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1 Summary of the Research Project

The intelligence community has determined adversaries willing to invest considerable effort in
finding and exploiting software vulnerabilities. In particular, deployed software often contains
memory overwriting vulnerabilities which can be exploited by malicious users who provide in-
put that causes critical data to be overwritten in the program. This type of attack is called a
memory overwriting exploit. There are a wide variety of such exploits (e.g. buffer overflows,
format string exploits, double-free exploits, dangling pointer exploits, integer overflow exploits,
etc.). Many researchers have attempted to defeat these exploit types one at a time, crafting de-
fenses that are specific to one exploit. Some defenses have also been limited to defeating memo-
ry overwrites in heap memory, or stack memory. Most defenses have required access to source
code, so that the application can be re-compiled with security checking code inserted. Some de-
fenses are probabilistic and can be defeated by brute force attacks in a short period of time.
These limitations have made prior defenses incomplete and difficult or impossible to use in cer-
tain environments (e.g. some deployed applications have no source code publicly available for
analysis and recompilation). In addition, the only response of most prior work has been to ter-
minate (crash) the program, which can allow an attacker to turn his unsuccessful exploits into a
successful denial of service (DOS) attack. Mission critical systems in the intelligence community
cannot tolerate repeated crashes.

The Software Memory Protection (SMP) project addresses these limitations and shortcom-
ings in prior work by supplying a general defense against all known memory overwriting ex-
ploits, requiring no source or object code or recompilation of the protected application, with a
remediation mechanism that does not rely on endlessly crashing the program to defeat at-
tempted exploits. Therefore, SMP: (i) can defend a program binary for which no source code is
available, including its linked libraries; (ii) need not be combined with any other defenses
against memory overwriting; and (iii) does not turn exploits into potential DOS attacks. SMP
can be applied to a binary during testing (to detect memory overwriting errors), during its field
deployment (to defeat exploits), or both.

The structure of the remainder of this report is as follows. Section 2 will introduce the topic
of memory overwriting vulnerabilities and exploits, and define the important terms used in the
rest of this report. Section 3 will describe the central technical advances of the SMP system, and
how SMP protects a program from memory overwriting exploits. Section 4 evaluates SMP ac-
cording to three objective criteria (false negatives, false positives, and run-time overhead). Sec-
tion 5 summarizes the project’s accomplishments. Section 6 points the way to future develop-
ment of the research, including technology transfer.



2 Introduction

Memory overwriting exploits have been commonly used by malicious attackers to gain unautho-
rized control over a program or the computer system running the program. In this section, these
exploits and associated terminology will be defined.

A memory overwriting exploit is an attack on a running program in which the malicious us-
er supplies input that causes a memory write to a memory location that should not be overwrit-
ten through the memory pointer that is being used for that memory write. This exploit takes ad-
vantage of a memory overwriting vulnerability in the program, which unintentionally permits a
pointer to be caused to point outside the bounds of its normal memory referent. Examples of
memory overwriting exploits include buffer overflows, format string exploits, double free ex-
ploits, integer overflow exploits, and integer truncation exploits. In each of these exploits, a
pointer is made to point somewhere other than to the memory referent intended by the author
of the program. This common feature of all memory overwriting exploits makes it possible to
design a general defense against all such exploits, as will be shown in Section 3.

The data memory of a running program can be divided into three categories: stack memory
is continually allocated and deallocated on the run time stack as the program enters into, and
returns from, program functions or subroutines; heap memory is dynamically allocated and
freed by calls to system functions; and global static memory is allocated only once, at the time
the program is loaded into memory by the system loader, and is used to store global variables
and constants. All three categories of memory can include critical data, i.e. data whose values
control the security-critical operation of the program, and hence all categories must be defended
from overwriting exploits.

Any security monitoring of a running program should be evaluated according to three crite-
ria, each of which should be minimized. Each criterion will be defined here specifically in terms
of a memory overwriting defense. A false negative occurs when a memory overwriting exploit
escapes detection. A false positive occurs when a valid memory write is incorrectly identified as
a memory overwriting exploit. Run time overhead is the measurement of the slowdown of the
program’s normal operation caused by the security monitoring system.

A security system can use online processing, in which a program is analyzed during its nor-
mal execution, and/or offline processing, in which the program is analyzed separately from its
normal execution. Offline processing has the advantage of tolerating higher run time overhead
than online processing. However, online processing to some degree is usually required to en-
force security properties without incurring excessive false negatives and false positives. A securi-
ty analysis can be static analysis, in which a program is examined without executing it, or dy-
namic analysis, in which the execution of a program is monitored. Note that a dynamic analysis
(e.g. profiling) can be performed during offline processing, as well as during online processing.



Most security tools terminate programs that are under attack. Some tools terminate the pro-
gram gracefully, while others provide defenses that will cause a program crash due to a run time
exception. A desirable alternative is to provide remediation, which can include one or both of
recovery (suppressing the memory overwrite and continuing execution) and repair (removing
the memory overwriting vulnerability). Repeatedly crashing a program uses system resources
and permits an attacker to conduct a denial of service (DOS) attack, which can make the system
unusable due to lack of resources.

The terms program binary and program executable will be used interchangeably in this re-
port. Both refer to the file produced after all compilation and linking steps have been performed.
This file is ready to be loaded and executed by the operating system.



3 Methods, Assumptions, and Procedures

3.1 Assumptions

As SMP was developed as a research project, rather than as a commercial security tool, it was
designed and tested in a limited environment that was sufficient to demonstrate success. Pro-
gram binaries are assumed to be statically linked ELF format x86/Linux binaries. Only the Fe-
dora Core 2.6 operating system and gcc version 3.2.2 compiler were used in testing, although
similar compilers and operating systems are probably compatible with SMP. SMP does not cur-
rently process programs that use signals or threads. All tools used in SMP have been designed
for portability, and these limitations can be removed with reasonable engineering effort in the
future.

The program binary to be protected is assumed to execute in an environment in which the
user interacts with the program through normal input and output operations. It is assumed that
the user cannot change memory directly via privileged tools such as debuggers. SMP assumes
that any memory write instruction that the program executes could be a memory overwriting
vulnerability, unless an SMP tool is able to prove otherwise.

No source code is assumed to be available for SMP’s analyses. SMP also does not assume
that libraries and object code files for program modules are separately available. No user effort
to re-compile or re-link the software is required. The statically linked executable is assumed to
have been compiled with optimizations and without preserving debug information. Debug in-
formation would be useful to SMP, but it is unrealistic to assume its presence in application pro-
gram binaries.

SMP is designed to produce zero false negatives and minimal false positives, making it useful
for provision of software assurance with regards to memory overwriting.

3.2 Methods Used by SMP

SMP, as shown in Figure 1, takes a binary program as input. The binary is used for static analysis
and to prepare the mmStrata run-time system, which monitors the program during its normal
execution to detect and prevent memory overwrites. SMP first prepares a run-time system using
a binary instrumentation tool we call the Stratafier, so named because it inserts software dy-
namic translation system called Strata into an executable image.



Figure 1: SMP system overview.

After the binary has been Stratafied, SMP runs a static analysis step to create an annotations
file. The annotations file contains information obtained during all types of analysis to facilitate
further analysis and performance improvements. Furthermore, the annotation file is the means
for communication among all SMP components.

Finally, the run-time system is ready to detect memory errors. When run, the revised pro-
gram binary is dynamically instrumented by mmsStrata (the ‘memory monitor Strata’ run time
tool). Memory writes that cannot be statically proven safe are checked for safety. Any violations
detected result in further annotations (with diagnostic information) which are later reported to
the user.

Sections 3.2.1 — 3.2.5 discusses these components in more detail.



3.2.1. SMP Type System

To effectively detect memory errors, SMP stores metadata for every program storage location:
each hardware register and memory location is assigned its own metadata. The base system has
two types of metadata:

* n-anumeric type (i.e. non-pointer) object is held in the storage location

* p,, -apointer is stored in the corresponding storage location with referent obj . Note
that this metadata carries with it the bounds of obj , so that dereferencing of this object
can be bounds checked. Furthermore, two objects of the same type, with different
bounds, receive distinct metadata.

This data is initialized at program start-up, and updated for each program operation so that the
metadata is consistent with the value held in each storage location. For example, consider a nov
eax, [0x8100800] instruction. The metadata associated with storage location 0x8100800 is
loaded, and stored into the metadata for register eax. For instructions that involve computation,
a metadata computation is performed as well. Figure 2 shows how metadata types are combined
to compute a new metadata type. As the figure shows, most operations simply return that the
result is numeric. Add and subt r act operations are valid on pointers, and can result in a pointer
type. A few operations, namely bitwise and and or operations, can result in either a pointer or a
numeric type when a pointer type is used for input. For these operations, we use a simple heu-
ristic that examines the result value. If the result stays within the referent object, then the result
is a pointer, otherwise the result is a numeric.

Figure 2: Rules for combining metadata types.

For efficiency purposes, memory is divided into pointer-sized (4-byte) blocks and one meta-
data entry is kept for each block. In our implementation, the metadata is a pointer to a bounds-
information object. The object contains the metadata type, as well as information about the refe-
rent if the type is a pointer. Furthermore, a reference count is maintained so we know when it is
safe to deallocate the bounds-information in a garbage collected manner. In the dynamic sys-
tems, metadata information is kept in a small array for registers, and a splay tree (for fast com-
mon case look-ups) for memory. Bounds-information objects are allocated whenever the system
detects the allocation of an object by the program, and are lazily deallocated after the corres-
ponding program object is deallocated and the reference count falls to zero.



3.2.1.1. Type System Challenges

Although the SMP type system sounds easy to implement, there are a variety of challenges.
These challenges are maintaining bounds information, type identification, code identification,
and handling non-standard code. This section describes each challenge and gives a high-level
view of how it was overcome. Complete details about the solutions are in following sections, as
noted.

The first challenge the SMP system faces is that every object created in the system needs to
have a bounds-information object associated with it. For heap objects, this is as simple as having
the dynamic system watch calls to allocation and deallocation routines. For static-global and
stack objects, allocating the bounds-information object properly is not as easy. The information
for static-global variables comes from the static analyzer (see Section 3.2.3). Stack variables are
by definition at variable addresses, and bounds-information objects cannot be allocated at pro-
gram start-up. Again, the static analyzer helps by analyzing stack frames (again, see Section
3.2.3). For functions that are unanalyzable (because they contain dynamic stack allocation via
al | oca, or some other non-standard stack manipulation), the dynamic run-time system dynam-
ically creates and updates stack frames (see Section 3.2.5).

Besides tracking object creation, SMP also needs to know whether a created object is a nu-
meric type or a pointer to another object to set the metadata for the newly created object. For
many objects this is easy, e.g. objects returned from nal | oc never contain a pointer initially. But
consider the instruction nov eax, $0x8108004. Should eax be considered a pointer after this
instruction? If so, to what object does it point? In the instruction | ea eax, [esp + 36], to
which stack frame should eax point? If statically allocated memory were to contain the value
0x8108004, is this value a pointer? Compiler optimizations can produce code in which a poin-
ter is initialized to point outside its referent data object, because accesses through the pointer
will always contain an offset to bring the address within the referent object. These are all cases
of a general pointer identification problem. The static analyzer and the profiler combine forces
to resolve questions about any value which might be a pointer (Sections 3.2.3 — 3.2.4).

Another major challenge faced by SMP is how to locate the executable code within a pro-
gram. The static analyzer solves this problem (see Section 3.2.3).

Compiler optimizations and non-standard code can cause the type system to erroneously
consider some objects to be numeric. Consider the code in Figure 3 as an example of code com-
monly created by a combination of strength reduction and induction variable elimination [1]. In
the loop preheader, register ecx gets assigned the offset from object a to object b, eliminating
complex address arithmetic and multiple induction variable updates. However, the basic type
system assigns ecx as type numeric. Thus, both the load and store instructions in the loop are
seen as references to variable a, when clearly one is a reference to variable b. To solve this prob-
lem, we extend the basic type system with an offset type, o, ,.,, The offset type is created when
the difference between two pointers is taken. In most operations, the offset type behaves as nu-
meric, except in the case of adding a pointer and an offset; when p ..o, .., is calculated, the
result is p,,, Care must be taken when deallocating objects to ensure that all offset types that
reference the object are marked as invalid.



for(i=0;i<N;i++) eax=8&a // eax is ptr to a
a[i]=b[i]; ecx=&b // ecx is ptr to b
ecx=ecx-eax // what type is ecx?
L1: mov ebx, [eax+ecx] // ptr to a?
mov [eax],ebx
add eax,4

Figure 3: Strength-reduction example

A problematic non-standard coding style is to use block operations to work on an object as
an aggregate, e.g. using nmenctpy to copy a list node from one location in memory to a second lo-
cation. Since pointers are almost always on a word boundary, and most block operations occur
on word or double-word boundaries, the common case is that there is no problem. However, if
mencpy or a similar user-written routine uses byte-by-byte operations, then the byte load and
byte store operations seem inherently to have a numeric type. Consequently, the copy can cause
the type system to lose information about pointers in the destination of the byte-by-byte copy.
SMP avoids this problem by considering the most significant byte of a pointer to be a pointer
regardless of how or where it is stored. Thus, sign extension and truncation of the “pointer,” as
one byte of the pointer is copied, results in no issues. Likewise, we only set the metadata for a 4-
byte memory storage location if the most significant byte is written.

Before moving to an in-depth description of each tool, we first briefly examine Software Dy-
namic Translation, a mechanism used to dynamically instrument binaries.

3.2.2. Software Dynamic Translation

Strata is a software dynamic translation (SDT) system designed for high retargetability and low
overhead translation. Strata has been used for a variety of applications including system call
monitoring, dynamic download of code from a server, and enforcing security policies [2, 3]. This
section describes some of the basic features of Strata which are important to understanding the
experiments presented later. For an in depth discussion of Strata, please refer to previous publi-
cations [4, 5, 6].



3.2.2.1. Strata Overview

Strata operates as a co-routine with the program binary it is translating, as shown in Figure 4.
As the figure shows, each time Strata encounters a new instruction address (i.e., PC), it first
checks to see if the address has been translated into the fragment cache. The fragment cache is a
software instruction cache that stores portions of code that have been translated from the native
binary. The fragment cache is made up of fragments, which are the basic unit of translation. If
Strata finds that a requested PC has not been previously translated, Strata allocates a fragment
and begins translation. Once a termination condition is met, Strata emits any trampolines that
are necessary. Trampolines are pieces of code emitted into the fragment cache to transfer con-
trol back to Strata. Most control transfer instructions (CTIs) are initially linked to trampolines
(unless the transfer target already exists in the fragment cache). Once a CTI’s target instruction
becomes available in the fragment cache, the CTI is linked directly to the destination, avoiding
future uses of the trampoline. This mechanism is called Fragment Linking and avoids signifi-
cant overhead associated with returning to Strata after every fragment [4].

Strata’s translation process can be overridden to implement a new SDT use. In this paper, we
modify Strata’s default translation process to insert instrumentation to enforce the SMP type
system in both the profiler driven analysis (Section 3.2.4) and the online detector (Section
3.2.5).

Figure 4: High-level overview of how Strata operates.




3.2.3. Static Analysis

The SMP Static Analyzer is implemented as a plug-in to the popular IDA Pro disassembler [7].
After IDA Pro completes its disassembly of the program binary, the static analyzer plug-in ana-
lyzes the program and produces informative annotations.

A preliminary step is to assist IDA Pro in the disassembly. Disassembly of a program binary
involves solving the problem of precisely identifying code and data within the binary. This prob-
lem is not perfectly solvable at present. The two basic design approaches for disassemblers, re-
cursive descent and linear scan, have different strengths and weaknesses when analyzing differ-
ent program binaries. The static analyzer improves upon the recursive descent approach of IDA
Pro by using a linear scan disassembler (the GNU Linux tool obj dunp) to get a second opinion
on which addresses are code and which are data. If code identified by obj dunp but not identi-
fied by IDA Pro can now be successfully analyzed by IDA Pro, as requested by the static analyz-
er, the code is incorporated into the IDA Pro code database. This augmentation of IDA Pro’s ab-
ilities improves the analysis coverage of SMP and prevents false positives that would arise if
code sections escaped static analysis and received no annotations.

Informative annotations are provided to identify all functions and static-global data objects
by three attributes: name, starting address, and total size. If the executable has been stripped,
the names will be dummy names generated by IDA Pro. The static-global data annotations will
be used at run time to create bounds-information objects for static-global memory objects, as
described in Section 3.2.1.1. The function annotations are used to identify the location of key li-
brary functions that allocate memory (such as mal | oc), so that heap memory referents can be
tracked at run time.

The most important informative annotations describe the run time stack. Functions that al-
locate a local stack frame, or activation record, with space for local variables must have their
stack memory objects tracked at run time. The instruction that allocates space for the stack
frame (usually by subtracting the stack frame size from the stack pointer) is identified by a series
of annotations that enable the run time dynamic analysis to divide the stack region into local
variables, saved registers, and a saved return address. The run time dynamic analysis will then
be able to check the bounds of stack references so that a memory access cannot overflow from
one stack object to another (e.g. from a local variable to the return address). Precise identifica-
tion of all sub-regions of the run-time stack permits monitoring of stack accesses without incur-
ring false positives or false negatives. This synergy of static and dynamic analysis is a significant
advance over comparable prior work in this area, which relied entirely on dynamic analysis and
suffered from numerous stack-related false positives, as described in Section 4.
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The second type of annotations produced by the static analyzer are optimizing annotations.
The static analyzer implement a type inference system, in which registers and memory locations
are inferred to have pointer or non-pointer types based on their usage in the program binary. If
a memory load produces a register value that will always be used as a non-pointer type, then the
run time monitor (mmStrata) does not need to instrument that instruction with the lengthy
code sequence that would fetch memory referent information from a splay tree that models all
memory locations. Instead, the optimizing annotation tells mmStrata to assume the result of the
load is a numeric (non-pointer) value, which reduces the instrumentation code emitted for that
instruction to a single instrumentation instruction. This optimization produces great time sav-
ings.

The type inference system is built on a thorough intraprocedural dataflow analysis frame-
work. This system could be enhanced in several ways in the future to provide even greater opti-
mizations, such as by extending the dataflow analysis and type inference to be interprocedural.

3.2.4. SMP Profiler

The optional SMP profiler is based on Strata, and uses information from the static analysis
phase to mimic the SMP type system. One of the main goals is to reduce false positives. The SMP
profiler does this by answering the question ‘is this object a pointer, and if so, to what does it
point?”

To answer this question, any time an object might be a pointer (i.e. is pointer-sized and has a
value that might legitimately make it a pointer), it is assigned a metadata type of g. The g-type
tells the profiler that the decision on whether the object is a pointer has not yet been made, and
carries along information about the creation point of the object. When the result of the opera-
tion depends on whether the g-type should have been a pointer, the profiler lazily evaluates it to
either a p-type or an n-type by seeing if there’s a corresponding referent for the object’s current
value. Ultimately, if a g-type is dereferenced in the program, the profiler records which object
was dereferenced. If, at the end of execution, the g-type always referenced the same object, then
the profiler records that the g-type should be created as a pointer type during final execution.
Otherwise, the profiler fails to prove that the object was a pointer, and safely reverts to the as-
sumption that the created object is a numeric type. In either case, an informative annotation is
written into the annotations file to inform the other parts of the system.

If no profiler information is available (for example, if the profiler was not run), SMP falls
back to a simple heuristic that works quite well. The heuristic assumes that a static constant is a
pointer if and only if it is within the bounds of some data object. Section 4 gives evidence that
this simple heuristic works well for many benchmarks, but that some benchmarks will require
stronger static analysis or profiler information.

The profiler can also assist in the process of producing optimizing annotations. It records
which memory loads always produce a non-pointer (numeric) result. These annotations are read
by the static analyzer, which uses them to augment its own type inference. The resulting opti-
mizing annotations are specially encoded to indicate that they are dependent upon a profiler
run, which makes them potentially unsafe if the application program behaves differently during
a profiler run as compared to a normal execution. Dealing with this potential source of false po-
sitives is described in Section 3.4.
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3.2.5. mmStrata

The SMP dynamic monitoring system is called mmStrata (memory-monitor Strata). It makes
the final determination of whether a memory access causes a memory error or not. To make this
determination, it strictly enforces the SMP type system. At program start-up, mmStrata uses in-
formative annotations created during static and profile analyses to make decisions about which
static entities are pointers and sets metadata appropriately. A bounds-information object is
created for each program object at start-up (statically allocated data, as well as bounds-
information objects for the program’s incoming arguments that exist on the stack), and the pro-
gram begins to execute.

During execution, mmStrata watches for newly created objects. For example, calls to dynam-
ic memory allocation routines are considered to create new objects. Likewise, when mmStrata
reaches a program point that static analysis has determined creates a new stack frame, mmStra-
ta creates new bounds-information objects for the stack frame. However, some functions fail to
have a stack frame clearly identified, and the dynamic system must still create bounds-
information objects to protect the non-analyzed stack frame. To create these objects, the dynam-
ic system watches call instructions (or other control flow instructions that cross function boun-
daries). If the call instruction targets a function that failed the static analysis of the stack frame,
then the dynamic system creates a bounds-information object to represent a new, empty stack
frame. While within this function, changes in the stack pointer cause a change in bounds to the
bounds-information object. For example, if a dynamic stack allocation (perhaps from al | oca)
extends the stack by 700 bytes, the bounds contained within the bounds-information object are
extended. Another example is if outgoing arguments for a function call are pushed, the bounds
within the bounds-information object are extended, then when the call returns, those arguments
are removed from the stack, and the bounds shrink. In one function we analyzed, the stack
frame was created by moving O into the ecx register, then pushing ecx 128 times. Consequently,
we believe this mechanism for monitoring non-standard stack frames is a key part of providing
complete protection.

SMP deals with stack deallocations the same way. If the stack frame is being watched dy-
namically, the bounds within the bounds-information object shrink. If the bounds shrink to the
point at which the object has negative size, we assume that the stack frame is no longer needed
and mark the stack frame as invalid, and mark the bounds-information object ready for deallo-
cation when the reference count falls to zero.

With the information provided by the static analysis phase, the profiler and the SMP type
system, mmStrata can detect a variety of memory errors. For example, mmStrata detects
double-free errors by monitoring calls to allocation and deallocation routines. Out of bounds
pointer writes are detected by examining the metadata associated with the pointer to determine
if the write is in-bounds. Writes to stale objects are detected by examining the valid bit of the
bounds-information object. SMP provides a general defence that can detect all known memory
errors within a binary executable.
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3.3 Granularity Issues

SMP provides a comprehensive defense against memory overwrites by identifying pointer refe-
rents and detecting when a pointer goes outside the bounds of its referent. The SMP defense, by
default, is applied at memory allocation granularity, i.e. a pointer referent has bounds deter-
mined at the time of its allocation. For example, if a data item of size 100 bytes is allocated on
the heap, the mmStrata monitor establishes a 100 byte memory referent upon return from the
heap allocation system function. A pointer that is initialized to point within this 100 byte loca-
tion will be constrained to only perform writes within those 100 bytes.

It could be the case that a heterogeneous data structure was allocated within that 100 byte
region, with multiple data fields within the data structure. In that case, the defense provided by
SMP would be even better if it could make memory referents that are subsets of the 100 bytes.
For example, if the 100 byte data structure includes a 64 byte buffer and numerous smaller
fields, it is desirable to prevent a buffer overflow from the 64 byte buffer from overwriting any of
the smaller fields.

When operated in the default coarse-grained mode, SMP would only prevent a buffer over-
flow from leaving the bounds of the 100 byte parent data structure, and would not prevent fine-
grained overflows within the parent data structure. The same is true in the rarer case in which a
heterogeneous data structure is allocated in global static data, and in the more common case in
which a buffer exists within a stack frame alongside other local variables.

To improve the granularity of its defenses, SMP uses information about memory access pat-
terns gathered during the optional profiler run, which is then used by the static analyzer to infer
the presence of buffers in the midst of memory allocation units (e.g. stack frames, heap alloca-
tions, global variables). The inference is based on noting which memory accesses were indexed
or scaled accesses (the kind of instructions used to access buffers), versus direct (non-indexed,
non-scaled) accesses. Instructions that write to buffers within larger memory allocations then
receive a special annotation from the static analyzer, directing mmStrata to limit the bounds of
the write to a subset of the parent data referent bounds. Note that the absence of a profiling run
implies that SMP will run in coarse-grained mode.

3.4 Adaptive Feedback

Because SMP utilizes both offline and online processing, it is able to explore an innovative area
of program analysis: adaptive feedback. Observations made by mmsStrata at run time can be
communicated via the annotations file to future runs of the static analyzer and/or profiler. This
information can be used for optimization of run time overhead, reductions in false positives, or
in searching for the best recovery policy.
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For example, the SMP profiler records which memory loads always produce a pointer value
and which loads always produce a non-pointer (numeric) value. This information causes the
static analyzer to emit profiler-dependent optimizing annotations. If an instruction always
loaded a numeric value during the profiling run, but then sometimes loaded a pointer value dur-
ing normal execution, mmStrata will think that a numeric value is being illegally dereferenced as
if it were a pointer (because it has been told by an optimizing annotation that the value is nu-
meric). This erroneous optimizing annotation will cause a false positive for this instruction. Be-
cause only the profiler-dependent optimizing annotations are unsafe, mmStrata can record in
the annotations file that profiler-dependent optimizing annotations should be ignored on suc-
ceeding runs of the program, reducing false positives back to zero. This mechanism permits ag-
gressive optimization, with only occasional (i.e. a minority of benchmarks) reduction in aggres-
siveness dictated through adaptive feedback.

A second example of adaptive feedback is the selection of a recovery policy. After detecting
an overwrite mmStrata can attempt to recover using the specified recovery policy (see next sec-
tion for details). If that recovery attempt produces more detected overwriting errors, then
mmStrata can record in the annotations file that a different policy should be tried during the
next execution of the program. As the number of recovery policies increases with future re-
search, this mechanism will be automated and used to find the optimal recovery policy, perhaps
even on a per-subroutine basis within the application.

3.5 Remediation

The default action, when SMP detects a memory overwrite, is to output an error message. In
product form, if used as an online security tool, SMP would then terminate the program by de-
fault. Termination is not forced in the research version of SMP so that complete evaluation can
be made of how many overwrites are detected in a single run of the program (including true
overwrites and false positives). Non-termination would also be the default when SMP is used as
an offline testing tool.

By setting an environment variable, one of two recovery policies can be chosen in place of
termination. The first policy discards the write instruction causing the overwrite, logs a warning
message, and continues execution with the next instruction. The second policy also discards the
overwrite and logs a warning message, but then sets the outgoing registers to default values
based on their type (pointer or non-pointer) as determined by the static analyzer and then forces
an immediate return from the overwriting function.

Both recovery policies have performed well in synthetic benchmarks. Further evaluation us-
ing real exploits is desirable. Time has not permitted the implementation of further recovery
policies, although several have been conceived and vetted in design discussions.
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4 Results and Discussion

We separate our evaluation of SMP into two broad categories. First is a security evaluation in
which we use a selection of real benchmarks to test for true and false overwriting detections
(Section 4.2)The second category evaluates the run time overhead of the SMP system on a varie-
ty of benchmarks (Section 4.3). Before that, however, we briefly describe the experimental setup
(Section 4.1).

4.1 Experimental Setup

Both exploit testing and benchmark timings were performed. All test programs were evaluated
on an Opteron 148 CPU, running Linux Fedora Core 6, using the gcc 3.2.2 compiler w/static
linking, and -0O3 -fomit-frame-pointer optimization flags. While SMP is designed to enable de-
tection of read or write memory errors, only memory overwrites were monitored in the configu-
ration tested.

The benchmark programs evaluated are shown in Table 1. The applications in the evaluation
included standard benchmark suites with no expected vulnerabilities such as the SPEC
CPU2000 benchmark suite [8]. Applications with known or seeded vulnerabilities, including the
Apache web server, many of the relevant cases in the SAMATE static analysis test suite, the Wi-
lander buffer overflow suite, and the BASS vulnerability suite, were also included [9, 10, 11]. In
addition, commonly used applications and test benchmarks were included in the evaluation
such as the binutils-2.18 utility suite and the vpo [12] regression test suite, which includes
benchmarks such as fm-part (VLSI placement program), matrix multiply, 8-queens solver, sieve
of Eratosthenes, wc, Whetstone, Dhrystone, a travelling salesperson problem solver, etc.

Table 1: Benchmarks evaluated.

Benchmark Suite Description

SPEC CPU 2000 ammp, art, bzip2, crafty, equake, gap, gcc, gzip, mcf, mesa, parser, perlbmk,
twolf, vortex, vpr

Wilander buffer overflow suite J buffer overflows on the stack, heap, and BSS

Benchmarks for Architectural buffer overflows: 01_overflow_fp, 02_overflow_variable,

Security Systems (BASS) 04_overflow_shellcode_injection

SAMATE Reference Dataset test cases related to memory overwriting

Apache Web server with manually seeded vulnerability

binutils nm, objdump, readelf, size, strings

VPO compiler test suite ackerman, arraymerge, banner, bubblesort, cal, cb, dhrystone, fm-part, grep,

hello, iir, matmult, od, puzzle, queens, quicksort, shellsort, sieve, strip, subpuz-
zle, wc, whetstone

nasm netwide x86 assembler
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In addition, we tested several of the vpo test suite benchmarks seeded with four categories of
vulnerabilities: buffer overflows, array out of bounds accesses, double free/dangling pointer ref-
erences, and uninitialized pointer dereferences.

4.2 Error Detection Evaluation
The benchmarks listed above were run to evaluate detection of memory overwriting.

4.2.1. False Positives

A warning generated by the SMP system is considered a false positive if it is determined that a
memory overwrite or underwrite has been detected by the system, but no overwrite or under-
write actually occurred.

Pre-profiler false positives

As seen in Table 2, for SPEC CPU2000, some false positives were detected when the profiling
pass was not performed. For the set of applications with known or seeded vulnerabilities,
mmStrata produced warnings only when memory overwriting was attempted, i.e. it generated
no false positive reports. For the other applications tested, only apache and queens produced
false positives, which were eliminated by profiling. No other tests yielded false positives, even
without the profiling pass, as shown in Table 3.

Post-profiler false positives

For all benchmarks which produced false positive reports prior to profiling, the false positive
was eliminated by the profiling pass, due to profiler assistance in solving the problems described
in Section 3.2.1.1. The profiling pass did not generate any new false positive reports, because the
profiling algorithm is conservative.

False positives after offset-type analysis.

Several benchmarks from SPEC CPU 2000 (gap, parser, vortex, vpr) contained code which was
generated as the result of the combination of strength reduction and induction variable elimina-
tion. After the introduction of the offset type to the shadow type system, false positives due to
encountering this type of code were eliminated.

4.2.2. False Negatives

False negatives are recorded when the SMP system does not generate a warning report when a
memory overwrite should be detected. To evaluate false negatives, we verified that all the mem-
ory overwriting occurrences in our benchmarks were detected by our system. We also tested
several vpo regression tests seeded with the following four categories of vulnerabilities: buffer
overflows, array out of bounds accesses, double free/dangling pointer references, and uninitia-
lized pointer dereferences. Our tool detected every instance of the seeded vulnerabilities. No
false negatives for coarse-grained memory overwrites were generated for our test applications.
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4.3 Performance

Table 2 shows the run time overhead performance of the SMP system normalized to native ex-
ecution for a variety of SPEC CPU2000 benchmarks. The best performing benchmark is
179. art at only 9.5 times slower than native speed. The worst performing is 254. gap at 65
times slower than native speed, while the geometric mean of the benchmarks is about 33 times
slower than native execution. We realize that this level of run-time overhead is too high for
many application domains. However we believe that it is very suitable for off-line testing and
debugging. Furthermore, it may be useful in secure environments for programs that do not have
high throughput requirements, such as 1/0 bound applications, interactive applications or
lightly loaded server programs.

Table 2: False positive and performance results for SPEC CPU 2000

Benchmark Pre-Profiler | Post- Required SMP
False Profiler Offset Type Slowdown
Positives? False Extension? (ref input)
Positives?

ammp No No No 24.4

art No No No 9.5

bzip2 Yes No No 44.8
crafty Yes No No 35.4
equake Yes No No 204

gap Yes No Yes 64.9

gcc No No No 61.9

gzip Yes No No 34.9

mcf No No No 15.0

mesa No No No 34.4
parser Yes No Yes 39.7
perlbmk Yes No No 51.0
twolf Yes No No 34.8
vortex No No Yes 52.0

vpr No No Yes 35.9
geometric mean 32.6
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Table 3: False positive results for assorted benchmarks.

Benchmark Pre-profiler Post-profiler | Required

Suite False Posi- False Posi- Offset Type
tives? tives? Extension?

Wilander No No No

BASS No No No

SAMATE No No No

Apache Yes No No

binutils No No No

VPO compiler queens-Yes | No No

test suite Others: No

nasm No No No

As we have only had time to implement a subset of our ideas for reducing run time overhead,
we are encouraged that SMP performs as well as past techniques, even though it is a more com-
prehensive system with a more in-depth type system. The closest related work, Annelid based on
Valgrind, reported a geometric mean slowdown of 36.7 times (for the SPEC benchmarks they
report), without protecting the stack, but with the additional overhead of protecting memory
reads [13]. For the same benchmarks, SMP shows 32.6 times slowdown. Continued overhead
reduction is an area of ongoing research.

4.4 Fine-grained Evaluation

When run in fine-grained mode, SMP delivers the same run time overhead performance as for
coarse-grained mode (within 0.5 times additional slowdown; both performance numbers round
to 33 times slowdown). The additional granularity should cause SMP to detect fine-grained ex-
ploits that would not be detected in coarse-grained mode, and this enhancement in coverage is
confirmed with synthetic fine-grained test cases. However, no fine-grained exploits can be found
in the security literature, and none are present in the test suites used. It is possible that fine-
grained exploits will become more common in the future if all coarse-grained exploits are de-
feated, making further granularity enhancement a priority for future work. Constructing fine-
grained exploits for existing applications is quite difficult, such that the use of SMP only in
coarse-grained mode increases the difficulty for the attacker by at least an order of magnitude.
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False positives remain at zero in fine-grained mode for all test cases except the 176.gcc
benchmark in SPEC CPU2000. For this benchmark, twenty-two instructions generate a special
warning message indicating that the instruction passes coarse-grained tests but fails fine-
grained tests. Inspection of these instructions reveals that the false positives are caused by dif-
ferences between the profiling run and normal executions. A final SMP tool could accommodate
the possibility of rare false positives by permitting granularity selection on a per-application ba-
sis. For the overwhelming majority of applications, fine-grained mode could be run with no false
positives. For the remaining few applications, SMP could be used to provide protection in
coarse-grained mode.

4.5 Comparison to Prior Work

Over time, a wide variety of memory overwriting exploits has been invented, and a correspond-
ing variety of software defenses have been developed. Some defenses are specific to particular
subsets of all memory overwriting exploits, such as stack smashing, format string, code injec-
tion, or buffer overflow exploits [14, 15, 16, 17, 18, 19, 20]. Many memory overwriting defenses
require source code or pre-linkage object code, unlike SMP, making their use infeasible in many
computing environments [20, 19, 17, 21, 22]. Rewriting software in a memory-safe language
(e.g., Java, C#) would prevent memory overwriting exploits, but would require source code and
great time expenditure. Some defenses are probabilistic, using randomization, and therefore
subject to being defeated by brute force attacks [23]. Many defenses are designed only to protect
control data, i.e. code addresses used in control flow, such as return addresses and function
pointers [20, 24]. However, security-critical data can include non-control data [25]. SMP pro-
tects against all memory overwrites, whether the target of the overwrite is control data or not,
and regardless of whether the attack vector is a buffer overflow, format string exploit, integer
overflow of a pointer, double-free, etc.

The most comparable prior work is the Annelid tool, which was based upon the Valgrind
SDT [13]. Annelid detects out of bounds reads and writes to global-static and heap memory ob-
jects. Lacking a profiler and static analyzer, it incurred too many false positives for stack objects,
and the stack portion of Annelid was disabled before completion. Annelid also encountered the
problems with false positives discussed in Section 3.2.1.1. The pointer identification problem
was left unsolved, causing some false positives. The difference between pointers problem was
also left unsolved, although the authors proposed that a pointer offset type (the SMP solution)
could be implemented in the future. Annelid segments (equivalent to SMP bounds-information
objects) have an unsafe cleanup mechanism. The only sound solution proposed by the authors
was a slow run-time garbage collection mechanism that would have increased overhead. Annelid
only attempts coarse-grained defenses and has no mechanism for extending the granularity in
any way. The Annelid authors note that a synergy between static and dynamic analyses would be
fruitful, but no effort along those lines was attempted. Finally, Annelid makes use of some (not
usually available) debug information in the executable, unlike SMP. It appears that Annelid is
not being maintained or used.
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5 Conclusions

The SMP system has been a research success in many respects:

1.

The prior state of the art in protection of a program binary from memory overwriting has
been significantly improved. Protection is provided for all memory regions without incurring
significant false positives and with zero coarse-grained false negatives.

SMP provides a general defense, whereas much prior work focused on defeating a single
class of memory overwriting defenses. It would be difficult to compose these prior defenses
into a comprehensive defense, as some of them require particular compiler, compiler libra-
ries, etc., that are incompatible with each other.

The research has shown methods to extend the granularity of the defenses without signifi-
cant increases in false positives (no increase for all test cases except one). Prior work did not
attempt to provide any fine granularity in memory overwriting defenses.

The SMP system demonstrates a synergy between offline and online processing, and particu-
larly a synergy between static and dynamic analyses. Prior researchers had speculated that
their work could be improved by such a synergy, but had not actually implemented both
static and dynamic tools in a single security monitoring system.

The SMP system uses an innovative method of adaptive feedback to reduce run time over-
head while minimizing false positives. Because prior work did not utilize a combination of
offline and online analyses, this innovation was not present in any prior work.

SMP has begun to incorporate recovery schemes that prevent unsuccessful exploits from be-
ing turned into denial of service attacks.

Most prior work in memory overwriting prevention was not usable for most applications,
because source code was required, along with changes to build procedures, recompilation,
re-linking, etc. SMP provides a push-button defense that can be invoked with a single shell
script for most program binaries, or with two shell scripts and a profiling run for the remain-
ing binaries.

These successes address significant security needs in the intelligence community. The positive
results and innovations point the way for further research and eventual technology transfer, as
discussed in the next section.
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6 Recommendations

The SMP system can be improved through further research and technology transfer. The prom-
ising research areas include:

e Static analysis, dynamic profiling, and adaptive feedback techniques to greatly reduce
run time overhead. This performance enhancement would make SMP more useful for
online security monitoring, as well as for offline testing.

« Exploration of new recovery policies across a wide range of test cases to make SMP more
suitable for online protection of mission critical software.

e Elimination of environmental limitations on SMP’s domain (e.g. programs that use sig-
nals, threads, or which are not statically linked) to broaden SMP’s applicability.

e Porting SMP to platforms other than x86/Linux.

The latter two steps would be part of a technology transfer effort that would produce a valuable
security tool, after the first two research steps have concluded successfully and have broadened
and deepened the usefulness of SMP to the intelligence community.

21



[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

7 References

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools. Read-
ing, MA, USA: Addison-Wesley, 1986.

N. Kumar, J. Misurda, B. R. Childers, and M. L. Soffa, “Instrumentation in software dy-
namic translators for self-managed systems,” in Proceedings of the 1st ACM SIGSOFT
Workshop on Self-managed Systems, (New York, NY, USA), pp. 90—94, ACM Press, 2004.

S. Zhou, B. R. Childers, and M. L. Soffa, “Planning for code buffer management in distri-
buted virtual execution environments,” in VEE '05: Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments, (New York, NY, USA),
pp. 100—109, ACM Press, 2005.

K. Scott and J. Davidson, “Strata: A software dynamic translation infrastructure,” in IEEE
Workshop on Binary Translation, September 200L1.

K. Scott, N. Kumar, B. Childers, J. W. Davidson, and M. L. Soffa, “Overhead reduction
techniques for software dynamic translation,” in Proceedings of the 18th International Pa-
rallel and Distributed Processing Symposium, p. 200, IEEE Computer Society, 2004.

K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and M. L. Soffa, “Retargeta-
ble and reconfigurable software dynamic translation,” in CGO '03: Proceedings of the In-
ternational Symposium on Code Generation and Optimization, (Washington, DC, USA),
pp. 36—47, IEEE Computer Society, 2003.

C. Eagle, The IDA Pro Book. San Francisco, CA, USA: No Starch Press, 2008.

J. L. Hening, “SPEC CPU2000: Measuring CPU performance in the new millennium,”
IEEE Computer, vol. 33, pp. 28—35, July 2000.

P. E. Black, “Software assurance metrics and tool evaluation,” in Proceedings of the 2005
International Conference on Software Engineering Research and Practice, June 2005.

J. Poe and T. Li, “Bass: A benchmark suite for evaluating architectural security systems,”
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 26—33, 2006.

J. Wilander and M. Kamkar, “A comparison of publicly available tools for dynamic buffer
overflow prevention,” in Proceedings of the Network and Distributed System Security
Symposium, 2003.

M. E. Benitez and J. W. Davidson, “The advantages of machine-dependent global optimi-
zation,” in Proceedings of the 1994 Conference on Programming Languages and Systems
Architectures, pp. 105—124, March 1994.

N. Nethercote and J. Fitzhardinge, “Bounds checking entire programs without recompil-
ing,” in Informal Proceedings of the Second Workshop on Semantics, Program Analysis,
and Computing Environments for Memory Management (SPACE 2004), 2004.

E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanovi&#263;, “Randomized instruc-
tion set emulation,” ACM Transactions on Information Systems Security, vol. 8, no. 1,
pp. 3—40, 2005.

22



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Baratloo, N. Singh, and T. Tsai, “Transparent run-time defense against stack smashing
attacks,” in Proceedings of the USENIX Annual Technical Conference, June 2000.

Z. Liang, R. Sekar, and D. C. DuVarney, “Automatic synthesis of filters to discard buffer
overflow attacks: A step towards self-healing systems,” in Usenix 2005 Annual Technical
Conference, pp. 375—378, 2005.

O. Ruwase and M. Lam, “A practical dynamic buffer overflow detector,” in Proceedings of
the Network and Distributed System Security (NDSS) Symposium, pp. 159—169, February
2004.

G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-injection attacks with in-
struction-set randomization,” in CCS '03: Proceedings of the 10th ACM conference on
Computer and communications security, (New York, NY, USA), pp. 272—280, ACM Press,
2003.

C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and J. Lokier, “For-
matGuard: Automatic protection from printf format string vulnerabilities,” in Proceedings
of 10th Usenix Security Symposium, pp. 191—-200, August 2001.

C.Cowan, C.Pu, D.Maier, H.Hinton, P.Bakke, S.Beattie, A.Grier, P. Wagle, , and
Q. Zhang, “Stackguard: Automatic adaptive detection and prevention of buffer-overflow
attacks,” in Proceedings of the 1998 USENIX Security Symposium, January 1998.

G. C. Necula, S. McPeak, and W. Weimer, “Ccured: Type-safe retrofitting of legacy code,”
in POPL '02: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, (New York, NY, USA), pp. 128—139, ACM, 2002.

P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing memory error ex-
ploits with wit,” in IEEE Symposium on Security and Privacy, pp. 263—277, May 2008.

S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An efficient approach to
combat a broad range of memory error exploits,” in Proceedings of 12th Usenix Security
Symposium, pp. 105—-120, August 2003.

V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure execution via program shephe-
rding,” in 11th USENIX Security Symposium, August 2002.

S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. lyer, “Non-control-data attacks are realis-
tic threats,” in 14th Usenix Security Symposium, pp. 177—192, August 2005.

23



8 List of Abbreviations and Acronyms

BASS: Benchmark suite for evaluating Architectural Security Systems
CPU: Central Processing Unit

CTI: Control Transfer Instruction

DOS: Denial Of Service

ELF: Executable and Linkable Format

gcc: GNU compiler collection

IDA: Interactive DisAssembler

mmStrata: Memory Monitor Strata tool

PC: Program Counter register

SAMATE: Software Assurance Metrics And Tool Evaluation
SDT: Software Dynamic Translation

SMP: Software Memory Protection

SPEC: Standard Performance Evaluation Corporation

VPO: Virginia Portable Optimizer

x86: Intel CPU family and instruction set
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