordinate would do, there were again
three stages of learned behavior. First, if there are existing
productions for the specific situation, they provide the re-
sponse. If no productions are available, the model attempts
to recall a previous decision for the same situation. If the re-
trieval is successful, the previous decision is applied. Failing
that, the model uses a “like-me” simulation to decide what
action to take.

The “like-me” simulation for this scenario is based on
all chimpanzees having had experience as the dominant (the
“individual” strategy) and that knowledge is used to inform
the strategy as a subordinate (the “socially-aware” strategy).
We started with creating procedural knowledge for what a
dominant chimpanzee would do in various situations. The
productions implement the “individual” strategy with the ro-
bot acting as a dominant chimpanzee and reaching for any
observable, nearby food, or, if the food was not nearby or
was not visible, ignoring the food, i.e., simply resting.

With the strategy for what to do as the dominant, the
cognitive model for a subordinate chimpanzee includes the
“socially-aware” strategy, which uses the “individual” strat-
egy to determine what the dominant would do for the current
situation using a “like-me” simulation. The first step is imag-
ining being in the other chimpanzee’s physical location and
creating the goal to decide what action to take. The produc-
tions for dominant’s “individual” strategy then fire to decide
what the dominant chimpanzee would do based on the spa-
tial information concerning the nearness and visibility of the
food resulting from being in the dominant’s location. With
the determination of what the chimpanzee would do in the
dominant’s position, the model’s “social-aware” strategy for
the subordinate decides what it will do, either get the food
or avoid conflict. It would not attempt to get any food that
the dominant would reach for.

Tests of the system were conducted varying three factors.
First was the position of the food relative to the two chim-
panzees, i.e., closer to the dominant or closer to the subor-
dinate chimpanzee. The second variation was whether the
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dominant chimpanzee could see the food or only the subor-
dinate chimpanzee could see it. Finally, we varied whether
the robot was acting as the dominant or subordinate chim-
panzee in the scenario. These factors supported running all
variations of the cognitive model.

6.3 Social Dominance Results

Using the range of tests, we were able to replicate the basic
results of the latest study [6] in a desktop simulated envi-
ronment and on the physical robot in our lab. Acting as a
dominant chimpanzee, the robot approached any visible and
close food. As the subordinate chimpanzee, the robot pref-
erentially selected the food that is hidden from the domi-
nant chimpanzee when the food was closer to the dominant
chimpanzee. It also went toward either the observable or the
hidden food when it was closer when playing the subordi-
nate chimpanzee as the real chimpanzees do. Videos demon-
strating these behaviors are available on our public website,
http://www.nrl.navy.mil/aic/iss/aas/CognitiveRobots.php.

6.4 Social Dominance Discussion

This scenario demonstrated several aspects of social robot-
ics. First is perception, i.e., the ability to recognize another
chimpanzee as another intelligent agent. The second aspect
is the ability to perform spatial reasoning, which is used here
to determine which chimpanzee is closer to the observable
food. Finally, the scenario demonstrates the model’s ability
to predict the other’s behavior in this social situation by us-
ing “like-me” mental simulation.

In the debate concerning whether chimpanzees know
what another chimpanzee can see, our model can contribute
to the discussion. In this case, a “like-me” simulation based
on a chimpanzee’s spatial reasoning capability, can explain
the observed data. Besides being able to reason about which
objects are closer to a chimpanzee in either the dominant’s
or subordinate’s location, this model suggests that chim-
panzees seem to understand that not everything they know is
also known by the other. In setting up the simulation, besides
swapping locations, we had to exclude from the simulated
dominant’s knowledge the location of hidden food, which
the subordinate knew to allow the subordinate to decide to
get that food. This modification of a simple, fully aware The-
ory of Mind was necessary get the model to match the data.

7 Cognitive Plausibility of “Like-Me” Simulation
within ACT-R

The cognitive plausibility of a “like-me” simulation rests
on its implementation, capabilities, and results. If the im-
plementation included capabilities humans do not normally

possess, there would be no possibility of the model’s per-
formance matching human performance data and the im-
plementation would therefore not be considered cognitively
plausible. The “like-me” simulation capability in humans
has been seen in infants and was hypothesized to be an in-
herent capability [17, 33, 34].

The claim of the cognitive plausibility of using men-
tal simulation to facilitate social robotics is based on sev-
eral factors. First, the ACT-R architecture has a long his-
tory of successfully supporting models that compare well
with both human cognitive functionality and psychological
process data on a broad range of tasks, from basic prob-
lem solving and learning [1] to modeling car drivers [44].
Second, through the development of ACT-R/E, we have em-
bodied ACT-R in the real world maintaining the theoretical
precepts of the ACT-R theory. By building ACT-R/E inter-
faces to the external world using buffers and modules in a
scientifically-principled way and consistently with the rest
of the ACT-R family of theories, the ACT-R/E system is a
highly coherent, integrated, and more cognitively plausible
robotic architecture. Third, and most important, we believe
our implementation of a general simulation capability based
on ACT-R is justified because it maintains the core ACT-R
theoretical precepts including serial production firing.

8 Conclusions

A “like-me” simulation is an approach to implementing a
Theory of Mind and is a general but weak method for solv-
ing problems in social robotics. We have discussed the “like-
me” mental simulation as a successful problem-solving ap-
proach, its implementation on a physical robot, its cognitive
plausibility, and its demonstration in three areas of social
robotics. It works by simulating the decision-making of an-
other agent based on assuming the other agent has the same
capabilities. We discussed the embodiment of the computa-
tional cognitive architecture ACT-R on a robot (ACT-R/E) in
which we extended the capabilities of ACT-R to work in an
embodied context while maintaining the design features that
provide ACT-R its cognitive plausibility. Three uses of the
“like-me” simulation approach in social robotics domains
were presented: perspective taking, teamwork, and social
dominance along with discussions of how well the model
matched human and chimpanzee data, where available. Fi-
nally, the cognitive plausibility of this overall approach to
social robotics was discussed.

The effort to model the perspective-taking problem of
left-right determination was used as a proof of concept for
a “like-me” simulation approach. We showed that a cogni-
tive model that understands its left from its right and has
the sensors to know the location and orientation of another
agent can imagine itself in the other’s position and then use

http://www.nrl.navy.mil/aic/iss/aas/CognitiveRobots.php
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its own knowledge to determine the other’s left from right.
Using ACT-R’s built-in memory and learning mechanisms,
the model used simulation to solve the left-right problem in
three stages: simulation, recall, and the use of compiled pro-
ductions. The result of the spatial problem solving using the
“like-me” simulation was saved in an instance-based repre-
sentation for later recall and use. Over time, these instance-
based representations were compiled into fast and computa-
tionally efficient representation (compiled productions) that
solved the problem. The performance times for the different
stages of problem solving, namely simulation, recall, and
the use of compiled productions, compared well with ex-
perimental data on the performance of humans in different
age ranges. This match of the model to human data at both
a functional performance and reaction time level demon-
strated the feasibility and cognitive plausibility of the “like-
me” simulation approach for this simple problem domain.

The teamwork example applied the “like-me” simula-
tion approach to a more complex, cooperative, social do-
main. Previous research suggested that a model of a com-
petent team member needed to include an understanding of
the capabilities of its teammate, i.e., having a shared mental
model. Using a “like-me” simulation, our robot was able to
predict the decision-making and future behavior of its team-
mate and act accordingly. The result saved time and steps
and improved the performance of the team. This result added
further support for the efficiency of simulation in an embod-
ied context for social robotics.

The model of social dominance addressed reported re-
sults describing the competitive social behavior of chim-
panzees. The model used its own productions for dominant
behavior and the ability to apply the “like-me” simulation to
determine how to behave as a subordinate. It did not need
explicit productions for the behavior of a subordinate chim-
panzee, only productions for the dominant’s behavior and
how to use that information to decide what to do as the
subordinate. The “like-me” simulation of a dominant chim-
panzee combined with filtered context information data pro-
vided the information necessary for the behavior of the mod-
eled subordinate chimpanzees to match the behavior of the
actual chimpanzees.

We acknowledge that the scenarios discussed could be
more efficiently solved with specialized algorithms. How-
ever, there are problems with the use of specialized systems
in the areas of re-usability, organization into an architec-
ture, and scalability. Concerning re-usability, the restricted
applicability of specialized algorithms leads to the need for
many such algorithms to cover the range necessary for so-
cial robotics. The use of specialized algorithms, which are
frequently incompatible, leads to their ad hoc organization
into a robotic architecture. Finally, specialized algorithms
do not scale well because of difficulties in how specialized
algorithms are combined and integrated with other such sys-
tems.

We believe cognitive science has answers to these prob-
lems. Simulation addresses re-usability by re-using the
agent’s own knowledge to predict the behavior of the other
agent without explicitly modeling the behavior of the other
agent with specialized code. More broadly, models of in-
dividual behavior can be extended to model socially aware
behavior by adding appropriate transformations and a “like-
me” simulation capability. Instead of many specialized so-
lutions organized in an ad hoc manner, mental simulation is
implemented cleanly within the ACT-R/E cognitive archi-
tecture and is cognitively plausible based on using an archi-
tecture that has successfully matched human performance
in a wide range of domains. Simulation is also a general
mechanism in that anything the agent can do, it can model
in another agent. Finally, with simulation integrated as part
of a general strategy, the strategies based on simulation are
already processed like other strategies in the cognitive ar-
chitecture.

In this work, we explored the use of “like-me” simula-
tion to achieve the functionality necessary for social robot-
ics. This technique allows us to model/simulate anything the
robot can do itself. As we build more models, we will natu-
rally get more capabilities. These are just the beginning ca-
pabilities. Scaling up to tasks for which the robot’s model
does not currently do, should be feasible using first princi-
ples and general knowledge.

From this work, we draw several conclusions. We have
shown that ACT-R can perform “like-me” simulations, pre-
serving ACT-R’s cognitive plausibility, as an effective ap-
proach to a Theory of Mind. Through the three examples,
we have shown that “like-me” simulations can provide spa-
tial perspective-taking functionality, contribute to teamwork
modeling, and model social dominance behavior. The mod-
els of perspective-taking and chimpanzee social dominance
were comparable to the experimental data and provided sup-
port for a theoretical basis based on a “like-me” simulation
and spatial reasoning. Therefore, we suggest that “like-me”
simulation in a cognitively-plausible architecture provides
an effectively functional and cognitively plausible basis for
social robotics.

9 Future Work

There are several avenues of future work based on the re-
search described here. First, we plan to explore relaxing the
“like-me” simulation assumption to allow minor modifica-
tions to the “like-me” capabilities. Our “like-me” simulation
used the same rules under different situations. We would like
to expand the use of rules to model slightly different capa-
bilities, such as being able to move faster, see farther, and
the like. Such changes would affect the teamwork simula-
tion. Second, it would be nice to be able to use a “like-me”
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simulation for capabilities that are very different than the
subject agent, i.e., to be able to simulate what the agent can
not actually do, but could imagine, such as flying. Third,
we will explore other explanations for the social dominance
behavior observed in non-human primates. This work is al-
ready underway. Finally, we would like to explore simulat-
ing or modeling other agents’ potential behavior as it re-
lates to decision-making for task assignments within a team,
specifically, to be able to best assign tasks based on agents’
different capabilities to optimize the team’s performance.
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