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Short Papers
Microfluidic Injector Models Based on

Artificial Neural Networks

Ryan Magargle, James F. Hoburg, and Tamal Mukherjee

Abstract—Lab-on-a-chip (LoC) systems can be functionally decom-
posed into their basic operating devices. Common devices are mixers,
reactors, injectors, and separators. In this paper, the injector device is
modeled using artificial neural networks (NNs) trained with finite element
simulations of the underlying mass transport partial differential equations
(PDEs). This technique is used to map the injector behavior into a set of
analytical performance functions parameterized by the system’s physical
variables. The injector examples shown are the cross, the double-tee, and
the gated-cross. The results are four orders of magnitude faster than
numerical simulation and accurate with mean square errors (MSEs) on
the order of 10−4. The resulting NN training data compare favorably with
experimental data from a gated-cross injector found in the literature.

Index Terms—Electrokinetic, injector, lab-on-a-chip (LoC), microflu-
idic, neural network, simulation.

I. INTRODUCTION

Microfluidic lab-on-a-chip (LoC) systems have been studied for
more than a decade and have many applications in biology, medicine,
and chemistry [1], [2]. They generally perform chemical analysis
involving sample preparation, mixing, reaction, injection, separation
analysis, and detection. Compared to traditional analytical labs, LoC
has the significant advantage of increased analysis speed, parallel
processing, and high integration and automation.

The simulation of complex LoC systems requires computationally
expensive numerical solutions to partial differential equations (PDEs).
As the design of LoC systems requires many repeated simulations,
iterative design using numerical simulation is computationally infea-
sible. A much more efficient alternative involves functional decompo-
sition into a series of interconnected blocks, as previously proposed
for the mixer, injector, and separator [3]–[5], which can be used
to compose an entire LoC [6]. Behavioral artificial neural network
(hereafter referred to as simply neural network, or NN) modeling
makes such an efficient decomposition possible. For the mixer and
separator, band shape assumptions are used with analytical techniques
to simplify the PDEs into several ordinary differential equations.
For the injector, the desired output quantity is a scalar, and not a
vector, as in the mixer and separator; hence, we use numerical NN
techniques instead.

A diagram representing a typical LoC consisting of a mixer, reactor,
injector, and separation system is shown in Fig. 1. There are two stages
to its operation. In the first stage, a voltage is applied to nodes 1, 2,
3, 4, and 5. The resulting electric fields induce electrokinetic flow
[7], which causes the fluid to be pumped through the channels. This
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Fig. 1. Diagram of a canonical LoC.

dilutes the sample from node 2 with buffer from node 1 in the mixer
before it is reacted with a catalyst and ultimately focused by nodes
4 and 5. In the second stage, called electrophoretic separation, new
voltages are applied to nodes 1–5, which causes a band of the reacted
analyte to be injected into the separation system. Because the analyte
can be composed of multiple species of different charge, the individual
species migrate at different speeds in the electric field causing them to
separate from each other.

The importance of the injector as a component in a microfluidic
separation system derives from the fact that it defines the shape and
quantity of analyte that will be used for separation and analysis.
Various forms of microfluidic electrokinetic injectors, such as the tee,
the double-tee, the cross, the double-cross, and the gated-cross, have
been introduced [8]–[12]. A first generation injector model produced
by the authors was specific to the cross injector and was defined by
a two-dimensional (2-D) parameter space [4]. This work improves
on previous generation injector modeling by using NN behavioral
modeling concepts to create a library of models for injectors, including
the cross, the double-tee, and the gated-cross, each defined by a four-
dimensional (4-D) parameter space. The methodology is not specific
to any one injector topology and has been used in macromodels that
have many more dimensions [13].

The methodology described here involves an exploration of a rele-
vant portion of the injector physical parameter space using numerical
solutions of the convection diffusion equation. These solutions are then
used to train a NN that describes the performance of the injector. The
behavioral output parameters are sufficient to construct a Gaussian
distribution, approximating the width-averaged plug concentrations
as a function of longitudinal position, for the input to the separation
channel. Once the NN has defined the behavioral model, an explicit
analytic equation defining the NN is created and can easily be ported
into any modeling environment. This modeling method is related to the
work done by [14], however, in our method, we have not utilized quasi-
random training sequences, because our training data sets are not large
enough to achieve the asymptotic low-discrepancy distribution [15].
Furthermore, our system has a larger number of physical variables
making the computational cost of our network training greater, thus,
we use the Buckingham-π theorem to reduce the size of the variable
space needed for training simulations [16].

The scope of this work is primarily focused on the application of
composable system simulation for continuous flow microfluidic LoC
systems. The broad range of macromodeling application of NNs from
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Fig. 2. Example injections and geometries for (a) the cross, (b) the double-tee, and (c) the gated-cross injectors. The light shades indicate regions of high analyte
concentration.

very large scale integrated (VLSI) computer-aided design (CAD) [13],
microfluidics [14], and radio frequency (RF) microelectromechanical
system (MEMS) [17] suggests that further application in microfluidics,
such as digital microfluidics, should be possible, but the exploration of
such possibilities are beyond the scope of this work.

The injector topologies will be introduced in the next section.
Section III will introduce the method used to model the injector
device. The physical variables of the injectors and their nondimen-
sional reduction will be shown in Sections III-A and III-B, and the
parameters governing the creation of the NN model will be shown in
Sections III-C and III-D. Finally, the impact of the resulting model on
a composable system simulation will be shown in Section III-E, with
conclusions in Section IV.

II. INJECTOR TOPOLOGIES

The three injectors considered in this paper are as follows:
1) the cross; 2) the double-tee; and 3) the gated-cross. Each injector
is defined by its geometry and operating procedure. The geometries
and operating steps are shown in Fig. 2.

The cross injector [Fig. 2(a)] is a simple intersection of two channels
of the same width. The injector is operated by first loading the sample
into the injection chamber, followed by a change in voltage that
dispenses a portion of the injected flow into the separation channel. In
both the loading and dispensing stages, accessory fields can be used
to manipulate the shape of the injected plug. In the loading stage,
accessory pinching (from E2L and E4L) can be used to achieve a
more compact plug and to reduce the electrokinetic bias [8]. In the
dispensing stage, accessory pullback (from E1D and E3D) prevents
leakage into the separation channel.

The double-tee injector [Fig. 2(b)] is a more general form of the
cross injector where the loading channels are offset to produce a larger
injection plug. The operation scheme is the same as with the cross, with
two stages of operation and optional accessory fields for plug shaping.

The gated-cross injectors [Fig. 2(c)] has the same geometry as the
cross but uses a three-stage operating scheme. The gated-cross control
scheme allows for continuous flow injection so that new sample can
be loaded at the same time that previously dispensed plugs are run
through the separation channel. The first step of operation involves

creating the gate in the injection chamber by counterflowing an analyte
stream against a buffer stream. The second step involves removing
the applied potential from the buffer port, which allows a portion
of analyte to overflow the injection chamber. The final step is a
return to the applied potentials of the first stage, which reestablishes
the gate, while simultaneously injecting the overflown analyte into
the separation channel. Since the action taken in the second stage
involves floating only one node while all others remain unchanged,
no independent parameters are introduced by this stage. The fields and
flow patterns are completely determined by the parameters set in the
first stage.

III. MODELING METHODOLOGY

The complexity of the geometry and the resulting transitional
electric field structure [18] makes behavioral models of the detailed
physical performance of the injectors very difficult. The modeling
approach used in this paper avoids the complexity of the underlying
physical structure while maintaining an accurate description of the
injector performance based upon the key characteristics that define the
input/output mapping.

The injector modeling methodology consists of four steps. 1) The
Buckingham-π theorem is used to reduce the order of the space of
physical parameters describing the behavior of the injector to a reduced
set of nondimensional parameters. In all three of the injectors shown
in this paper, the number of nondimensional parameters describing
the injector’s operation is reduced to four, which is relatively small
compared to the dimensions of typical VLSI analog design spaces [13].
2) Numerical simulations are carried out at points in the nondi-
mensional parameter space. The goal is to use as few numerical
simulations as possible, since they are computationally expensive.
3) An NN is constructed to analytically describe the parameter
space. Functions available in MATLAB 7 [19] were used to train
the NN. A feed-forward back-propagation NN topology was chosen
for its strong nonlinear regression capabilities and its ability to be
converted to an explicit algebraic function. The NN as a regressor has
the ability to handle high-dimensional spaces with relatively sparse
data sets [20]. The NN also “learns” the functional mapping without
any knowledge of the underlying physics or basis functions. 4) The
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TABLE I
SUMMARY OF NONDIMENSIONAL PARAMETERS: THE TOP FOUR

COLUMNS ARE DYNAMIC AND THE BOTTOM TWO ARE GEOMETRIC

trained network is converted to an explicit algebraic function, suitable
for use in any software environment for simulation or synthesis. This
conversion is done with a straightforward parsing algorithm, which
can be applied to any generalized feed-forward topology. Thus, the
main contribution of this paper is a method for creating microfluidic
device models using a reduced set of nondimensional variables and
input/output interface parameters.

A. Defining the π-Space

Implementation of the Buckingham-π theorem to the cross model
is described in [4]. Extension of the results to the three injectors
described here is summarized in Table I.

For all three injector topologies, the dynamic parameters, π1(C,D,G)

through π4(C,D,G), are the independent variables used to create
the models. The geometric parameters are held constant, such that
π5(C,D,G) = 1 and π6D = 2. These geometries are representative of
the vast majority of designs fabricated to date for each type.

Physically, the cross and the double-tee are very similar. From
a synthesis point of view, the cross is simply a special case of
the double-tee, where π6D = 0. For both of these topologies, the
π1(C,D) and π2(C,D) parameters describe the ratio of the accessory
fields to the driving fields. For the loading stage, this describes the
amount of pinching that is applied to the incoming analyte stream, and
for the dispensing stage, this describes the amount of pullback applied
to the dispensed band [4]. The π3(C,D) and π4(C,D) parameters de-
scribe the Peclet number for each stage.

The gated-cross has a set of parameters that differ from those of
the cross and the double-tee. The first parameter π1G represents the
extent to which the gate is closed. As discussed in [12], as long as
E1 ≥ E2, the gate will remain closed in the limit of no diffusion. As
π1G is reduced, the gate is further closed, so in practice, E1 > E2.
The second parameter represents the ratio of the buffer electric fields
(E3, E4) to the analyte electric fields (E2, E1). As π2G increases,
the buffer fields become larger relative to the analyte fields. The third
parameter π3G represents the Peclet number of the loading phase. The
final dynamic parameter π4G is a measure of the ratio of length of
the injected plug, as related to the floating time TLD, to the channel
width.

A significant concern in the operation of a gated-cross injector is
the leakage that can occur in the separation channel if the gate is not
sufficiently closed, as seen in Fig. 3. If the leakage is too great, the
injector will not operate, because the increased noise floor will make
a separation impossible. A region of feasibility must be determined
within which the injector can be modeled. This leakage was analyzed
in [12] as a function of the gate closure and the system Peclet number.
They determined a boundary indicated by 1% leakage of the flux of the
analyte from the source reservoir into the separation channel. In this
work, we determine the boundary for a more complete set of physical
parameters to create a region of feasibility.

Fig. 3. Gated-cross leakage tested at Peclet numbers from 19 at contour
1 to ∞ at contour 5. The contours are defined by the 7% of the maximum
concentration and agree very well with the numerical and experimental results
found in [12].

B. Simulating the π-Space

The injectors were simulated in FEMLAB using the convection
diffusion equation [21] given as

∂c

∂t
+ 	u · 	∇c = κ∇2c (1)

where c is the concentration distribution, 	u is the velocity field, and κ
is the diffusion coefficient.

To solve for the electrokinetic flow, first, Laplace’s equation is
solved for the electric potential as

∇2Φ = 0 (2)

which is used to determine the velocity, which is proportional to the
electric field, through

	u = −µ	∇Φ (3)

where µ is the electrokinetic mobility, and the negative gradient of the
electric potential, Φ, is the electric field.

In all simulations, the channels are long enough to contain the
transitions in the electric field structure. The buffer, analyte, and waste
channels were all of the same length, 4w, for each injector topology.
The separation channel length, set so that it can encompass the entire
injected band, is 9w for the cross, 12w for the double-tee, and 13w
for the gated-cross. This will allow the numerical simulation data to
be used to train the NN to contain a highly accurate description of the
transitional electric field structure and its effect on the dispersion of
the analyte.

For each injector topology, using conservation of current and as-
suming that all channel widths are the same, a relationship between
the steady electric fields can be determined. As in prior work on the
cross injector [4], the electric field magnitudes in the cross and the
double-tee are related for the loading stage by

E3L = E1L + 2E2,4L (4)

and for the dispensing stage by

E4D = E2D + 2E1,3D (5)

where it is assumed that the accessory fields are applied symmetrically,
i.e., E2L = E4L = E2,4L and E1D = E3D = E1,3D. The fields for
the gated-cross are related by

E2 +E3 = E4 +E1. (6)
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TABLE II
π-SPACE DOMAINS FOR THE TRAINING SIMULATIONS,

COVERING A WIDE RANGE OF PHYSICALLY VIABLE VALUES

Using (4)–(6), and the conversion matrix introduced in [4], it is
possible to calculate the electric potentials for the boundary conditions,
as they change throughout the π-space.

To perform, on average, 200–300 simulations per injector, a
FEMLAB script was written to automate the setup and execution of
the simulations. The π-space domains for each of the injectors are
defined in Table II. A parallel computing cluster was utilized, which
reduced several weeks of computation to several days on a shared
100-node Beowulf cluster. This is a one-time computational expense
used to create the much more efficient NN description, which “learns”
from the results of the simulations.

The FEMLAB algorithms have been validated against many ex-
periments found in the literature demonstrating microfluidic mixing,
joule heating, injection, and separation [3], [5], [22]. To validate the
simulations for the new gated-cross topology, a test was run to measure
the leakage of the injector during the loading stage, as was first done in
[12]. Fig. 3 shows the results of the simulations at the same parameters
found in [12]. The resulting isoconcentration contours agree very well
with [12] numerical and experimental results.

After numerically simulating points throughout the parameter space,
the form of the output of the behavioral model is chosen. Analysis
of the numerical results can be done to extract any desired behavioral
outputs. In this work, the outputs were chosen to be the peak height and
variance of an effective Gaussian describing the transversely averaged
concentration profile output from the injector, such that the area and
variance of the original distribution are conserved. The resulting form
with nondimensional outputs is

f̄
(
π1(k), π2(k), π3(k), π4(k)

)
=

[
σ2

w2

Ceff
Co

]
(k)

(7)

where k ∈ [C,D,G], and Co is the value of the uniform concentration
of the input species from the reactor.

While the NN is inherently capable of describing multiple-input
multiple-output models, we use a multiple-input single-output NN to
train each output separately.

Using effective Gaussian outputs as the interface parameters for a
system simulation accomplishes two purposes, namely: 1) the system
simulation is efficient; and 2) while there is sufficient information to
accurately describe the band after it has traveled a short distance down
the separation channel, there is not enough information to describe the
non-Gaussian shape of the band with high accuracy immediately after
it leaves the injector.

As long as diffusion transversely homogenizes the band before
detection occurs, or before another source of dispersion, such as a
channel bend, is introduced, the approximation will provide accurate
results. By requiring the time it takes particles to diffuse across the
channel to be shorter than the time it takes the particles to reach the
first channel bend or detector, a bound is defined as

τ =
Pew

L
w

< 2 (8)

where Pew is the Peclet number based on the channel width w and
L is the length of straight channel before the detector or first channel

Fig. 4. Actual output of the double-tee injector (top channel) compared to
effective parameterized output of the analytical model (bottom channel). The
band on the right traveled 4.7 mm, which is when τ = 2. For these simulations,
π1D = 186, π2D = 186, π3D = 1/8, and π4D = 0.57.

Fig. 5. (a) Activation zk of a node is a function of the weighted inputs of the
previous layer’s activations. (b) General feed-forward NN topology utilizing
multiple hidden layers with an unspecified number of nodes with nonlinear
activation functions and a single output node using a linear activation function.

bend. This expression is conservative in that it requires the particles
travel across the entire channel width to homogenize the band. In many
cases, as seen in Fig. 2, the band coming out of the injector is axially
compact and fairly uniform across the channel and so homogenization
occurs much more rapidly.

An example for a double-tee injection is shown in Fig. 4. The picture
on the left shows the band immediately after the injector, and the
picture on the right shows the band after traveling 4.7 mm where, from
(8), τ = 2. As an example of an actual experimental system, the LoC
developed by Chiem and Harrison [23] has τ = 0.2, which is an order
of magnitude within the bounds defined by (8).

C. Training the NN

An NN is a mathematical structure that is adept at learning nonlin-
ear functional relations and complex item categorizations [20]. The
general principle of operation of the feed-forward NN is shown in
Fig. 5(a), and the topology of the two-layer NN used to model the
injectors for this work is shown in Fig. 5(b). The feed-forward NN
is a set of nodes that are connected only to the layers above and
below. Each node takes, as the argument of an activation function,
the weighted sum of the outputs of the layer below. To create an NN
model, the number of layers, nodes per layer, node transfer function,
and interconnecting weights must be selected.

It has been shown that to perform nonlinear regression to an
arbitrary degree of accuracy, where the number of nodes is not an
issue, two layers are sufficient (one hidden, one output) [24]. Likewise,
with classification networks, it has been shown that a decision bound-
ary of arbitrary complexity can be defined using only three layers
(two hidden, one output) [20]. Therefore, our regression models use
two-layer topologies, and our classification networks use three-layer
topologies.
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TABLE III
NEURAL NETWORK MSE AND CROSS VALIDATION: FOR ALL THREE INJECTORS, BOTH VALIDATION PARAMETERS ARE VERY SMALL

Fig. 6. (a) Variance and (b) effective peak concentration results for the cross, where π1C and π2C are fixed at 0.2. (c) Variance and (d) effective peak concentration
results for the double-tee, where π1D and π2D are fixed at 0.05 and 0.3, respectively. The top plots show the FEMLAB simulations at a coarse set of points and
the bottom plots show the much faster and higher resolution evaluations produced by the NN.

If the network is to perform nonlinear regression, the hidden layer
consists of bound nonlinear activation functions, and the output nodes
are unbound linear activation functions. If the network makes discrete
classifications, then all nodes are bound nonlinear functions. In both
cases, the actual shape of the nonlinear function is not important as
long as it is bound [20]. The function used in this work is written as

f(x) =
2

1 + exp(−2x)
− 1. (9)

The number of input nodes is determined by the number of indepen-
dent parameters in the model and the number of nodes in the output
layer is determined by the number of dependent parameters in the
model. The number of nodes in the hidden layer is arbitrary. Nodes
are added or subtracted until the performance reaches a threshold. The
hidden layers of the injector NNs contain 25 nodes.

After the topology and initial node count have been determined,
the network is trained on the FEMLAB simulation data. The process
of training an NN involves modifying the weights between layers
until the outputs of the network sufficiently match the simulation
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Fig. 7. (a) Gated-cross feasibility space (dark is feasible). (b) Variance and (c) effective peak concentration results for the gated-cross, where π3G and π4G are
fixed at 232 and 0.1208, respectively.

training data. This takes the form of an optimization problem. The
Levenberg–Marquardt algorithm included in MATLAB was used due
to its speed for networks of complexity similar to the ones shown here.
Several metrics are used to measure the quality of the trained network.
To ensure that the network is not underfit, the mean square error (MSE)
is minimized during training, and to ensure that the network is not
overfit, i.e., has poor generalization, the trained network is tested using
data that have not been seen before. To test for overfitting without
creating a separate validation data set, k-fold cross validation (KFCV)
is used [20].

For the models in this paper, no more than 350 iterations were used
to achieve an MSE accuracy of less than 1 × 10−4. To improve the
network’s convergence rate, the range of the input data is prescaled.
In particular, the Peclet number is varied on a logarithmic rather than
linear scale, and the variance training data for the gated-cross injector
are normalized to unity. To validate the NN models, first, the MSE
and KFCV are examined; the results are summarized in Table III, with
very small validation parameters throughout. As a visual confirmation,
response surfaces are shown for portions of the π-space for each
injector. Fig. 6 shows the results for the cross and the double-tee
injector, and Fig. 7 shows the results for the gated-cross injector.

The graphs at the top represent the sparse set of points simulated
in FEMLAB, while those at the bottom show the densely simulated
points using the much faster NN after being trained on the FEMLAB
data. The NN operates in a fraction of a second per point, more than
four orders of magnitude faster than numerical simulation.

Fig. 6(a) and (b) shows the variance and effective peak concentration
results, respectively, for the cross, and Fig. 6(c) and (d) shows the
same results for the double-tee. When the cross and the double-tee

are operated with the same accessory fields, the cross has a smaller
variance and a smaller peak concentration.

Fig. 7(a) shows the feasibility regions for the gated-cross, and
Figs. 7(b) and 6(c) show the variance and peak concentration results
for the gated-cross injector, respectively. The feasibility space is
independent of π4G, because the leakage is determined in the loading
stage independently of how the band is dispensed. The most notable
feature of the feasibility space is that as π3G, the Peclet number,
becomes smaller, the amount of feasible space decreases significantly.
This is due to the fact that regardless of how much the gate is closed,
when diffusion is large, the diffusive flux leaking into the separation
channel is large. Fig. 7(b) shows the variance results in the π-space of
the gated-cross, and Fig. 7(c) shows the effective peak concentration
results. The missing surface areas in Fig. 7(b) and (c) represent
infeasible regions as described in Section III-A.

D. Extracting an Analytic Equation

Since the NN is connected in a feed-forward configuration, it is
straightforward to identify the explicit relation for the output node in
terms of all the nodes in the previous layers. The general explicit form
for the two-layer topology with a single output node is

yk = gout

[
M∑

j=0

vkjghid

[
N∑

i=0

wjixi

]]
(10)

where yk is the output of the network, gout[ξ] is the linear output node
activation function, ghid[ζ] is the nonlinear hidden node activation
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function from (9), and vkj andwji are the weights between the hidden-
output and input-hidden layers, respectively.

Once the network is trained and the weights are fixed, a sim-
ple algorithm can be written to extract the network data from the
MATLAB data structures. The result is then used in VerilogA to
perform analytical system simulations.

E. Injector Model Impact

As a simple example to illustrate the benefit of using the accu-
rate NN model, a standard cross separation is performed in Fig. 8.
Comparison is made between numerical simulation of the separation
using FEMLAB, analytical simulation using our VerilogA simulator
with the device models of the injector and separation channel, and a
VerilogA simulation using a simplified injector model. The simplified
injector model assumes that the resulting injection will be a Gaussian
approximation to a rectangular plug with concentration Co and stan-
dard deviation equal to half the channel’s width, w/2. The Gaussian
will have the same standard deviation as the rectangular plug and a
peak height that conserves area, Cp = Co/

√
π/2.

To compare the simulation results, the resolution of the separation
is calculated. Resolution is defined as

R =
(d2 − d1)

4σave

(11)

where d2 and d1 are the centers of the two bands in time, respectively,
and σave is the average standard deviation of the two bands in time.
These quantities are meaningful when the electropherogram peaks are
approximated to be Gaussian, as they are in this case. Four times the
standard deviation, therefore, accounts for more than 95% of the total
mass of the band. A desirable resolution is usually at least 1.5, so the
ease of the separation in the example of Fig. 8 is illustrated by its very
high resolution number.

The results show the simulation with the NN injector model in
close agreement with the numerical simulation. The simulation using
the approximate injector model shows more than 25% difference in
resolution. In this system, the two bands are still easily resolved,
however, in realistic systems with tens to hundreds of species, this
difference becomes much more significant.

IV. CONCLUSION

This work has shown a methodology that was used to model the
injector component of a microfluidic LoC, and examples were shown
for the cross, the double-tee, and the gated-cross injector designs. The
key contributions of this work were the use of nondimensionalized
reduced variable sets for the numerical simulation, and the use of
simplified Gaussian interface parameters to describe the injection out-
put to the downstream separation channel models. The impact of the
NN-based injector model was seen to be significant compared to a sim-
ple approximate injector model and could become a significant design
factor in realistic systems separating tens to hundreds of species. These
injector models combined with other component models allow for a
functional block decomposition of the system for efficient simulation.
The speed and accuracy of these analytic block models present a far
more feasible method of computer-aided design (CAD) than using
numerical solutions of partial differential equations (PDEs) for the
whole complex system.

This work lays the foundation for future enhancements that include
the geometric π-space variables for a more complete synthesis formu-
lation. Due to its ability to model arbitrary functional forms with an

Fig. 8. Simulations of the cross separation system using component sepa-
ration system model and 1) an approximate injector as described in the text,
2) the NN injector, 3) full finite-element method (FEM) simulation of injector
and separation channel.

arbitrary number of inputs and outputs, with further investigation, the
methodology described here can be used to model other microfluidic
components for use in composable system simulation.
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