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Abstract

This research effort examines, models, and proposes options to enhance com-

mand and control for decision makers when applied to the communications network.

My goal is to research the viability of combining three students’ past research efforts

and expanding and enhancing those efforts. The area of this research is predicting

a snapshot of the communications network, context-aware routing between network

nodes, and Quality of Service-based routing optimization in order to create an intel-

ligent routing protocol platform. It will consolidate efforts from an Intelligent Agent

Based Framework to Maximize Information Utility by Captain John Pecarina, Dial-

able Cryptography for Wireless Networks by Major Marnita Eaddie, and Stochastic

Estimation and Control of Queues within a Computer Network by Captain Nathan

Stuckey. My research effort will create a framework that is greater than the sum

of its individual parts. The framework will take predictions about the health of the

network and will take the priority level of a commodity which needs to be routed,

and then will utilize this information to intelligently route the commodity in such a

way as to optimize the information flow of network traffic. Developing this frame-

work will ensure that the forward commander and decision makers can make sound

judgments at the right time using the most accurate information and on the proper

communications network.
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DECISIVE ROUTING AND ADMISSION

CONTROL ACCORDING TO

QUALITY OF SERVICE CONSTRAINTS

I. Introduction

1.1 Motivation

Today information superiority is a key factor in military operations. According to

Joint Pub 3-13, the ability to collect, process, and disseminate an uninterrupted

flow of information while exploiting and/or denying an adversary’s ability to do the

same is the definition of information superiority [19]. It further states that to be

successful, the conduct of operations requires access to information available outside

the operational area and that warfighters need frequent, instant, and reliable access to

information at locations in the continental United States as well as in theater. This

research effort’s aim is to provide a framework in which to give the most accurate

information to the forward commander at the right time in such a way that they can

achieve information superiority to accomplish the mission. This framework would

concentrate on the area of the communications network. Throughout this thesis the

terms data, information flow, traffic, and commodity are used synonymously to depict

information that is placed on a communications network being sent from a sender and

received at the proper destination.

1.2 Quality of Service

In a communications network, data or information is being transported from a

sender to a receiver. This transportation of data may not occur in a direct route, the

data may need to travel through several different routes to get to the receiver. The

internet has become one reliant source to move this data from one place to another

through the underlying protocol of the Internet Protocol (IP). This data or informa-

tion may range from a simple document to complex video teleconferencing, and may

1



Figure 1.1: Data Traveling Across Mixed Networks
A datagram is created at source A1 destined for C1. The datagram must be processed and sent
through router A/B. Once there, the datagram must be processed again and sent through router
B/C, since it is not at it’s intended destination. Then the datagram is determined to be destined
for C1 and routed to that location. At some point in this process, the datagram could be lost or
dropped along its way [18].

have to travel across several subnetworks joined together by routers or relays. Since

different rules could apply to different subnetworks and networks, IP, provides a uni-

versal way of packaging the data for transport across these networks’ boundaries. IP

provides this service with a best effort attempt to deliver the data, however, data may

be dropped or lost along the way. The process of transport is depicted in Figure 1.1.

Here you see that because of IP, data from source A1 with a destination of C1, can

travel across different networks to reach its intended destination. Each stop along the

way, the data has to be processed and forwarded by the router; however, there aren’t

any guarantees that the data will make it to its destination. Because of other network

traffic and congestion, the data could be lost and dropped along the way.

Hence an attribute that a customer would like to have and provider would like

to give is the concept of Quality of Service (QoS). The concept of QoS gives types of

standards in data or information delivery that rides on the internet backbone. Usually

QoS describes what you get if you can guarantee the timely delivery of information on

2



networks, control bandwidth, set priorities for selected traffic, and provide a sufficient

level of security [18].

Some ways to deliver increased QoS in networks are described in this research.

A QoS enabled network must be able to handle different data being transferred from

different subnetworks and networks like the one described above. This necessitates

categorizing the data into types or classes and defining how each class or type is

handled. All of the following aspects could be considered within the scope of QoS [4]:

• Differentiation of traffic (classification)

• Admission Control

• Queuing

• Congestion Management

The framework being proposed is a combination of research efforts in each of

these area, creating a cohesive framework instead of individualized and multiple frame-

works. The differentiation of traffic/classification will come under both Sections 2.7

and 3.3 for Dialable Cryptography as well as Sections 2.6 and 3.4 for Agent Based

Framework. Admission Control, Congestion Management will fall under the section

of Agent Based Framework. Finally, Queuing and Congestion Management will be

discussed under Sections 2.5 and 3.2 for Stochastic Estimation.

1.2.1 Differentiation of Traffic. Differentiation of traffic pertains to being

able to tell the difference between datagrams or packets of data. Normal operation

is to treat every packet the same. If a packet needs to be handled differently, QoS

looks at what would be the best method to handle the packet. One choice looks at

the use of the packet header, Figure 1.2, however this would rely on more resources

from the relay or router to look at this information and process it correctly. Another

choice would be to just use the Differentiated Service (DiffServ) field or Type of

Service (TOS), Figure 1.2 first row, starting at bit 8, this could be based upon several

classification parameters [4]:

3



Figure 1.2: Internet Protocol Datagram Packet Header
Example of 32-bit datagram packet Header. Bit or placement is at top numbered 0 through 31.
Placement of where information resides in the row and according to bit space.

• Service Mark

• Protocol

• Destination Protocol Port

• Source Protocol Port

• Destination Host Address

• Source Host Address

• Source Device Interface

• Any combination of above

1.2.2 Admission Control. This QoS attribute has to do with whether or not

a datagram or packet is allowed through a router or relay. The router or relay can be

configured to allow only certain types of traffic to be processed through. If the traffic

doesn’t meet this configuration, it is dropped or discarded. The parameters used in

classification such as Service Mark, Protocol, etc. can also be utilized at this point

4



Figure 1.3: Basic Network Queuing Scheme
Basic depiction of how a queue process information. Video, Data, and Voice packets are going into
a network router, when the router services the packet, it puts the packet on the outbound link in
the order that it is being serviced.

to configure the router or relay to handle the classification types differently, thereby

producing admission control of network traffic.

1.2.3 Queuing. This QoS attribute refers to the arrival of packets and what

is done with the packet if the router is servicing other packets. Figure 1.3 shows a

basic queue, there are video, data, and voice packets going through a particular router.

Once the router services the packet, it is put on the outbound link of the router. If

packets arrive faster than what can be serviced, the packet has to wait in line until

it can be serviced by the queue. There are different queuing schemes available to

manage this. Congestion and dropping packets occur at this level because the router

is receiving packets faster than servicing and the queue or holding bin fills up. Once

the queue is full packets begin to drop. The queueing scheme I’m running experiments

with is drop tail, where the last packets/end packets drop while head/front packets

are serviced.

5



1.2.4 Congestion Management. Lastly, Another QoS attribute is congestion

management. This puts in place schemes that control congestion or when the queue

backs up that will keep packets and data from dropping or being lost. During this

research, a network predictor framework is being used to control some of the conges-

tion in the network as well as an agent based framework that will react to congestion

and controlling some of the traffic flow.

1.3 Agent Based Framework

One element of information superiority that is looked at is adaptability of the

network in order to process information to meet the demands that are placed on

the system. Hybrid Agent for Network Control (HANC) framework deals with the

fluctuations of network bandwidth, due to anything from high traffic and low traffic

demands, or failing network communications nodes. HANC provides a system that

can make a decision on what to do with the piece of network traffic or commodity,

whether to drop or to keep that commodity on target to its destination. It sends

context aware messages to the neighboring nodes in the network.

HANC also considers the tradeoffs between bandwidth utilization and band-

width maximization. It again brings the decision of considering the value and priority

of the commodity and further goes into to a distributed tool for more than one decision

maker where negotiation of competing mission objectives comes into play.

1.4 Stochastic Estimation

The Network predictor gives an alternative solution to the routing and conges-

tion algorithm that are prevalently in use in the communications networks of today.

These algorithms however, limit the ability of the network to be adaptable in a net-

work environment that changes so frequently.

This research introduces the idea of using stochastic methods in determining the

future state of the network by looking at some parameters that looks at the current

6



state. To accomplish this, the use of an Extended Kalman Filter was researched and

modeled. The network is modeled as a feedback controller with stochastic controller.

1.5 Dialable Cryptography

The last research area that I’m combining is the ability to have adaptable cryp-

tography that would be based upon the status of the network to the ensure encrypted

commodity is delivered. The research introduces the concept of adaptive security

whereby it takes the collection of traditional security measures, vulnerability moni-

toring detection, and response and allows for manual or automated determination [21]

Because of a changing network missions and fluctuating bandwidth, the ability

to be adaptive in cryptography prevents the decision maker from being pigeon-holed

into one certain encryption scheme, it can be flexible to maximize information flow

based on the priority of the commodity and network state.

1.6 Summary

The three research efforts that I am combining proposes options at solving the

hindrances to network information maximization as well. The focus of an element of

information superiority is superiority in cyberspace, to make sure at the core of the

mission that there is optimal flow of information.

Since the advent of the internet, researchers have been attempting to improve

Quality of Service in network communications. Being able to make dynamic decisions

and dynamic action at the network nodes also increases QoS. The reason behind

this has been to increase performance, decrease delays and to avoid congestion. I’m

uniting three parts and creating a framework that is greater than the sum of its parts,

proposing a possible solution to research in the area of computer networks.

7



II. Literature Review

This chapter describes the research I am synthesizing to develop the framework

for Decisive Routing and Admission Control According to Quality of Service

Constraints. Details are given on the research theses I am bringing together as well

as give examinations of some background material as how I’m building this framework.

2.1 A Technique for Adaptive Routing in Networks

Some earlier research in the approach of adaptability in computer networks come

from these authors Robert Boorstyn and Adam Livne [3]. They introduce adaptability

in computer networks by taking a two-level adaptive routing approach [3]. This

approach takes a view of a network node being a multiple server queueing system and

then takes advantage of those qualities in obtaining some savings in average delay.

An advantage of treating a node as a multiple server queue, according to the authors,

provides a node with a processing factor approximately equal to the number of servers.

A disadvantage however is that the control over good paths may get lost. This article

deals with minimizing the disadvantages by introducing the two-level adaptive routing

scheme.

The authors make the argument that time delays in a network would be reduced

by the number of branches or edges a network node has, if operated as a queue of the

number of those branches or edges. When time delays are reduced throughput can

be increased. Good paths and faster performance is a key thought to this paper [3].

Further, if a commodity is not given a choice of output channels from the queue, it

invariably might chose a bad path, a path that is congested.

The proposal of the two-level adaptive routing scheme offers each packet of

data its own allowable channels which forces the use of the best path. The allowable

branches are selected based upon the global network information topology, flows long

term averages, and my be adaptive in a quasi-static way [3].

The network model was based upon a packet-switched communications network.

Assumption of averaged length packets, input streams were independent and Poisson.
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Figure 2.1: M/M/k Queueing Scheme
M/M/k Queueing Scheme is where one queue has multiple identical servers. The symbols λ rep-
resents the arrival rate of information and μ represents the rate at which the queue can service or
process that information. The arrivals are Poisson, and service time is exponentially distributed [15].

Using Kendall notation A/B/S to describe the queueing model, A represents the

arrival process, B is the service time distribution and S as the number of servers [2].

Each node could be modeled via Figure 2.1 an M/M/k model vice Figure 2.2 an

M/M/1 queueing scheme model, where M is Markov property. If a node is set up as

a multiple server, there seem to be an advantage according to the authors of at least

k. According to the following equations [3]:

Using Queue Service Rate (μ) and Arrival Rate (λ)

M/M/k average waiting time

W(n) =
1

μC

PB

k

1

1 − ρ

where ρ =
λ(n)

μKC
and PB is the probability that all servers are busy.

M/M/1 average waiting time at link l

W1 =
1

μC

1

1 − ρ

where

ρ =
λl

μC
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Figure 2.2: M/M/1 Queueing Scheme
[15] M/M/1 Queueing Scheme is the basic of the types of queuing. A single server queue model.

The symbols λ represents the arrival rate of information and μ represents the rate at which the queue
can service or process that information. The arrivals are Poisson, and service time is exponentially
distributed.

The first level was based on the global status of the communications network

and using that information to make decisions. This is also the idea I’m using for the

Kalman Filter Stochastic Controller. These decisions are somewhat static however,

in that the routing paths are being laid out beforehand. These routing paths hardly

vary except in cases of where extreme congestion and link failure occur.

The routing topology is determined between the communicating network nodes.

The authors determine the paths not based upon the best route but rather on the

possible route with the least number of hops and little congestion, on parameters

that seemingly makes the route a good path. Due to the large possible paths that

are generated, the premise is to allow the commodity to use any outgoing link that

the node may have, thereby making a tradeoff with taking advantage of modeling

a node as a multiple server queue versus traffic load. By the authors not forcing a

choice when there are similar paths, they state that there is a k -fold improvement in

delay [3], where the k is the number of outgoing links.

The second level of the routing is implementing queuing disciplines at each node.

This discipline entails a decision of what output channel to use based upon whether

or not a commodity was already waiting on the outbound channel.
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Strategies that the authors settled upon after modeling a multiple server queue

was to give priority to a dedicated queue and when the dedicated queue was empty

then service the non-dedicated queue and secondly when packets arrive to a queue

then join the shortest queue, this then would produce a behavior similar to a M/M/k

queue.

The results of this simulated model showed that if 15-20% of the traffic is not

dedicated and the choice of traffic is not apportioned to disjoint sets of servers, then

the node behavior will achieve more than half the improvement of an M/M/k queue

as well as if the traffic having the choice is too light or if the servers are in isolated

groups, then the advantage is reduced [3].

The research of the Decisive Routing According to Admission Control and Qual-

ity of Service Constraints is similar in that there is a choice in a decisive decision based

upon either the global foresight picture of the network status or based upon the cur-

rent congestion conditions at the node using the Network Prediction Module and the

HANC. It will provide a proactive approach or reactive approach to the handling of

routing network traffic.

2.2 Dynamically Forecasting Network Performance Using the Network

Weather Service

The article of “Dynamically Forecasting Network Performance Using the Net-

work Weather Service” [23] is in the direction of my research. Its focus is on predicting

Transmission Control Protocol/IP (TCP) end-to-end throughput and latency that is

attainable by an application using system located at different sites [23]. It looks

at these different sites and labels as metacomputer, meaning distributed computers

whereby they are interconnected but separated and used as high-performance com-

putational platforms [23].

A pictorial representation of the distributed service is shown in Figure 2.3. In

this figure, there are distributed computer systems with a CPU and Memory sensor

11



Figure 2.3: Network Weather Service (NWS) Structure
Sensory data is compiled into a logically central database, each sensor takes performance measure-
ments periodically and time stamp it. The resulting collection of measurements for a time series
describing the behavior of the resources. The NWS forecasting system then generates predictions of
what the performance will be for the given resource [23].

mechanism that reads and gathers the data regarding the conditions of the system.

Then uses this data to perform forecasting methods and calculations to predict the

future service of a particular resources in the system. This Network Weather Service

(NWS) model uses numerical models to generate forecasts of what the conditions

will be for a given time frame [23]. The NWS tool has three characteristics that it

performs, sense and gather data of the performance of a particular resource that is on

the network, forecast the future performance of these resources based upon the sensory

data gathered, and then disseminates and relays this information for appropriate

decision making. The numerical models used to determine the resources performance

at a given time frame are broken down into three categories, mean-based, median-

based, and autoregressive methods of prediction determination. However different
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from the Extended Kalman filter prediction model that is being implemented, this

model has six predictive methods that at the onset of the implementation it maintains

all six calculations for each resource then it uses an error measure to produce an overall

metric.

2.3 Network Weather Service: A distributed Resource Performance

Forecasting Service for Metacomputing

Network Weather Service: A distributed Resource Performance Forecasting Ser-

vice for Metacomputing is a follow on to the above Section 2.2. This however looks

at resources at the application level and not at the network transport level.

The paper describes how to to provide accurate forecasts of dynamically chang-

ing performance characteristics from a distributed set of metacomputing resources [24].

This paper relates to the QoS research in forecasting and gathering useful data from

dynamically changing computer networks. The research takes an approach from dis-

tributed resources and being able to gather information to look at what the load of

the resource will be and predict what the performance of that resource would pro-

duce. An example would be a customer on a college campus wants to use a printer

to print out their thesis of 200 pages, they would like to know what is the best time

to use that resource, what time would give them the maximum benefit. There are

similarities to my research in that it looks at some parameters of the system to de-

termine the load of the queue in a network to make a decision on what is the best

benefit for the sending the data across the network. The network weather service is a

distributed, generalized system for producing short-term performance forecasts based

on historical performance measurements [24]. This service occurs at the application

level. The architecture of the NWS was based upon meeting the four characteristics.

Predictive accuracy in the estimations, non-intrusiveness in the added load that the

NWS might add, execution longevity, and ubiquity across the system.
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The components of the NWS is a persistent state process that gets and saves

the stored measurements, a name server process to bind the client and server requests,

a sensor process that takes the performance measurements from a specified resource,

and a forecaster that produces the predictions.

The performance monitoring takes the parameters of CPU availability, TCP

connection time, latency, and bandwidth for the end-to-end connections. Some of the

Kalman filter takes as inputs the latency and bandwidth.

Network sensors are in place to take the measurements and feed it to the fore-

casters of the system. The network sensors use an active probing to the network

connections of interest. The sensor measures small-message round-trip time, large

message through-put and TCP socket connect-disconnect times.

Forecasting predictions are calculated by taking the stored time-stamped per-

formance measures that are put in a circular queue type fashion and generates future

measurement values. Every forecasting model produces predictions for each measure-

ments and a cumulative error, the model then determines the best prediction to use

from the model with the lowest prediction error [24].

To alleviate network congestion and overload of messages being sent for fore-

casting and I’m alive messages, network sensors are organized as sets of cliques. Only

a single clique member will conduct probes at any one time using a token passing

algorithm. In the Hybrid Agent Based framework, congestion is handled by throt-

tling back on the number of packets processed by sending raise or lower threshold

messages.

2.4 The Network Tasking Order

This section introduces the idea of having a Network Tasking Order (NTO) [5]

which would give the Decisive Routing and Admission Control According to Quality of

Service Constraints framework the input necessary to determine outrange predictions

of the global network.
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The idea behind the NTO is to give the commander or decision maker the tools

needed to manage the network usage and gives visibility into the load of the network

at a certain time period based upon the mission task requests.

The author of the article, The Network Tasking Order, motivation is behind

the fact that the Global Information Grid (GIG) is static rather than dynamic and

incapable of supporting net-centric warfare and net-centric operations [5] and propos-

ing the idea of having a network tasking order energizes the capability of the GIG of

responding rapidly to the mission needs. The aim as the author state is to move infor-

mation where it is needed, whether localized from soldier to solder on the battlefield

or worldwide from solider to the decision makers [5].

The NTO would be similar to the format and layout of an Air Tasking Order

(ATO) and contain information that will reflect the missions and request of network

resources. The ATO is used as a daily schedule for air missions. The ATO is broken

down into the geographical location of the mission, the type of aircraft needed to carry

out the mission, and the details on the communications between what commands will

utilize. Similarly, the NTO can be developed with the characteristics of the ATO with

added communications network details.

The NTO can be integrated in the prediction level of the Decisive Routing and

Admission Control According to Quality of Service Constraints framework, where

it can provide the basis for making decisive decisions for dynamic network. It can

be integrated in the Hybrid Agent Network Control level in that it can be used to

prioritize the network missions so that the nodes can reactive smartly and dynamically

regarding the decisions to make regarding the commodity that the node is processing.

Further, the NTO can be integrated in the encryption level of the framework as well.

This integration can be developed once the commodities and encryption algorithms

are calculated to produce a list of the desirable ways in which to send an encrypted

commodity in order to optimize the network.
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A NTO makes sense in that a commander can see a global picture of the avail-

able resources in which to transport the needed data to the target destination. A

commander can be given a choice if there is upcoming congestion on the network or

predicted congestion at a certain time frame, which would give them time to adjust

what is the best method or route in which to transport the information. The scenario

given in the paper was the choice of using an available aircraft in which to ferry the

data to the destination, thereby avoiding congestion and delays of a link that is al-

ready saturated with data. The network prediction module and hybrid agent network

control modules can be used in these types of circumstances, giving a global picture,

and providing some sense of congestion control at node level give a commander the

tools needed to make decisive decisions on transporting data that is critical.

2.5 Stochastic Estimation and Control of Queues within a Computer

network

The research [20] proposed the development of a better process to deliver com-

modities across a communications network using information about the queue at the

node. The author points out the changing and dynamic nature of the network and

the need to have a routing and congestion control algorithm that suits the changes to

provide optimal routing and congestion control. To accomplish optimal routing and

congestion control, this work establishes the use of available data about the network

state and produce some predictions of the future network state.

Creating a network state model is taken from the network tomography field,

where inferential network monitoring is introduced. This monitoring is taking mea-

surements within a network that doesn’t have to involve internal network devices that

might prove to be very difficult to obtain. These measurements are further used in

the calculations in deriving the state of the network.

By using a feedback controller as in Figure 2.4 where the feedback is the mea-

surements from a dynamic system such that it takes input from disturbances, corrup-
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Figure 2.4: Controlled System Configuration
A Controlled System Configuration whereby the Control u delivers to the Dynamic System such
that the Controlled variables yc match the Reference Signal yd as close as possible. Dynamic dis-
turbances n also effect the Dynamic System undesirably. In order to observe these disturbances,
Measurements z of the Dynamic System are taken and are fed back into the controller. The Control
u is computed based on the feedback from the measurements which also included some type of
Measurement corruptions nm [20].

tion measurements, and input from the controller, you can develop a network control

algorithm. The feedback controller is liken to the Heating Ventilation and Air Con-

ditioning system of a building, where one can change the temperature of the system

based upon the current temperature. A stochastic controller is developed from this

concept, this controller would use a Kalman filter to estimate the state of the system

by using measurements and previous control inputs.

Based upon a control system configuration, a computer network would be the

dynamic system. To get the desired service from the computer network, the controller

would give the computer network a control parameter based upon the manipulation

of the controlled variables to match the reference signal as much as possible. The

controlled variables consist of the performance metrics of interest such as network

delay, data throughput, and congestion levels further, the control inputs in to the
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Figure 2.5: Linear-Quadratic-Guassian
The stochastic controller uses a Kalman filter to estimate the state of the system x̂ based on the
measurements and previous control inputs. Optimal control inputs u* are computed based on these
state estimates and the optimal controller gains [20].

dynamic system, could be computed sending rates, routing table entries, optimal

data packet sizes, for example [20].

Again based upon the control system configuration, the controller was devel-

oped by applying stochastic control theory using a Kalman filter. The controller was

developed based upon the stochastic Linear-Quadratic-Guassian (LQG). Figure 2.5

depicts the design. The controller takes unknown quantities, dynamics disturbances

and measurement corruptions to be used as parameters to evaluate for control pur-

poses and feeds back into the dynamic system. The Kalman filter is used to estimate

the size of network queues and total packet arrival rates.

The Kalman Filter application involves using a system that models as a set of

differential equations in the continuous-time case or as a set of difference equations in

the case of a discrete-time system. The model is used to propagate the estimate of the

state of the system forward in time until a measurement is received. Then the system

state attained from the measurement is compared to the estimate of the system state

and combined in an optimal manner [20]. The Kalman filter measurements also takes
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into account the uncertainty factor and error, with the measurement, a calculated

weight is given to the system state estimate.

The network queue controller model was developed based upon the assumption

of having Markov properties and LQG. The Markovian properties presents itself as

having characteristics of not depending on the past state of the system. The Marko-

vian definition states that the conditional probability distribution of future states of

the process, given the present state and all past states, depends only upon the present

state and not on any past states. The equations were derived from the premise of the

transient behavior of the network queues using Marcum’s Q-Functions.

The author derives the equation from the Markov property in the probability

of going from one state to another in the time starting at some point and ending at

some point in the future. These equations describe the behavior of the queue. Since

it’s referring to the rate of change it’s a derivative type equation.

Even though a queue has a finite space in which to house packets waiting to be

serviced, the equations give a model bases on how the queue will behave given the

packets it receives and because the queue size is measured by what is in the queue at

any particular time slice not the maximum size that a queue may hold. The derived

equations indicates how to calculate the size given that the queue fluctuates in any

given time and are taken from [20]. The expected value of the queue size is calculated

from Equation 2.1, the expected value of the number of packets in the queue as a

function of time 2.2, and 2.3 which provides the basis for the system model used by

the network state estimator and network queue controller. These equations are done

in Matlab� [9] and called from an Network Simulator Version 2 (ns2) [13] method.
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pn(t) = (1 − ρ)ρn

+ ρn(ρQn+n0+2(α, β) − Qn+n0+1(α, β))

+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Qn−n0+1(β, α) − Qn−n0(β, α) n > n0

Q1(α, β) + Q1(β, α) − 1 n = n0

Qn0−n+1(α, β) − Qn0−n(α, β) n < n0

(2.1)

where

ρ =
λ

μ
, α =

√
2ρμt, β =

√
2μt

and Q is given by

Qm(α, β) = exp(−α2 + β2

2
)

∞∑
k=1−m

(
α

β
)kIk(α, β)

For n0 ≥ 1

E[n(t)|n0] =
ρ

1 − ρ
(1 − Qn0+2(α, β))

− 1

ρn0(1 − ρ)
(1 − Qn0+2(β, α)) + n0Qn0+1(α, β)

+ ρμtQn0+2(α, β) − μtQn0(α, β)

(2.2)

For n0 = 0

E[n(t)|n0 = 0] =
ρ

1 − ρ
(1 − Q2(α, β))

− 1

1 − ρ
(1 − Q2(β, α))

+ ρμtQ1(α, β) − μt(1 − Q2(β, α)

(2.3)
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The Kalman filter controller is a discrete-discrete extended Kalman filter. This

was chosen because the communications network is nonlinear and discrete and the

measurements are discrete. The derived equations can be seen in [20]. The steps

for the filter is the time propagation and the measurement update. The following

equations are computed in Matlab� [9] and called from an ns2 [13] method.

A discrete-time nonlinear stochastic controller is further designed to regulate

the network queue using the basis that the network is a discrete-time and nonlinear.

This controller is what regulates the flow control. The author looked at using dynamic

programming for an optimal solution, however because of it’s complexity, he chose to

used a linear perturbation control law and steady sate constant gain control law. The

derived equations are available in [20].

Finally, the network state estimator and the network queue controller is devel-

oped. The network state estimator will estimate the state of the network based on

measurement of the queue size.

2.6 Creating an Agent Based Framework to Maximize Information Util-

ity

Another aspect of the framework that is being developed, is the ability to react

and make decisions as to what to do with the commodity at the node when conges-

tion is imminent. This research effort looks at such possibilities in the direction of

cyberspace and Air Force mission accomplishment. Since technology is moving into

the cyberspace era, the Air Force is headed in that direction as well. The Secretary

of the Air Force states “A great deal of our combat capability operates in cyberspace:

command an control systems as well as the intelligence, surveillance, and reconnais-

sance platforms that ensure battlefield awareness” [14]. Further, this concept has been

adopted into the Air Force Doctrine and Mission. Thus, the mission of the United

States Air Force is to deliver sovereign options for the defense of the United States of

America and its global interest to fly and fight in Air, Space, and Cyberspace [17].
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Pecarina took the approach in his thesis [14] to create a framework that solved

at least five requirements of an optimal network system. His point of view is from

an Air Operations Center (AOC). The first requirement is to create a system that

makes “thoughtful” decisions on what traffic to drop and what traffic to keep in

relation to mission importance [14]. The requirement is to cover the aspect of traffic

being classified into a low, medium, and high bandwidth request. Low bandwidth

demand traffic is passing sensor data, medium bandwidth demand traffic is passing

file and message traffic, finally high bandwidth traffic is passing very large data files

and multimedia feeds. If the network gets inundated with large amounts of traffic

with no real decision making, very important traffic would be lost and the system

could become congested and slow down the arrival of that very important message or

multimedia.

The second requirement looks at the ability of the network to strike a balance

between the available network resources and meeting the current mission objectives.

This requirement refers to looking at the trade off between important information

and bandwidth utilization [14]. The scenario given is that of using the communica-

tions link for a critical video stream which takes up a large portion of the available

bandwidth, however there are lower priority items that only use a small portion of

the bandwidth, therefore there is a choice forcing “poor utilization” in order to satisfy

mission objectives.

The third requirement is to create a system that makes distributed decisions

about what information needs to flow from source to sink [14]. This requirement focus

on the fact that there may be several routes from the source node to the destination

that network traffic could take and the volume of traffic that need to be transported.

If network traffic has many choices in which to use, and the volume of traffic may be

heavy on only certain routes, then some smart decisions are needed to ensure that

the proper and critical information is received at its designated destination via some

dynamic decisions about which route to take. This also brings to mind the earlier

discussed section on Adaptive Routing in Networks, using the fact that if a node has
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several outgoing paths or links, let the path be chosen dynamically based upon current

traffic congestion. If there aren’t any way to make decisions dynamically, as Pecarina

points out that if the traffic has a static route, it must compete for the common

bandwidth resources of the entire network, which could then result in dropped, lost,

or delayed traffic.

The fourth requirement is to create a system that must adapt to periods of

bandwidth fluctuations [14]. This requirement looks at the possibility of a network

that has a number of different assets using the network at different times with a

variable rate of usage. This also coincides with the earlier discussed section on the

Network Weather Service, looking at available resources and the performance. The

scenario given was the idea of satellites and airplanes use the network for limited but

predictable times and the intermittent connections of wireless links [14]. Having an

option to decide what is the best practice to use is what the Decisive Routing and

Admission Control according to Quality of Service Constraints framework is trying

to achieve.

The fifth and final requirement is to create a system that negotiates multiple,

competing mission objectives [14]. The idea behind this to address that the system

has multiple users, not just the AOC commander and multiple mission objectives. If

there is a standard in which mission objectives are used, then classification schemes

could be standardized. If the framework is then deployed at any number of nodes,

then the same classifications will be decided upon and handled the same, what is

critical will remain critical across the communications network channels.

The above mentioned requirements are also key and relevant to the Decisive

Routing and Admission Control According to Quality of Service Constraints frame-

work. The framework is acting as the glue that is bringing together different and

distinct frameworks but meeting the same overall requirements that will enhance the

overall way decisions are being made at the relay and routing level. The framework I

am proposing will continue to use these requirements as a baseline of characteristics.
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Figure 2.6: Sensor Management and Scheduling example “In Harm’s Way” scenario Goal Table
The figure is displays a list of mission goals taken from a compilation of USAF doctrine manuals for
a “In Harm’s Way” sensor scenario. The first column is the node number assigned to the goal, next
column is the stated goal, and the last column indicates the goals that are included in attaining that
particular goal. The bottom three goals are observation functions to track, identify, and search [10].

In this reading [14], I also picked up the naming convention called Network

Information Maximization (NIM), NIM is the ability of a network of queues, sched-

ulers, and routers to produce the most useful data to a user or users given time and

bandwidth constraints [14]. I’ve also adopted this concept because the framework

is to maximize the information that can be delivered across the network. Further

definitions used within Pecarina’s work that I also chose to use is the meaning of in-

formation flow and the value that is placed on the commodity. Information flows are

more than just file or message transfers, long standing, heterogeneous, and sometimes

discontinuous blocks of data answering specific information requirements for a user

according to [14].

The decision to allocate resources has to begin with the classification of the

commodity, as mentioned in the introduction, there are several areas data can be

differentiated by. In [14], the author makes mention that the classification of this

commodity can be broken down by sources of mission association, timeliness and cus-

tomer input which gives a quantitative descriptor that can be used in the decision
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making process. This quantitative description is used to prevent overloaded informa-

tion, missed information, or the difficulty in pinning down the intent if using vague

and non-descriptive qualitative descriptions such as low, fair, or high value. The end

result of the classification gives the commodity a utility value which the network can

use to form a intelligent decision. The author ties mission objectives and goals to

information utility values.

A software system called George Mason University Goal Lattice Engine (GMU-

GLER©) is a resource that could be used to break down these goals and objectives into

weighted values based upon the numbered goals. The goals are in a listed and num-

bered order based from the highest mission objectives first. A list of possible goals

and weights is depicted in Figure 2.6 taken from a sensor management and scheduling

example.

Figure 2.6 is displays a list of mission goals taken from a compilation of USAF

doctrine manuals for a “In Harm’s Way” sensor scenario. The first column is the node

number assigned to the goal, next column is the stated goal, and the last column indi-

cates the goals that are included in attaining that particular goal. The bottom three

goals are observation functions to track, identify, and search [10]. Goal lattices are a

method for ordering the goals of a system and associating with each goal the value of

performing that goal in terms of how much it contributes to the accomplishment of

the topmost goal of a system [8]. This can be related to the information flows/com-

modity whereby as the commodity enter the network, it can be given a weight based

upon the already determined goals and objectives of the mission. Once the goals are

categorized and prioritized, a lattice can be determined as in Figure 2.7. The figure

exhibits a lattice based upon the goals of Figure 2.6. The decimal number in the

figure are the weight associated with the goal. The top level node is goal number 1,

the next level is all goals included in number one and a line is drawn. In this example

is goals 2, 3, 4, and 5. Each subsequent level down follows this pattern, drawing

a line to represent the relationship to the higher goal. This concept can relate to

the communication network in that, as missions or commodities are to be put on

25



Figure 2.7: Sensor Management and Scheduling example “In Harm’s Way” scenario Goal Lattice
Lattice from decomposition of goal table in Figure 2.6. The decimal number in the figure are the
weight associated with the goal. The top level node is goal number 1, the next level is all goals
included in number one and a line is drawn. In this example is goals 2, 3, 4, and 5. Each subsequent
level down follows this pattern, drawing a line to represent the relationship to the higher goal [10].

the network link, it would be racked and stacked against the goal and goal number

of the lattice and given a weight to reflect such decision. This weight will be given

based upon the mission and objective of the customer or commander. This process

can give the commander a better idea of where it would scale in the bigger picture of

the network routing process. Then later on discussed, encryption module process can

be combined at this level to further the reasoning behind goal decomposition to get

optimal results in the network taskings. More detailed information pertaining to this

encryption scheme and algorithm is discussed in the section Dialable Cryptography.

When an information flow arrives is a crucial aspect as well. Lastly customer input

could be used to classify information, Mission Critical, Mission Essential, and Mission

Non-essential. Pecarina states that proper classification supports the ability to index

information flows for scheduling and the allocation of resources and therefore used as

an information utility during the scheduling process.

This classification can be broken out on the NTO. The order can give the type of

taskings as well as the mission and goal objectives weighted value based upon a stan-
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dardized set of values. This document is what can begin some preliminary decisions

about the way network commodities are handled at each node. Again encouraging

the dynamic ability of the nodes.

The next step in Network Information Maximization that Pecarina contem-

plated was taking the classified commodities and producing an optimal schedule to

be processes across the network [14]. This step looks at meeting the requirement to

create a system that makes distributed decisions about what information needs to

flow from sender to destination. The author solves this by using the approach of

the restless bandit problem, using an adaptive greedy algorithm that will take a set

of commodities and index and sort based upon the classification of its utility. And

again utility corresponds mission objectives or goal of the commodity to be trans-

ported. Once this set of optimal scheduled commodities is complete, bandwidth has

to be allocated in order to move the commodity across the network. Even further,

the concept of the Network Tasking Order can be used for scheduling and bandwidth

allocations, with the addition of the network predictor module, bandwidth can be

allocated based upon future events.

Allocation of resources is a crucial step in network information maximization.

Pecarina points out with the use of priority queues at the network nodes, even though

the lower utility flows, less important commodities, will be dropped and the higher

utility flows, commodities of greatest importance, will get through to the receiving

customer, the second highest is not guaranteed that it will be delivered. Thereby

producing results that are not desired. Secondly, if resource allocation is too narrow

in its scope of parameters, the utilization of the resource may not be considered.

Utilization of the resource may be taken up by a commodity that in not of a greater

priority, while a commodity that is of greater importance cannot use the link.

Therefore, an agent based architecture was presented via the thesis to solve

the problem of bandwidth allocations system wide as to minimize congestion and

bottlenecks for the flow utility. An agent is an entity that uses machine logic to
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analyze state and perception to act on its environment [14]. The concept of using

robot control concepts in the communications network was introduced in the thesis,

Creating an Agent Based Framework to Maximize Information Utility. It takes the

three layer architecture, see Figure 2.8, you would give the deliberator layer the in-

put, for example from network owner or Network Tasking Order. The sequencer layer

takes feedback from the deliberator and builds the library of the wanted behavior or

actions wanted to be performed. The controller layer then controls the execution of

that behavior to accomplish the task of the robot. The sensors take in and gather

data from the environment and saved in the state module eventually, the process

repeats itself based upon the data gathered. An agent deployed in every node that

considers the state of the network and selects actions that seek to maximize the aggre-

gate utility of the network flows, while balancing the efficient usage of resources [14]

can therefore be achieved based upon this type of model. Since a communications

network is a distributed system, the controller mechanism has to accommodate this

type of environment, therefore, a multi-agent system is utilized. This would be a

similar architecture as the Network Weather Service where there are sensors at the

corresponding resource nodes.

2.7 Dialable Cryptography for Wireless Networks

The Dialable Cryptography for Wireless Networks [21] thesis work covers an-

other part of the Decisive Routing and Admission Control According to Quality of

Service Constraints framework. The objective of this thesis was to develop an adap-

tive cryptographic protocol which allows users to select an optimal cryptographic

strength and algorithm based upon the hardware and bandwidth available. Sensitive

or classified information can be transferred wirelessly across unsecured channels by

using cryptographic algorithms [21].

This framework was chosen because it can be a useful tool with added benefit

in the adaptivity of a network. This tool proposes the creation an optimal schedule

and best course of action in the decision process at each agent node when there are
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Figure 2.8: Agent Based Framework Three Layer Architecture concept
Deliberator layer acts as the input of mission objectives and goals. The sequencer layer takes in data
from the controller and feedback from the deliberator to build a library of behavior sets and actions.
The controller layer controls the execution of behaviors selected to accomplish mission objectives.
Senors take in data and store in state component where the controller then reacts to the current
state of the system [14].

encryption and decryption requirements. I believe this is crucial as Eaddie states

cryptography continues to play a major role in the military and in the public sector.

Static security methods and statically chosen cryptographic schemes cannot adjust to

changing environmental factors especially in the wireless environment [21]. Therefore,

there is a need for decisive decisions in what is the best security measure for the

environment at hand and carefully chose an optimal method of delivery.

The idea of dynamically changing the security of a system is important in wire-

less ad hoc and sensor networks where critical resources such as battery life, memory,

computational power, and bandwidth are not constant nor necessarily predictable [21].

The research behind having an adaptive security posture will help provide solutions

for the military requirements in the area of network-centric warfare and secure tele-

conferencing, telephony and imagery. Decisive decisions can be made possible by

using a framework that can take the readings from the current state and future state

of the network and provide an optimal solution for the next course of action.
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Eaddie based her methodology on the development of mechanisms that would

make a smart decision on what commodity to route across the network that would

bring optimal results. A controller would consider taking a commodity and the char-

acteristics of the file size and priority level along with input of the available bandwidth

and CPU speed. The controller than calculated the best encryption algorithm for the

commodity maximizing the information flow through a network.

There were four steps to the development of the controller, step one involved

developing the cryptographic tool that would produce results of how long each com-

modity would take to be encrypted and decrypted. Step two involved interacting

with Matlab� [9] in the form of using the data from step one and interpolating it.

Step three was the development of the controller, the controller would optimize the

data from the previous step. The last step, step four was the simulation phase with

ns2 [13].

Step one involved creating a user interface to interact and collect the statistical

data from GNU Privacy Guard (GnuPG), an open source cryptographic software.

GnuPG is a software tool that allows to encrypt and sign your data and communi-

cation, features a versatile key management system [7]. GnuPG also has decryption

features as well. GnuPG support several encryption and decryption algorithms to se-

cure and unlock your data or communications. Some preliminary definitions regarding

encryption terms are as follows:

Key A randomly generated set of numbers or characters that is used to encrypt or

decrypt information [12]

Public Key Also referred to as asymmetric encryption, each party has a private key

known only to themselves, and a public key known by anyone, each encryption

or decryption process requires at least one public key and one private key. [12]

Private Key Also referred to as symmetric encryption, it requires all parties that

are communicating to share a common key [12]
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Key Length Also known as key size and the number of bits, string of bits of the

particular parameter

Block size The length of the fixed string of bits used in block ciphers

The following is a brief overview on the types of algorithms tested during this

step.

ElGamal An asymmetric key encryption algorithm for public key algorithm which

is based upon the Diffie-Hellman key agreement and uses randomization in the

encryption process, further encryption is based upon the intractibility of the

discrete logarithm problem [11]

RSA A public key encryption scheme named after inventors R. Rivest, A. Shamir,

and L. Adleman. Widely used to provide both secrecy and digital signatures;

encryption is based upon intractability of the integer factorization problem [11]

AES Advanced Encryption Standard is a symmetric block cipher that has capability

of keys 128, 192, 256 bits to encrypt and block of 128 bits to decrypt. It’s based

upon the Rijndael algorithm where there is substitution linear transformation [6]

TwoFish A symmetric key block cipher with block sizes of 128 bits and key sizes up

to 256 bits. Also based upon a Feistel network with a bijective function [16]

BlowFish A symmetric block cipher that takes variable length keys from 32-448

bits and based upon a Feistel network iterating a simple encryption function 16

times. [12]

3DES Triple-Data Encryption Standard. Uses the DES block cipher encryption that

encrypts data three times and uses a different key for at least one of the three

passes giving a cumulative key size of 112-168 bits [12]

CAST5 A symmetric block cipher using a 12 or 16 round Feistel network with 64-bit

block size and a key size between 40 to 128 bits. [1]

A gpgTester program was developed that was written in C++ served as a front-

end to GNU Privacy Guard. The gpgTester was created to test several cryptographic
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algorithms to gather the statistical data on the outcome of using commodities with

sizes of one megabyte(MB), sizes in the range of five MB, in increments of five, to

100 MB, and also sizes in the range of 200 MB with increments of 100, to 1000

MB. The gpgTester would make system calls to the GNU Privacy Guard to choose

from system and public key algorithms, ElGamal, RSA, AES, AES192, AES256,

TwoFish, BlowFish, 3DES, and CAST5 for collecting the encryption and decryption

time, the resulting files size after encryption, and also the time it took to compression

the commodity. The resulting statistical data was then forwarded to step two, for

Matlab� [9] calculations. Eaddie states that with gpgTester, the public key algorithm

is chosen with another algorithm when a system call to GnuPG occurs. The choices

are RSA with RSA, RSA w/Elg-E, DSA with RSA, or DSA w/Elg-E. Regardless of

which algorithm is chosen first, it is the second algorithm that is actually used for

encryption. The first algorithm is strictly for signing and is not factored into the test

results nor used in any timing [21].

During step two, Matlab� [9] was integrated. Once the gpgTester has gathered

data from a group of commodities, that data was then read into Matlab� [9] to

interpolate data to produce data points for curve fitting. An encryption algorithm

Matlab� [9] function was created for six encryption algorithms. An interpolation was

required to determine the output for any given file size based upon the encryption

algorithm, the compression function, the key size, and randomness of the file [21].

Cubic spline interpolation using polynomials because of a practical feature of cubic

splines is that they minimized the oscillations in the fit between the interpolating

points cubic spline equation. There were two constraints to ensure that data outside

the tested data ranges were not included. One restraint was using specific key sizes of

1024 or 128 if compression of the commodity was required, secondly, if the commodity

was not generated randomly, then the commodity size limit was 32 MB. Matlab� [9]

files runCryptGrav was created to determine the file size from the encryption and the

time that it took to encrypt the file, this was to optimize the data. The output from
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this function was a determination on what could be sent given the current bandwidth

and current CPU speed and requested encryption algorithm.

Further, three Matlab� [9] functions were created runCryptGrav, runCrypt-

Grav2, runCryptGrav3 which performed different interpolation functions based upon

certain statistical data collected from the previous steps. I will use the function run-

CryptGrav3 in the Decisive Routing and Admission Control Constraints framework,

this function is what Eaddie used to run her ns2 [13] simulations, this will be explicitly

defined in the methodology section. The function, runCryptGrav3, was a combination

of the functions runCryptGrav and runCryptGrav2. It used a cubic spline function to

interpolate data points, its input parameters were the data that was collected by the

gpgTester program, and it also included the “matrix of communication commodities

which include the commodity goodness values (priorities) and file sizes.” The results

from this function execution is an output matrix in preparation of the input to the

next step, the controller.

Once the data came from step two, the Matlab� [9] Controller read in the

data and performs the calculations. Three controllers were created to test different

types of data. To set up testing for the first two controllers, data input was randomly

generated using a gamma random distribution, see Equation 2.4, to generate random

file sizes in the range of one MB to 100MB and the priority levels was then distributed

randomly by a density function in the range of one to 100, see Equation 2.5. This

generated data would then serve as the input matrix for the controllers. The first

controller read in an input file which had the available bandwidth, available CPU, the

number of commodities that need to be sent, security level and performance level as

listed in Table 2.1 and determined the best encryption algorithm that would give the

randomly generated list of commodities that would maximize the available resources.

A particular enhancement will be to test whether the available bandwidth can come

from the predictions of the Kalman filter and make this a dynamic input.
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Table 2.1: Sample Input File for Encryption Controller 1 [21]
Available
Bandwidth
(MB)

Available
CPU (sec)

Number of
Commodi-
ties

Security
Level

Performance
Level

120 3000 20 4 3
100 2400 30 5 2
90 2000 40 1 1
200 1900 57 2 1
50 4000 60 3 2
300 6000 70 4 2
70 3400 83 5 3
75 2000 90 3 3
30 1900 100 2 2
20 3000 26 1 2

g(t) =
λα

Γ(α)
tα−1e−λt, t ≥ 0

where

Γ(x) =

∫ ∞

0

ux−1e−udu, x > 0

(2.4)

f(x) =
1

n
(2.5)

A derived security function would then take the security level and performance

level associated with the commodity and produce the encryption algorithm and the

key size to use in sending these commodities. The controller would then take these

results and call the runCryptGrav function from step two, which would then act as

the decision making tool as to what could be sent.

A conceptual design of the options for the controller is given by Figure 2.9. There

is a security setting dial, that relates to the level of security. The level of security

would mimic the algorithms the customer would like to use. The performance level

relates to customer defined level. These options can be integrated with the above

concept of the goal lattice to become more tailored to mission objectives and goals.
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Figure 2.9: Conceptual dial settings for controller one scenario
The numbers on the security dial represent the levels of security a commodity may have. (5) High
security, (4) Medium High, (3) Medium, (2) Medium Low, (1) Low. The performance level could

be changed to (3) High, (2) Medium, (1) low [21].

The controller is used as the decision making device. It looks at what commodi-

ties need to be sent, the security levels, performance levels, and available resources

and optimize the results. Optimal decisions are based upon which encryption scheme

would be the best to use, looks for the maximum number of commodities to send

based upon available bandwidth resources, looks for the lowest amount of time it

takes to encrypt the data, and the largest output file size.

Another controller was developed and tested using binary integer programming.

The binary choice was zero if the commodity was not sent or a one if the commodity

was sent. It did not take in consideration any security or performance levels, it ran the

Matlab� [9] branch-and-bound algorithm for all seven encryption algorithm choices

for each commodity to determine the optimal solution. According to Eaddie, the

objective was to maximize f ′x such that Ax ≤ b. Further explanation will be included

in the methodology section because the controller I’m extending in my research is the

combination of the first two controllers using the idea of security and performance

levels with binary integer programming.
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III. Decisive Routing and Admission Control Methodology

This chapter is the methodology regarding the Decisive Routing and Admission

Control According to Quality of Service Constraints Framework. The frame-

work is basically acting as the glue that is bringing together three distinct frameworks

capitalizing on the strength of the combination and cohesion as a whole.

3.1 Overview

Meeting the five baseline system requirements mentioned in the literature re-

view, which were to have:

1. The ability of the system to consider the mission importance of information and

make decisive decision accordingly.

2. The ability of the system to be fluid in the tradeoff between making decisive

decision based upon network resources and/or mission objectives.

3. The ability of the system to receive all information based upon a tasking order

including its parameters/characteristics then determine what is the best solution

of what data should be transported from source to destination.

4. The ability of the system to handle and adapt to reoccurring changes in band-

width and traffic fluctuations.

5. The ability of the system to negotiate the best solution for multiple mission

objectives given one distributed System.

Decisive Routing according to Quality of Service Constraints Framework will strive

to meet those requirements by combining and extending some of the features and ca-

pabilities of the distinct frameworks of Stochastic Estimation and Control of Queues

within a Computer Network, Creating an Agent Based Framework to Maximize In-

formation Utility, and Dialable Cryptography for Wireless Networks. The decisive

routing framework would be a multilayered approach that lies at the node level in a

global network. The smarts of the system will rely on agents that reside at that level

as well.
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A Network Tasking Order or requirement to send data from a sender to a receiver

is what would possibly be used to kick off a chain of events. Knowing what the

customer wants to send and when, they can get a sight picture of the network by

turning on the Kalman filter prediction module to gather data from the sending or

receiving nodes of interest. Further if encryption is involved, by feeding the data

parameters and the available encryption algorithms into the encryption module you

can get a sight picture of what is the best algorithm to use for optimal end-to-end

service. Also at the node of interest the Hybrid Communication Agent [14] will reside.

This will give a reactive stance when the network starts to become congested, giving

the ability for congestion management and admission control. Due to the congestion

of network traffic, the response can trigger the relevant behaviors of the agent to

again optimize traffic flow from the nodes within the customer’s control. The Kalman

filter prediction module can be used in all instances and service, that way a better

overall global sight picture can be determined and precise decisions are made in each

circumstance.

3.2 Network Prediction Module

The Network Prediction module will gather pertinent data from sensory type

nodes and make futuristic depictions of the network state based upon the data gath-

ered and the use of Extended Kalman filter calculations. Given the ability to know

in advance what the state of the network is, some decisions can be made as to what

would be the most optimal route for data to travel from the sender to receiver in a

manner that is acceptable and optimal.

A Kalman filter is being used to predict past, present, and future states of the

network queue. According to [22], the filter is essentially a set of equations that ex-

ecutes a predictor-corrector type estimator that is optimal in that it minimizes the

estimated error covariance when some presumed conditions are met. The original de-

sign of the stochastic estimation research was focused on estimating the present state

of a computer network, given parameters in a controlled system configuration and
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used the extended Kalman filter, this linearized about the current mean and covari-

ance. The Decisive Routing According to Quality of Service Constraints extends this

framework by modifications of the Kalman filter calculations to predict future states

of the queue in a computer network. This extends the functionality by implementing

a predictability of the size of the node’s queue at some time in the future. The en-

hancement results in the ability to meet the above stated requirements, to be decisive

in decision making of handling information based upon the state of the network.

The code was ported from a Windows based system where the simulation exper-

iments was accomplished in OPNETR© to a Linux based system where the simulation

experiments are performed in Network Simulator Version 2, ns2 [13]. Several class

structures were created to build the relationship with the Hybrid Communications

Agent based framework. This Network Prediction module, proposed, utilizes the

Kalman filter calculations to use the present data to forecast future results, it is writ-

ten in Matlab� [9] and executed through C/C++ Matlab� [9] engine as well as

extended to Tool Command Language (TCL), so ns2 [13] can run simulations.

The following Network Prediction module class diagram, in Figure 3.1 depicts

the relationship with the HANC agent. The diagram is meant to show the interactions

and relationship between the classes also the functions that are related. The level

started is at a queue level and goes up in a hierarchial manner. Each queue in a

computer network has the capability of functioning as a queue of Kalman filter type.

The behavior and functionality of the Kalman filter queue takes on the behavior of

a queue but with some added characteristics and additional behaviors. The routing

scheme chosen for this research was drop tail. When a queue becomes overloaded, it

drops the tail end or last data packets to arrive, see Figure 3.2. When a Kalman Filter

Drop Tail queue is created, it builds a “has a” relationship with the Kalman Filter

class. The added behavior of a Kalman filter Drop Tail queue is to get the location

of the current packet in order to determine the location of the queue, additionally an

update method that uses the instance of the Kalman Filter class to update the packet

data received at the queue. Other behavior and housekeeping methods created were
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to query for the unique queue identifier and query to see if the node has a Kalman

filter.

Figure 3.1: Network Prediction Module and Hybrid Agent Network Control Module
Unified Modeling Language Class diagram of the relationships between the Network Weatherman
structure and the Hybrid Communications Agent structure. As each queue is instantiated to be an

Kalman filter Drop Tail queue, it takes on the behaviors of a queue and added behaviors to
monitor packets received in order to calculate estimation data.

The original designed controller is not being used in this research, the values

are being controlled by the Kalman Filter class file during initialization. The values

in the class can be changed to be utilized as the controller for the filter on each node.

The Kalman Filter class file is where the integration with Matlab� [9] takes place.

This class acts as the interface between the interworking of the queue and Matlab�

[9]. When a Kalman filter queue is instantiated it creates a Kalman Filter class where
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Figure 3.2: Drop Tail Queue Representation
Drop Tail Queue representation, where data packets are arriving at the tail end of Queue 1. Since

Queue 1 is at 100% capacity, data packets are being dropped at the tail end.

all variables for the Matlab� [9] engine are initialized and a unique queue identifer

is created. The class receives the call from the Kalman Filter Drop Tail queue every

time a packet is received at its queue. Queue size and packet arrival rate are the two

states examined by the filter. Given the current queue size and the time as input,

the Matlab� [9] engine runs the extended Kalman filter calculations. When the

calculations are finished, the results are dumped into a text file, as well as returned

to the calling program. As shown in Figure 3.1 where the Kalman filter class “uses”

the Matlab� [9] engine, where three files are used in this computation. One file

performs the queue estimation, one calculate Marcum’s Q-functions, and the other

one performs the prediction.

The filter estimates a process by using a form of feedback control, the filter

estimates the process state at some time and obtains feedback in the form of noisy
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measurements [22], See Figures 2.4 and 2.5 from Section 2.5 as a reference. There

are a couple of steps in the estimation and prediction process and the mathematical

equations fall into the perspective process groups. One is a time propagation step and

the other is the measurement update step in determining the Kalman filter values.

Marcum’s Q-functions are used as the Kalman filter model basis and occurs in the

propagation step. The Q-functions are chosen to simplify the calculations of deter-

mining the queue size instead of using the probability density function Equation 3.1

from [20] which is the combination of probability generating functions, partial differ-

ential equations and Laplace transforms.

pn(t) = e−(λ+μ)t

[(
λ

μ

)(n−n0)/2

In−n0(2t
√

λμ)

+ (
λ

μ
)(n−n0−1)/2In+n0+1(2t

√
λμ)

+

(
1 − λ

μ

) (
λ

μ

)n ∞∑
j=n+n0+2

(
λ

μ

)−j/2

Ij (2t
√

λμ)
]

(3.1)

For all n ≥0, where I is the infinite series for the modified Bessel function of

the first kind given by In(y) =
∑∞

k=0
(y/2)n+2k

k!(n+k!)
(n > −1)

The use of the modified Bessel function of first kind zero (0) order and mod-

ified Bessel function of first kind of order (m-1) are also used in the mathematical

processing of Marcum’s basic structure of the Q-functions, which are shown below:

marcum(a,b)

Q(a, b) =

∫ b

∞
xexp

(
−x2 + a2

2

)
I0(ax)dx

marcum(a,b,m)

Q(a, b) =
1

am−1

∫ b

∞
xmexp

(
−x2 + a2

2

)
Im−1(ax)dx
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Replacing the parameters would simplify into Equations 2.1 taken from Sec-

tion 2.5. Queue prediction involves taking the present value and looking at some

variable time in the future to calculate the results of the queue size. The prediction

considers error covariance, and uncertainty with the prediction. Queue prediction

for future state was created by modifying queue prediction of present state, using a

propagation and an update step.

The Network Weatherman is built upon a discrete-time system model as in

Equations 3.2 and 3.3 [20]. If we let n represent the different states and m represent

the different measurements, it follows that x(ti) is illustrating the system state at

time ti and that φ represents the changing from one state to the next from time ti−1

to ti. Both of which are n-dimensional vectors. Lastly, wd is unknown dynamic noise

of the system, an n-dimensional function containing discrete-time white Gaussain

noise of zero mean and covariance kernel and Qd is the n-by-n matrix expressing the

covariance of it.

x(ti) = φ(ti, ti−1, x(ti−1)) + wd(ti) (3.2)

E{wd(ti)w
T
d (tj)} = {

⎧⎪⎨
⎪⎩

Qd ti = tj

0 ti �= tj

(3.3)

Next, the Network Weatherman is built upon a discrete-time measurement

model as in Equations 3.4 and 3.5 [20]. z carries the role of a m-dimensional mea-

surement vector while H is an m-by-n-dimensional measurement matrix. Again noise

is accounted for in the measurement because of an uncertainty factor and is given by

v an m-dimensional vector same as wd and has a covariance R an m-by-m matrix.

z(ti) = Hx(ti) + v(ti) (3.4)
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E{v(ti)v
T (tj)} = {

⎧⎪⎨
⎪⎩

R ti = tj

0 ti �= tj

(3.5)

Finally, the Network Prediction module state transition is addressed. The state

transitions is contained in a n-by-n matrix after execution of the partial derivative

Equation 3.6 [20]. The estimated value of the state is given by the Kalman filter at

time ti−1 after the measurement update is x̂(t+i−1).

Φij(ti, ti−1) =
∂φi

∂xj
|x=x̂(t+i−1) (3.6)

However, a two-sided difference equation is used because φ is not continuous.

Therefore during the time and queue propagation step the following equations occurs

via the Matlab� [9] engine.

Φ11 =

φ1

⎡
⎣x +

⎡
⎣1

0

⎤
⎦
⎤
⎦ − φ1

⎡
⎣x −

⎡
⎣1

0

⎤
⎦
⎤
⎦

2
|x=x̂(t+i−1) (3.7)

where Δ x1 is chosen to be 1 due to the smallest perturbation allowed because the

queue size must be an integer.

Φ12 =

φ1

⎡
⎣x +

⎡
⎣ 0

x2

100

⎤
⎦
⎤
⎦ − φ1

⎡
⎣x −

⎡
⎣ 0

x2

100

⎤
⎦
⎤
⎦

2 x2

100

|x=x̂(t+i−1) (3.8)

Φ21 = 0, Φ22 = 1 (3.9)

where Δx2 is chosen to be x2

100
to provide a scaled perturbation that was two orders

of magnitude smaller than the state, this value does not have the requirement to be

an integer.
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Once the transition states are approximated, the following equations [20] are

being called, where superscript “-” is before the measurement update and superscript

“+” is after the measurement update. The Q-functions are calculated, the expected

value of the number of packets in the queue as a function of time is calculated from

Equations 2.2 and 2.3 from Section 2.5 and incorporated into the additional equations.

The estimate x̂ and covariance P are propagated from ti−1 to ti by

x̂(t−i ) = φ(ti, ti−1, x̂(t+i−1))

P(t−i ) = Φ(ti, ti−1)P(t+i−1)Φ
T (ti, ti−1) + Qd

Once the propagation step is complete, the measurements gets updated. One

of the added benefits of using Kalman filter processing during the update step is the

consideration of the typically noisy nature of measurements. During this step, noise is

determined by using Cholesky Factorization [20] and a normally distributed random

number. The Cholesky factorization parameter is received from the Kalman filter

class and can be changed or tweaked as desired.

In the update step, the measurements are then incorporated through the follow-

ing equations [20], where K is the Kalman filter gain presenting an n-by-m matrix.

K(ti) = P(t−i )HT [HP(t−i )HT + R]−1

x̂(t+i ) = x̂(t−i ) + K(ti)[z(ti) − Hx̂(t−i )]

P(t+i ) = P(t−i ) − K(ti)HP(t−i )
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A summary of the operation is shown in Figure 3.3, modified from [22]. A brief

description of the variables are Qd is an n-by-n matrix representing the covariance

of wd, which symbolize system dynamic noise. z is the m-dimensional measurement

vector and H is the m-by-n measurement matrix for the states. K is Kalman filter

gain n-by-m matrix. P is an n-by-n matrix for covariance with x̂, and R is an m-by-m

matrix, covariance of v, the measurement noise. φ and Φ refers to the transition of

the state of the system.

Figure 3.3: Network Prediction Module and Hybrid Agent Network Control Module
A brief description of the variables are Qd is an n by n matrix representing the covariance of wd,
which symbolize system dynamic noise. z is the m-dimensional measurement vector and H is the

m by n measurement matrix for the states. K is Kalman filter gain n by m matrix. P is an n by n
matrix for covariance with x̂, and R is an m by m matrix, covariance of v, the measurement noise.

φ and Φ refers to the transition of the state of the system.

The predicted data from the run of the Kalman filter class will then be used

to calculate a delta in capturing the average size of the queue. Comparing the pre-

vious delta with a current delta will give a trend of the behavior of the queue and

deterministic decisions can be made based upon that trend. If the queue is seemingly
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increasing in size, then the HANC Agent can be told to send messages to its neighbors

to increase the traffic flow because it can handle more traffic. If the queue is seemingly

decreasing in size, then HANC agent can be told to send messages to decrease the

traffic flow because it cannot handle high message traffic.

The KFTimer class builds the bridge from the Kalman filter drop tail queue

to the HANC Agent. The method takes sensory readings at set times during the

simulation and run the prediction loop code. The timing can be modified to take

reading according to the customer specifications. Once the sensory data has been

collected, a global sight picture can be realized on what the state of the queue will be

in the future.

3.3 Encryption Optimization Module

This module is based upon the Dialable Cryptography for Wireless Networks

controller three 2.7. It is a combination of controller one that integrates security levels

and performance levels in the optimization decisions as well as binary integer program-

ming from controller two. The class diagram in Figure 3.4 indicates the relationship

with HANC and the Encryption module. The diagram shows that encryption requests

are called from the HANC agent, and that request then calls the proper Matlab� [9]

function to interpret results from the given parameters. A detailed explanation of the

parameters and matrices are included because of the integration of the three frame-

work modules. The current module design is that input is taken from a function that

will take sample hard coded data and then put that data in a correct format and

matrix for Matlab� [9] to use and interpolate the results. This sample data would

include the available bandwidth, the available CPU speed, a commodity number, the

file size of the commodity, the priority level, the security level, and the performance

level. A sample of what file will be created and tested is in Table 3.1. An extension

for this module is to make the inputs more dynamic rather than the results of hard

coded data. Another test to be conducted is the available bandwidth parameter. A
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Table 3.1: Sample Input File for Encryption Optimization Module [21]
Available Available Placeholder

Bandwidth CPU
(MB) (seconds)
100 2400 0 0 0

Commodity File Size (MB) Priority Level Security Level Performance Level
1 10 60 3 1
2 15 28 2 2
3 30 90 3 3
4 5 30 2 1
5 50 15 4 2
6 60 75 1 1
7 3 90 5 3
8 22 49 2 2
9 20 74 2 3
10 44 38 5 2

simulation will be set up to receive results from the network predictor and perform a

encryption optimization scheme based upon received results.

Therefore, based upon this sample input, the security level and performance

level was matched up with a selection of appropriate encryption algorithms according

to Table 3.2. Each level tested three encryption algorithms at that level. Security

level’s ranged from one to five where five was the highest. Performance level ranged

from one to three where three was the highest.

Then the resulting data is fed as input into the function to gain statistical data

of encryption file size and encryption time. Once that is complete Matlab� [9] is then

called and given these inputs in a matrix form to perform binary integer programming.

Matlab� [9] along with GNU Linear Programming Kit (glpk) is used to solve the

optimization of which commodity to send with which encryption algorithm. The

parameter inputs are calculated to optimally solve Ax ≤ b. Each commodity has an

option to be sent or not sent thereby creating the binary of 1 or 0.

xj =

⎧⎪⎨
⎪⎩

1

0
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Figure 3.4: Encryption Optimization Module and Hybrid Agent Network Control Module
Unified Modeling Language Class diagram of the relationship between the Encryption Optimization
Module and the Hybrid Communications Agent structure. The parameters as in Table 3.1 are given
and the module interpolates a resulting optimal list of commodities to send and at what encryption
algorithm.

Table 3.2: Security and Performance Level Algorithms for Encryption Optimization Module [21]
Security Performance Encryption Scheme
Level Level &(Key Size)

1 1 RSA (1280); RSA (1536); Elg-E (1280)
1 2 Elg-E (768); Elg-E(1024); RSA (1024)
1 3 3DES, BlowFish, CAST5
2 1 Elg-E(1536); Elg-E(1792); RSA (2304)
2 2 RSA(1792); RSA(2048); Elg-E(2048)
2 3 3DES, BlowFish, CAST5
3 1 Elg-E(2816); Elg-E(2072); RSA (3072)
3 2 RSA(2816); RSA(2560); Elg-E(2560)
3 3 AES; TwoFish, CAST5
4 1 Elg-E(3840); Elg-E(3584); RSA(3840)
4 2 RSA(3328); RSA(3584); Elg-E(3328)
4 3 AES(192); TwoFish; CAST5
5 1 Elg-E(3840); Elg-E(4096); RSA(4096)
5 2 Elg-E(3584); RSA(3840); RSA(3584)
5 3 AES(256); AES(192); TwoFish

Security Level 1 being the lowest, 5 being the highest.
Performance Level 1 being lowest and 3 being the highest.
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One parameter is a commodity matrix derived from [21], where each commodity

original size, priority, encryption file size, encryption time is enumerated for each

encryption algorithm available see below for more details.

A commodity matrix c for the n commodities and y encryption schemes will

produce a matrix in the the form of

c =

⎛
⎜⎜⎜⎜⎜⎜⎝

i1 p1 s11 t11 s12 t12 s1y t1y

. . . . . . . .

. . . . . . . .

in pn sn1 tn1 sn2 tn2 sny tny

⎞
⎟⎟⎟⎟⎟⎟⎠

Where the each row in the matrix corresponds to the following

i1...n = input file size of commodity (1...n)

p1...n = priority level of commodity (1...n)

s11..ny = encrypted file size of commodity (1...n) using encryption scheme (1...y)

t11..ny = encryption time of commodity (1...n) using encryption scheme (1...y)

A second parameter is a vector of priorities of the enumerated commodities

from the c, where n is the number of commodities and y is the number of encryption

algorithms. This general coefficient matrix, f , derived from [21] take on the following

form

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

.

.

.

pn∗y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The vector of priorities is used as a coefficient matrix to solve Z = −f1x1 −
f2x2 − ....− fn∗3xn∗3 equation to maximize the x′s with the constraint of Ax ≤ b [21].
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The constraints for the optimization problem comes from the A matrix where

it defines that at most one encryption algorithm scheme is chosen for the given com-

modity from the commodity matrix c

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

111 11..y 0 0 0 0 0 0

0 0 121 12..y 0 0 0 0

0 0 0 0 131 13..y 0 0

. . . . . . . .

. . . . . . 1n1 1ny

size11 size1..y size21 size2..y size31 size3..y sizen1 sizen..y

time11 time1..y time21 time2..y time31 time3..y timen1 timen..y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Where each row represents the commodity and the ability to be encrypted by

a scheme indicated by a 1 in each column. The corresponding encrypted file size and

encryption time for that particular encryption scheme and commodity is indicated in

the last two rows of the matrix.

Another constraint is from the b matrix where it constrains the at-most value

for each commodity meeting the equation Ax ≤ b. Only one encryption scheme can

be chosen for a given commodity out of the number of encryption schemes y given

bandwidth (BW) and central processing unit (CPU) values. This vector is derived

from [21].

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

.

.

1n∗y

BW

CPU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Matlab� [9] and glpk then populates the matrices to solve the optimal values

of x such that the constraints of allowing only one encryption algorithm to be used,

all the encryption times have to be less than the CPU speed, and the sum of all the

encrypted file sizes have to be less than the given BW.

3.4 Hybrid Agent Network Control Module

The overall Hybrid Agent Network Control (HANC) module is reactive in na-

ture. HANC relies on a set of rules in which to apply an appropriate behavior.

It becomes reactive based upon information classification, information scheduling,

resource allocation, and traffic routing schemes. The results from the Network Pre-

diction module and Encryption Optimization module can be a way to set up rules

and behaviors for this module to respond from. A Network Tasking Order or network

plan can be used for normal operations. Given network mission objectives and goals,

HANC can be programmed to react in a custom-made manner. The type of behav-

iors, as discussed in section 2.6, are to decisively handle delineated traffic based upon

characteristics such as priority, encryption, or status traffic.

This module consists of a sequencer and controller layer. It also has some

housekeeping components called coordinator and state. The original design of the

sequencer layer was to act as an interface between the coordinator component and

the mission objectives and goals for the system. Also the task of the sequencer is

to develop a library of behavior sets based upon the type of traffic that is being

transported. The idea is to have the coordinator take in the mission objectives and

goals and then pass this data over to the sequencer layer where the mission objectives

and goals are given a priority or a weight. This priority or weight would then further

be used in the delineation of traffic type. An example of a mission objective would

be to maximize utilization across the network, therefore, as data or information is

being scheduled to be placed on the network, data meeting the goal of maximizing

the network can be weighted more with a higher priority or classification so when a

decision has to be made, at the router or relay level, whether to drop or keep a piece
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of traffic moving, that weight or priority will be a determining factor. This layer from

the [14] research did not have much functionality, however, in this research it will be

extended to receive inputs from the Network Prediction and Encryption Optimization

module to act as mission objectives or goals.

The original design of the controller layer was to react to the environment based

upon the information gathered from the sensors and stored in the state component.

The controller would control the actions taken in the environment based upon that

information. The controller uses a Unified Behavior Framework (UBF). This UBF

is adapted from a robotic Three Layer Architecture discussed in [14], it uses voting

schemes based upon behaviors and arbitration as to which behavior is chosen. The

sequencer layer selects the behavior set library as well as the arbitration behavior sets

for the UBF to utilize. Figure 3.5 depicts the relationship and events between the

sequencer layer and controller layer. Sensory data is being collected from the network

from resources that have HANC, based upon the data collected it is stored in a state

component. The sequencer collects the state of the network and matches up behaviors

and candidate actions for the library it has built. The composite behaviors are then

forward to the arbitration area where the UBF makes a selection from the available

choices that would produce the optimal results. The controller than executes the

action on the network environment.

The type of behavior or actions the controller generated from the basic de-

sign was to meet the mission objective of maximizing utilization. With this mission

objective the behaviors or actions that could be taken are as follows:

Raise Threshold When the resource is becoming overwhelmed and congested, one

action that the resource could take is to tell its neighbors to throttle back on

the data that it is sending. The message would cause the neighbors to make

a decision as to the traffic it is sending. The differentiation between priority,

utility, or value of the data comes in to play here, when higher valued items

need to pass, lower value items are dropped.
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Figure 3.5: Sequencer Layer and Controller Layer
Sensory data is being collected from the network from resources that have HANC, based upon the
data collected it is stored in a state component. The sequencer collects the state of the network and
matches up behaviors and candidate actions for the library it has built. The composite behaviors
are then forward to the arbitration area where the UBF makes a selection from the available choices
that would produce the optimal results. The controller than executes the action on the network
environment. Figure modified from [14].

Lower Threshold When the resource is being underutilized, the resource can send

messages to its neighbors requesting more work by allowing lesser valued items

to pass. Again the decision making as to admission control at the resource.

Solve Routing Topology If a resource have not received any keep alive messages

from its neighbor indicating that the neighbor is no longer in service, it sends

out a message to update the routes that it can use to keep data moving.

The state component is memory used to hold data gathered or perceived from

the network. The original design was for the state component to use preceptors located

in the network environment that would collect and capture data. The author states

that some sources of information can be gathered from inbound data packets [14].
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Inbound data packets can provide information that is maintained in the header such

as the identifies, utilities, and size of the data it the arrival rate can be measured as

well as an indicator to the state of network. Another source of perception data is the

system messages that are generated based upon the behaviors or actions performed.

As Pecarina mentions, the act of action messages to raise or to lower a nodes’ threshold

can be some indicators of environment state. Lastly, knowledge can be collected from

the node or resource itself. The node knows its queue size, outbound data rates, and

its routing table, these items can be used too. Therefore, these collectable items can

be saved in some fashion for use in determining the next or best course of action. As

the perception elements change, the state component is updated. As an extension to

this component, as the Network Prediction module executes, the collected results can

be stored in the state component and used in creating composite behaviors. Another

extension is the Encryption Optimization module and use the data stored or update

the state based upon its execution. This will strengthen the ability to be decisive in

making decisions dynamically thereby meeting the baseline system requirements of

being thoughtful, adaptability, and balancing the resources for optimal results.

The last element of the original design for HANC is the coordinator element.

The coordinator is the liaison between all resources that house HANC agents. The

coordinator ensures system messages are passed to all responsible agents. The coordi-

nation of the NTO, mission tasks, mission objectives, as well as the action messages.

The author used the coordinator to also send keep alive messages to its neighbors,

indicating that the neighbor was still available.

HANC design was enhanced with incorporation of the Network Prediction mod-

ule for this research. When the state of the system changes based upon the data

received from the Network Prediction module, it responds with the corresponding

action to either send “raise the threshold” or “lower the threshold” messages to its

neighbors. The design has also been enhanced with the functionality of being context

aware of the priority of a commodity. When the decision, at the node, needs to be
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made regarding wether or not to send a message, the message is only sent if it meets

the given criteria.

The incorporation of the Network Prediction module and HANC provides a

more proactive stance in making decision given a forecasted state of the network. A

delta parameter is being calculated by taking the forecasted queue size readings from

the Kalman filter program and storing the values in a circular queue data structure.

The queue is currently set to hold five values, as data comes in the next value will

be overwritten in a circular fashion. An average is taken of the readings in the queue

and stored in variable current delta, it will take up to five readings in order for this

value be of good use. As new values as coming in, the last current delta is stored in a

variable previous delta and the current delta is the replaced with the updated value.

The difference between the current delta and previous delta are compared, if

the current delta is larger, this indicates that the queue is filling up, storage capacity

is decreasing. If the current delta is smaller than the previous, the queue storage

capacity is becoming larger.

A decision to notify a node’s neighbors is based upon the queue storage capacity

decreasing to 45% total capacity. If the level is reached, the preemptive throttle back

messages goes out to the neighbors time to respond with either stopping traffic, or

sending only the most important of its traffic.
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IV. Decisive Routing and Admission Control Results

This chapter describes the results from various simulations and experimentations

conducted to test the consolidated Decisive Routing and Admission Control

According to Quality of Service Constraints Framework.

4.1 Network Prediction Module

The Network Prediction Module was tested separately in order to gain the

knowledge of the capabilities and the range of parameters to use in order to get

the best advantages of combining this module with HANC. Examinations included

simulation of a noisy network and how the module would fair against this type of

environment. Another examination was determining what range of forecasting could

be used with the most accurate results.

4.1.1 Can Network Prediction Handle Noise? The first set of experiments

involved the Network Prediction Module. The original network prediction was to

calculate the present value of the network queue. This code was ported from Microsoft

Windows based OPNETR© to Linux based ns2 [13], a discrete event simulator, and

modifications made to calculate the future value of the network queue. A Matlab�

[9] file was created to interact with the original design to calculate the predicted

values. This file is called after the propagation stage and update stage. Within the

file, there is a method to propagate based upon a given prediction parameter of how

far to look into the future. Furthermore, the prediction variable parameters are the

current queue size and arrival rate in which it uses in its calculations. Lastly, this file

then performs a error covariance measurement and the uncertainty of the prediction

is considered.

Noise in the measurement is calculated by Cholesky Factorization multiplied by

a random number generated via Matlab� [9]. The actual traffic measurements are

noisy because the data rate must be deduced from sample data measurements and

that even when the router can be accessed to provide detailed information, noise is
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Figure 4.1: Network Prediction Network Layout
Network Prediction Module Network Layout, The Kalman Filter resides at Node 3 and act as a
router for three incoming source Nodes 0, 2, and 5. Both Node 3 and Node 4 are the destination
nodes.

still present due to delays and errors in the transfer of information [20]. The first set of

simulations considers a variation in the amount of noise to the accuracy of prediction

results. To set up the simulation, a network was laid out as in Figure 4.1. The figure

depicts six Network Nodes. Duplex links of 1 Mega bits per second (Mbs) with 200

millisecond (ms) delay, are setup between Nodes 0 and 2, Nodes 1 and 2, Nodes 3

and 5, and Nodes 2 and 3. The link between Nodes 3 and 4 and 4 and 3 are simplex

links with 1 Mbs with 200 ms delay. In order to capture the data of one Kalman

filter, simplex links are used. Node 3 is where the Kalman filter resides and acts as

a router, passing the data from the sending sources to the destination, Node 4. The

other queueing scheme at the other nodes is the drop tail. The queue at Node 3 has

a defined limit of 2000, this insures a trend is captured and packet loss is minimized.

The sending sources in the network come from Nodes 0, 2, and 5. Nodes 3 and 4 act

as the destination or sinks. A variety of traffic is generated via ns2 [13] and simulated

to understand the capability of the Kalman filter. Exponential traffic from source

0 is generating from Node 0 to Node 3, with 2200 byte packet size, 5 second burst
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Figure 4.2: Compared Queue Size with Cholesky Factorization 100
Given an input value of 100 to the Cholesky Factorization consideration for noise, the result of the
predicted queue size versus the actual queue size vary widely.

time, 3 second idle time, every 600k byte per second. Source 1 is also exponential

traffic from Node 2 to Node 4, 3500 byte packet size, 2 second burst time, .5 second

idle, and a rate of 450k bytes per second. Source 2, exponential traffic from Node 5

to Node 4, 1700 byte packet size, 3 second burst time, 2.2 second idle, and a rate of

1350k byte per second, There is a TCP connection between Node 1 and Node 3 with

FTP also UDP connection between Node 5 and 4 with constant bit rate traffic of 600

byte packet size, and sending rate of .5m bits. The simulation time is set to run for

93 seconds and prediction is timed to take place at every three in the future.

4.1.1.1 Experiment 1: Noise level 100. Experiment one trials were

conducted to determine the response of the filter with a system of simulated high

level noise. Ten runs of the experiment was conducted with Cholesky Factorization

value that is passed is 100. The seed for each run was taken from a range of arbitrary

values of 129449 through 530390. Figure 4.2 is the result of running the simulation. It

depicts a time series plot of actual queue size represented in black and the predicted

queue size, represented in red, at a specific time slice of the simulation. The prediction
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is being forecasted three seconds into the future, it is calculating what the actual

queue size will be based upon the past and current condition of the network, also

considering the noise-level. This figure also shows that the predicted values follows

the same trend as the actual queue, as the actual queue is increasing or decreasing

in packets, so is the foretold value. There are however, variations in the values that

are predicted. The minimum percent difference between the actual queue size and

the predicted queue size is -14.35% meaning that the forecasted value was below the

actual value by as much as 14.35%. The maximum percent difference is 19.63%. The

overall mean of the difference between the what is actual and what is calculated is

8.48% according to a 95% confidence interval. Figure 4.3 gives a pictorial view of

what the percent difference between the actual queue size and the calculated queue

size is at a given time slice of the simulation. Starting around time 72 seconds, the

the differences are starting to go below 5%, this is on the account of queue becoming

saturated, the queue is at 90% capacity by this time. Based upon a 95% confidence

interval, the range of the interval is between 6.15% to 10.84%.

Figure 4.4 indicates with 95% confidence that the mean difference in actual

packets versus the predicted queue packets at a given time during the experiment.

The overall range of the mean is within the range of -11 to 95. The negative indicates

the prediction was underestimated and the positive meaning the prediction overshot

the actual value.
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Figure 4.3: Percent Difference between Actual Queue Size and Predicted Queue Size
During simulation the difference between the two values are calculated. The highest differing value
is by 19.63% The values start to normalize when the queue reaches its capacity around 72 seconds.
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Figure 4.4: 95% Confidence Interval Mean Difference in Queue Size
95% Confidence Interval for the mean value of the difference between the actual queue size and predicted queue size. The noise parameter is set
to 100 simulating a very noisy network.
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Figure 4.5: Compared Queue Size with Cholesky Factorization 50
Given an input value of 50 to the Cholesky Factorization consideration for noise, the result of the
predicted queue size versus the actual queue size vary somewhat.

Figure 4.6: Percent Difference between Actual Queue Size and Predicted Queue Size
During simulation the difference between the two values are calculated. The highest differing value
is by 10.44% The values start to normalize when the queue reaches its capacity around 51 seconds.

4.1.1.2 Experiment 2: Noise level 50. Experiment two was conducted

to determine the response of the Kalman filter with a simulated moderate level of

noise. The same scenario is being used as in Level one, but with the Cholesky Fac-
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torization value of 50. Ten trials were also run but with a seed value in the range of

1510610 to 9732120. Figure 4.5 is showing the outcome of the simulation. The figure

is a time series plot of the actual queue size and predicted queue size, with simulated

noise level at 50. The prediction still follows the trend of the actual queue, increasing

and decreasing as the actual queue does. The space between the actual value and the

forecasted value is closer during this simulation. Using a 95% confidence interval, the

mean of the difference between the two plotted lines is 4.53%, with a minimum being

-17.16% and maximum difference value of 10.44%. I would consider the -17.16% as an

outlier because of the initiation of traffic flow and the random generation of seed for

the simulation. The range of the interval is between 2.825% to 6.234%. The difference

values also begins to normalize below 5% when the queue is at 75% capacity during

this run. Figure 4.6 is capturing the percent difference between the actual queue and

predicted queue at specific time slices during the simulation. The overall data values

are lower than the first simulation tested, thereby giving an indication of lower noise

indicates closer predicted values to the actual values.

Figure 4.7 depicts the experiment with Cholesky Factorization value of 50, and

the average mean of the difference between the actual queue size and the forecasted

queue at a certain time during the experiment. The confidence interval used was 95%.

Therefore with 95% confidence the mean difference of the queue packet size, during

the complete experiment, is in the lower range of -20 to a higher range of 117 packets.

The negative number indicates the prediction was below the actual queue size and

the positive number is the overage of the prediction.
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Figure 4.7: 95% Confidence Interval Mean Difference in Queue Size
95% Confidence Interval for the mean value of the difference between the actual queue size and predicted queue size. The noise parameter is set
to 50 simulating a mid-range noisy network.

64



4.1.1.3 Experiment 3: Noise level 1. Lastly, the next Cholesky Fac-

torization value used is one. This experiment would represent a network with some

noise but normal to low level. Ten trials were conducted with a seed value in the range

of 676484 to 859472. Figure 4.8 depicts that the predicted value of the queue size

versus the actual value do not vary by much. The predicted value follows the trend

and movement of the actual queue plot. The mean value of the difference between

the prediction and the actual is only 4.72%. A confidence interval of 95% is in the

range of 3.434% to 6.004%. Figure 4.9 shows the minimum difference being -9.62%

at the start of the simulation and the maximum difference between any two points

is 9.46%. Figure 4.10 is the mean difference between the actual queue size and the

foretold value of the queue size with a 95% confidence interval. From the data set of

the entire experiment, the range is from -10 to 98. Each time slice also reveals the

mean difference at that particular second.

Figure 4.8: Compared Queue Size with Cholesky Factorization 1
Given an input value of 1 to the Cholesky Factorization consideration for noise, the result of the
predicted queue size versus the actual queue size vary only slightly.
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Figure 4.9: Percent Difference between Actual Queue Size and Predicted Queue Size
During simulation the difference between the two values are calculated. The highest differing value
is by 9.46% The values start to differ in the 5% range and below starting around 54 seconds.
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Figure 4.10: 95% Confidence Interval Mean Difference in Queue Size
95% Confidence Interval for the mean value of the difference between the actual queue size and predicted queue size. The noise parameter is set
to 1 simulating a average level of noise in a network.
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Figure 4.11: Interval Plot of Percent Differences with various noise parameters
Comparison between various noise parameters of the precision of measured queue size versus future
predicted queue size. Low level noise and moderate level noise can be tolerated and are statistically
similar.

4.1.1.4 Summary. In summary, these experiments show that the noise

parameters can be adjusted to simulate real-world network environment in order to

get a range of noise that would cause the predicted values to become less accurate

than can be tolerated. Figure 4.12 is all three experiments combined to see the

comparisons. This indicated that the accuracy of the predicted value depends on the

condition of the network noise level. The lower the noise the better the prediction

of the network queue size. When normal level of noise Noise-1 and mid-range noise

Noise-50, the prediction varied less than 5%, however when a large amount of noise

was tested, the prediction varied by 8%. Figure 4.11 shows an interval plot of all three

tested values. Noise-1 and Noise-50 are statistically equivalent, Noise-100 is not. This

leads to the ability of the Kalman Filter to tolerate a somewhat noisy environment

and it can still perform with error rate in the range of 5% from the actual queue size.
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Figure 4.12: 95% Confidence Interval Mean Difference in Queue Size
95% Confidence Interval for the mean value of the difference between the actual queue size and predicted queue size for all three experiments
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4.1.2 How Far in the Future are Predictions Precise? The next set of exper-

iments involve how far in the future can the queue size be predicted with reasonable

amount of accuracy. Again the network layout is depicted in Figure 4.1 and scenario

with the same data links and traffic patterns are used as in above section.

4.1.2.1 Experiment 1: Predict 5 Seconds in Future. The Kalman

filter was adjusted to predict five seconds into the future. Since the mean values

are considered for the total runs of the simulation, some variability of the queue is

not captured. Figure 4.13 is designed to show that if there are fluctuations in the

queue size that the filter does capture those fluctuations. The figure is compiled from

multiple runs of the scenario showing the queue size is raising and falling within the

simulated tests.

Figure 4.13: Time Series Plot of fluctuations in Queue Size
Diagram showing the capability of the prediction module to capture the fluctuations of the actual
queue size.

Figure 4.14 verifies that the forecasting is following the same trend as the actual

queue size. The forecasted value stays relatively above the actual value. The mean

value of the difference between the actual and predicted value is 6.66% with minimum

difference, where the predicted value was below the actual size, was -.32% and the
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maximum difference of 16.61%. Figure 4.15 is the representation of the percent dif-

ferences. The overall summary of the results from this simulation is in the following

graphs. Figure 4.16 shows the histogram of the size of the queues from the actual

and predictions. It further indicates when the histogram are overlaid, where these

differences are. The mean value of the queue size measured at 1876 with standard

deviation of 1027, the mean value of the prediction measured at 1969 with standard

deviation of 1037, giving a difference in measurement of 4.96%. Data was collected

using a one-sample t-test with a 95% confidence interval. The interval is in the range

of 4.866% to 8.459% with the standard deviation of 4.983.

Figure 4.14: Time Series Plot of Actual Queue and 5 second Predicted Queue
Diagram showing the actual queue size and predicted value of queue size taken 5 seconds in the
future.

4.1.2.2 Experiment 2: Predict 3 Seconds in Future. Experiment two

performed simulations with the Kalman filter set to forecast the queue size at three

seconds in the future. The same network topology and scenario is being used as in

Section 4.1. Figure 4.18 again demonstrates that the prediction follows the actual

movement of packets to and from the queue in the network. Figure 4.19 reveals the

mean percent difference of 4.81% with a forecasted measurement below the actual

measurement of -10.30%. The maximum difference between the predicted queue size
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Figure 4.15: Percent Difference between Queue and 5 second Predicted Queue
The Percent Difference between the actual queue size and predicted value of queue size taken 5
seconds in the future yields a mean difference value of 6.66% with maximum difference of 16.61%
and minimum difference of .32% below actual value.

and the actual monitored queue size is 9.65% with standard deviation of 3.58. The

statistical results were gathered from using a one-sample t-test with a 95% confidence

interval of 3.516% to 6.101%.

An overall histogram graph is shown to show the similarities and differences

between the measurements, Figure 4.20. Also shown in Figure 4.21 is the 95% confi-

dence interval of the entire run of the experiment showing the difference between the

actual queue size and the predicted queue size.

4.1.2.3 Experiment 3: Predict 1 Seconds in Future. The last level of

testing involves setting the prediction time to every second. This should yield more

precise results compared to the other levels of testing. Figure 4.22 is given to show

sample data where the actual queue size fluctuates during the simulation and that the

predicted value continues to track with the actual queue size during those periods of

fluctuations. Figure 4.23 shows the results of the simulation and verifies the precision

of the tracking of the actual queue. The mean difference between the measurements is

.56% with a standard deviation of 2.44. The minimum value difference is -8.38% being
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Figure 4.16: Histogram with normal distribution of queue sizes
Histogram with normal distribution of queue sizes. Actual queue size indicates the actual packets
within the queue. Predicted queues size is the prediction of what the actual queue will be 5 seconds
in the future. The overlaid histogram of both the actual and predicted values.
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Figure 4.17: Total run of Actual vs Predicted Queue Size (5 seconds out)
Interval chart of complete experiment predicting 5 seconds out for 155 seconds. Confidence interval
at 95% for the mean of the actual and predicted queue size values.
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Figure 4.18: Time Series Plot of Actual Queue and 3 second Predicted Queue
Diagram showing the actual queue size and predicted value of queue size taken 3 seconds in the
future.

Figure 4.19: Percent Difference between the Actual Queue and 3 second Predicted Queue
The Percent Difference between the actual queue size and predicted value of queue size taken 3
seconds in the future yields a mean difference value of 4.81% with maximum difference of 9.65% and
minimum difference of -10.30% below actual value.

below the actual queue size and 2.27% overshooting the actual queue value. There

was an outlier figure that I did discard, it was at the beginning of the simulation

at time step 1 of -259% difference. Again, a one-sample t-test was used with a 95%
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Figure 4.20: Histogram with normal distribution of queue sizes
Histogram with normal distribution of queue sizes. Actual queue size indicates the actual packets
within the queue. Predicted queues size is the prediction of what the actual queue will be 3 seconds
in the future. The overlaid histogram of both the actual and predicted values.

76



Figure 4.21: Total run of Actual vs Predicted Queue Size (3 seconds out)
Interval chart of complete experiment predicting 3 seconds out for 96 seconds. Confidence interval
at 95% for the mean of the actual and predicted queue size values.

77



confidence interval of -.325 to 1.467. Figure 4.25 and Figure 4.26 indicates at a 95%

confidence interval at each second during the experiment what the actual queue size

is and the predicted queue size.

Figure 4.22: Time Series Plot of fluctuations in Queue Size
Diagram showing the capability of the prediction module to capture the fluctuations of the actual
queue size.

4.1.2.4 Summary. In summary to the results from the simulation,

the farther the outcast prediction the less accurate the prediction will be. The re-

sults start to vary by a maximum of 16.61% when forecasting out five seconds and

a minimum of .57% when forecasting out 1 second in the future. Statistical analysis

was accomplished using one-sample t-test and interval plots with a confidence interval

of 95%. The interval plot in Figure 4.27 shows that the further out predictions are

forecasted, the accuracy of the predictions decreases. The results also indicates that

the predictions follows the same trends and fluctuations as the packets of information

arrive and depart from the queue.

Based upon these experiments in the Network Prediction Module, the Hybrid

Agent Network Control Module has been implemented with this feature. A circular

queue is used to hold the predicted values, currently the size of this queue is five. An
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Figure 4.23: Percent Difference between the Queue Size and 1 second Predicted Queue
The Percent Difference between the actual queue size and predicted value of queue size taken 1
seconds in the future yields a mean difference value of .57% with maximum difference of 2.27% and
minimum difference of -8.38% below actual value.

average queue size is taken and based upon the change in the queue size, a current

value and past value, a notification is sent to the sending node to throttle back or

throttle forward message traffic. This takes a more proactive and decisive approach

based upon future values and not reactive based upon actual congestion.

4.2 Decisive Routing and Admission Control Integration

This sections describes the integration of the three distinct frameworks and the

advantages gained by the integration. The encryption optimization was only modified

slightly due to time constraints, however, it is now working code and can be a future

investigation. HANC was integrated with the ability to proactively advert congestion

based upon the sensory readings from the network prediction module.

4.2.1 Experiment 1: Encryption Optimization. The modifications to this

area were just adjustments to the compatibility with HANC and an extension of the

EncryptFitter capability. Most of the original code was hardcoded into the HANC’s
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Figure 4.24: Histogram with normal distribution of queue sizes
Histogram with normal distribution of queue sizes. Actual queue size indicates the actual packets
within the queue. Predicted queues size is the prediction of what the actual queue will be 3 seconds
in the future. The overlaid histogram of both the actual and predicted values.
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Figure 4.25: Total run of Actual vs Predicted Queue Size (3 seconds out)
Interval chart of complete experiment predicting 1 seconds out for 90 seconds. Confidence interval
at 95% for the mean of the actual and predicted queue size values.
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Figure 4.26: Total run of Actual vs Predicted Queue Size (3 seconds out)
Interval chart of complete experiment predicting 1 seconds out for 90 seconds. Confidence interval
at 95% for the mean of the actual and predicted queue size values.
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Figure 4.27: Percent Differences from Predictions at 1 sec, 3 sec, and 5 sec in future
Diagram showing as predictions are forecasting further into the future the accuracy of the predictions
decreases.

code, however, a Matlab� [9] file can be read in as the input parameters for the

encryption optimizer. A field has been added to this input file to indicate the desti-

nation of each commodity. The input file must contain the bandwidth, CPU, com-

modity number, security level, performance level, and destination. An explanation of

the security level and performance level can be found in Table 3.2. The method was

tested to run one time during the simulation, an example of the input file that was

tested is in Table 4.1. The output from the run of the optimizer is listed in Table 4.2,

commodities three, four, and six were chosen as the optimal solution. Another set of

inputs were given in Table 4.3 and the results in Table 4.4. Another enhancement

was the calling method was adjusted to receive an input parameter of the requesting

node, therefore HANC knows what node to send the commodity from and what node

is the receiving node.

4.2.2 Experiment 2: Preemptive Congestion Control. This level examines

the use of the prediction to preemptively lower congestion based upon the forecasted

network state. The topology used is in Figure 4.28. There are seven nodes with
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Table 4.1: Encryption Optimization Input Parameters 1
Available
Bandwidth
(MB)

Available
CPU (sec)

- - - -

100 2400 0 0 0 0
Commodity
Number

Size Priority Security
Level

Performance
Level

Destination

1 50 60 5 1 7
2 25 28 5 2 7
3 30 90 5 3 7
4 5 30 5 1 7
5 10 15 4 2 7
6 10 75 1 1 7
7 100 90 5 3 7
8 22 49 2 2 7
9 20 74 2 3 7
10 44 38 5 2 7

Table 4.2: Encryption Optimization Output 1
ID In

Size
Prior-
ity

Sec
Level

Perf
Level

Dest Rand-
om

Algo Comp-
ress

Key
Size

Out Size Encrypt
Time

3 30 90 5 3 7 0 0 0 256 30.000097 1416
4 5 30 5 1 7 0 5 0 4096 5.001123 413.742
6 10 75 1 1 7 0 6 0 1536 10.00288 519.563

Table 4.3: Encryption Optimization Input Parameters 2
Available
Bandwidth
(MB)

Available
CPU (sec)

- - - -

100 2400 0 0 0 0
Commodity
Number

Size Priority Security
Level

Performance
Level

Destination

1 80 60 3 1 3
2 15 28 3 2 3
3 30 90 3 3 3
4 5 30 2 1 3
5 50 15 4 2 3
6 60 75 1 1 3
7 100 90 5 3 3
8 22 49 2 2 3
9 20 74 2 3 3
10 44 38 5 2 3

84



Table 4.4: Encryption Optimization Output 2
ID In

Size
Prior-
ity

Sec
Level

Perf
Level

Dest Rand-
om

Algo Comp-
ress

Key
Size

Out Size Encrypt
Time

3 30 90 3 3 3 0 0 0 128 30.000097 1212.061
9 20 74 2 3 3 0 3 0 128 10.000065 1039.338

duplex links, the Kalman filter resides at the outbound side of Node 3 to Node 7.

The link between Nodes 3 and 7 are two simplex links to capture the filter data on

the outbound side only. The links are 4Mb 8ms drop tail, except the link between

Nodes 2 and Node 3, and back as well as Node 3 to 7. These links are 1.5Mb capacity

with 8ms delay. HANC produces its own traffic so a traffic generator was not used.

It is sort of a looping affect, once a node receives traffic, it starts to send traffic. The

simulation is timed to run for three seconds. The queue limit at the Kalman filter

node is set to 1000. The Kalman filter timer is set to gather readings at every 0.2

seconds

Figure 4.28: Network Topology for Integration Testing
Network Topology consists of 8 nodes. The Kalman filter is at Node 3’s outbound link to Node 7.

A delta parameter is being calculated by taking the forecasted queue size read-

ings from the Kalman filter at Node 3 and storing the values in a circular queue data

structure. The queue is currently set to hold five values, as data comes in the next
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value will be overwritten in a circular fashion. An average is taken of the readings

in the queue and stored in variable current delta, it will take up to five readings in

order for this value be of good use. As new values come in, the last current delta is

switched and stored in a variable previous delta and the current delta is the replaced

with the updated value.

The difference between the current delta and previous delta are compared, if

the current delta is larger, this indicates that the queue is filling up, storage capacity

is decreasing. If the current delta is smaller than the previous, the queue storage

capacity is becoming larger. Figure 4.29 shows traffic going through the network and

the queue is starting to fill up at Node 3.

Figure 4.29: Network Topology for Integration Testing, Kalman Filter queue storing data
Network Topology consists of 8 nodes. The Kalman filter is at Node 3’s outbound link to Node 7.
The queue is starting to fill up with packets being received.

A decision to notify a node’s neighbors is based upon the queue storage capac-

ity decreasing to 45% of its total capacity. This is an arbitrary number that I have

chosen, but it could be a customer choice of what’s tolerable. If the level is reached,

the preemptive throttle back messages goes out to the neighbors giving time to re-

spond with either stopping traffic, or sending only the most important of its traffic.

Figure 4.30 show that in the code, the message is being sent at simulation time of
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1.6 to all Node 3’s neighboring nodes. Figure 4.31 shows “raise threshold” messages,

circled in purple, being sent from Node 3 to its neighbors that correlates to code

result snippet of Figure 4.30. Figure 4.32 also shows the red colored messages going

out from Node 3 again at a different simulation time. The “raise threshold” messages

are circled in purple again. Finally, the offending nodes takes action on the throttle

back message received from Node 3 and this is shown in Figure 4.33. The action

that Nodes 1 and 2 take is stopping message traffic being sent to Node 3. The figure

also depicts that the queue has past the 45% and now is sending “raise threshold”

messages more frequently, this is also due to the now reactive nature of HANC.

Figure 4.30: Preemptive Congestion Control Code Snippet
The Decisive Routing and Admission Control According to Quality of Service Constraints code
snippet of reaction to forecasted state of the network. The Kalman filter queue has reached a stated
level of 45% of its capacity and action is taken.

In order to visually see and distinguish the preemptive messages, I had to turn

off all messages that have the same flow ID, such as the ”Alive” messages. Trying to

change the flow ID caused the program to crash.

4.2.3 Summary. In summary to these battery of tests, bringing together

three distinct frameworks into one cohesive framework is advantageous to informa-

tion technology. Tweaking the encryption optimization allows for more flexibility in
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Figure 4.31: Preemptive Congestion Control Throttle Back Message First Occurance
The Decisive Routing and Admission Control According to Quality of Service Constraints simulation
snippet of reaction to forecasted state of the network. The Kalman filter queue has reached a stated
level of 45% of its capacity and throttle back messages are being sent from Node 3.

Figure 4.32: Preemptive Congestion Control Throttle Back Message Second Occurance
The Decisive Routing and Admission Control According to Quality of Service Constraints simulation
snippet of reaction to forecasted state of the network. The Kalman filter queue has reached a stated
level of 45% of its capacity and throttle back messages are being sent from Node 3.

adding additional parameters as input. Adding the addition of a sending source and

destination, proves to mimic a real world event where there are classified documents
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Figure 4.33: Preemptive Congestion Control Response to Throttle Back Messages
Preemptive Congestion Control Throttle Back Message cause offending nodes to stop sending traffic.
However the queue did loose a few packets before traffic was completely shut off.

that may need to go to several locations, but there is the need to only use the network

with an optimal solution due to the constraints of the network.

Combining the Network Prediction Module proves to provide proactive action

when the state of the network is outside a tolerable range. When an additional

threshold is reached, then HANC responds reactively as well to control the congestion.
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V. Conclusions

5.1 Summary of Research

To restate the motivation behind this research, information superiority is a key

factor in military operations. According to Joint Pub 3-13, the ability to collect, pro-

cess, and disseminate an uninterrupted flow of information while exploiting and/or

denying an adversary’s ability to do the same is the definition of information superi-

ority [19]. It further states that to be successful, the conduct of operations requires

access to information available outside the operational area and that warfighters need

frequent, instant, and reliable access to information at locations in the continental

United States as well as in theater. The aim was to provide a framework that would

enhance the forward commander’s ability to capture the needed information to make

reliable decisions.

The framework was developed from the consolidation of separate and distinct

tools to build upon the advantages and gains each tool brings. One distinct tool

was the ability to forecast the state of a network queue. The advantage of this

is that if a commander can have a sight picture of the network, they could make

proactive and smarter decisions about the traffic flow and getting important data to

the warfighters the optimal way possible. This tool uses stochastic estimation and

control theory through the use of a Kalman filter that resides at a network node’s level.

This tool is likened to a Heating Ventilation and Air Conditioning system but on the

scale of a computer network. Given the current state of the “room”, parameters can

be adjusted, sensory readings taken, to produce the “temperature” that is wanted.

There is an integration of the drop tail queuing policy and the Kalman filter timed

predictions, as a packet is received sensory data is taken to predict what the actual

size of the queue will be sometime in the future. The closer in the predictions are,

the lower the error rate of predictions. However, since one second out may be an

unrealistic time frame to take any proactive action, the five seconds out test still

gave only a 9.65% difference to the actual queue. If the state of the queue is known,

congestion can be thwarted and alternative routes can be used. Out-range predictions
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can also go along with preplanned schedules. If what is planned is changed or the

network changes, what’s in the plan could possibly be reworked to have an optimal

or better use of resources.

Another tool is the ability to have document encryption optimization based

upon the state of the network as well. As the network dynamically changes state, an

encryption optimization module can produce an optimal path and list of documents

that can be sent to the destination. Having a repository of encryption algorithms

schemes, the ones integrated into this research area were RSA, ELGamal, AES, 3DES,

TwoFish, BlowFish, and CAST5. As well as customer based security level and per-

formance parameters, this tool uses glpk to optimize the best possible solution given

bandwidth, CPU requirements, and file sizes. With this adds the benefits of utilizing

a perceived state sometime in the future to develop the list of commodities as fluctu-

ations in parameter. Predictions can be tuned which in turn can dynamically change

the list of documents that must go out. Further, if there are last minute add-in/on’s,

the sight picture can show the window of opportunity to send such items.

The last tool that was integrated was the Hybrid Agent for Network Control.

This tool represents the smart agent at the node level that would know how to process

and handle the network weather picture and encryption optimizer as well have its

own onboard congestion control scheme based upon priority level of data and current

congestion levels. HANC is based upon a robot control architecture. The network

has defined behaviors based upon the stimulus it receives. The new behaviors that

have been adopted were the behavior of reacting to proactive predictions, if the queue

gets within a certain range, an action occurs. Also the behavior of sending messages

categorized as being encrypted messages.

5.2 Future Research

My overall goal was to integrate three separate frameworks capitalizing on the

sum of the individual parts thereby creating a Decisive Routing and Admission Con-
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trol according to Quality of Service Constraints. Tests show preliminary positive re-

sults and warrants possibly refactoring the code and enhancing the response actions

of the nodes receiving the “raise threshold” messages. Future research and study

in the direction of evaluating what additional potential the Kalman filter has given

other queuing schemes. The Kalman filter calculations proved to become unstable

using exponential traffic and very large link capacity and bytes of data, this area can

be investigated.

Another area of research could be in testing further ranges of predictions, and

fine tuning the capability and size and/or type of the data structures used, the sim-

ulations used a circular queue and capturing five data values. Less data values may

increase the accuracy rate and the timing of neighboring nodes response. Testing was

only done with a system with one Kalman filter drop tail design acting simply as a

router, to capture the results. The system can handle multiple filters, which were also

tested, however, time didn’t permit creation and capture of those data results.

The encryption module was just changed and modified to accept the destination

of the encryption message as well as integration into HANC produce stable results.

This begs further research because encryption optimization routing is vitally import.

One could research HANC becoming the smart agent directing the optimization based

upon bandwidth forecasted or realized in the network. A parameter could be incor-

porated based upon the sensory readings from the Network Prediction Module.

92



Bibliography

1. Adams, Carlisle M. “Constructing Symmetric Ciphers Using CAST Desgin Pro-
cedure”. Designs, Codes, and Cryptography, 12 Num 3, 1997.

2. Bolch, Gunter, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi. Queue-
ing Networks and Markov Chains: Modeling and Performance Evaluation with
Computer Science Applications. Wiley-Interscience, 2006.

3. Boorstyn, Robert and Adam Livne. “A Technique for Adaptive Routing in Net-
works”. Transactions on Communications, volume 29 Num 4, 474–480. IEEE,
1981.

4. Chadda, Ankur. QoS Testing Methodology. Master’s thesis, University of New
Hampshire, December 2004.

5. Compton, M., K. Hopkinson, and S. Graham. “The Network Tasking Order
(NTO)”. Proceedings of the IEEE Military Communication Conference, 2008.

6. Federal Information Processing Standards Publication 197. Advanced Encryp-
tion Standard (AES). National Institute of Standards and Technology (NIST),
November 26, 2001.

7. GNUpg.org. URL www.gnupg.org.

8. Hintz, Kenneth J. “GMUGLE: A Goal Lattice Constructor”. SPIE, 4380:324–327,
April 2001.

9. Matlab. URL www.mathworks.com.

10. McIntyre, Gregory A. A comprehensive Approach to Sensor Management and
Scheduling. Ph.D. thesis, George Mason University, 1998.

11. Menezes, Alfred J., Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC-Press, 1 edition, 2001.

12. MyCrypto.net. URL www.mycrypto.net.

13. Network Simulator Version 2. URL www.isi.edu/nsnam/ns/.

14. Pecarina, John M. Creating An Agent Based Framework To Maximize Infor-
mation Utility. Master’s thesis, Graduate School of Engineering, Air Force
Institute of Technology (AETC), Wright-Patterson AFB OH, March 2008.
AFIT/GCS/ENG/08-19.

15. Robertazzi, Thomas G. Computer Networks and Systems Queueing Theory and
Performance Evaluation. Springer, 2000.

16. Schneier, Bruce, John Kelsey, Doug Whiting, and et al. Two Fish: A 128-bit
Block Cipher. Wiley & Sons, June 15, 1998.

93



17. SECAF/CSAF. “Mission Statement and Priorities Letter to Airman”, 15 Septem-
ber 2008. URL http://www.af.mil/library/viewpoints/jvp.asp?id=401.

18. Sheldon, Tom. Encylopedia of Networking. McGraw-Hill Companies, electronic
edition, 1998.

19. of Staff, Joint Chiefs. Information Operations, February 2006.

20. Stuckey, Nathan C. Stochastic Estimation and Control of Queues within a
Computer Network. Master’s thesis, Graduate School of Engineering, Air
Force Institute of Technology (AETC), Wright-Patterson AFB OH, March 2007.
AFIT/GE/ENG/07-24.

21. Thompson Eaddie, Marnita. Dialable Cryptography for Wireless Networks. Mas-
ter’s thesis, Graduate School of Engineering, Air Force Institute of Technology
(AETC), Wright-Patterson AFB OH, March 2008. AFIT/GCO/ENG/08-02.

22. Welch, Greg and Gary Bishop. “An Introduction to the Kalman filter”. 2001.

23. Wolski, Rich. Dynamically Forecasting Network Performance Using the Network
Weather Service. Technical Report TR-CS96-494, University of California, San
Diego, 1998.

24. Wolski, Rich, Neil Spring, and Jim Hays. “Network Weather Service: A Dis-
tributed Resource Performance Forecasting Service for Metacomputing”. Future
Generation Computing Systems, 1999.

94



Vita

Cindy Reese is a student at the Air Force Institute of Technology (AFIT),

pursuing a Masters Degree in Software Engineering/Electrical Engineering. Captain

Reese will graduate from AFIT, March 2009.

Permanent address: 2950 Hobson Way
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

95



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
19-03-2009 

2. REPORT TYPE  
Thesis 

3. DATES COVERED (From – To) 
June 2007-March 2009 

4.  TITLE AND SUBTITLE 
 
Decisive Routing and Admission Control According to Quality of Service Constraints   
 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 
5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
Reese, Cindy C., Captain, USAF 
 

5d.  PROJECT NUMBER 
09-267 
5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
     Air Force Institute of Technology 
    Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way 
     WPAFB OH 45433-7765  DSN: 785-3636 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
    AFIT/GE/ENG/09-36 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
John D. Matyjas, Program Manager 
AFRL/RIGE (AFMC) 
525 Electronics Parkway, Rome NY 13441 
(315) 330-4255 (DSN 587) 
John.matyjas@rl.af.mil 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
AFRL/RIGE 
11.  SPONSOR/MONITOR’S 
REPORT NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT  
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED  

13. SUPPLEMENTARY NOTES  
 
 
 
14. ABSTRACT  
 
This thesis will research, model, and propose options to enhance command and control in for communication networks.  My 
goal is to research the viability of combing past research in the areas of network prediction, context-aware routing, and QoS-
based routing optimization in order to create an intelligent routing protocol platform for mobile networks.  It will consolidate 
efforts from an Intelligent Agent Based Framework to Maximize Information Utility by Captain John Pecarina, Dial-able 
Cryptography for Wireless Networks by Major Marnita Eaddie, and Stochastic Estimation and Control of Queues within a 
Computer Network by Captain Nathan Stuckey.  My thesis will create a platform that is greater than the sum of its individual 
parts.  The platform will take predictions about the health of the network and will take the priority level of a commodity that 
needs to be routed, and then will this information to intelligently route the commodity in such a way as to optimize the flow of 
network traffic.  Developing this platform will ensure that the forward commander can make intelligent decisions at the right 
time using the right information and on the right network. 
15. SUBJECT TERMS 
Communication network, quality of service 

16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION OF  
     ABSTRACT 
 
UU 

18. NUMBER  
      OF 
      PAGES 
110 

19a.  NAME OF RESPONSIBLE PERSON 
Kenneth Hopkinson, PhD (ENG) 

REPORT 
U 

ABSTRACT 
U 

c. THIS PAGE 
U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565; email: Kenneth.hopkinson@afit.edu 

Standard Form 298 (Rev: 8-98) 
Prescribed by ANSI Std. Z39-18 


