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1 SUMMARY 

 Virtualization technology has been around since the late 1960’s. Initially, it was 

conceived to maximize utilization of expensive hardware by running multiple instances of an 

operating system (OS) using virtual machines (VM). In the last decade, virtualization has 

become popular due to its cost and space saving advantages.  

For efficient virtualization, two key features must be supported by the underlying 

hardware. Firstly, it should support isolation of VMs from one another. Secondly, it should 

support a virtual input/output (I/O) system. Most mainframe computer architectures traditionally 

provide hardware support for virtualization. Conversely, most personal computers are based on 

the x86 architecture, which does not provide hardware support for virtualization. Recently, 

major x86 Central Processing Unit (CPU) manufacturers have added limited hardware support 

for isolation while relying on software emulated virtual I/O subsystems. Thus, current 

virtualization architectures are not able to provide the high level of assurance and performance 

needed for mission critical applications. Moreover, several performance and security issues have 

been identified in current software-based virtualization architectures for x86 architectures. 

These security and performance issues arise from the fact that the current virtualization 

architecture depends on a central VM0 to provide critical I/O services. The High Assurance 

Virtualization ENgine (HAVEN) architecture removes critical functionality from the central 

VM0 and moves it into a secure Field Programmable Gate Array (FPGA) based virtualization 

engine. This forms virtualized hardware, which provides a key security design principle 

commonly referred to as compartmentalization. 

 The goal of the HAVEN was to create a FPGA-based virtualization engine that addresses 

the reliability, performance and security limitations of current software-based virtualization 

technologies (Xen, in the current implementation). When inserted into commodity desktop 

computing platforms, HAVEN assumes many of today's hypervisor-functions, adding security 

and functionality. 

At the core of HAVEN architecture is a new virtual I/O subsystem for I/O device  

isolation and memory subsystem to protect a virtual machine’s memory from the host operating 

system. Both subsystems are implemented on FPGA development platforms.  
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I/O virtualization addresses the specific issue of how software-based virtualization 

solutions share the I/O resources. In Xen, each guest operating system is assigned a software 

emulated virtual I/O device that is separate from all other guests. However, on the host side, the 

memory space allocated to emulated I/O devices and the data buffers on the physical I/O device 

are actually shared among all guest virtual machines. HAVEN implements the hardware assisted 

virtual I/O device such that each guest machine is allocated its own memory and buffers, 

minimizing the possibility of cross-contamination of data between guest VMs. HAVEN's virtual 

I/O manager exports multiple Peripheral Component Interconnect (PCI) configuration registers 

to the system to create virtual I/O devices.  

The memory isolation block contains mechanisms to fully encrypt (using separate keys) 

the memory spaces of individual guest operating system instances with the associated key-

management infrastructure that supports hibernation of virtual machines.  
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2 INTRODUCTION 

 Virtualization consolidates underutilized servers and workstations while maintaining 

isolation. For software developers, virtualization provides an environment to develop, test, and 

debug system software such as kernel and device drivers. Traditionally, separate computers were 

required to develop and test system software. Virtualization also allows developers to test the 

reliability of an application by simulating hardware bottlenecks and failures. In theory [1], it is 

possible to create isolated VMs to test untrustworthy applications without exposing trusted 

applications along with critical data [2].  Finally, VMs may also be used to trap malicious users 

and observe their activities [3].  

2.1 Virtualization Architectures and Limitations 

There are many definitions for a VM. Popek [1] defines a VM as an efficient, isolated 
duplicate of the real machine. Goldberg [4] defines it as a hardware-software duplicate of a real 
computer system in which a statistically dominant subset of the virtual processor’s instructions 
execute on the host processor in native mode. Most computers today are based on the x86 
architecture developed by IBM. Unlike mainframe computers that were designed for large scale 
commercial purposes, x86-based computers were primarily designed to be cost effective and 
hence did not support virtualization. Although several software-based virtualization techniques 
were subsequently developed, they entail significant performance penalties.  Irvine discusses the 
poor performance of software-based virtualization in his analysis of the Intel Pentium’s ability 
to support a secure virtual machine monitor [2].  Recently, x86 architectures have evolved to 
support virtualization.  

Figure 1 is a high level diagram of the interactions in the current virtualization architecture.  
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Figure 1: Current x86 Virtualization Architecture 

 Major x86 processor manufacturers, such as AMD [5], [6] and Intel [7], [8] have 

developed proprietary virtualization techniques. The Virtual Machine Monitor (VMM) is the 

heart of the virtualization architecture. The VMM, which is a thin software layer between the 

VMs and real hardware, manages the VMs and the resources. The VMM abstracts all resources 

and exports a virtual copy to the VMs. In current architectures, the VMM only exports a virtual 

copy of the system’s CPU and allocates memory to the VMs. Furthermore, the VMM does not 

provide virtual I/O. VM0 is a special VM that is trusted by the VMM. It emulates I/O and 

services I/O requests from all the VMs. VM0 also serves as a management console for the 

administrative users to create, modify and destroy VMs. The VMM accepts administrative 

commands only from VM0. Finally, VM1-VMn are general purpose VMs. These VMs use 

generic I/O drivers as they are supported by most operating systems. All I/O requests are trapped 

and redirected to VM0, by the VMM. 
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 Several performance and security issues have been identified in this virtualization 

architecture [9], [10], [11], [12]. These issues arise from the fact that the current virtualization 

architecture depends on VM0 to provide critical I/O services.  

Following is a summary of key security and performance issues:  

• A VM implicitly trusts its host environment. If the host is compromised or is malicious, 

modifications to a VM’s memory or its I/O communication channels can neither be 

detected nor avoided.  

o Ormandy [10] demonstrated several flaws in I/O emulation software used by 

popular VMM vendors. According to a recent bug report published by 

Secunia.com, an adversary could gain root privileges in VM0 by exploiting buffer 

overflow vulnerabilities in I/O emulation software [12].  

• Since memory is shared by all VMs, allocation and de-allocation of memory can leak 

sensitive information. 

o The current architecture does not protect against information leakage in the event 

of failure. For example, VMMs in Xen [13], [14] and other virtualization 

platforms allow a VM to be suspended and resumed later. The memory and 

processor states of a suspended VM are stored in the VM0 file system. This allows 

an adversary, who controls VM0, to easily extract/modify sensitive information 

from any VM without being detected.  

All VMs depend on a single controller called VM0 for critical I/O services. A compromised 

VM0 could either result in denial of service, loss of sensitive information or system 

compromise. Similarly, a compromised VM (not the privileged VM0) could result in denial of 

service as all VMs share common I/O channels.   
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• Frequent context switching between VM’s degrades system performance.  

o When a VM is scheduled out, its virtual processor state is stored in a large data 

structure (about 4K). Karger [9] shows that this could cause a serious performance 

problem if VM’s frequently switched the 4K of state information back and forth. 

Since the current architecture depends on a virtual machine (VM0) for I/O 

services, it has to be scheduled in and out frequently.  

• The I/O throughput is constrained by the processing capacity of VM0.   

2.2 Project Outcomes 

 We prototyped HAVEN using FPGA based secure co-processing to address the 

limitations of current virtualization technologies. Specifically, HAVEN:  

• Increased reliability via a hardware-assisted virtual I/O subsystem for each VM.  

• Improved performance by minimizing context switches back to the controller VM0 and 

by using a hardware virtual I/O manager.  

• Improved security by protecting storage and communication channels using FPGA-

assisted encryption and authentication. 

The high assurance virtualization platform will enable: 

• Use of virtualization in mission critical and high assurance applications.  

• High assurance/high performance computing platform that provides application level 

compartmentalization.  

Development of a high assurance Virtual Machine Monitor (VMM) with a micro-kernel 

implemented in hardware.  
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2.3 Vulnerabilities that HAVEN Targets and their Solutions 

The HAVEN engine targets two key security vulnerabilities. 

1. VM0 (Domain 0) manages virtualization of all I/O subsystems and is the single point of 

failure. An attacker that takes control of VM0 can covertly observe on other VM 

activities and launch man-in-the-middle attacks. Furthermore, since VM0 schedules in 

and out, it impacts overall system performance. 

2. The memory states of all VMs are accessible to all VMs. When a VM is scheduled out, a 

4K size state is stored in VM0’s memory space. The state of a VM can be accessed 

directly by VM0 or indirectly by other VMs. 

The memory isolation block deals with the first vulnerability. It contains mechanisms to fully 

encrypt (using separate keys) the memory spaces of individual guest operating system instances 

with the associated key-management infrastructure. The keys used to encrypt the memory 

spaces are neither available to the host nor the guest operating systems, thwarting man-in-the-

middle attacks. Furthermore, when a VM is scheduled out, its 4K size state will contain the 

encrypted text. Additionally, hardware assisted virtual I/O devices will reduce the need to 

schedule VM0, improving overall system performace and minimizing the possibility of cross-

contamination of data between guest VMs. 
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3 High Assurance Virtualization ENgine (HAVEN) 

 We designed an architecture that improves overall performance, reliability and security in 

virtualization. Sailer et al [14] identified important goals a medium assurance VMM should 

meet. These include strong isolation, controlled sharing, integrity, accountability and secure 

services. Our architecture, HAVEN, depicted in Figure 2, is designed with these goals in mind.  

 
Figure 2: Proposed HAVEN Virtualization Support for x86 Architectures 

3.1 Overview of HAVEN components and subcomponents 

Figure 3 shows the HAVEN components and their association with a commodity computer 

architecture. A commodity computer mainly consists of the CPU, the north bridge and the south 

bridge. The north bridge is the primary communication hub in a commodity computer and the 

south bridge provides connectivity to in built I/O devices. The north bridge communicates with 

the CPU and passes on the I/O and memory requests to and from the CPU to the PCI/PCIe bus 

and main memory. Different components hang off the PCI/PCIe bus. The south bridge also 

attached to the north bridge throught the PCIe bus, which communitcates with the different I/O 

components as shown in Figure 3. 
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The HAVEN architecture consists of Secure I/O Manager (SIM) and Secure Memory Manager 

(SMM). The SMM is connected to a RAM chip which is used as the system memory. It is the 

primary memory of the HAVEN architecture. Traditionally, the RAM on the right side of the 

north bridge is the primary memory. However, in the HAVEN architecture it is used only during 

the boot up cycle. Once the system boots up, all memory transcations go over the PCIe bus to 

the SMM. The SMM manages the encryption and decryption of the data. 

The SIM is prototyped for the a network interface card(NIC). The NIC is traditionally connected 

to the south bridge. However, the SIM is connected directly to the north bridge via the PCI bus. 

To understand the HAVEN architecture in more detail lets go over the various steps a 

commodity computer goes through at boot up time as shown in Figure 3. 

 
Figure 3: Layout of a Commodity Computer including HAVEN Components 

1) The CPU exits the reset state and executes the BIOS from the EEPROM. The BIOS 

initializes the North Bridge and Main Memory and copies itself into the Main memory. 

2)  The BIOS starts to execute from Main memory and initializes the South Bridge and I/O 

devices connected to South Bridge. 
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3) The BIOS executes the OS loader from the hard drive. The OS loader load XEN VMM into 

the main memory. 

4)  XEN's VMM initializes the PCIe and PCI devices, including SMM and SIM, connected to 

the north bridge and loads VM0's kernel image into main memory and executes it. 

5)  VM0 scans SIM for virtual I/O devices and allocates them to guest VM's 

6) Xen's VMM uses memory behind SMM for VM's created by VM0.  

Figure 4 shows the HAVEN components assembled with a commodity computer motherboard. 

 
Figure 4: HAVEN Components Assembled with a Commodity Computer Motherboard 

3.2 Secure Virtual I/O Manager (SIM) 

I/O virtualization provides a separate virtual device for each running VM. Virtualizing an 

I/O device essentially translates into the problem of scheduling a resource between multiple 

VMs. This requires multiplexing, de-multiplexing, and scheduling the resources. In addition, 

requests and data for individual VMs are buffered when the physical I/O device is servicing 

another request. 

As far as the CPU is concerned, virtualizing an I/O device means that the CPU should be 

able to detect multiple I/O devices of the same type on the PCI bus during boot up. For example, 

if there is a single physical ethernet network interface card (NIC), the CPU should be able to see 

multiple NICs when the machine boots up. This requires that both the PCI bus as well as the 

NICs (and I/O devices in general) be virtualized.  
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3.2.1 Virtualizing the PCI Bus 

PCI is an interface bus protocol that connects I/O devices with the CPU. It is a 

synchronized bus running on either a 33 MHz or a 66 MHz clock. In this prototype, we support 

the 33 MHz clock. To understand the PCI bus protocol, let us look at the different PCI bus 

signals: 

• CLK (Input) provides timing reference for all signals and data transfers.  

• RSTn (Input) is an active low asynchronous reset signal. 

• AD[31:0] (Bidirectional) is a 32-bit multiplexed bus. This bus is used as an address bus at 

the start of a PCI transaction (address phase), and it contains the address of the target 

devices. All other times it is used as a data bus. 

• CBE[3:0] (Input) is a 4-bit multiplexed bus. During the address phase CBE is used as 

command bus and all other times it used as byte enable. 

• FRAMEn (Input) is an active low signal asserted to indicate the start of a new transaction. 

The clock cycle following FRAMEn is the address phase. 

• IRDYn (Input) is an active low signal asserted to indicate that the master is ready to accept 

data or has driven valid data into the AD bus. 

• TRDYn (Output) is an active low signal asserted by the target to indicate that it has either 

latched the data in the AD bus (for write transaction) or has driven valid data into the AD 

bus (for read transactions). 

• DEVSELn (Output) is an active low signal asserted by the target device to indicate that it 

intends to claim the current transaction. 

Typical PCI bus transactions involve a master and a target. The master initiates the 

transaction, and the target replies to the request. Common types of transactions are I/O read and 

write (0x2 and 0x3), memory read and write (0x6 and 0x7), and configuration read and write 

(0xA and 0xB). The sequence and control flow is identical to all transactions with the only 

difference being the command data. For readability purposes, “0x” is affixed in the front of all 

hexadecimal values and “b” appended to binary values throughout this report.  
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Figure 5: Memory Read Transaction 

Figure 5 illustrates a Memory Read transaction. The transaction begins when the master 

asserts (set to low) FRAMEn (A). This drives target address onto the AD bus (C), and the 

command to be executed onto the CBE bus (G). In the case of a memory read, the command 

data value on the CBE bus is set to “0x6.” At the end of the first clock cycle, the master asserts 

IRDYn (B) to indicate its readiness to accept data. The data on the CBE bus (H) is then changed 

to indicate the “byte enable” data the master is expecting. The value indicates which of the four 

bytes of the AD bus the master expects to read. The data on the CBE bus represents a negative 

mask of the data expected. Therefore, the value “0011b” at (H) indicates that the master will 

read the two high order bytes (16-bits) from the AD bus.  

During the address phase, the target device latches the contents of the AD and CBE 

buses. The latched address is compared with the base address registers and if they match, the 

device asserts DEVSELn (D) and proceeds to execute the command latched during the address 

phase. The latched AD bus indicates what memory address to read. Once the read operation is 

complete, the target asserts TRDYn (E). 
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Putting this all together, a read (command 0x6 on CBE) from memory address 

0xFF9EFC0C is requested (asserting FRAMEn) by the master at time X. At time X+1, the 

master states its readiness to accept  (asserting IRDYn) the highest two bytes of data (0011b on 

CBE). Right afterwards, the target device saves the address (value on AD) and byte mask (value 

on CBE) and compares the saved address value with the base address register. Since they match, 

the target claims the current transaction by asserting DEVSELn at time X+2. It then performs 

the requested read and writes the data value (0xE401E401) onto the AD bus. Once it has 

completed the read, it asserts TRDYn (time X+6.)  

3.2.2 Virtualizing a PCI Device 

The previous section presented a view of the PCI bus protocol, but there is still a need to 

virtualize a PCI device controller, such that the CPU will recognize it. The PCI architecture 

supports two ways in which different configurations can share a single physical PCI connector: 

PCI Multi-Function Device and PCI-to-PCI Bridge. The PCI Multi-Function Device 

specification allows a single PCI device to host up to eight (8) different functions. Examples of 

this would be a Multi-Function card with a parallel port, USB port, and serial port. From the 

software point-of-view, a Multi-Function device presents each function as if it were a 

completely separate PCI device. 

 
Figure 6: Configuration Header 
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Every PCI device maintains the configuration header shown in Figure 6. The 

configuration header is used to manage the device and establish the memory and I/O address 

space for the device. Many of the fields in the configuration header are static and do not change 

once set by the vendor. It is the configuration header which is used to differentiate the functions 

within the PCI card and establishes the I/O access to a specific function on the PCI card. 

To virtualize the PCI controller, we used the multi-function device feature and 

maintained a virtual configuration header for each virtualized function. The virtual configuration 

headers were then multiplexed on the FPGA in order to give the appearance of separate physical 

devices.  

3.2.3 Implementation of Virtual PCI Conroller 

By maintaining separate configuration headers for each virtual device on a device, we 

can multiplex the physical I/O into separate virtual devices. The virtual configuration headers 

will be used to manage the state of the virtual devices and access to the virtual devices as though 

they are physically distinct.  

 
Figure 7: High Level PCI Virtualization Architecture 
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Figure 7 is the high level PCI virtualization architecture. Information such as the base 

addresses are set at boot time by the OS and are exclusive to the device. Since we are 

virtualizing the PCI controller by constructing multiple configuration headers for a single I/O 

device, the address space is limited to eight devices. Although the second option does not suffer 

from this limitation, the underlying architecture is more complicated and will be investigated in 

the future. 

The virtual PCI core was implemented and tested on an AVNET Spartan-2 FPGA 

development board. Xilinx ChipScope was used to verify the correct operation. 

  

 
Figure 8: PCI Device Configuration Read 

Figure 8 shows the reading of configuration headers of virtualized PCI devices. The 

virtual device number for a transaction is shown as FUNC NUM. The PCI Virtualization 

Controller latches the function number and uses it to select an appropriate virtual PCI device. 

The signal conf read (E) is an internal signal used to track each transaction. Signal DW_NUM 

(J) indicates the configuration register that is being read. SM_STATE shows the internal state of 

the PCI Virtualization Controller on each clock cycle. 
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Figure 9: PCI Device Configuration Write 

Figure 9 shows the writing of data into a configuration header of a virtualized PCI 

device. Once again, FUNC_NUM is the virtual device number and the PCI Virtualization 

Controller uses this FUNC_NUM to select the appropriate virtual PCI device. The signal conf_ 

write (E) is used to track each write transaction. Signal DW_NUM (J) indicates the 

configuration register that is being read, and SM_STATE shows the PCI Virtualization 

Controller state. 

3.2.4 Virtualizing an I/O Device 

 
Figure 10: General I/O Virtualization Architecture 
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The I/O device Virtualization Controller interacts with the I/O device on one side and the 

virtual PCI controller on the other side. Figure 10 outlines the general architecture used for I/O 

virtualization. The virtualization architecture has a transmit part (left) and a receive part (right). 

The I/O device is at the bottom of this figure and the virtual PCI controller is at the top. The 

receive and transmit sides have their own multiplexers (MUX), de-multiplexers (DeMUX), 

controllers, and buffers for each VM. 

Receive datapath: The I/O device is the source and the VM is the destination. The I/O 

device sends data and destination information. Based on this information, the I/O receive 

controller generates the appropriate select lines for the receive DeMUX. The data is moved from 

the I/O device to the appropriate VM RX memory. The VM RX Memory stores the data and 

relevant information while the CPU is busy, waiting for the VM to fetch the data from its 

memory. 

When a VM is scheduled to run on the CPU, it checks to see if there is any data in its 

memory (this can be done by using flags or interrupts).  If there is valid data in memory, then 

the VM sends the appropriate address via the PCI bus to virtual PCI controller, which forwards 

the request to the receive part of the I/O Virtualization Controller. The request is processed by 

the I/O Virtualization Controller which then generates the correct select lines for the receive 

mux. The VM communicates by using the given protocol and retrieves the data from its 

memory. 

Transmit datapath: Here the VM is the source and the I/O device is the destination. 

When a VM is scheduled to run and is ready to send data to the I/O device, it sends the 

appropriate I/O address via the PCI bus to the virtual PCI controller to the virtual PCI device. 

The request is processed by the PCI transmit controller and generates correct select lines for the 

transmit DeMUX. The VM communicates by using the given protocol and transmits the data to 

its memory.  

When the I/O device is ready to receive data, the I/O transmit controller selects one of 

the VMs out of the ones which are ready to transmit by using a round-robin-based scheduling 

algorithm. The I/O transmit controller uses the appropriate protocol to communicate with the 

I/O device and send the data out of the memory. 
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The I/O device transparently receives and transmits data. For example consider the 

ethernet device. It receives and transmits valid packets and is not concerned with the contents of 

the packet. The I/O virtualization is transparent to the I/O device since the appropriate protocol 

is being followed. 

Though the PCI bus is controlled by the CPU, the CPU is also unaffected by I/O 

virtualization because it detects multiple independent I/O devices. Thus, as far as the CPU is 

concerned, it is exchanging data with a distinct I/O device. 

The drawback of this architecture is that I/O devices will be busier with virtualization 

support. There is a higher chance that the I/O device will be unavailable when a VM is running 

on the CPU and is trying to access the I/O device. This can be resolved by increasing the size of 

the buffers dedicated to individual VMs, but remains to be implemented and verified. 

3.2.5 Implementing a Controller to Virtualize the Ethernet MAC 

An ethernet device contains the actual physical TX/RX device and a Tri-mode Ethernet 

Media Access Controller (TEMAC) core that communicates with the physical device on one 

side and relays data between the physical device and the CPU via the PCI bus on the other side. 

The Virtualization Controller is implemented between the virtual PCI controller and the 

TEMAC.  
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3.2.5.1 Virtualizing the packet receive function 

 
Figure 11: Virtualizing the Ethernet Controller 

Figure 11 shows the receive module of the Ethernet Virtualization Controller. The RX 

module sets up the protocol with the TEMAC device and then moves the data to the 

Virtualization Controller. The virtual PCI controller (top most box of figure) reads the data from 

the VM memory via the PCI bus. The VM checks the status of its flag before reading the data. 

The meaning and purpose of each step in Figure 11 is explained below: 

Step 1: When a packet comes into the physical device, the device passes the packet to 

the TEMAC, which in turn passes it on to the RX Module. The receive logic shown in Figure 11 

communicates with the TEMAC and stores the packet into the RX Memory. The RX memory 

can hold four kilobytes (the size of a packet). In this case, RX memory is a first-in, first-out 

(FIFO) memory module. 
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Figure 12: Start of New Frame (Step 1) 

Figure 12 shows the exact protocol between the TEMAC and Receive Logic. The TEMAC 

essentially has 4 input signals: RX Data,  RX Data Valid, RX Start Frame, and RX End Frame. 

All signals are active low; thus, when a new frame is being received, the TEMAC sends a signal 

by pulling the RX Start Frame to zero for one clock cycle. The data is transmitted in blocks of 8 

bits along with an active low RX Data Valid signal.  Figure 12 shows that the first few frames 

are 5F, C8, and 91.  

Data is transmitted and stored in the RX Memory until the last frame is received. 

TEMAC sends a signal by pulling the RX End Frame to zero for one clock cycle as shown in 

Figure 13. 

 
Figure 13: End of Frame (Step 1) 

Step 2: Once the packet is received, the first 128 bits of the packet are moved to a 

temporary register (Src/Dst MAC address) as shown in Figure 11. Data is moved in 32 bit 

blocks. The following figure shows the structure of an Ethernet Frame. 
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Figure 14: Structure of an Ethernet Frame 

The first 48 bits of the Ethernet frame give the destination MAC address, which is 

compared to the MAC addresses of all the VMs. If a match is found, then it is kept for further 

processing, otherwise, it is discarded. The first 128 bits are moved to the temporary register so 

that the destination, source address, and packet length can be checked. Figure 15 shows the 

simulation of this step. Since the data is moved in 32 bit blocks, it takes 4 cycles to move 128 

bits to the temporary register.  

 
Figure 15: First 128 Bits moved to Temporary Register (Step 2) 

Step 3: Once the MAC address has been identified and matched, the corresponding VM 

memory is checked; in other words, the status of the VM flag is checked. If the flag indicates 

that the memory is ready to receive a new packet, then the packet is sent to the VM FIFO from 

the RX Memory.   

The simulation in Figure 16 shows the protocol between the RX Control and Virtualization 

RX Control. The following diagram illustrates the protocol: 
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Figure 16: Address sent to Virtualization Controller (Step 3) 

• RX address gets the address of VM FIFO associated with the owner of the packet. In this 

case, it is found that the MAC address belongs to VM2.  

o If that VM’s FIFO is empty, then the RX flag signal is sent by the Virtualization 

RX Control. 

o If the VM2’s FIFO is not empty, then no signal is sent. 

• RX module waits for 10 cycles and either: 

o Discards the packet if no RX flag signal is received or  

o Sends data with an RX FIFO write signal if the RX flag signal is received. After 

the entire packet is sent, the VM Flag is set, which informs that VM that there is 

a valid packet in the VM FIFO. 

Figure 17 shows that the VM2’s FIFO memory was empty and thus sent an RX flag 

signal. As soon as the signal is received, the data is transmitted to the VM2’s FIFO along with 

an RX FIFO write signal. 
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Figure 17: Data sent after Flag Status is Checked (Step 3) 

Figure 18 shows the end of the frame; i.e. the entire packet is sent to the VM2’s FIFO 

and the RX FIFO write signal goes down to zero. Once the entire packet is sent, the VM2’s flag 

is set so that the flag informs the virtual PCI controller that VM2’s FIFO has a valid packet. 

 

 
Figure 18: Last Few Bytes of Packet are moved to the Virtualization Controller (Step 3) 
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Step 4: Each VM interacts with the Ethernet Virtualization Module via the virtual PCI 

controller. The virtual PCI device sends an address which is six bits to the Virtualization 

Controller. The most significant three bits give the device number, i.e. the VM number. For 

example, a value “011b” specifies VM3. The least significant three bits give the operations. In 

the case of the receive module, the least significant three bits have value “011b.” This is not 

shown in the simulations below; however, it is explained later in more detail. 

When a VM is scheduled, it sends its FIFO address along with a read signal on the PCI 

bus. The virtual PCI controller reroutes the address (RX address) and read signal (RX read) to 

the Virtualization Controler which in turn routes it to the NIC. The RX Control/PCI Interface 

checks the VM Flag corresponding to the address. If there is data in the VM’s FIFO, it is sent in 

32 bit blocks with an associated valid signal over the PCI bus. Figure 19 shows the 

communication between the virtual PCI controller and Virtualization Controller. 

 
Figure 19: PCI Reads Data from VM2’s Memory 

As shown in Figure 19, the PCI sends an address with value “0x2” to the Virtualization 

Controller along with a PCI read signal. Since there is valid data in VM2’s FIFO, the data is sent 

to the PCI along with a data valid signal. When the last frame is sent, the data valid signal goes 

low, as shown in Figure 20. 

 
Figure 20: Last Few Bytes sent to VM 

PCI Address Lines: As mentioned earlier, the virtual PCI sends six address bits to the 

Virtualization Controller. The most significant three bits provide the VM number. The least 

significant three bits give the operation. The following table explains the operations in detail. 

  



25 
 

Table 1: PCI Address Operations 

Address Operation 

XXX000 Read most significant 32 bits of MAC address 

XXX001 Read least significant 16 bits of MAC address 

XXX010 Write to a transmit FIFO 

XXX011 Read from Receive FIFO 

XXX100 Finished writing to transmit FIFO i.e. set Flag  

 

For example, address “010 000” signifies “read the most significant 32 bits” of VM2’s MAC 

address. This has to be done because the MAC address of each VM is hardcoded in the Ethernet 

Virtualization Controller. Thus, Ethernet Virtualization must accommodate a method for 

communicating the MAC address with the VM’s operating system. The following table gives 

the values of the PCI addresses for each VM.  
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Table 2: PCI Address Operation in Detail 

PCI Address (in hex) Meaning 

00 Read most significant 32 bits of MAC : VM1 

08 Read most significant 32 bits of MAC : VM2 

10 Read most significant 32 bits of MAC : VM3 

18 Read most significant 32 bits of MAC : VM4 

01 Read least significant 16 bits of MAC  : VM1 

09 Read least significant 16 bits of MAC  : VM2 

11 Read least significant 16 bits of MAC  : VM3 

19 Read least significant 16 bits of MAC  : VM4 

02 Write to Transmit FIFO : VM1 

0A Write to Transmit FIFO : VM2 

12 Write to Transmit FIFO : VM3 

1A Write to Transmit FIFO : VM4 

03 Read from Receive FIFO : VM1 

 0B Read from Receive FIFO : VM2 

13 Read from Receive FIFO : VM3 

1B Read from Receive FIFO : VM4 

04 Set Flag : VM1 

0C Set Flag : VM2 

14 Set Flag : VM3 

1C Set Flag : VM4 
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3.2.5.2 Virtualizing the packet transmit function 

 
Figure 21: Ethernet Virtualization: Transmit Controller 

Figure 21 shows the transmit module of the Virtualization Controller. The TX Module 

deals with setting up protocol with the TEMAC and fetching the data from the Virtualization 

Controller. The virtual PCI controller writes the data to the VM memory via the PCI bus. After 

the data/packet is completely written into the VM memory, the VM sets its flag to communicate 

that the packet is ready for transfer. Before transmitting a packet, the TX Module checks the 

status of the flag and then chooses one of the VM whose flag is then set. The flag is unset when 

the entire packet is sent to TEMAC. The meaning and purpose of each step in Figure 21 is 

explained below: 

Step 1: When a VM is ready to transmit a packet, it sends a PCI Address which 

corresponds to the transmit packet and its VM number. Once the address is received by the 

Virtualization Controller, the status of the flag is sent back to the PCI device.  If the flag is 

unset, then the VM sends data in 32 bit blocks along with a PCI TX write signal.  Once the VM 

sends the complete packet, it sets the flag by sending an address corresponding to ‘set flag’ and 

its VM number. This is shown in the figure below. 
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Figure 22: Data moved from PCI to VM Memory  

Figure 22 shows that VM 1 is sending data to its memory in the Virtualization Module 

via the PCI bus and then through the virtual PCI controller. An address “0x02” is sent to the 

Virtualization Module. Since VM1 flag is unset, meaning “0b” data is transmitted to the VM 

memory in 32 bit blocks.  Once the entire packet is sent to the VM memory, the VM1 sends an 

address “0x04” to set its flag along with a PCI write signal.  

Step 2/Step 3: The TX Controller in the TX Module constantly monitors the status of the 

flags in the Virtualization Controller. As soon as a flag is set, it tries to send the packet to the 

TEMAC. The TX Controller sends an address along with a read signal to the Virtualization 

Controller, which corresponds to a particular VM FIFO. The data is either moved from the VM 

memory to a temporary TX Memory in 8 bit blocks or sent out directly, depending on the status 

of the TEMAC. If the TEMAC is ready to transmit a packet, then the data is sent to the TEMAC 

directly, otherwise, it is temporarily stored in the TX Memory. The figure below shows the 

exact protocol used while sending a packet. 

 
Figure 23: Packet is sent to TEMAC from VM Memory 
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Since the VM1 flag is set, the TX Module sends an address value “1” along with a read 

signal to the Virtualization Controller. The data is transmitted in 8 bit blocks. Since the TX 

TEMAC destination ready is low, the data is directly sent to TEMAC without temporarily 

storing the data in the TX Memory.  

TEMAC basically has 5 input/output signals: TX TEMAC start frame (input), TX 

TEMAC data (input), TX TEMAC end frame (input), TX TEMAC data valid (input), and TX 

TEMAC destination ready (ouput). All signals are active low. When sending a packet to 

TEMAC for transmission, first the status of the destination is checked. If the TX TEMAC 

destination ready signal is low, then the packet is sent. To send a packet, a TX TEMAC start 

frame signal is sent along with TX TEMAC data valid and the first 8 bits of the TX TEMAC 

data. Once the entire packet except the last 8 bits are sent, a TX TEMAC end frame signal is 

sent. As soon as the entire packet is sent, the VM flag is unset, as shown in Figure 23. 

3.2.6 Ethernet Virtualization Implementation Results 

Ethernet virtualization has been implemented and tested on the Virtex2P, device 

XC2VP50, on the NetFPGA development board. A picture of the NetFPGA development board 

is shown below.  

 
Figure 24: NetFPGA Development Board 
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The number of cycles taken by the receive and transmit modules of the Ethernet 

Virtualization Module depends on the size of the packet. The TEMAC communicates data in 

one byte blocks. Assuming that packet size is 4 Kibibytes, it will take 4096 cycles to receive and 

transmit a packet. 

For the receive module, there is an additional delay of 4 cycles to move data to the 

temporary register and an additional 1024 cycles to move the packet to a VM memory. The 

packet is sent to virtual PCI in 32 bit blocks; thus, it takes 1024 cycles. For the transmit module, 

it takes about 1024 cycles to move a packet from the VM to the Ethernet Virtualization Module 

in 32 bit blocks. If the TEMAC is not busy, the packet is sent immediately in 8 bit blocks, which 

take around 4096 cycles. Table 3 shows the device utilization of the Virtex2P FPGA. 

 

Table 3: Device Utilization for Ethernet NIC Virtualization 

Number of Slices 11167 out of 23616 (47%)  

Number of Slice Flip Flops 7410 out of 47232   (15%) 

Number of 4 input LUTs 20887 out of 47232  (44%) 

Number used as logic     4419 

Number used as shift registers 40 

Number used as RAMs 16428 

Number of IOs 160 

Number of bonded IOBs 160 out of 692 (23%) 

IOB Flip Flops 3 

Number of BRAMs 14 out of 232 (6%) 

Number of GCLKs  6 out of 16 (37%)  

Number of DCMs   2 out of 8 (25%)  

 

Although the the maximum frequency of the Ethernet Virtualization Module is 205.7 

MHz, we operate it at 125 MHz since the TEMAC operates at 125MHz. Also, since the PCI 

architecture operates at 33MHz, it is a major bottle neck. In our implementation, PCI is the 

bottle neck, however if a faster I/O bus is used, the performance can be improved significantly. 
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3.2.7 Performance Improvements 

Hardware assisted I/O virtualization reduces the need to schedule VM0, which is needed 

in the current architecture to perform all I/O operations. By not involving VM0 for I/O 

operations we save on expensive VM context switches (VMn to VMM and then VMM to VM0). 

To execute a context switch the CPU has to approximately swap 8 kilobytes (4 kilobytes per 

context switch) of data/instructions from the CPU to memory and vice-versa not including 

possible page faults. Therefore by removing VM0 from the virtual I/O subsystem, we save on at 

least two context switches per I/O request. Experimental results have shown that VMs perform 

exceptionally well using a hardware virtual I/O subsystem as compared to a software I/O 

subsystem [16]. 

3.2.8 Device Driver to Support Ethernet Virtualization 

Modern x86 computers use the PCI bus to interconnect I/O devices with the CPU. x86 

CPUs by themselves do not have the ability to communicate with PCI devices directly; a PCI 

host bridge and a device driver are required. A device driver for virtual Network Interface Cards 

(NIC) was developed under Linux. The PCI device driver provides the software hooks to 

communicate with SIM. The device driver does not provide virtualization. 

3.2.8.1 A general device driver in Linux OS 

A device driver is the interface between the Kernel and I/O device. Its primary purpose 

is to command the I/O device when OS transfers data or makes status queries. Typically an I/O 

device has some built-in memory which is mapped into the address space of the CPU for data 

transfer. This memory that is internal to the I/O device is mapped by the device driver during 

initialization as shown in Figure 25 (a).  
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Figure 25: (a)x86 Memory Mapping, (b) PCI Device Driver Overview 

The device driver functions in a Linux system as follows. The Linux kernel exports a 

general API that all the device drivers use. First, using the API, the device driver registers with 

the kernel. Registration enables the kernel to route user requests and interrupts to the device 

driver. After registration, the device driver searches for the PCI device and initializes it. This 

also is done using the kernel API. 

3.2.8.2 Device Driver for the Virtual NIC 

When an application uses the send() function to transmit a packet, the kernel invokes the 

transmit function associated with the NIC device driver. On the other hand, when a packet is 

received, the device interrupts the kernel, which in turn invokes the appropriate call back 

function to handle the interrupt. Interrupts are not used in this project. Instead, the device driver 

periodically checks the device to see if it has any pending incoming requests. To transfer data 

into the device, the device driver does a memcpy() from the kernel’s memory to the device 

driver’s memory. Programmed I/O was used to transfer data to and from the virtual devices. 

The virtual NIC architecture depicted in Figure 26 (a) shows the registers in the NIC to 

which the driver has access. The first six bytes are reserved for the MAC address and they are 

read only. TX and RX registers are used to indicate the status of the NIC. If the Tx.R. register is 

a “1b,” the NIC is busy; if it is a “0b,” then the NIC is available. On the other hand, the Rx.R. 

register has a “1” if there is a valid packet in the data buffer and a “0b” otherwise. 
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Figure 26: (a) Virtualized NIC’s Architecture, (b) Control Registers

Figure 27 (a) and (b) illustrates the transmit and receive state machines from the driver 

point of view. If the NIC driver gets a request to transmit a packet from the kernel, it checks the 

Tx.R. register to see if the NIC is ready, then it transfers the packet to the NIC and sets Tx.R. to 

“1b”. The Tx.R. will be cleared by the NIC when it transmits the packet. To receive a packet the 

driver will periodically poll the Rx.R register. If it has a “1b”, it will transfer the data to the 

kernel and set the Rx.R. to “0b”. 

 

 

Figure 27: (a) VNIC Drivers TX State Machine, (b) VNIC Drivers RX State Machine 
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3.3 Secure Memory Manager (SMM) 

Traditionally, x86 processors do not encrypt data and instructions stored in main memory. 

This raises security concerns when virtualizing these processors. Most Virtual Machine Monitor 

(VMM) vendors allow a Virtual Machine (VM) to be suspended and restored later. When a VM 

is suspended, its state information is stored as a file in the VM0's file system. An adversary could 

access this file to either steal or modify sensitive information. There have been attempts to 

encrypting memory contents either directly or by using a smart compiler/OS. In either case, the 

OS protects the keys by storing them in regions of the memory that cannot be accessed by the 

user. However, in a virtualized environment, when a VM is suspended, an adversary could read 

the keys from the memory dump file as the OS is no longer active.  

An SMM architecture was designed so that, it protects the memory state of individual VMs 

by migrating this functionality into hardware (FPGA in our case). Encryption and decryption of 

the memory state of the VMs using per-domain-secret keys were implemented on the same 

FPGA. The memory used by the VMs is attached to the FPGA and is thus physically separate 

from the memory used by VM0 which is directly connected to the processor. Finally, appropriate 

hooks were developed in the device driver and Xen virtualization software.  
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3.3.1 Overview of Xen Memory Management 

Modern operating systems use virtual memory to give an illusion to an application that it 

has a large amount of contiguous memory. The size is usually limited to the size of memory 

addressable directly by the CPU.  For example, an application running in a 32-bit x86 CPU could 

virtually have up to 4GiB of memory. The virtual memory space is divided into pages and 

applications get a set of pages when they are executed. The page size is usually 4KiB in most 

operating systems. The operating system also sets up translation tables, known as page 

translation tables, for the CPU to translate virtual address to real physical address. When the 

application is running the CPU translates virtual address into physical address with the help of a 

Memory Management Unit (MMU). The MMU walks through the page translation tables to 

resolve a virtual address. Memory management in virtualized environments such as Xen requires 

one more translation on top of regular virtual to physical translation. Xen allocates pseudo-

physical-memory to VM's when they are created. Xen maintains a pseudo-physical memory to 

physical memory mapping.   The pseudo-physical address space for each VM starts at “0x0”. 

The VM uses the pseudo-physical address range and is never exposed to the machine pages. All 

VMs have read-only access to the page tables. The VMM is notified of the reads and writes via 

hypercalls and validates them before upating the page tables. There are two page table modes 

under VMM. 

Writable mode:  As far as a VM is concerned it appears that the page tables are directly 

writable. VMM permits writes to pages and simultaneously invalidates the entry from an active 

page table. The dirty pages are re-connected either on context switches or when they are 

accessed again by the VM. 

Shadow mode: The page tables in a VM have virtual-to-pseudo physical address 

mappings. These tables are never used by the hardware MMU. VMM maintains the Shadow 

Page Tables (SPT) in software. An SPT maps the virtual to machine addresses and MMU uses 

the SPT to detect any VM access to page tables. 
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SPT is dynamically generated from the VM page table and pseudo-physical-to-machine 

table. Hardware caches contain the recently accessed Virtual Page number (VPN)->Physical 

Machine Page Number (MPN) mapping. The VMM maintains a per-process VPN -> MPN table; 

the SPT and MMU make use of this table to resolve machine addresses. When a VM running on 

the processor performs a write to Page Table Base Register, it is trapped and scheduled out. 

VMM will make this base register point to the active process's SPT. Any updates to the VM page 

tables by that process also are trapped by the VMM and propagated to the process's SPT. The 

virtual addresses generated by the CPU while executing the process will be resolved via the 

process's SPT. In the shadow mode both the VM page table and SPT have to be up-to-date. 

3.3.2 HAVEN SMM Architecture 

 
Figure 28: SMM High Level View 
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The SMM is implemented inside an FPGA co-processor which appears as a PCI device to 

Xen. Figure 28 depicts SMM hardware architecture. The memory controlled by the FPGA device 

is always encrypted and is allocated only to VMs. VM0 continues to operate from unencrypted 

memory that is directly accessible by the CPU. It also depicts how the SMM is connected to 

CPU. The SMM will track the active VMs and will know what VM is currently scheduled on a 

processor through VMM hooks. All memory requests by a VM are routed through the SMM on 

the FPGA which then decrypts the corresponding memory block. The secret keys supplied by an 

encryption decryption table are maintained by the SMM. The VMM operates in the shadow 

mode through which it detects writes to page tables by VMs. Any writes to page tables by VMs 

are trapped by the VMM which validates the writes to ensure secure isolation of VMs and 

notifies the VM whether the write is permitted or denied. Finally, the writes are propagated to the 

SPT. 

In the HAVEN SMM architecture, the guest VMs are unaware of the 

encryption/decryption process. An administrative user can specify the encryption algorithm, the 

secret key length and other parameters. The SMM will only decrypt memory that is assigned to a 

VM. If the VMM or the VM0 tries to access memory that belongs to a guest VM, SMM will not 

decrypt the contents. However, SMM will not prevent access to the secure memory. When VM0 

suspends a VM, it will be paused by the VMM and its encrypted memory contents (still in 

encrypted form) are dumped to a file. By default this feature will be enabled for all VMs. 

3.3.3 SMM Implementation 

Figure 29 shows the SMM implementation on a Xilinx ML507 FPGA board. We used the 

PCIe core and SDRAM controller provided by Xilinx. The SMM that we implemented includes 

starting from the left of the figure, the RX/TX controller, the SDRAM read/write controller, the 

secret key table and AES in counter mode. The key table is a lookup table that is populated 

offline. These keys are then used by AES to encrypt counters, which are subsequently XORed 

with data creating a stream cipher. Memory addresses are used to select the appropriate 

encryption and decryption keys. 
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Figure 29: SMM Implementation 

Our implementation of SMM and the SDRAM controller can operate on a 266 MHz. 

However, we are limited by the speed of the PCIe controller, which is 150 MHz. 

 

 
Figure 30: Memory Detection 
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In the Figure 30 we show the presence of our Secure Memory Manager in a PC. Lspci is a utility 

that lists all PCI and PCIe devices that present in a system. Lspci with -v and -s <devcie ID> will 

list the details about a device. We can see that the we have created a RAM device and that device 

has 256MB of memory behind it. 

3.3.3.1 PCIe Read 

  In the PCIe bus, a memory read is split into a memory read request and a read reply. The 

CPU issues a memory read request and the PCIe device replies to that request. Each request has a 

request ID and the CPU can issue more than one request before getting responses to a previous 

request. In the design the read request is stored in the Read Req. FIFO and when the requested 

data is available, a reply with requested data is generated by the RX/TX controller. SDRAM 

read/write controller monitors the Read Req. FIFO for pending requests and if SDRAM 

controller is not busy, it forwards the request to the SDRAM controller. SDRAM controller 

signals SDRAM read/write controller when the requested data is ready. Data is decrypted before 

passing it to the SDRAM read/write controller. 

 

 
Figure 31: PCIe Read Cycle 

  The shaded region in Figure 31 shows data read request reply signals. Two 32 bit data 

segments are being sent as reply for a read request. trn_td_upper carries the first 32-bit word and 

trn_td_lower carries the second 32-bit word. The core transfers 32-bits at a time. The snapshot in 

Figure 31 shows two such transfers (see “X” and “O” ). 
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Figure 32: Encrypted Memory Dump 

In Figure 32 we show the encrypted memory dump of the data. This is what the SMM give out 

when an unauthorized VM tries to read the memory of another VM. As shown in the figure the 

the memory dump returns encrypted text.  

 

 
Figure 33: Decrypted Memory Dump 

Figure 33 shows what the SMM give out when an authorized VM tries to read the memory. This 

time memory dump returns the decrypted text. As shown in the figure, the decrypted text 

contains numbers starting from “0xFF” to “0x00.”  
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3.3.3.2 PCIe Write 

  The memory write request does not require a reply. When a write request is received it is 

stored in the Write FIFO. The SDRAM read/write controller monitors the Write FIFO and 

forward write requests to the SDRAM controller when a request is available. Data is encrypted 

before passing it to the SDRAM controller.  

 

 
 

Figure 34: PCIe Write Cycle 

  
The shaded blue region in  
Figure 34 shows data (wr_data) “0xFFFEFDFC” and “0xFBFAF9F8” and address “0x0000000” 

and “0x0000001” (we_addr) coming from the PCIe core. The core transfers 32-bit at a time. The 

above capture shows two such transfers (see “X” and “O” ).  
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3.3.3.3 DDR2 Read Operation 

Figure 35 shows encrypted data coming out of SDRAM controller core. Here, 

ddr2_rd_dout shows the 128 bit data bus from SDRAM controller  and ddr2_dec_rd_data is the 

128 bit decrypted data. 

 
Figure 35: DDR2 Read Operation 
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3.3.3.4 DDR2 Write Operation 

Figure 36 shows clear text data “ddr2_wr_data” being encrypted “ddr2_enc_wr_data”. 

The SDRAM controller writes 256 bit blocks of data to SDRAM in every write cycle. Since 

PCIe could only transfer 32-bits at a time, we mask the 224-bit off to prevent data corruption. 

  

 
Figure 36: DDR2 Write Operation 

3.3.3.5 Xen Hooks 

Proper functionality of SMM depends on the software hooks integrated into Xen’s VMM. 

Hooks must be implemented in three locations. 

• Creation: When a VM is created, memory allocated to it should lie within the memory 

range controlled by the SMM. This is achieved by modifying Xen’s memory allocation 

routine populate_physmap(). The modified routine also updates SMM’s page permission 

table to permit access to memory for the newly created VM. Figure 37 (a) depicts how a 

VM is created and where the HAVEN hook’s are implemented. 

• Scheduling: VMs are frequently scheduled out by the VMM for various reasons. 

Whenever a VM is scheduled out or scheduled in, SMM should be informed. To achieve 

this, Xen’s context_switch() routine is modified such that it updates SMM with the VM’s 

ID that is currently running. Figure 37 (b) depicts how VMs are scheduled and where the 

HAVEN hooks are implemented. 
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• Pause/Resume and Destruction: Similar to VM creation, memory must be de-allocated 

when a VM is paused or destroyed. HAVEN hooks are implemented in the 

decrease_reservation() routine in Xen’s VMM to de-allocate memory behind SMM. The 

modifications simply remove entries from the page permission table in SMM. Figure 

37(c) depicts how main memory and I/O devices memory are mapped. 

       

 
Figure 37: (a) Creation, (b) Context Switching (c) Destruction of a VM 
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4 CONCLUSIONS 

We prototyped a High Assurance Virtualization ENgine (HAVEN) using Field Programmable 

Gate Array (FPGA) based secure co-processing to address the limitations of current virtualization 

technologies. HAVEN increases reliability via a hardware-assisted virtual I/O subsystem for each 

VM. It also improves performance by minimizing the switching back to the controller VM0 and 

by using a hardware virtual I/O manager. Furthermore, it improves security by protecting storage 

and communication channels using FPGA-assisted encryption and authentication. 

          We designed the HAVEN virtualization architectures for I/O and memory and 

implemented a proof of concept prototype. We developed VHDL and Verilog-HDL models, 

performed functional and timing simulations and validated the models using testbenches for the 

designed hardware primitives. We demonstrated the various functions of HAVEN virtualization 

prototype by developing Linux device drivers and Xen hooks. 
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6 SYMBOLS, ABBREVIATIONS AND ACRONYMS USED 
VM    Virtual Machine 

I/O    Input/Output 

CPU     Central Processing Unit 

HAVEN   High Assurance x86 Virtualization Engine 

FPGA    Field Programmable Gate Array 

PCI     Peripheral Component Interconnect 

PCIe    Peripheral Component Interconnect Express 

VMM    Virtual Machine Monitor  

NIC    Network Interface Card 

MAC    Media Access Control 

RX    Recieve 

TX    Transmit 

TEMAC    Tri-mode Ethernet Media Access Controller 

SIM     Secure Virtual I/O manager 

SMM    Secure Memory Manager 

FIFO    First-in, First-out 

OS    Operating System 

MMU    Memory Management Unit 

SPT    Shadow Page Tables 

VPN    Virtual Page number  

MPN    Machine Page Number  

 




