
Using Covert Means

To Establish Cybercraft

Command And Control

THESIS

Bradley D. Sevy, Captain, USAF

AFIT/GCS/ENG/09-07

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/09-07

Using Covert Means

To Establish Cybercraft

Command And Control

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Bradley D. Sevy, B.S.C.S.

Captain, USAF

March 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/09-07

Abstract

With the increase in speed and availability of computers, our nation’s computer

and information systems are being attacked with increased sophistication. The Air

Force Research Laboratory (AFRL) Information Directorate (RI) is researching a next

generation network defense architecture, called Cybercraft, that provides automated

and trusted cyber defense capabilities for AF network assets. This research we con-

sider the issues to protect or obfuscate command and control aspects of Cybercraft.

In particular, we present a methodology to hide aspects of Cybercraft platform initial-

ization in context to formation of hierarchical, peer-to-peer groups that collectively

form the Cybercraft network. Because malicious code networks (known as botnets)

currently manifest many properties of obfuscating command and control sequencing,

we evaluate and consider our proposed methodology in light of leading bot detection

algorithms. This research subjects Bothunter to a series of tests to validate these

claims. We use a leading bot detection utility, Bothunter, and an ARP validation

tool, XArp, to build a case for the effectiveness of our approach. We present three

scenarios that correlate to how we believe Cybercraft platforms integrate in the future

and consider stealthiness in terms of these representative tools. Our research gives

emphasis on measurable hiding related to the Cybercraft initialization sequence, and

we show how common network protocols such as ARP, HTTP, and DNS may be

modified to carry C2 commands while evading common detection methods found in

current tools.

iv

Acknowledgements

First and foremost, I owe a large debt of gratitude to my loving wife. I couldn’t

have made it through without your love and support. Next I would like to thank Lt

Col McDonald for his guidance and direction, and for helping me through the more

frustrating times. Third I would like to thank my children for their understanding

that daddy had to be left alone “for just a little while longer”. Finally I would like

to thank my friends and family who bolstered me with their prayers and support.

Thank You!

Bradley D. Sevy

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

Table of Contents . vi

List of Figures . viii

List of Tables . x

List of Abbreviations . xi

I. Introduction . 1
1.1 Research Motivation . 1
1.2 Research Statement . 2

1.2.1 Research Contribution 2
1.3 Thesis Organization . 3

II. Related Work . 4
2.1 Cybercraft . 5

2.1.1 Cybercraft Operation Model 7

2.1.2 Trust . 10
2.1.3 Trust Trap . 13

2.2 Malicious Software . 14
2.2.1 Viruses . 15
2.2.2 Worms . 15
2.2.3 Rootkits and back doors 16
2.2.4 Bots and Zombies 16
2.2.5 Trojan horses 17

2.3 Malware Taxonomy . 17

2.3.1 Type 0 Malware 19

2.3.2 Type I Malware 19

2.3.3 Type II Malware 20

2.3.4 Type III Malware 21

2.4 Virtualization . 22
2.4.1 Blue Pill . 24

2.5 Cybercraft as a Bot . 25

2.5.1 Bot Command and Control 26
2.6 Cybercraft as a Peer-to-Peer (P2P) Network 28

vi

Page

2.6.1 Chord . 29
2.6.2 Encryption . 30

2.7 Cybercraft in the Face of the Enemy 30

2.7.1 Byzantine Generals 31

2.8 Bot Hunter . 34
2.9 Needle in a Haystack . 35

III. Experimentation . 38

3.1 Problem Definition . 38
3.2 Hypothesis and Goals 38

3.3 Setup . 40

3.3.1 Measuring Stealth 41

3.4 Approach . 42

3.4.1 Assumptions . 44

3.5 Scenarios . 48
3.5.1 Scenario I . 49
3.5.2 Scenario II . 50
3.5.3 Scenario III . 51

3.6 Summary . 51

IV. Results and Analysis . 52

4.1 Testing Bothunter . 52

4.1.1 Bothunter Experiments 53

4.2 Testing Initialization Sequence 60

4.3 Significance . 62

4.4 Summary . 63

V. Conclusions and Recommendations 64
5.1 ARP Validation . 64
5.2 Future Work . 66
5.3 Conclusion . 67

Bibliography . 68

vii

List of Figures
Figure Page

2.1 Artist’s rendition of a Cybercraft 5

2.2 Cybercraft Operational Concept [16] 7

2.3 Boyds OODA Loop Sketch [3] 9

2.4 Ants taking poison back with them to their nests [42] 12

2.5 Common trust structure that opens vulnerabilities of insider sab-

otage or TrustTrap [30] . 13

2.6 Type 0 malware. Does not subvert OS directly [35] 18

2.7 Type 1 malware. Subverts OS code [35] 20

2.8 Type 2 malware. Subverts OS data [35] 21

2.9 Severed and reswen DKOM’d link list hides rootkit process [29] 22

2.10 Type 3 malware. Is completely separate from OS [35] 23

2.11 SubVirt before and after infestation [20] 24

2.12 Blue Pill before and after infestation 24

2.13 Two types of command and control methods [13] 26

2.14 The Chord system showing a mapping of items to nodes [41] . 28

2.15 Two honest Generals passing verbal messages with one traitor

General . 32

2.16 Two honest Generals passing signed written messages with one

traitor General . 33

2.17 BotHunter Architecture [12] . 34

3.1 Proposed network for experiment 41

3.2 Screen shot from Bothunter [17] 43

3.3 Showing that a Virtual Machine Based Rootkit is closer to the

hardware than the Guest Operating System 46

3.4 CyberCraft displayed as a Chord Ring of Virtual Machine Mon-

itors communicating with each other 48

viii

Figure Page

3.5 First scenario, only connection is using HTTP 49

3.6 Second scenario, Cybercraft gains plugs into local Chord Struc-

ture using modified ARP messages 50

3.7 Thrid scenario, Cybercraft platform connection to outside C2

structure via DNS messages . 51

4.1 Screenshot of a file that was downloaded and executed using Sdbot 56

4.2 Graph showing the drop in profiles as the packet number increased 57

4.3 Screenshot showing webpage that could have C2 information . 61

5.1 Screenshot of XArp a ARP validation utility from [25] 65

ix

List of Tables
Table Page

3.1 List of Bots Chosen for Experiment 42

3.2 Table of Bothuner tests . 44

3.3 Table showing first test criteria 45

3.4 Table showing second test criteria 45

4.1 Table with bot detection results 54

4.2 Table showing C2 results . 59

4.3 Table showing Cybercraft initialization sequence results 60

x

List of Abbreviations
Abbreviation Page

C2 Command and Control . 2

UAV Unmanned Aerial Vehicle 7

IO Information Operations 7

DDoS Distributed Denial of Service Attack 8

ROEs Rules of Engagement . 8

OODA Observe Orient Decide Act 9

OS Operating System . 18

API Application Programming Interface 19

DLL Dynamic-Link Library . 19

DKOM Direct Kernel Object Manipulation 20

VM Virtual Machine . 21

VMBR Virtual Machine Based Rootkit 21

VMM Virtual Machine Monitor 21

HAV Hardware-Assisted Virtualization 24

IRC Internet Relay Chat . 27

IM Instant Message . 27

HTTP Hypertext Transfer Protocol 27

IDS Intrusion Detection System 27

HP2P Hierarchical Peer-to-Peer 28

DHT Distributed Hash Table 29

SMC Secure Multi-Party Computations 30

xi

Using Covert Means

To Establish Cybercraft

Command And Control

I. Introduction

In his commentary on Sun Tzu’s The Art of War, Zhuge Liang, one of China’s

greatest military strategists and philosophers said [6]:

“...high walls and deep moats do not guarantee security, while strong ar-
mor and effective weapons do not guarantee strength. If opponents want
to hold firm, attack where they are unprepared; if opponents want to
establish a battlefront, appear where they do not expect you.”

Zhuge Liang’s observations of warfare ring as true today as when he penned

them over 1800 years ago. Although there have been many advancements in military

technology, no amount of ingenuity has changed the core property of war that a suc-

cessful attack is one that goes against an enemies weakness, and a strong defense is

contingent on hiding those weakness from the enemy. However, much has changed

with regard to where the battles take place and the speed at which they are fought.

Today, key military systems are constantly bombarded on the cyber battlefield. Hun-

dreds of attacks are waged against strategic computer and information systems with

varying sophistication from trivial to elite.

1.1 Research Motivation

To better prepare our nation for cyber war, the Air Force Research Lab’s In-

formation Directorate has launched a multi-year research project to bolster cyber

defenses.

1

Named the Cybercraft project, this effort seeks to establish a Cybercraft that

automates tasks which increases the defenses of military computer and information

networks [16].

On 15 September 2008 the Air Force’s top leaders released a joint letter updating

the Air Force Mission. The new mission of the Air Force is: [9]

”The mission of the United States Air Force is to fly, fight and win ... in
air, space and cyberspace.”

Cyberspace again has been stressed by Air Force top leadership as vital to the

Air Force mission. This work contributes to the Air Force mission to ‘win’ the fight in

cyberspace by furthering the work that has already been made on the Air Force’s Cy-

bercraft Project. Specifically this research will develop a methodology for a stealthy

initialization sequence for when a new Cybercraft comes online and plugs into a com-

mand and control channel.

1.2 Research Statement

This research presents a method for stealthy Cybercraft initialization sequence

required to gain command and control (C2).

1.2.1 Research Contribution. It is predicted that 10% of all computers on

the Internet are being controlled by a botnet. [28] This creates a large concern for

the Air Force and its mission to protect its computer systems. Additionally the Air

Force needs to protect the methods, techniques and tools used in defense of these

malicious threats. Much work has already been done in the field of botnet detection

and prevention. The first contribution is to cast the Cybercraft C2 problem as a botnet

detection problem. Furthermore, we propose concrete scenarios based on current

botnet detection systems to evaluate possible techniques of stealthy initialization.

Finally, we provide an evaluation of Bothunter and other tools based on our analysis.

2

1.3 Thesis Organization

This document is divided into five chapters. Chapter II gives the background

that is needed to understand our research and methodology. Chapter III outlines my

proposed methodology, our hypotheses and our approach to setting up an experiment

to test those hypothesis. Chapter IV gives a detailed evaluation of our methodology

experiment. Chapter V gives recommendations for future work and concludes.

3

II. Related Work

With the frequency and the level of sophistication of computer attacks on the

rise there is a current need to revamp the defense of computer and infor-

mation systems. The Department of Defense repels hundreds of computer attacks

every day, and on a global scale it is estimated nearly 10% of all nodes connected to

the Internet belong (unknowingly) to malicious multi-agent systems (bots). [28] The

fact that 10% of the worlds computers could be controlled by someone with malicious

intent is a strong enough threat against our nations security and well-being that a

project has been developed to mitigate that threat.

This chapter summarizes the background information necessary to better under-

stand our research regarding the development of a stealthy Cybercraft initialization

sequence. It is divided into nine sections. Section 1 Cybercraft more fully explains the

Cybercraft project, including its operational model. Because this research is based

around the Cybercraft project, it is important to understand the models that serve

as the foundation of the research. Section 2 Malicious Software briefly outlines many

forms of malware currently in practice. The characteristics and lessons learned from

these malicious software groups will be used to achieve a stealthy Cybercraft initializa-

tion. Section 3 Malware Taxonomy describes a taxonomy to describe the weaknesses

specific malware types use to exploit systems. This is important to distinguish be-

cause the type of vulnerability used has consequences on the level of effort required to

reveal the exploit. Section 4 introduces a rootkit that uses a virtual machine monitor,

highlighting a significant aspect of our methodology for stealthy Cybercraft initial-

ization. Section 5 Cybercraft as a Bot depicts command and control characteristics

of a botnet. It also compares a botnet command and control structure to that of

Cybercraft. Section 6 Cybercraft as a P2P Network describes the characteristics of a

Cybercraft initializing and joining a peer network. This is used in our methodology as

a way to successfully and stealthily gain command and control. Section 7 Cybercraft

in the Face of the Enemy assumes that Cybercraft could fall victim to malicious soft-

4

Figure 2.1: Artist’s rendition of a Cybercraft

ware. It relates the problem of enemies interfering with Cybercraft to the Byzantine

Generals problem classically used to describe overcoming fault tolerance issues in a

distributed system. Section 8 Bothunter introduces the Bothunter bot detector used

to test our stealthy initialization sequence and command and control methodology.

Finally, Section 9 Needle in a Haystack describes the challenge of sorting through le-

gitimate traffic patterns to find malicious information. The methodology for stealthy

Cybercraft initialization is based on modifying common information and hiding in

plain sight just like a needle in a haystack.

2.1 Cybercraft

The basis of our research is to show that a Cybercraft can stealthily gain com-

mand and control even in the presence of modern day bot detectors. This section

describes in greater detail the characteristics of a Cybercraft.

5

The Cybercraft project is an undertaking headed by the Air Force Research

Lab, and its mission is “to automate cyber defense responses based on fused trust-

based situational awareness data and operator-defined rules of engagement” [16]. The

Cybercraft project is still in its infancy and is continuously growing its list of require-

ments and specifications.

The Cybercraft’s basic premise is that it is to be a lightweight distributed multi-

agent system composed of both software and hardware. [19] The Cybercraft’s mission

will be to defend and sustain military networks and assets and as such must [19,28]:

• monitor systems and respond in near real time

• respond according to current policies

• provide feedback to human operators of mission status

• support varying levels of autonomy

• be dynamically configurable

• follow a command structure

Because the Cybercraft is to be used by the military, it is expected to be scalable,

redundant and have a well defined command and control component. Undertaking

such a project brings with it many challenges. Dr. Phister [32] raised several impor-

tant questions that help define the role Cybercraft needs to play in defense of our

information systems. Some of the questions he asked were: What would the mission’s

of the Cybercraft be? How do you control the Cybercraft? How can we trust the

Cybercraft to do the right thing? These are all important questions, especially for the

operators and commanders that will be relying on the Cybercrafts. The answers to

these question are beyond the scope of this paper, however, this research does intend

to further the answer to how a Cybercraft should initialize, how it can do so stealthily

and how it can gain command and control.

6

Figure 2.2: Cybercraft Operational Concept [16]

2.1.1 Cybercraft Operation Model. One of the concepts behind Cybercraft

is that a Cybercraft can be resourced to carry out diverse missions. This is achieved

by executing different dynamic code or payloads. This can be viewed similarly to cur-

rent unmanned aerial vehicles (UAV) flown today. Current UAVs in operations today

can be fitted with different sensors and/or weapons payloads to execute a variety of

missions. However, no matter the payload the airframe of the UAV doesn’t change

from mission to mission. Similarly to the UAV airframe, the Cybercraft platform

does not change from one mission to another. Instead the Cybercraft can be fitted

with different dynamic payloads. This gives Cybercraft flexibility in the missions it

can perform while maintaining a stable base of static code. For the purposes of our

research we are interested in the Cybercraft platform; and any further reference to

Cybercraft should be taken to refer to the Cybercraft platform.

One of the US Air Force’s seventeen Air and Space Power functions is Infor-

mation Operations (IO). According to USAF doctrine, information operations “are

actions taken to influence, affect, or defend information, systems, and/or decision-

7

making to create effects across the battlespace.” [43] There are many scenarios where

a Cybercraft could be used to fulfill an Information Operation mission. Take for ex-

ample the scenario of a distributed denial of service attack (DDoS). Under a DDoS

attack many computers from around the globe converge on a specific target in an

attempt to inundate the target’s resources and bandwidth so completely that they

crash or slow to a stop. A DDoS could happen so fast that by the time it would take

a human to recognize a DDoS and to react to it, the damage could already be done.

This is when Cybercraft is important. Figure 2.2 displays the operational concept

for a Cybercraft mission such as the DDos attack previously outlined. As currently

defined a Cybercraft would not be activated without a specific set of Rules of En-

gagement (ROEs). These rules, authorized by someone of authority, would be set in

place prior to any action on the part of the Cybercraft. To illustrate the example,

a commander may authorize a Cybercraft to patrol the borders of the network and

keep a vigilant eye on the network resources.

Prior to being initialized, we envision one or more Cybercraft be installed on

computational nodes. The installation procedure will be accomplished by technicians

or operators. Once a Cybercraft connects, either at the software or hardware level, it

must then join the aggregate hierarchy, known as the Cybercaft ”cloud”. This com-

munication is necessary for a Cybercraft to plug into proper command and control

channels. This initialization sequence could generate a high level of computer com-

munication traffic, and if not properly executed could attract much attention. Since

one of the goals of the Cybercraft system is self-defense, a key facet of a defensive

system is to be stealty, or in other words, to remain undetected [14].

This research aims to quiet this communication and make the initialization as

stealthy as possible. Just like prisoners, it attracts less attention to whisper to a neigh-

bor than to pass communications in and out of prison. In this way if a Cybercraft

platform is connected to a command and control channel already, future Cybercraft

8

Figure 2.3: Boyds OODA Loop Sketch [3]

platforms can leverage this and limit the amount of noise or attention that unneces-

sary communications could warrant.

Once initialized and operational, a Cybercraft would be a functioning member

of a command and control structure. As a member of the command and control

structure the Cybercraft would receive payloads and policies to execute from other

sources. These communications would be encrypted covert channels (at a minimum).

Our interest is the initial communication sequence which all Cybercraft platforms

must use to join the command and control channel or “cloud”.

This Cybercraft Operational Concept parallels the US Air Force OODA Loop

concept that has proven so successful in air-to-air combat missions (see Figure 2.3).

The OODA or Observe - Orient - Decide - Act loop was first developed to express to

air-to-air fighter pilots that in a dogfight the pilot that was faster at realizing what

was going on and reacting to it was the pilot that was going to survive the encounter.

With one iteration of the OODA loop, a pilot observes what is going on around him,

make a decision, and then carry out that decision. Whatever action the pilot chooses

has ramifications and consequences. This requires the pilot to carry out another it-

9

eration of the OODA loop, the cycle continues until the struggle is over. The pilot

that is able to get inside the others OODA loop, or rather have a tighter OODA loop

than the opponent is likely to be the victor.

This same concept can be applied to the cyber domain of information and com-

puter security. Since the medieval days of knights crossing moats and storming castle

gates, success on the battlefield is determined not only by guarding your weak areas,

but in how fast you can react when they are being attacked. In the cyber realm hu-

mans start at a severe disadvantage. Modern computing components are capable of

making billions of calculations every second. One current computer attacker has de-

veloped a weapon called Stormbot. The Stormbot is very sophisticated and may have

contaminated over 2 million computers. One organization has reported that Storm-

bot is currently infesting computers at the rate of 900,000 computers monthly. [8]

Assuming 2 million computers performing calculations at 1 billion per second equals

a force that is capable of 2.0x1015 or 2 quadrillion calculations every second. If such

a force was unleashed on any network it surely would not stand unless the network

was able to react at similar speeds.

2.1.2 Trust. One of the key questions of Cybercraft is how can a commander

trust that the Cybercraft is always going to do the right thing? This research stands

on the shoulders of several other scholars who have devoted their entire research on

the subject of trust. In their respective theses, Hunt and Stevens [15, 40] worked to

develop a framework to define trust models for the Cybercraft platform. At the root

of their trust models were the underlying components of current and historical data,

intrinsic knowledge of the remote agent’s abilities, and recommendations from other

agents [40]. To summarize their work they use historical data and peer recommenda-

tions to achieve a level of trust with another possible unknown entity. This mimics

human trust patterns in many ways [15]. Take for example a human trying to find

10

a new auto mechanic or a new babysitter. One may search the phone book looking

for someone who has been established in the community for awhile, thus basing their

decision of trust on historical data. One might also query neighbors or friends in the

area and ask for recommendations. The level of trust then stems not only from the

recommendation given, but also from the level of trust that exists with the person

making the recommendation. If someone that is not known to be trustworthy gives

an excellent recommendation, it might not be accepted at the same level, if it was

given from someone known to be trustworthy.

In order to achieve a mature trust model, historical data and intrinsic knowledge

may help, but verification must play a primary role. In his farewell speech to the

nation President Ronald Reagan said regarding our position with the post cold war

Russian nation [33]:

“We must keep up our guard...as we make it clear that we will continue to
act in a certain way as long as they continue to act in a helpful manner.
It’s still trust but verify. It’s still play, but cut the cards. It’s still watch
closely. And don’t be afraid to see what you see.”

This notion of trust but verify is a key component of a trust model. It is another way

of saying I trust a given entity, but only after I have independently verified it. This

model of behavior is commonplace in circumstances where even one failure to identify

a malicious entity could result in very serious consequences, either in loss of life or

loss of resources. Take for example the guards posted at military installations, or the

Transportation Security Administration agents that screen people prior to flying on

an airplane. They have a “trust but verify” attitude. They trust a person only after

they have checked their credentials and completed all security measures that they

deem fit. These security measures take place each and every time one wishes to enter

a military installation or fly on a plane, regardless of the number of times one has

successfully done so previously. These measures are in place because it is impossible

to gauge if someone who has flown on an airplane countless times without incident

has malicious intent for the next trip planned. Letting such an individual through

11

Figure 2.4: Ants taking poison back with them to their nests [42]

the security checkpoint based on such historical data or recommendations from peers

could spell doom for all of the passengers on the plane.

Since computer and information networks are vital to the security and well be-

ing of the United States, computer security guards should take the same attitude as

the physical security counterparts. In addition to the previously mentioned scenarios

in the physical world, Cybercraft has to deal with the added threat of zombies and

logic bombs. This introduces the more refined notion that Cybercraft trust is akin to

fusing possibly “dirty” or malicious data. To illustrate this point imagine a healthy

colony of ants (see Figure 2.4). Ants have established protection mechanisms from

other intruding insects, and if challenged the ants will swarm on the intruder and at-

tack it. Ants have a requirement to leave the security of their ant hills to accomplish

various external tasks, such as foraging for food. A well known method of eradicating

ants exploits these scout ants that are out foraging for food. A poison developed to

attract ants is placed outside of the ant hill (see Figure 2.4). When the ant comes in

contact with the poison, it does not immediately kill it. Instead, the ant is allowed

to carry the poison back into the ant hill. The ants, knowing that he is one of their

12

Figure 2.5: Common trust structure that opens vulnerabilities of insider sabotage or
TrustTrap [30]

scout ants, let it back into the ant hill where he infects numerous more ants in the

heart of the ant hill. This attack is successful because the ants have established a

trust relationship based on history and peer recommendations. The ant that brought

the poison into the ant hill and put the death nail in the community may not have

even been aware.

2.1.3 Trust Trap. Another more formal example of trust relationships was

conducted by the Software Engineering Institute at Carnegie Melon [30]. It was the

aim of the study to analyze IT sabotage and observe the general characteristics of the

individuals that conducted internal sabotage and the circumstances that allowed it

to happen. In their work they presented what they call the “Trust Trap” (see Figure

2.5). It is pointed out in their work that the actual risk of insider attack is based on

the combination of behavioral and technical precursors of the malicious individual.

However, many offices and organizations try to foster a trusting relationship between

employees, and according to [30]:

13

“Workplace relationships sometimes shortcut essential behavioral and tech-
nical monitoring procedures, or allow them to erode over time due to
competing pressures and priorities. Lower levels of monitoring lead to
undiscovered precursors, resulting in an overall lower perceived risk”

This trend of trusting the employees and work associates continues, and although

the actual risk of an individual doing something harmful does not change, the cycle

continues and the perceived threat continues to diminish until something happens that

is so severe that all parties notice.

It is essential then that Cybercraft trust models be created that do not fall

victim to the ‘Trust Trap’. A “trust but verify” approach must be taken every time

to every Cybercraft. This will increase the difficulty for individuals with malicious

intent to sabotage a Cybercraft and send it back into the trusted network, where like

the aforementioned ant can use an inside trust to destroy the Cybercraft protections.

2.2 Malicious Software

Malicious software or malware is a broad term that is used to define any type of

software that is malicious in nature. With the increase of sophistication that malware

authors are using to deploy their software, more specific terms are needed to identify

different types of malware. This section describes some of the key characteristics of

malicious software. In order to create a stealthy methodology for a Cybercraft ini-

tialization sequence I have pulled lessons learned from the below categories of malware.

McClure, Scambray and Kurtz [26] break malware down into five sub categories:

viruses, worms, rootkits and back doors, bots and zombies and finally trojan horses.

Each one of these malware types can be deployed by themselves or in conjunction

with one another to serve the purpose of the aggressor. To better understand the

14

differences in each category a brief explanation will follow.

2.2.1 Viruses. Viruses are the term that most people are familiar with to

describe general malware. It is also the name that many of the security vendors have

adopted to defend against malware. People purchase anti-virus software to protect

against computer viruses, but todays software fights much more than only viruses. In

its purest definition a virus is “a program that can ‘infect’ other programs by modify-

ing them to include a possibly evolved copy of itself.” [7] In other words viruses are a

type of malware that need some other application to serve as the virus’ host. It then

will attempt to infect other applications with copies of itself. A key characteristic of

a computer virus is that it requires interaction [26] to reproduce itself. Viruses can

be programmed to attach themselves to a host, then upon some instruction either

internally or externally generated carry out almost any code instruction as the host.

2.2.2 Worms. A worm is a piece of software that plants copies of itself in

remote, electronically-connected nodes. [21] Worms differ from viruses in that they do

not require another application to serve as a host for the worm. Worms also do not

require any user intervention to help propagate the worm. In other words worms can

self-propagate via a network [26] and cause havoc utilizing system resources rather

than modifying the logic of applications. It has been seen that worms are capable

of carrying a secondary payload that can execute additional instructions [26]. How-

ever many worms simply eat network bandwidth and grow to monopolize network

resources. Many worms are programmed to scan their surroundings in order to au-

tonomously propagate. This network vulnerability scanning could draw attention if

it was to take place on a network with a vigilant network administrator

15

2.2.3 Rootkits and back doors. Rootkits are larger than any single piece

of software. As the term kit implies, a rootkit is a collection of software application

that works together for a common purpose. According to [14] a rootkit is “a set of

programs and code that allows a permanent or consistent, undetectable presence on a

computer.” This definition really stresses the importance of a rootkit to be stealthy.

The name rootkit was derived as many of the first rootkits were developed to provide

“root” or full administrator access to a system. Other rootkits have been developed

for the purpose of hiding processes, ports or services and also used for software eaves-

dropping. Some rootkits took the form of packet sniffers, keyloggers or were used to

capture email. Because most rootkits are designed to be persistent (survive a com-

puter reboot) and stealthy they are a popular choice for back doors. A back door is a

malicious way for someone to gain access to the system without going through proper

identification and authentication channels. A rootkit might be written to allow any-

one with a particular password access to that computer. This allows the aggressor to

gain access to the target system at any time.

2.2.4 Bots and Zombies. Bots started to appear on the computer scene in

the early 1990s and were used as a tool to carry out administrative chores over a

network on many computers at once [2]. Since then, bots have been developed for

malicious purposes and have spawned many new terms. The traditional definition

of a bot according to [39] is “bots are simply software programs that perform some

action on behalf of a human on large numbers of infected machines.” This network

of infected machines are called bot-nets, and the infected machines themselves are

called zombies. The individual that has control over the bot-net is referred to as a

bot-herder. These bot-herders have been able to gain the resources and control of

over a hundred thousand computers at a time [2]. They are then able to use these

bot-nets for vary nefarious purposes, some of the most common uses for bot-nets are

denial of service floods, vulnerability scanners, e-mail harvesters, email spammers and

16

allowing the bot herder to surf the Internet without revealing his/her location. Unlike

worms and viruses that work autonomously, bots rely on an individual to execute the

commands. A more in depth look at the command and control structure of bots can

be found in Chapter III §2.5.1

2.2.5 Trojan horses. Software trojan horses, or simply trojans, are software

programs “that does something other than, or in addition to, its purported function-

ality.” [26] Named after the stratagem that allowed the Greeks to finally enter and

conquer the city of Troy, software trojans are designed to be appealing, and when

unsuspecting users download or install the software the trojan also carrys out addi-

tional instructions to fulfill a secondary purpose. The secondary purpose could be

anything to establishing a backdoor to the system, to disabling anti-virus software to

formatting the hard drive. Today trojans have been found in everything from screen-

savers, to electronic greeting cards, to fake anti-virus software. Trojans are not only

a very effective way to get a user to install malware, but also have a high degree of

stealth associated with them. If a user installed a game it would not surprise them

to see a game process or registry keys referring to that game. This keeps the user

unsuspecting while the trojan is executing all of the malicious code.

2.3 Malware Taxonomy

The previous sections briefly introduced the different types of malware. This

section proposes a taxonomy of malware based on the weakness the malware exploits.

The taxonomy classifications have strong ramifications on the detectability level of

malware. I have considered this taxonomy in our methodology of a stealthy initial-

ization sequence.

17

Within each type of malware, different approaches could be taken by the mal-

ware author to gain access to the system. Each different approach brings with it

certain tradeoffs. This taxonomy was formalized by noted security researcher Joanna

Rutkowska who uses an alternate definition of malware. Her definition focuses on

the specific relationship between the malware and the operating system (OS) and is

defined as follows: [29,35].

“Malware is a piece of code which changes the behavior of either the
operating system kernel or some security sensitive applications, without
a user consent and in such a way that it is then impossible to detect
those changes using a documented feature of the operating system or the
application.”

Below four classifications of malware are discussed along with their unique character-

istics.

Figure 2.6: Type 0 malware. Does not subvert OS directly [35]

18

2.3.1 Type 0 Malware. Type 0 malware is defined as malware that does not

exploit any weaknesses in the OS, nor does it utilize any undocumented system tricks.

Rather it uses documented application programming interfaces (API). This results in

code that can be tracked and monitored by the OS. The difference between type 0

malware and all of the other honest programs running on the computer is simply the

authors intent (see Figure 2.6). Because type 0 malware does not use tricks to fool the

system, it usually will rely on fooling the users. Social engineering is a huge part of

type 0 malware. If a malware author can fool a user into downloading and running an

application, then there is no need to hide it from the OS. When a user sees the process

running in a task list there is no alert, because the user chose to install it. This is

typical in many trojan applications. Users think they are getting a new screensaver or

Internet browsing toolbar, and are not alarmed to see those same processes running

on their systems. However, many programs may lie to the users and be conducting

a secondary function such as password stealing or keylogging, but in type 0 malware

these secondary functions do not use tricks to go around established OS procedures.

2.3.2 Type I Malware. Type I malware is malware that changes data stored

in locations that are not supposed to be changed. This could happen either in memory

or in static executable binary files. Traditionally a malware author reverse engineers

a binary, or a Dynamic-Link Library (DLL) and introduce changes to the existing ex-

ecutables such that the malware author is able to accomplish a task (see Figure 2.7).

The changes could range from disabling security measures or escalating privileges, to

jumping and executing new code written by the malware author. Because the exploits

for this kind of code are as limitless as the imagination of malicious authors, the best

defense against type I malware is simply to ‘know thyself’. This means taking action

before a compromise and taking a snapshot of all of the important files on the sys-

tem. At a later time the user can compare the current files to those in the snapshot

and note any differences. Since the files associated with type I malware are not sup-

19

Figure 2.7: Type 1 malware. Subverts OS code [35]

posed to be changed, any differences would stand out as being infected. Several tools

exist that work on this premise, including System Virginity Verifier by Rutkowska [34].

2.3.3 Type II Malware. Type II malware is similar to type I malware,

except that instead of infecting the code sections of the system that are not supposed

to change, type II malware targets the data portions of the system that by necessity

are supposed to change often (see Figure 2.8). For example, the data and pointers

inside kernel data structures is dynamic and constantly changing. It is possible to

change them to hide processes, device drivers, ports, or to even skew forensics. [14]

One method popularized in the ‘fu’ rootkit is Direct Kernel Object Manipulation

(DKOM) [4]. DKOM’d malware is classified as type II because the Kernel Objects

that are used to hide things are normally changed by the OS. This makes DKOM’d

malware extremely difficult to detect. Using DKOM techniques, linked lists can be

20

Figure 2.8: Type 2 malware. Subverts OS data [35]

snipped and resewn without affecting their functionality (see Figure 2.9)

2.3.4 Type III Malware. Type III malware is malware that uses hardware

virtualization. Virtualization is discussed more in depth in §2.4. Suffice to say for

now that type III malware is almost undetectable [35]. Type III malware separates

itself completely from the OS. Because the type III malware is ‘closer’ or ‘lower’ to

the hardware than the OS there is no way for the OS to have any clue of its presence.

There have been a few research groups that have made claims to be able to detect

the presence of a virtual machine (VM) running [10,11]. However it has been argued

that with virtualized hardware on the rise soon claiming to detect a Virtual Ma-

chine Based Rootkit (VMBR) by deducing that a Virtual Machine Monitor (VMM)

is akin to claiming you have detected a botnet by observing that there is a network

attached. [37] Many have also claimed that in order to negate the affects of a VMBR,

21

Figure 2.9: Severed and reswen DKOM’d link list hides rootkit process [29]

one only has to install a trusted verifiable VMM first. This defense was overcome by

events when Rutkowska showed that it is possible to nest VMMs [38]. This means

that if a VMBR is put underneath a trusted verifiable VMM, that running a trusted

VMM could hamper VMBR identification. Any side channel observances could be

attributed to the trusted VMM, so defenders will have a harder time deducing if any

timing attacks stem from a VMBR.

2.4 Virtualization

Virtualization, specifically a virtual machine based rootkit (see §2.3.4) is a key

piece to our methodology of a stealthy Cybercraft initialization sequence. This sec-

tion explains virtualization in more detail and introduces Bluepill, a proof of concept

virtual machine based rootkit.

“Virtualization is, at its foundation, a technique for hiding the physical charac-

teristics of computing resources from the way in which other systems, applications, or

end users interact with those resources [24]”. There are many types of virtualization

in practice today, each one abstracting a different component. A non-comprehensive

list is given by [24] as: operating system, server, desktop, streaming, storage, data,

clustering, grid computing, software-as-a-service and thin client. Each of these cat-

22

Figure 2.10: Type 3 malware. Is completely separate from OS [35]

egories takes a service or a component and hides the physical characteristics of that

component from its users.

There are many benefits to deploying a virtualized system. One of the biggest

advantages to virtualization is an increased hardware utilization rate. It was ob-

served by [44] that most servers run at only 15% utilization. That translates to much

computer power sitting around being wasted. Under a virtualized system, a virtual

machine monitor is placed on one physical host computer. The host computer is

then installed with many guest systems. It was observed by [44] that current IT best

practices provision only one application per server. This is because if a server were

to fail, only one service or application would be affected. Virtualization provides the

capability to marry best IT practices while saving hardware costs, assuming the 15%

observation were true and six servers could be run on the hardware that was previ-

ously hosting only one. Since VMMs keep the servers in a sandbox, isolated from

the other servers, it still maintains the best practice of only one service or application

23

Figure 2.11: SubVirt before and after
infestation [20]

Figure 2.12: Blue Pill before and after
infestation

per server. This gives way to substantial cost savings, but not solely in hardware costs.

Historically classical virtualization or full hardware-assisted virtualization (HAV)

has not been widely supported or effective on the IA-32 or x86 architecture [1]. Since

the x86 is the most prominent hardware architecture in use today [1] new methods to

hardware virtualization would need to be explored. The landscape of virtualization

changed in 2007 when both Intel and AMD released virtualization extensions to the

x86 architecture. Intel calls their extension VT-x and AMD calls theirs Pacifica. Both

allow a virtual machine direct hardware access. This permits guest systems direct ac-

cess to resources that previously caused large delays. For example, guest computers

before HAV had great difficulty running three dimensional graphic intense programs

due to the software translating that was occurring between the video card drivers

and the VMM. Under HAV that bottleneck no longer exists and guest VMs can have

direct access to the video card.

2.4.1 Blue Pill. There have been many virtual machine monitors or hyper-

visors written, but none have received the scrutiny and attention as Rutkowska’s Blue

Pill. [36] In 2006 Rutkowska demonstrated a proof-of-concept VMM that could install

on a currently running host and transfer that host to a guest inside Blue Pill. This is

not the first project that married rootkit type delivery mechanisms with virtualiza-

24

tion. Among the first that completed such a task were researchers at the University

of Michigan when they developed the SubVirt VMM. [20] There are many differences

that propelled Blue Pill to stardom over SubVirt, first, SubVirt needed to change the

boot loader and required a restart of the system, and it was based on a commercial

VMM which emulated virtual hardware which would make SubVirt easier to detect

(see Figure 2.11). Blue pill on the other hand (see Figure 2.12) overcame all the ob-

stacles facing SubVirt and produced an ultra thin VMM that promised full hardware

virutalization and could be installed on the fly and most controversially was touted

as “100% undetectable” [36].

2.5 Cybercraft as a Bot

The overall goal of this research is to create a methodology for a Cybercraft to

stealthily initialize and plug into a command and control structure. It is important

to the Cybercraft project to know if current bot detection techniques and tools will

identify Cybercrafts as well. This section serves to point out that bots and Cybercraft

do share some common traits. Furthermore, this section describes in more detail how

a bot(see §2.2.4) gains command and control.

There are many characteristics that a Cybercraft might share with a common

bot. Both a botnet and a Cybercraft need to be controlled by a human. In the case of

a botnet thousands of computers are led by a bot herder who will use the botnet for

some malicious purpose or for personal gain. A Cybercraft also has the requirement

to be human controlled. However, not all Cybercraft need react in the same manner.

This separates Cybercraft from a botnet in that Cybercraft are not zombies. In a

botnet all bots perform the same action at once. A Cybercraft does not have the

same limitation. Additionally, there could be multiple Cybercrafts in the area, and

on an execution command they could all perform different actions at different times.

But, in both cases it is important for bots and Cybercrafts to establish a command

25

Figure 2.13: Two types of command and control methods [13]

and control channel.

2.5.1 Bot Command and Control. This section details many of the spe-

cific characteristics regarding botnet command and control. First, bot command and

control mechanisms are usually very stable in that they do not change much once

unleashed ‘in the wild’. Second, the command and control architecture of a botnet is

regarded by many as the ‘weakest link’ of the botnet [13]. Generally speaking there

are two types of bot command and control structure, the push style and the pull style

(see Figure 2.13) [13].

Under the push-style construct, a bot-herder or bot master can issue a control

command to the entire botnet. Usually this is done simultaneously to all zombies.

The zombies then receive the instruction and carry it out. Contrary to the push style

is the pull style. Under a push-style command and control structure, the zombies are

responsible to ‘check-in’ with the bot master. The bot master would then update the

26

zombie with any new information or issue a command.

In addition to whether the bot, or a Cybercraft, utilizes a push or pull construct

style there still needs to exist some channel or protocol to facilitate the communica-

tion. Some of the more common channels currently in use today are: Internet Relay

Chat or (IRC)-oriented, Instant Message or (IM)-oriented, web oriented, and channels

that rely on their own protocols constructs [18].

IRC is a protocol engineered for synchronous conferencing. IRC allows someone

to speak to many people at the same time. This makes it a prime target for botnets.

Common IRC botnets require their zombies to connect to a specific IRC server chat-

room. The zombie then sits in the chatroom and listen until it gets instructions from

the bot master.

IM bots are similar to IRC bots but use common IM channels as communica-

tion channels. IM bots are not very popular due to many of the common IM services

requiring a user account. Common IM services also are established to make auto-

matic registrations very difficult. IM bots tend to be smaller than IRC bots for the

aforementioned reasons.

Web oriented bots commonly use the Hypertext Transfer Protocol (HTTP) to

send web traffic to a predefined server. Web bots have many advantages web traffic is

common, and as such most Intrusion Detection Systems (IDS) and firewalls will not

block the HTTP messsages. Web bots are also easier to engineer and implement.

The last major classification of bot communication channels is proprietary pro-

tocols. In order for a bot to get information across the Internet cloud, transport layer

protocols such as TCP/UDP or ICMP have to be used, otherwise the packets are not

27

able to be routed and would never leave their local area network.

2.6 Cybercraft as a Peer-to-Peer (P2P) Network

One of the aspects of Cybercraft initialization methodology that this work is

attempting to demonstrate is Cybercraft’s ability, upon initialization, to be able to

communicate with neighboring Cybercraft. This methodology requires a Cybercraft

to find out what other Cybercraft are nearby, and plug into any command and con-

trol channel that is required under the rules of engagement. In order to accomplish

this, a Cybercraft must have some way to authenticate messages that it sends and

receives. Cybercraft in this respect resembles a P2P or mobile ad-hoc network. A

survey has already been completed which analyzed different structured P2P overlay

networks against the requirements and specification for Cybercraft [31]. Because Cy-

bercraft can be deployed on different geographic or functional missions it lends itself

to a hierarchical peer-to-peer (HP2P) construct.

Figure 2.14: The Chord system showing a mapping of items to nodes [41]

28

2.6.1 Chord. As part of the initialization sequence it is important that a

Cybercraft be able to communicate with neighboring Cybercraft. The ability to plug

into a command and control network local to the Cybercraft has many advantages.

Section 2.1.1 introduced the analogy of a prisoner whispering to other prisoners in

an attempt to increase the stealthiness of the communications. A prisoner that can

relay all necessary information by listening to a neighboring prisoner is much faster

than relying on written letters to family and friends to relay the same information. In

addition it is likely that any communication in or out of the prison would be subject to

inspection by prison officials. This means that any information regarding something

like an escape attempt would be captured and not relayed to the prisoner.

Like the network of prisoners relaying information, Chord presents an system

for Cybercrafts to relay information. In order to facilitate a local communications

group of Cybercrafts a system must be identified. The Chord system [41] is a good

choice for Cybercraft. The Chord system is a distributed hash table (DHT) system

that is known to be versatile and scale very well. Under a Chord system each node

uses an m-bit identifier to map keys to specific entities. These entities can be any-

thing: files, commands, instructions etc. The Chord system maintains a finger hash

table of successor nodes which allows for quick access (O(log(N)) [41]) and relatively

low overhead when peers drop in and out of the constellation. Under a Chord system

a Cybercraft could join the Chord constellation to find all of the information it needs

and stay in or leave the constellation without large disruptions. Figure 2.14 depicts

a Chord system with five actual nodes in a four bit (16 max nodes) configuration.

Each real node is responsible for the space between it and its predecessor node. This

limits the amount of information that has to be shared whenever a new node comes

online. Consider the example in Figure 2.14, a new node 10 is to come online. It

would only have to transfer information from node 12 (anything associated with keys

8, 9 and 10). If a node is to leave the constellation a node would only have to transfer

its information to its successor node. One drawback to this is if a node was to fall

29

out before it could transfer its information to its successor, the constellation would

lose the information the node contained. For this purpose redundancy could be in-

troduced. The issue of redundancy and bad data is discussed in §2.7.1.

2.6.2 Encryption. Knowing that the Cybercraft will be communicating with

other Cybercraft brings on additional security concerns. As mentioned in §2.1.2 it is

necessary for one Cybercraft to be able to trust other Cybercrafts. Much work has

been accomplished in the field of secure multi-party computations (SMC).

“By integrating cryptographic protocols based on secure multi-party com-
putations, software-only protection mechanism can be designed to guar-
antee the execution integrity and data confidentiality of an agent while it
is executed at the remote host.” [27]

The Cybercraft project faces a steep challenge with regards to communication se-

curity. It has been shown [27] that there are distinct trade-offs when using secure

multi-party computations within such a project as Cybercraft. As the demand for

security increases, so does the number of calculations each Cybercraft platform has

to make to keep the communications secure. This also increases the number of mes-

sages that need to be transmitted to successfully handshake with other cybercraft

and conduct any security checks necessary (see §2.1.2). The benefits of encryption

are evident however, if a Cybercraft is compromised. Cybercraft compromise in more

detail in the next section.

2.7 Cybercraft in the Face of the Enemy

If a Cybercraft is to be able to successfully plug into a command and control

channel it must do so even when its enemies might be trying to capture the Cy-

bercraft and reverse engineer its initialization sequence. This section discusses what

defensive measures must be considered to be able to initialize when an enemy dis-

30

rupts the Cybercraft communication network or scrutinizes the Cybercrafts messages.

If captured and analyzed by an enemy, some information could be gained from

observing the Cybercraft’s messages. If encryption is used, a Cybercraft would only

provide evidence that messages are being sent and to whom. No knowledge is gained

regarding the information or command and control channel unless the encryption is

broken. Of course there are many defensive techniques that could be used to confuse

any enemy observers such as dummy messages that are sent so that the enemy could

not ascertain which are the true messages and which are the dummy messages, but

the enemy would see messages. Thus, part of the Cybercraft stealthiness must rely

on the messages not being observed. This is discussed more in §2.9.

Another defensive measure that needs to be considered is that of redundancy.

It was introduced in §2.6.1 that a Cybercraft might be taken offline without properly

sharing its information to neighboring Cybercraft. This is due to network problems,

hardware failure, etc. It is important therefore to incorporate some redundancy into

the network so that if a Cybercraft goes offline other dependent Cybercraft don’t also

loose the required information.

Another problem to consider is that of imposter Cybercrafts. Section 2.1.2 dis-

cussed the importance of a Cybercraft trusting other Cybercraft. Imagine a scenario

where a Cybercraft is attempting to initialize and plug into a command and control

channel only to find that the command and control channel is being operated by the

enemy. This problem of Cybercraft reliability and consistency maps to the following

Byzantine Generals problem.

2.7.1 Byzantine Generals. In 1982 a landmark paper was written called

‘The Byzantine Generals Problem’ [22]. The paper outlined a scenario where many

31

Figure 2.15: Two honest Generals passing verbal messages with one traitor General

divisions of the Byzantine Army were camped out surrounding an enemy city. Each

of the divisions were commanded by a Byzantine General. It is the mission of the

Generals to observe the actions within the hostile city and develop a course of action.

The General’s only capability of communicating with each other is via messengers. Of

course, those messengers could get captured and replaced with enemy spy agents, or

it is possible for a General to go rouge and wish harm upon the Byzantine Army (see

§2.1.3 regarding insider threats). With the possibility of the sender or the message

being compromised it is still vital that all honest Generals agree on a united course of

action. For simplicity, the only actions could be to either attack the city or retreat.

Both actions are acceptable, however only if all Generals make the same decision. It

is a failure if some of the Generals and their divisions retreat while others attack.

This abstract problem was developed to help solve the problems regarding reli-

ability and consistency within distributed systems. The Generals represent processes

or nodes in a distributed environment. The pedagogical example of distributed sys-

tem is the ATM bank machine. If a bank customer attempted to withdraw money

from his account, but there was a server failure somewhere down the chain, how will

the failure get recognized? How do you prevent the system from withdrawing from a

user’s account, but not give them the money? The Byzantine General paper showed

32

Figure 2.16: Two honest Generals passing signed written messages with one traitor
General

that when using simple messages for every traitorous General m you would need

3m+1 loyal Generals if the loyal Generals are to be successful. Notice on Figure 2.15

that with less than 3m + 1 loyal Generals they are not all in agreement, and cannot

deduce which General is the traitor.

Suppose now that the Generals were to improve their communications proto-

cols. Suppose that instead of verbal messages that the Generals were required to

sign a separate letter to each other General with their vote on what action should

be performed. Then after a General has received all of the letters from all the other

Generals they are put together. At this point each General would have a local list of

all of the votes that all the other Generals have given to just them. This is shown as

the leftmost columns in Figure 2.16. After all of the first round of messages have been

tallied the Generals are to send out another letter to all of the other Generals with a

note detailing all of the votes that General has received from the other Generals. This

is depicted by the green sets going across the green lines of Figure 2.16. Note, the

33

traitor is not following protocol, he is sending garbage rather than the requisite letters.

At the cost of a second round of letters, and the time it takes to process all of

the letters all honest Generals will not only be able to make the correct decision, but

they are also able to identify who all of the traitorous Generals are in the mix. With

signed messages you can deal with any number of m traitors, regardless of how many

honest Generals exist.

If a Cybercraft is to not fall victim to an impostor, it needs to be in communi-

cation with 3m+1 loyal Cybercrafts for every m impostors, or use an implementation

where signed messages could be used. Of course using signed messages increases the

number of message traffic that would need to be sent and has a detrimental effect on

the stealthiness of the Cybercraft initialization sequence.

2.8 Bot Hunter

Figure 2.17: BotHunter Architecture [12]

Bothunter is a bot detection utility that claims to be “...the first real-time anal-

ysis system that can automatically derive a profile of the entire bot detection process,

34

including the identification of the victim, the infection agent, the source of the egg

download, and the command and control center” [12].

Bothunter is a trio of IDS components that attempts to correlate data from

watching inbound and outbound information. Figure 2.17 shows the architecture

of Bothunter. A large portion of Bothunter is similar to any other rule based IDS.

Bothunter is special in the fact that it uses two other IDS components that serve to

monitor the entire network traffic and make observances that are special to botnets.

For example in a botnet when an order is given all bots immediately respond. If there

are five bots in one network and Bothunter notices that they all similarly react in the

same way at the same time it can put those pieces together and create a profile that

alerts a network administrator or a forensics examiner to the bot.

Bothunter was released for public distribution in November 2008. Its authors

have made claims that BotHunter represents the most in-depth network-based mal-

ware infection diagnosis system available today [17]. Section 2.5 drew the comparison

of Cybercraft and botnets sharing similar characteristics. This research uses Both-

unter to see if a Cybercraft initializing and joining a command and control channel

will be flagged as a botnet. Furthermore in Chapter 3 and 4 Bothunter is put to a

series of tests to assess many of the claims that its authors are making.

2.9 Needle in a Haystack

One of the ways that the stealth of a Cybercraft is measured is by evading

detection of such utilities as Bothunter. Another technique to improve the stealthi-

ness of Cybercraft messages is to hide in plain sight. One of the main characteristics

that differentiate a good rootkit from a bad one is the concept of stealth (see §2.2.3).

In [14], the authors point out that one of the most successful ways to remain stealthy

is to “hide in plain sight”. One of the reasons that looking for a needle in a haystack

is a daunting task is because a needle looks a lot like a straw of hay, even though in

35

actuality a needle is very different from a straw of hay.

If one was to examine the traffic of a network there are many protocols that are

common. Internet traffic can almost always be found in the form of HTTP messages

on port 80 for example. This is the concept behind many firewalls and intrusion

detection systems. They exist to deny things that are different, or in other words,

should not be there. If a malicious packet of information looks similar to a legitimate

one it would be allowed to pass through the defenses (see §2.1.2). The only other de-

fense is relying on the skill of a network administrator or forensics examiner to know

the network well enough to spot malicious traffic through examination of network logs.

The authors of [23] admit that examination of network logs or “network foren-

sics” is a challenge. Problems include the sheer volume of data as well as the number

of protocols that could be encountered. In addition, it is a daunting task to stay

ahead of the network activity of popular software applications.

The goal of this research is to create a stealthy Cybercraft initialization se-

quence. The methodology is based on hiding in plain sight and evading automatic

utilities such as Bothunter. After all the automatic tools have sniffed the network traf-

fic, in the end, the stealthiness of this research maps to a human searching through

network logs. This is understood to be an arduous task and a hard problem.

2.9.0.1 Address Resolution Protocol. ARP packets are critical to the

methodology for a Cybercraft to stealthily initialize and plug into a command and

control channel. ARP is a special protocol that is used to resolve a computers IP from

its MAC address. The key components of a ARP packet are the source IP address, the

source MAC address, the destination IP address and the destination MAC address.

Depending what information is trying to be ascertained, certain fields will be used

36

and others could be left blank.

For example, imagine the scenario where a computer is trying to send a packet

of information to IP 1.2.3.4 but it does not know the MAC address of the recipient. In

order to find out what MAC address is associated with IP address 1.2.3.4, a broadcast

is issued to all of the devices that share a network with the computer. The message

is basically if you are 1.2.3.4 send your MAC address to the requester. Of course not

all fields are relevant. If I am asking for your MAC address then it is not necessary

to put anything in the Destination MAC address field. Any information placed inside

the Destination MAC address field normally will not even be looked at. Filling the

destination MAC address on an ARP request would be like telling a device their own

address, which if known would remove the need to send the request in the first place.

Of course there is not a penalty for using that space for other reasons. ARP requests

are a very common part of a network. Computers do not usually keep ARP caches for

a long time and are constantly probing their neighbors for addresses. These benefits

can be leveraged to communicate more than just addresses. If a code was placed in

the unused fields of an ARP request and inversely an ARP reply devices on a shared

LAN could communicate back and forth. This research will use these modified ARP

messages to stealthily communicate command and control information between Cy-

bercraft platforms.

37

III. Experimentation

This chapter outlines our research methodology for testing the stealthiness of an

initialization sequence for a Cybercraft platform. All assumptions regarding

the framework of the methodology used are given and our research hypothesis and

goals are presented. Three scenarios are introduced which serve to simulate common

situations in which a Cybercraft platform may likely operate. An explanation is given

regarding how the initialization sequence operates under each of the three different

scenarios. The scenarios are simulated in a controlled environment. The results of

the experiments are found in Chapter four.

3.1 Problem Definition

The principal aim of this research is to create a stealthy initialization sequence

methodology for the Cybercraft platform to plug into a command and control channel.

§2.1 explains the basics of Cybercraft while §2.5 relates the similarities of a Cybercraft

and a botnet. Specifically, the similarities that both require plugging into a command

and control channel. §2.8 details Bothunter, a current tool that claims to be capable

of detecting botnets and their associated command and control in real time [12]. This

research examines the claim made by Bothunter that it can in fact detect botnets in

real time. Additionally, Bothunter is used to gauge the stealthiness of the proposed

Cybercraft initialization sequence.

3.2 Hypothesis and Goals

This research attempts to satisfy the following goals:

• Cast the Cybercraft C2 problem as a botnet detection problem.

• Create a methodology for a Cybercraft platform to stealthily initialize and join

a command and control channel

38

• Provide an evaluation of Bothunter based on our analysis

• Test that the aforementioned initialization sequence will not be detected by the

botnet detection tool Bothunter

The first contribution of our research is to cast the Cybercraft C2 problem as a

botnet detection problem. As discussed in §2.5 Cybercraft platforms share multiple

characteristics with botnets. The main goal of this research project is to create a

stealthy initialization sequence for a Cybercraft platform to plug into a command

and control channel. This goal directly contributes to the Cybercraft project. It is a

requirement for a Cybercraft to be able to initialize and communicate in a command

and control channel. This research sets out to answer that requirement, which will

not only be of value to the Cybercraft project, but to the U.S. Air Force’s mission to

fight and win in Cyberspace [9]. It is our hypothesis that an initialization sequence

that plugs a Cybercraft platform into a command and control channel is not only pos-

sible, but it can be shown to be stealthy with regards to current botnet detection tools.

Another goal of this project is to test the claims made by the authors of Both-

unter. §2.8 explains in greater detail what Bothunter is and how it works. In order

to make any claims as to the stealthiness of the proposed Cybercraft initialization

process it must first be demonstrated that Bothunter is in fact competent in detect-

ing botnets. Our definition of stealhiness can be found in §3.3.1. Bothunter was

born in the academic community, and this research is of value to that same academic

community by serving as an additional unbiased voice as to the validity of the claims

made by the authors of Bothunter [12]. It is our hypothesis that Bothunter works as

advertised and is successful in detecting a number of Botnets in real time.

The final goal of our research is to show that our proposed initialization sequence

for Cybercraft will not be detected by Bothunter. It is intended that the initializa-

tion sequence be a stealthy one. For the purposes of this research, the initialization

39

sequence was considered stealthy if common stealthy techniques were employed and

it was not detected by the real time botnet detector Bothunter. It is our hypothesis

that our initialization sequence incorporates many stealth techniques learned from

the malicious software community 2.2 and will be capable of evading Bothunter.

3.3 Setup

In order to successfully achieve the goals of this research we have created a

controlled research environment. The purpose of this environment was to simulate,

as best as possible, the real world; but, because we used known malicious botnets,

the environment was completely isolated from any other network. As shown in Fig-

ure 3.1, we have created two networks. The first network (10.1.30.x) modeled a

trusted inside network as could be found in an office. The second network (10.1.90.x)

modeled an outside untrusted network which could represent someone plugged into

the Internet. For the sake of convenience we created this research environment within

VMware Workstation 6 running over commodity hardware running Windows XP Pro-

fessional SP3. The inside network contained five workstations running Windows XP

Professional SP2. The outside network only required one workstation to simulate an

untrusted attacker outside the network and also runs Windows XP Professional SP2

(see Figure 3.1).

In order to setup the inside network, first we installed Bothunter, and on the

outside network we installed UnrealIRCd an IRC server and Easy Web Server an

Apache web server. The IRC server was set up for botnet connections. The web

server was set up so simulated users inside the network have real webpages to down-

load. The purpose of using real webpages was to pass real HTTP traffic back and

fourth on the network and under the nose of the botnet detector. In addition to

the aforementioned software we installed Wireshark, a network protocol and packet

analyzer tool, on all of the inside and outside workstations. All of the workstations

40

Figure 3.1: Proposed network for experiment

have mIRC, an IRC client application, installed. MIRC allowed us to connect to

the UnrealIRCd server and send IRC messages back and forth. Finally we installed

Packet Builder on (10.1.30.16) of the inside workstations. Packet Builder allows us to

build any kind of TCP, UDP or ARP packet that we desire and send it on the network.

3.3.1 Measuring Stealth. The main focus of this research was to create a

stealthy methodology for a Cybercraft initialization sequence. This research casts our

methodology as a bot detection problem, and as such measures the stealthiness of the

methodology based on state of the art Bothunter detection utility.

We understand that evading a bot detection tool does not completely guarantee

that the methodology is stealthy. The field of computer forensics is filled with differ-

ent methods for identifying the existence of programs that are designed to be stealthy.

Although many utilites and methods exist, we feel that because a Cybercraft

platform shares many similarities to botnets, using a bot detection tool is a good

measure of stealthiness. Bothunter was chosen as the bot detection tool because it

41

is lauded as being the most advanced bot detection tool, and the first one that can

detect bots in real time [12].

3.4 Approach

The first step needed for our experimentation is to ascertain if the bot detection

tool Bothunter fulfills its claims to be able to detect botnets in real time. To this

end, we conducted experiments similar to the ones first conducted by the authors of

Bothunter and can be found in [12]. In their experiments they tested 10 different

bots. For our purposes we only tested Bothunter against four bots. Three of the bots

were used in the original testing and one (Sdbot) was not tested against Bothunter

in the original paper. See Table 3.1 for a list of bot names and versions used during

this research.

Table 3.1: The name and version of the bots chosen to use in experiment

Bot Name Bot Version

1 Agobot 3-priv4
2 Phatbot alpha1
3 Rxbot 7.5
4 Sdbot 05b

In order for the botnets to work properly on our closed research network it was

necessary to recompile all of the bots specifying the command and control IRC server

and channel that were used. Since we do not have a working DNS server on the closed

research network, we hardcoded the IRC servers IP address. The external worksta-

tion used to simulate a malicious bot herder and host the IRC server is 10.1.90.15

(see Figure 3.1). Once compiled we introduced the bots onto four of the five internal

workstations. Next we were able to ‘herd’ them through the IRC command and con-

trol channel.

42

Once the bots are functional on the research network, the next step conducted

was to gage the effectiveness of Bothunter by running a series of tests. Each test lasted

90 minutes in length, and the number of malicious profiles that Bothunter generated

were recorded. Figure 3.2 shows a sample screenshot of Bothunter from [17] with

malicious profiles generated identifying the existence of botnets.

Figure 3.2: Screen shot from Bothunter [17]

We identified twelve tests designed to demonstrate the effectiveness of Bothunter

(see table 3.2). The first test is strictly a control to see if Bothunter announced any

‘false positives’. Tests 2-5 identified if Bothunter could detect the respective bots.

Tests 6 & 7 were designed to see if Bothunter is affected by network traffic volume.

Tests 8 - 10 were to gauge how the level of scanning affected Bothunters detection

rate, and finally tests 11 & 12 were designed to see how Bothunter handled bots

that were scanning in addition to increased levels of network traffic. The traffic

used was captured traffic from an exercise network during AFIT’s participation in

a Cyber Defense Exercise. For the exercise a complete network was set up that

43

simulated the functions that a real operational network would require such as email,

DNS, a webserver, instant messaging (chat), active directory. The exercise network

IP address range was 10.1.30.1 /24. This is the same network mask as our research

network. This was done so that all additional traffic introduced appeared to Bothunter

as originating from the inside network. The additional traffic was introduced via the

software program PReplay 1.1, a tool designed to replay captured packets.

Table 3.2: A brief description of the series of tests performed to ascertain Bothunter
effectiveness

Test Discription # Test Discription

1 Network only 7 Agobot with heavy traffic
2 Agobot only 8 All bots, no scanning
3 Phatbot only 9 All Agobot scans, conservative
4 Rxbot only 10 All Agobot scans, aggressive
5 Sdbot only 11 All Agobot scans, conservative, light traffic
6 Agobot with light traffic 12 All Agobot scans, conservative, heavy traffic

There are two main criteria that we looked for during the twelve tests.

• If Bothunter identified the bot

• If Bothunter identified the command and control channel

These two criteria are particularly important to our research. After the completion of

each 90 minute test, we imported the data into a condensed table (see tables 3.3, 3.4).

3.4.1 Assumptions. The next step to realize our methodology of a stealthy

Cybercraft initialization sequence was to simulate the sequence itself. There are a

number of assumptions that we have made with regards to the status of the Cyber-

craft platform. This section serves to explain the assumptions we have made.

The purpose of this research project was to develop a methodology for stealthy

Cybercraft initialization. It was not to build a Cybercraft platform. With that being

44

Table 3.3: Showing bot detection as first criteria

Test # of Profiles
Description Detected

Network only
Agobot only
Phatbot only
Rxbot only
Sdbot only

Agobot with light traffic
Agobot with heavy traffic

All bots, no scanning
All bots, light scanning
All bots, heavy scanning

All bots, light scanning, light traffic
All bots, light scanning, heavy traffic

Table 3.4: Showing C2 channel detection as second criteria

Test C2 Channel
Description Detected

Network only N/A
Agobot only
Phatbot only
Rxbot only
Sdbot only

Agobot with light traffic
Agobot with heavy traffic

All bots, no scanning
All bots, light scanning
All bots, heavy scanning

All bots, light scanning, light traffic
All bots, light scanning, heavy traffic

45

considered it was assumed that a Cybercraft platform exists. In order to increase the

Cybercraft platforms stealthiness it was assumed that the platform is modeled after

the virtual machine based rootkits that are discussed in §2.3.4 & §2.4.1.

Figure 3.3: Showing that a Virtual Machine Based Rootkit is closer to the hardware
than the Guest Operating System

By using a VMBR the client is not able to see the messages generated by the Cy-

bercraft initialization sequence. We assumed that the rootkit, which would be closer

to the network interface card than the workstation operating system (see Figure 3.3),

would be capable of hiding any evidence of the Cybercraft’s existence from any user

of the workstation itself. This greatly reduces the chances of Cybercraft platform

detection, and leaves the open communication as the greatest source of exposure. As

noted in §2.9, finding malicious traffic while sniffing all of the traffic can be a daunting

task. We assumed that this initialization sequence takes place on an operational net-

work that is allowing and using ARP, HTTP and DNS protocols. If this initialization

sequence were to be executed in a network where the aforementioned protocols were

not allowed, the Cybercraft platform would stand out and risk exposure.

46

Another assumption was that the rootkit is already planted on the guest work-

stations. It is not the intent of this research to develop effective infection or instal-

lation techniques. A summary of many common installation vectors can be found in

§2.2. Also, as previously mentioned it is beyond the scope of this research project to

develop a working Cybercraft platform. Instead, it was assumed that the Cybercraft

platform follows the pseudocode outlined in the Cybercraft initialization sequence

(see Algorithm 1). In order to not risk unnecessary exposure, the initialization se-

quence first tried to contact other Cybercraft on the same network as this is a quieter

operation (see §2.6.1). After looking locally, the Cybercraft attempted to retrieve

information using DNS messages. If unsuccessful the Cybercraft attempted to reach

a predetermined webpage for information. Each of these scenarios are broken down

and explained in greater detail in the following sections (see§3.5.1, §3.5.2, §3.5.3).

Algorithm 1 Pseudocode for Cybercraft Initialization Sequence

1: while Cybercraft Terminate Order Not Received do
2: Choose a random number of seconds→ S1

3: Listen S1 seconds to network traffic for neighboring Cybercraft
4: if Neighboring Cybercraft are found then
5: Note Cybercraft IP and MAC address
6: Wait some random amount of time → S2

7: Contact neighboring Cybercraft
8: else
9: Send a modified DNS message

10: end if
11: if Special DNS message is returned then
12: Request C2 information from DNS reply
13: else
14: Send a HTTP request to a hardcoded address
15: end if
16: if Special HTTP reply is returned then
17: Request C2 information from HTTP reply
18: end if
19: end while

Another assumption made is that the Cybercraft platform would be capable of

joining a Chord type system as explained in §2.6.1. With the capability of joining a

47

P2P local network the Cybercraft is able to communicate with other Cybercraft and

be able to plug into a command and control network locally (see Figure 3.4). Local

communications is preferred over sending communications outside the network, which

might be scrutinized closer by a firewall, IDS or router and increases the potential of

alerting a network administrator to the presence of the Cybercraft.

Figure 3.4: CyberCraft displayed as a Chord Ring of Virtual Machine Monitors com-
municating with each other

The final assumption is that the Cybercraft initialization sequence works the

same in a real world network with separate pieces of commodity hardware as it per-

forms in the VMware closed research network. Since VMware gives each virtual ma-

chine access to actual hardware, it is assumed that the initialization sequence would

act the same in the real world and that any detection made by Bothunter on the

research network would be made in the real world and vice versa.

3.5 Scenarios

The next step of the research is to test the Cybercraft initialization sequence

against Bothunter and see if Bothunter read the Cybercraft platform network traffic

and identified the traffic as a botnet. Three scenarios are introduced that were sim-

48

ulated on the research network with Bothunter running. Each scenario has different

degrees of stealthiness and conversely different degrees of risk of Cybercraft compro-

mise and are explained in the next three subsections.

Figure 3.5: First scenario, only connection is using HTTP

3.5.1 Scenario I. The first scenario assumed initializing a Cybercraft when

there are no other Cybercraft on the same local network. Bothunter was running on

this network and, by using a hub, has full visibility of all network traffic. This scenario

requires the Cybercraft platform to attempt to connect to a webserver and download

a webpage (see Figure 3.5). It was assumed that the webpage addresses has been

hardcoded into the Cybercraft platform. For stealthiness many webpages could be

used, including decoy web pages. In this exchange the Cybercraft platform requests a

particular webpage that was identified ahead of time to signal to the webserver that

a Cybercraft platform is attempting to plug into a command and control network or

channel. Once received, the web server could create a webpage specific for that Cy-

bercraft with encrypted instructions inside the HTTP replies. Of the three scenarios,

we hypothesized that this scenario is the least likely to succeed. I believe this because

the method of communicating resembles other botnets (see §2.5.1). The HTTP traffic

generated by the Cybercraft platform were regular HTTP GET requests. Of course,

in practice stenography could be used to further hide Cybercraft actions from any

malicious observers, sniffers or network administrators.

49

Figure 3.6: Second scenario, Cybercraft gains plugs into local Chord Structure using
modified ARP messages

3.5.2 Scenario II. The goal of the second scenario is to simulate initializing

a Cybercraft on a network that has other Cybercraft operating on it (see Figure 3.6).

This scenario assumes that at least one of the preexisting Cybercraft is plugged into

a command and control channel using HTTP (see Scenario 1 §3.5.1). In this scenario

the Cybercraft listens for other Cybercraft via modified ARP messages. ARP was

chosen because it is small and quick and available to everybody on the same LAN.

After a random amount of time the Cybercraft attempted to communicate with one

of the neighboring Cybercraft and request to join a Chord based communications

system. The traffic for the following steps was created:

• New Cybercraft contacts established Cybercraft

• A handshake occurs

• New Cybercraft receives instructions on its place in the Chord architecture

• New Cybercraft contacts Chord successor and transfers information

These steps simulated the steps discussed in §2.6.1. In order to reduce the

risk of compromise all data was assumed encrypted as per §2.6.2. The second step

of a handshake was necessary to be able to independently validate each other as per

§2.1.2. For the purposes of this research the handshake was limited to a 96-bit request

message, a 48-bit response message and a 480-bit information transfer. Once fully

connected to a local Chord structure, it was assumed that a Cybercraft can send

50

and receive command and control instructions, first locally, then via the tethered

connection to the outside.

Figure 3.7: Thrid scenario, Cybercraft platform connection to outside C2 structure
via DNS messages

3.5.3 Scenario III. The final scenario assumed the same Chord structure

exists similar to scenario 2 (see §3.5.2). This scenario also assumes that a Cybercraft

was in place somewhere outside the network boundary, where it could sniff DNS

requests. We also assumed that this Cybercraft is outside of the perimeter and has

unfettered access to a command and control channel outside the local network (see

Figure 3.7). This scenario was to test if sending DNS requests would trip the botnet

detectors. This scenario should arouse less suspicion on the part of a botnet detector

as DNS is a much less common command and control channel than HTTP traffic.

3.6 Summary

This chapter explained our research methodology for testing a stealthy initial-

ization sequence for the Cybercraft platform. It detailed the hardware and software

that we used as a test network as well as outlined the pseudocode for the Cybercraft

initalization sequence. This chapter listed all the assumptions made to complete this

research. Finally, it detailed the experiments we conducted to test if Bothunter was

capable of detecting bots in real time, as well as outline the Cybercraft initialization

scenarios that we tested against Bothunter.

51

IV. Results and Analysis

This chapter gives the detailed results of our experimentations that were outlined

in Chapter 3. This chapter explains the results of testing Bothunter against

known bots. It also explains the results of testing a Cybercraft initialization sequence

against Bothunter. The significance of the findings is presented. Another experiment

was presented that could work in parallel to bot detection to automatically detect a

Cybercraft when using our presented methodology.

4.1 Testing Bothunter

The purpose of this research effort was to identify a stealthy initialization se-

quence for a Cybercraft to plug into a command and control channel. It was presented

in §2.5 that the characteristics of a Cybercraft could expose itself to botnet detec-

tors. Bothunter was selected to test if it would detect the Cybercraft when using the

initialization sequence presented in §3.4.1. However, before any claims were made as

to the stealthiness of the Cybercraft initialization sequence Bothunter must first be

tested to ascertain that it in fact is capable of detecting bots in real time.

In their paper [12], the authors of Bothunter used their bot detection tool against

Agobot3-priv4, Phatbot alpha1 and Rxbot 7.5. We acquired these bots along with

Sdbot 05b to perform our own tests against Bothunter. The first step that was per-

formed was to compile the four bots with the IP address of our IRC server. All four

bots use IRC as their means of establishing a command and control channel. Of the

four bots SDbot was the most straightforward to compile. We originally ran into

difficulty compiling Agobot and Phatbot. They were written using single threaded

libraries, the complier we were originally working with would not build the file cor-

rectly. This setback was easily fixed by reverting to an older compiler. All four bots

required us to identify the host address of the IRC server to be used by the bot

herder. In addition to the IP address we had to establish the channel to serve as the

52

command and control channel, and establish a password to log into the bot. Once the

research network was installed and functional as described in §3.3 It was just a matter

of executing the files. Once executed the bots would contact the IRC server and join

the predetermined channel. All we had to do was open an IRC client application, join

the same channel and log into the bots using the password specified in the compiled

code.

It is beyond the scope of this research project to go into further detail on the ca-

pabilities of each of the four bots. However, we do want to point out a few differences

that are key to some of the observations that we have made during our testing. First,

Agobot, Phatbot and Rxbot all have scanning capabilities built into them. This is

used to scan for vulnerabilities to be exploited. Sdbot 05b does not have a scanning

function built into it. Additionally, Rxbot uses a home grown cryptography system to

encode many of the commands it uses. It does have an option that allows it to work in

the clear without the cryptography portion. Throughout the source code, comments

are made advising against not using the cryptography. We found that Rxbot without

using the cryptography portion was inconsistent. We think there are bugs in the bot

source code when not using the cryptography. Because we could not get consistent

results from Rxbot, we dismissed this from any further tests.

4.1.1 Bothunter Experiments. Table 4.1 shows at a glance the number of

profiles that Bothunter detected during each one of the tests. The rest of this section

explains in further detail the tests performed and the results observed.

The first test was performed in order to create a baseline of the research network

traffic and to verify if Bothunter is prone to false positives. One of the metrics that

we kept track of was the number of packets that traversed the network during each

of the 90 minute tests. Additionally, we saved each packet from each one of the tests

53

Table 4.1: Table showing bot detection results

Test Test # of Profiles # of Network
Number Description Detected Packets

1 Network only 0 1,490
2 Agobot only 204 4,115
3 Phatbot only 24 98,001
4 Sdbot only 0 2,533
5 Agobot with light traffic 131 74,840
6 Agobot with heavy traffic 99 529,598
7 All bots, no scanning 0 4,889
8 All Agobot scans, conservative 73 34,612
9 All Agobot scans, aggressive 73 33,990
10 All Agobot scans, conservative, light traffic 73 74,840
11 All Agobot scans, conservative, heavy traffic 73 468,785
12 Constant Sdbot UDP flood 0 93,757

in case there was a situation where we desired to replay the test. We found that the

total packet number from each test gives a fair indication as to the noise level of each

test. For the first test there were no bots on the network. With no bots, the network

produced 1,490 packets of traffic. Bothunter produced no false positives.

The second test was with Agobot on the network. Agobots default settings are

very ‘noisy’ relative to the quiet network. The network with Agobot produced 4115

packets of traffic, which is 36% more traffic than the network alone. Bothunter had no

problem whatsoever in identifying Agobot on an otherwise quiet network. Bothuner

reported 204 profiles at the end of this test. This is by far the greatest number of

profiles generated.

The third test was with Phatbot alone on the network. Phatbot is a newer ver-

sion of Agobot and has more command options associated with it. This scan caused

great difficulty. When given the command to start the scan, Phatbot monopolized the

CPU. With five workstations running and driving a constant 50 - 60% of the virutal

machine CPU it 100% maxed out the actual processors. As a result Wireshark the

54

network capture utility was bogged down as was the keyboard, mouse and all other

software. It is unknown if 98,001 network packets is the true number or how the

slowdown affected Bothunter.

The fourth test was with Sdbot alone. As previously mentioned Sdbot does not

scan the network looking for open ports or other associated vulnerabilities. Sdbot

does send out keep alive messages, and over the 90 minute period had produced 2,533

packets on the network. Bothunter did not generate any profile for Sdbot. Sdbot was

configured to use the default IRC ports and maintained it’s command and control

channel throughout the test. After the 90 minute period expired and the results were

captured, we attempted to execute all of Sdbots commands. This included a DDoS

attack on one of the five workstations. We got constant status updates and computer

and network information from the workstations. Finally, we set up a file server on

the external workstation and used Sdbot to command all infected workstations to

download and execute an html file that we ironically named innocent.html (see Figure

4.1). Despite all the malicious logic and constant stream of IRC command and control

traffic Bothunter failed to generate a profile.

The fifth test was devised to see if Bothunter would be as successful in identi-

fying botnets in the presence of a nosier network. In other words, §2.9 points out the

problems associated with finding a ‘needle in a haystack’. This test, along with the

sixth test were designed to build a bigger ‘haystack’ for Bothunter. During this test

a small amount of traffic was introduced. As identified in §3.4 the traffic was taken

during a Cyber Exercise and contained traffic associated with a busier network than

our research network. This test introduced 74,840 packets of traffic on the network.

The results of this test support our hypothesis that in a noisy network it is harder to

spot the malicious packets. Even though nothing changed with the bot, and Agobot

performed the same scans it did during the previous test, Bothunter only identified

55

Figure 4.1: Screenshot of a file that was downloaded and executed using Sdbot

131 profiles. This is a 64% drop in detection from Agobot on a quiet network.

The sixth test introduced even more traffic on the network. For this test I used

Sdbot to bombarded the network with as many packets as I could in 90 minutes.

During this test 529,598 packets were placed on the network for Bothunter to sort

through. Again, nothing changed with Agobot. It was started on its default settings

and was responsible for approximately four thousand of the traffic packets. However,

for the second time we saw a drop in the number of profiles that Bothunter generated.

During this test Bothunter produced 99 profiles. Figure 4.2 graphs the correlation of

Bothunter profiles and the number of packets on the network.

For the seventh test we initialized Agobot, Phatbot and Sdbot on four of the

five workstations. We then used a stop command to disable the scanning features

of Agobot and Phatbot. With scanning disabled the three bots together generated

4,889 packets of traffic on the network. The bots were the same bots, used the same

56

Figure 4.2: Graph showing the drop in profiles as the packet number increased

command and control channels, ports and protocols as in previous tests, but with-

out scanning the network Bothunter failed to detect any of the bots posting 0 profiles.

One of the features of Agobot is the ability to specify how long you would like

to take to scan a network. In theory, if it takes longer to scan the network, less noise

and attention is warranted. Tests 8 & 9 were conducted to see if the aggressiveness

of the scan affects Bothunters profile generation. The results of these two tests are

interesting. Bothunter generated the exact same number of profiles for both of these

two scans. Additionally, we would have expected the more aggressive scan (take less

time) to produce more network packets than the more conservative scan. It could be

that there is a flaw in Agobot and that the timing feature does not work the way it

is documented. If Agobot does not work as advertised it could be that the two scans

were almost identical. This would explain the same number of profiles generated and

explain almost the same number of network packets. Another hypothesis is that the

way the multiple scans alternated confused Bothunter which led to the relatively low

57

73 profiles when compared to Bothunters 204 profiles when only the default scanning

is enabled.

Tests 10 & 11 are another attempt to see if adding network traffic affects

Bothunters ability to generate bot profiles. During these two tests all of Agobots

scans are enabled similar to tests 8 & 9. However this time, using packet replay soft-

ware, light and heavy traffic is added. When light traffic is added a total of 74,840

packets is generated. When heavy traffic is added 468,785 packets traverse the net-

work. However, contrary to our hypothesis that ‘bigger haystacks’ lead to finding

less ‘needles’, Bothunter generated 73 profiles for both tests. Interestingly, this is the

same number as in tests 8 & 9. This evidence supports the hypothesis introduced in

the previous paragraph that when multiple scans are performed Bothunter is unable

to put the pieces together to generate additional profiles. Another hypothesis is that

Agobot does something very blatant that Bothunter picks it up no matter how many

scans or how much network traffic is being push under Bothunter. It is possible with

four Agobots on the network that in 90 minutes it performs this blatant action 73

times.

Finally, in one last effort to see if Bothunter would be capable of identifying

Sdbot, we used a Sdbot command to perform a UDP DDoS attack on one of the

workstations. Under this construct four workstations bombarded one of the worksta-

tions with UDP packets. The workstation chosen for the attack was the one that had

Bothunter running on it. 93,757 packets were generated in the 90 minute test and

Bothunter again failed to generate even a single profile.

Throughout all twelve tests it was also observed and recorded if the Command

and Control channel was identified. Table 4.2 shows the results.

58

Table 4.2: Table showing C2 channel detection results

Test C2 Channel
Description Detected

Network only N/A
Agobot only YES
Phatbot only NO
Rxbot only NO
Sdbot only NO

Agobot with light traffic YES
Agobot with heavy traffic NO

All bots, no scanning NO
All bots, light scanning NO
All bots, heavy scanning NO

All bots, light scanning, light traffic NO
All bots, light scanning, heavy traffic NO

One of the claims that the authors of Bothunter makes [12] is that Bothunter is

capable of tracking the C2 channel. After all twelve tests were performed Bothunter

lived up to this claim only twice. Both were with Agobot, once on a quiet network

and once with only light network traffic. One hypothesis is that Bothunter fails to

correlate the needed pieces to identify the C2 channel when bombarded with unre-

lated traffic.

The tests performed lead us to conclude that Bothunter may live up to all of the

claims made by its authors in only the perfect of network circumstances. Bothunter

was able to detect two of the three bots. However, it should also be pointed out that

on a quiet network it produced zero false positives. This gives strong credence that

even one profile would be enough to alert a network administrator to the presence of

a botnet on the network. Finally, it was observed that the characteristic of scanning

played a large part in the detection as it failed to identify the bots when their scanning

was disabled.

59

4.2 Testing Initialization Sequence

Once the competency of Bothunter has been determined the next step is to in-

troduce traffic onto the network that simulates the Cybercraft initialization sequence

presented in 3.4.1. Table 4.3 shows the number of profiles that Bothunter generated

for each of the three scenarios.

Table 4.3: Table showing the results of the three Cybercraft initialization sequence
scenarios.

Scenario Scenario # of Profiles # of Network
Number Description Detected Packets

1 Using HTTP traffic 0 9,182
2 Using ARP traffic 0 1,066
3 Using DNS traffic 0 1,906

The first scenario is centered around a single Cybercraft which needs to initialize

and plug into a command and control structure when there are no other Cybercraft

locally. In order to simulate this scenario and to have actual HTTP traffic on the

research network we created five webpages (see Figure 4.3). Each webpage simulates

a real world Internet webpage that could be accessed by a Cybercraft to gain informa-

tion on who to contact to plug into a command and control channel, or the webpage

itself could serve as the command and control channel. In order to test the stealth-

iness of this approach we used Wireshare to capture the packets of a workstation

visiting each of the five webpages. I then put the requests in a packet replay utility

and introduced other unrelated traffic. It was our hypothesis that this method would

be the method most prone to detection from Bothunter. We believed this because

HTTP traffic is one of the more popular methods in practice for a bot to exercise C2

on its zombies (see §2.5.1).

Our hypothesis was incorrect; Bothunter did not produce a profile during the

90 minute test. During the test the workstation that was simulating the Cybercraft

60

visited in turn each of the five webpages 120 times. This stands to reason that the

Cybercraft could have had 600 different command and control messages and was ef-

fectively plugged into a command and control channel throughout the duration of the

test.

Figure 4.3: Screenshot showing webpage that could have C2 information

The second scenario assumes that a Cybercraft initializes on a network where

there is already a Cybercraft C2 presence. During this scenario a Cybercraft listens

and upon seeing ARP traffic with an encrypted code present contacts the sender of

the ARP message. After a 48-bit encrypted handshake the workstation contacts a

different Cybercraft and transfers 480 bits of information. This simulates a new node

joining a Chord P2P system. Furthermore we simulated a node leaving the Chord

constellation by contacting a neighboring Cybercraft (its successor) and transferring

480 bits of information. 480 bits of information is arbitrary and could be any length.

This process is recorded and replayed 10 times over the 90 minute test. This test

placed 1,066 packets on the network with ARP messages comprising 29.46% of those

packets. Bothunter did not generate a bot profile for this scenario. During the 90

61

minute tests one of the Cybercraft platforms was in communication with an external

source downloading 11 webpages of information. Other Cybercraft were part of a

Chord system with said Cybercraft. Thus all Cybercraft in this scenario were effec-

tively plugged into a command and control channel throughout the duration of this

test.

The third and final scenario assumes the same Chord system exists as in scenario

2, but the Cybercraft that is in connection with the outside network communicates via

DNS messages instead of HTTP messages. During this scenario 1,906 packets were

placed on the network, 40 of those packets were DNS messages keeping the Chord

constellation in constant communication to an external Cybercraft throughout the

entire 90 minute test. Bothunter did not produce a profile for any of the communi-

cations during this test. Similarly to scenario one and two, the Cybercrafts were in

communication with an outside command and control channel during the entire 90

minute test.

It was the overall goal of this research to produce a methodology for a stealthy

Cybercraft initialization sequence. Bothunter, a current bot detection tool was chosen

and shown that it is capable of detecting bots in real time. Three scenarios were

chosen that represent three realistic Cybercraft situations. Bothunter was presented

with simulated traffic that would represent the presented methodology of a Cybercraft

initialization sequence for each of the three scenarios. It was shown that Bothunter

did not generate an alert for any of the three scenarios.

4.3 Significance

This research had three goals:

• Create a methodology for a Cybercraft platform to stealthily initialize and join

a command and control channel

62

• Test the claims made that Bothunter is capable of detecting botnets in real

time.

• Test that the aforementioned initialization sequence will not be detected by the

botnet detection tool Bothunter

The results that followed these three goals contribute not only to the world of academia,

but help to further the Cybercraft project and the U.S. Air Force’s mission of fighting

and ‘winnning’ in cyberspace. This research stands as an unbiased 3rd party vali-

dating many of the claims made by the authors of Bothunter and thier respective

papers. In addition, it calls into question other claims made by the same authors.

However most importantly it was the goal of this research to help further the Cyber-

craft project by tackling the requirement for a stealthy initialization sequence to plug

into a command and control channel.

4.4 Summary

This chapter presented detailed results of the twelve experiments that were con-

ducted against the Bothunter bot detection tool. The results of testing the presented

methodology for a stealthy Cybercraft initialization sequence were presented. It was

shown that Bothunter did not detect the Cybercraft initialization sequence, and that

in all three scenarios the Cybercrafts enjoyed a command and control channel.

63

V. Conclusions and Recommendations

This section provides another challenge to the stealthiness of the Cybercraft ini-

tialization sequence discussed in Chapters 3 and 4. The concept of ARP val-

idation is discussed with the ramifications to this research, and a solution is given

to evade the ARP validation tool XARP. Recommendations for future work are dis-

cussed. Finally a conclusion to this thesis is presented.

5.1 ARP Validation

It was shown in Chapter 4 that the methodology presented in this research

evades the bot detection tool Bothunter. After testing outlined in Chapter 3 was

completed the methodology was examined for weaknesses. It was determined that

there could be a flaw in the methodology. The methodology relies heavily on mod-

ified ARP messages. ARP messages were selected to be a fundamental part of the

stealthiness of the methodology because ARP messages are frequent, they are con-

stantly used between neighboring systems inside a network and they are frequently

examined. This section brings to light how the Cybercraft initialization sequence

would stand up to a tool that validates ARP requests. XArp is a tool written by

Ph.D student Christoph Mayer at the Institute of Telematics, University of Karlsruhe

(TH). XArp is a security application that uses advanced techniques to detect ARP-

based attacks [25].

We first ran a test to baseline XArp on the same research network as the tests

of Chapter 3 and 4. We ran XArp on the ‘high’ setting (see Figure 5.1) on a quiet

network. XArp produced 10,344 packets in 90 minutes. During the test XArp created

35 alerts. All of the alerts were false positives that claimed that ARP reply packets

came across the network without an associated request.

The next step was to run ARP the modifed ARP packets across XArp. XArp

flagged the packets that we were using as malicious. The reason is that we had been

64

Figure 5.1: Screenshot of XArp a ARP validation utility from [25]

using the source MAC address to transfer encrypted data. XArp keeps a table of IP

addresses and their associated MAC addresses. XArp was able to easily verify that

our encrypted data was not the correct associated MAC address, so it flagged an Alert.

We were able to get around this limitation and successfully transmit encrypted

data. Rather than use the MAC address to transmit the data the destination IP can

be used. We were also able to place information in the ‘Extra Data’ field of the ARP

request to get around XArp, however, as a general practice the ’Extra Data’ field

could stand out more since it is rarely used.

Thus, we were able to conclude that XArp defiantly limits what fields can be

modified to send encrypted data using ARP, it is still possible to modify ARP requests

to pass data between devices located on the same LAN.

65

5.2 Future Work

Bot detectors and ARP validation utilities are only two tools that are in a

network administrator or forensics examiners toolbox to aid their quest of keeping

malicious logic off their computers and out of their networks. There are other tools

and devices that could prove to detect the presented methodology of Cybercraft ini-

tialization and reveal the command and control channel. This research showed that

the given methodology could be implemented to evade the bot detection tool Both-

unter. Bothunter is built on Snort, a common IDS. Future work should focus on IDS

technologies and consider if there is an easy rule set that would expose the Cybercraft

initialization sequence. If there is a rule or set of rules that could easily identify the

Cybercraft methodology future work could add these rules to Bothunter and rerun

the tests to see if it identifies this methodology.

Another area to consider is hardware-based firewalls and routers. Many of these

devices can implement rules that stop packets from being forwarded. For example

some Cisco devices have what Cisco calls Dynamic ARP inspection [5]. Work should

be done to see if the methodology stands against these hardware tools.

Finally, it was not the purpose of this research project to build a Cybercraft

platform. Future work could implement the presented pseudo code in a virtual ma-

chine based rootkit. It is expected that a proof of concept Cybercraft platform based

on a VMBR would provide the same results against bot detection and ARP validation

as this research, but we cannot say for certain until the proof of concept exists and is

tested.

This research stands on the work of many people before me. We have incor-

porated many lessons learned from many different research projects into this work.

There is still much to be done towards the Cybercraft project and in the field of

cyberspace.

66

5.3 Conclusion

It was the overall goal of this research to produce a methodology for a stealthy

Cybercraft initialization sequence. Bothunter, a current bot detection tool was chosen

and shown that it is capable of detecting bots in real time. Three scenarios were

chosen that represent three realistic Cybercraft situations. Bothunter was presented

with simulated traffic that would represent the presented methodology of a Cybercraft

initialization sequence for each of the three scenarios. It was shown that Bothunter did

not generate an alert for any of the three scenarios. The methodology for Cybercraft

initialization was put against XArp, a ARP validation utility. Some variables had to

be altered, but again the methodology was shown to be stealthy in the face of another

real time detection utility. Finally suggestions for continuing research on this project

are given.

67

Bibliography

1. Adams, Keith and Ole Agesen. “A comparison of software and hardware tech-
niques for x86 virtualization”. SIGOPS Oper. Syst. Rev., 40(5):2–13, 2006. ISSN
0163-5980.

2. Barford, P. and V. Yegneswaran. “An Inside Look at Botnets”. Special Workshop
on Malware Detection, Advances in Information Security, 2006.

3. Boyd, John. “The OODA “Loop” Sketch”. Presentation, March 2006. http:

//www.d-n-i.net/boyd/boyds_ooda_loop.ppt [Online; accessed Jan-2009].

4. Butler, Jamie. “DKOM (Direct Kernel Object Manipulation)”. Black Hat Win-
dows Security 2004, January 2004. http://www.blackhat.com/presentations/
win-usa-04/bh-win-04-butler.pdf [Online; accessed Jan-2009].

5. Cisco. “Configuring Dynamic ARP Inspection”, January 2009. http:

//www.cisco.com/en/US/docs/switches/lan/catalyst3750/software/

release/12.2_40_se/configuration/guide/swdynarp.html [Online; accessed
Jan-2009].

6. Cleary, Thomas and Sun Tzu. The Art of War. Shambhala, July 2003.

7. Cohen, F. “Computer viruses: theory and experiments”. Comput. Secur., 6(1):22–
35, 1987. ISSN 0167-4048.

8. Davis, Carlton R., Jose M. Fernandez, Stephen Neville, and John McHugh. “Sybil
attacks as a mitigation strategy against the Storm botnet”. Malicious and Un-
wanted Software, 2008. MALWARE 2008. 3rd International Conference on, 32–
40, Oct. 2008.

9. Donley, Michael B. and Norton A. Schwartz. “Mission Statement and Priorities”.
Letter, September 2008. http://www.af.mil/library/viewpoints/jvp.asp?

id=401 [Online; accessed Jan-2009].

10. Ferrie, Peter, Nate Lawson, and Thomas Ptacek. “Don’t Tell Joanna,
The Virtualized Rootkit Is Dead”. Black Hat USA 2007, August 2007.
https://www.blackhat.com/presentations/bh-usa-07/Ptacek_Goldsmith_

and_Lawson/Presentation/bh-usa-07-ptacek_goldsmith_and_lawson.pdf

[Online; accessed Jan-2009].

11. Garfinkel, Tal, Keith Adams, Andrew Warfield, and Jason Franklin. “Compat-
ibility is not transparency: VMM detection myths and realities”. HOTOS’07:
Proceedings of the 11th USENIX workshop on Hot topics in operating systems,
1–6. USENIX Association, Berkeley, CA, USA, 2007.

12. Gu, Guofei, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee.
“BotHunter: Detecting Malware Infection Through IDS-Driven Dialog Correla-

68

tion”. Proceedings of the 16th USENIX Security Symposium (Security’07). August
2007.

13. Gu, Guofei, Junjie Zhang, and Wenke Lee. “BotSniffer: Detecting Botnet Com-
mand and Control Channels in Network Traffic”. Proceedings of the 15th Annual
Network and Distributed System Security Symposium (NDSS’08). February 2008.

14. Hoglund, Greg and Jamie Butler. Rootkits: Subverting the Windows Kernel.
Addison-Wesley Professional, 2005. ISBN 0321294319.

15. Hunt, Shannon E.M. Developing a Reference Framework for Cybercraft Trust
Evaluation. Master’s thesis, Air Force Institute of Technology, March 2008.

16. Information Directorate, Air Force Research Laboratory. “Overview and Sum-
mary Information (AV-1) for Cybercraft Proposed Architectures”, October 2008.
Draft.

17. International, SRI. “BotHunter Internet Release Software Distribution Page”,
December 2008. http://www.bothunter.net [Online; accessed Jan-2009].

18. Kamluk, Vitaly. “The botnet business”. Kaspersky Lab, May 2008. http:

//www.viruslist.com/en/viruses/analysis?pubid=204792003 [Online; ac-
cessed Jan-2009.

19. Karrels, D. White Paper: CyberCraft C3 Architecture. Technical report, Air Force
Institute of Technology, 2008. http://www.bunchonoobs.com/Karrels%20-

%20Specialty%20Exam%20Proposal.pdf [Online; accessed Jan-2009].

20. King, Samuel T., Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang,
and Jacob R. Lorch. “SubVirt: Implementing malware with virtual machines”. SP
’06: Proceedings of the 2006 IEEE Symposium on Security and Privacy, 314–327.
IEEE Computer Society, Washington, DC, USA, 2006. ISBN 0-7695-2574-1.

21. Kurzban, S. “Viruses and worms - What can they do?” SIGSAC Rev., 7(1):16–32,
1989. ISSN 0277-920X.

22. Lamport, Leslie, Robert Shostak, and Marshall Pease. “The Byzantine Generals
Problem”. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982. ISSN 0164-
0925.

23. Mandia, Kevin. Incident Response: Investigating Computer Crime. McGraw-Hill
Professional, 2001. ISBN 0072131829.

24. Mann, Andi. Virtualization 101: Technologies, Benefits, and Challenges. White
paper, Enterprise Management Associates, August 2006. http://www.emausa.

com/web/EMA_Virtualization_WP-0806.pdf.

25. Mayer, Christoph. “chrismc”, December 2008. http://www.chrismc.de/

development/xarp/index.html [Online; accessed Jan-2009].

26. McClure, Stuart, Joel Scambray, and George Kurtz. Hacking Exposed 5th Edition
(Hacking Exposed). McGraw-Hill Osborne Media, 2005. ISBN 0072260815.

69

27. McDonald, J. Todd. Lecture Notes in Computer Science, chapter Hybrid Ap-
proach for Secure Mobile Agent Computations. Springer Berlin, Heidelberg, 2006.

28. McDonald, T., Peterson B., D. Karrels, Andel T., and Raines R. “Guarding the
Cybercastle in 2020”. IAnewsletter, 11(3), 2008.

29. Medley, Douglas P. Virtualization Technology Applied to Rootkit Defense. Mas-
ter’s thesis, Air Force Institute of Defense, March 2007.

30. Moore, Andrew P., Dawn M. Cappelli, and Randall F. Trzeciak. The Big Picture
of Insider IT Sabotage Across U.S. Critical Infrastructures. Technical report,
Software Engineering Institute, Carnegie Melon, May 2008. http://www.cert.

org/insider_threat/ [Online; accessed Jan-2009].

31. Peterson, Gilbert L. and Daniel R. Karrels. “Survey of Structured Peer-to-Peer
Overlay Networks”, July 2008. Air Force Institution of Technology.

32. Phister, Paul W., Dan Fayette, and Emily Krzysiak. “CyberCraft: Concept Link-
ing NCW Principles with the Cyber Domain in an Urban Operational Environ-
ment”. Proceedings of ICCRTS. International Command and Control Research
and Technology Symposium, June 2005.

33. Reagan, President Ronald. “Farewell Address to the Nation”, January 1989.
http://www.reaganfoundation.org/reagan/speeches/farewell.asp [Online;
accessed Jan-2009].

34. Rutkowska, Joanna. “System Virginity Verifier - Defining the Roadmap for Mal-
ware Detection on Windows System”. Hack In The Box Security Conference
Presentation, September 2005. http://invisiblethings.org/papers/hitb05_
virginity_verifier.ppt [Online; accessed Jan-2009].

35. Rutkowska, Joanna. “Introducing Stealth Malware Taxonomy”. Black Hat Fed-
eral Conference Presentation, November 2006. http://invisiblethings.org/

papers/malware-taxonomy.pdf [Online; accessed Jan-2009].

36. Rutkowska, Joanna. “Subverting Vista Kernel For Fun And Profit”. Black
Hat USA 2006, August 2006. http://www.blackhat.com/presentations/

bh-usa-06/BH-US-06-Rutkowska.pdf [Online; accessed Jan-2009.

37. Rutkowska, Joanna. “Virtualization Detection vs. Blue Pill Detection”. Inter-
net Blog, August 2007. http://theinvisiblethings.blogspot.com/2007/08/
virtualization-detection-vs-blue-pill.html [Online; accessed Jan-2009.

38. Rutkowska, Joanna and Alexander Tereshkin. “Bluepilling the Xen Hypervi-
sor”. Black Hat USA 2008, August 2008. http://invisiblethingslab.com/

resources/bh08/part3.pdf [Online; accessed Jan-2009.

39. Skoudis, Edward and Tom Liston. Counter Hack Reloaded: A Step-by-Step Guide
to Computer Attacks and Effective Defenses (2nd Edition). Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2005. ISBN 0131481045.

70

40. Stevens, Michael. Use of Trust Vectors in Support of the CyberCraft Initiative.
Master’s thesis, Air Force Institute of Technology, March 2007.

41. Tanenbaum, Andrew S. and Maarten van Steen. Distributed Systems: Principles
and Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2006. ISBN 0132392275.

42. Terro. “Outdoor Liquid Ant Bait”. Internet Graphic, 2009. http://www.terro.
com/products.php?product=outdoor_ant_bait [Online; accessed Jan-2009].

43. United States. Air Force Basic Doctrine: Air Force Doctrine Document 1. Head-
quarters Air Force Doctrine Center, Maxwell AFB, AL, 2003.

44. Xen. Xen: Enterprise Grade Open Source Virtualization; Inside Xen 3.2 A
Xen White Paper. White paper, Xen.org, June 2006. http://xen.org/files/

xenWhitePaper3.2.pdf.

71

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2009 Master’s Thesis Sept 2007 — Mar 2009

Using Covert Means
To Establish Cybercraft
Command And Control

08-198

Bradley D. Sevy, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/09-07

Dr. Robert L. Herklutz
Program Manager: Security and Information Operations AFUSR
Suite 325, Room 3112
875 N. Randolph St. Arlington, VA 22203-1768
E-mail: robert.herklutz@afosr.af.mil
703-696-6565 Fax 703-696-8450

AFOSR/NL

Approval for public release; distribution is unlimited.

The Air Force Research Laboratory (AFRL) Information Directorate (RI) is researching a next generation network
defense architecture, called Cybercraft, that will provide automated and trusted cyber defense capabilities for AF
network assets. In this research, we consider the issues of how to protect or obfuscate command and control aspects of
the system. In particular, we present a methodology to hide aspects of Cybercraft platform initialization in context to
formation of hierarchical, peer-to-peer groups that collectively form the Cybercraft network. This research will subject
Bothunter to a series of tests to validate these claims. We use a leading bot detection utility, Bothunter, and an ARP
validation tool, XArp, to build a case for the effectiveness of our approach. We present three scenarios that correlate to
how we believe Cybercraft platforms will be integrated in the future and consider stealthiness in terms of these
representative tools.

cybercraft, malware, botnet, botnet detection

U U U UU 84

Lt Col J. Todd McDonald

(937) 255–3636, ext 4639; e-mail: Jeffrey.McDonald@afit.edu

