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Scientific Progress 
The objective of this research is to investigate the possibility of creating semiconductor quantum 
dot structures that have a much tighter tolerance in the variance in physical sizes. The prevalent 
method of manufacturing semiconductor quantum dots is by the self-assembly process in which 
nano-sized islands of a semiconductor spontaneously nucleate while being grown either by 
molecular beam epitaxy or metalorganic chemical vapor deposition on a lattice mismatched 
substrate. While these quantum dots surprisingly are of very high quality and the radiative 
efficiency is essentially similar to their multiple quantum well counterpart. However the 
additional dimensional confinement leads of improved optical gain and laser properties. One of 
the underlying characteristics of the self-assembled dots is the large distribution of dot sizes that 
inevitably arises from the random crystallization of the nano-islands. While this is not a concern 
for laser diodes, semiconductor optical amplifiers and intersubband infrared photodetectors, 
other nonlinear and electro-optic devices that would benefit from the quantum confinement of 
the electrons require a better localization of the energy levels. Consequently for these 
applications, we envision that the quantum dots formed by etching cross-hatched grooves into 
multiple quantum layers would produce quantum dots that are of a uniform size with a very 
small variance. However, we note that it is to be expected that the radiative recombination 
efficiency would be severely deteriorated due to the presence of a high density of defect centers. 
As it happens an increase in non-radiative recombination rate is not necessarily a disadvantage 
for nonlinear and/or electro-optic devices. In fact it can be considered to be beneficial as it could 
lead to a faster recovery time for the devices.  

Our approach is very straightforward; the 
semiconductor wafer is first covered with PECVD 
grown silicon dioxide to a thickness of 200nm. A 
layer of PMMA is spin-coated on top of the film 
and then exposed to the electron beam that writes 
an array of 30nm diameter discs. A Leica EBPG 
5000+ was used for the electron beam 
lithography. After developing the resist, a layer of 
30nm thick chromium metal is deposited by e-
beam evaporation and “lift-off” process is used to 
leave 30nm diameter metal discs on top of the 
SiO2 film. The Cr metal serves as the protective 
mask for etching off the unwanted SiO2 film using 
a reactive ion etching process leaving an array of 
etched SiO2 pillars that act as the mask during the 
etching of the semiconductor. The sample is then 
loaded in an inductive coupled plasma reactive 
ion etcher (ICP-RIE) and the GaAs multiple 
quantum well (MQW) material is etched using 
BCl3 reagent gas. Although the concept is 
extremely simple and we had very little trouble to 
obtaining our first batch of samples that were test 
structures using GaAs substrates, in the end we 
were plagued with endless problems with our 
ICP-RIE which was a critical component for this 

 
Fig. 1 Schematic drawing of etched QD 

stacks. 

Fig. 2 Scanning electron micrograph of 
etched GaAs pillars. 



project. Figure 2 shows a photograph of an array 
of etched MQW pillars, obtained using a scanning 
electron microscope (SEM). We spent over a year 
trying out a variety of possible fixes to repair the 
dry etcher and finally in the last month we trace 
the problem back to a relatively large vacuum 
leak that resulted from the manufacturer 
technician’s failure to tighten a couple of screws 
that hold two sections of the vacuum chamber 
together. Recently after the tool has been repaired 
we have been able to successfully prepare some 
etched quantum dot stacks starting from 
GaAs/AlGaAs MQW structures. Figure 3 shows 
an SEM picture of the resulting pillars. As 
expected, these nanostructures are extremely fragile and therefore need to be handled with care.  
We then proceeded to fabricate a waveguide device that contains the quantum dots. The device 
consists of a mode launching waveguide and an output waveguide and a center region that 
overlaps with the etched quantum dots. In order to sample the quantum dots with a guided 
optical beam, we needed to make sure that the photons are not absorbed in the MQW sections of 
the device by selectively disordering these regions. The device shown schematically in figure 4, 
was fabricated using the following steps. First the 
thoroughly cleaned MQW sample was coated 
with a 200nm thick layer of silicon oxide using a 
plasma enhanced chemical vapor deposition 
process. A photolithographic step was undertaken 
to delineate a window on top of the SiO2 film 
which was subsequently opened by reactive ion 
etching. The sample was then subjected to a rapid 
thermal annealing of 850ºC for 20s under a flow 
of ultrahigh purity nitrogen gas. This step caused 
the MQW immediately underneath the SiO2 film 
to undergo partial intermixing between the wells 
and barriers so that the absorption edge was 
shifted to significantly higher energies (>50meV). 
Next the quantum dot regions were defined in the un-intermixed section of the MQW sample 
using electron beam lithography to delineate regularly spaced holes in a thin PMMA resist layer. 
30nm of chromium is then evaporated on the sample and after a “lift-off” process, an array of 
chromium disks remains on the surface of the sample. The sample is then placed in an 
inductively coupled plasma - reactive ion etching (ICP-RIE) process chamber and the chromium 
disks act as masks during the etching process to produce and array of etched pillars containing 
quantum boxes. These pillars are extremely fragile at this stage and are set in place by placing a 
drop of BCB and spinning off the excess. After the BCB has been cured, the top surface is 
cleaned off of the BCB using reactive ion etching. Another photolithographic stage is performed 
to delineate the ridge waveguide by wet chemical etching. The substrate is then lapped and 
polished to a device thickness of 125μm and the device is cleaved to a total length of about 5mm. 
The device was mounted and tested in our end-fire coupling setup and it was found to guide a 
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Fig. 4 Schematic drawing of a quantum dot 

waveguide device. 

Fig. 3 SEM photograph of etched pillars in a 
GaAs/AlGaAs MQW sample. The center 
to center spacing is 200nm. 



laser beam set at 880nm. Unfortunately as of the time of this report no other characterization 
experiments have been conducted yet. These measurements are currently underway and will be 
reported at a later date. 

However, while the ICP-RIE was under repairs, experiments were performed on devices that 
were fabricated using a self-assembled InAs quantum dot structure. The wafer that was 
purchased from NanoSemiconductor (now Innolume) consists of 10 layers of InAs quantum dots 
embedded in InGaAs wetting layers with GaAs as the barrier material. The quantum dots layers 
are bounded on the top and bottom by Al0.35Ga0.65As p-doped and n-doped waveguide cladding 
layers respectively and the whole structure was grown on a n-doped GaAs substrate. The peak of 
the photoluminescence spectrum was located at 1270nm at room temperature which makes the 
structure ideal for electro-optic modulation at or near the 1300nm wavelength range. A multi-
mode interference (MMI) switch based on this structure was designed with the help of 
“Beamprop” which is a simulation software from R-soft. The schematic drawing of the device is 
shown in figure 5 and consists of two input and 
two output single mode waveguide and a 
central interfering region. Two electrodes 
placed in the middle region serve to inject 
electrical currents in the quantum dots 
immediately below the electrodes. The device 
operates essentially as directional coupler that 
passes the optical signals launched into one of 
the input ports to the output port that is crossed 
with the input port when no current is injected. 
With the application on an electrical signal into 
one of the electrodes, electrons are injected into 
the quantum dots and the refractive index in 
that region is altered such that the interference 
of the modes is disturbed significantly at which 
point the input optical signal is rerouted to the 
output port that is inline with the input port 
thereby resulting in optical switching. In order 
to discriminate the injection of the electrons in 
the specific region where the optical field is 
highest, the electrodes need to be isolated from 
each other and from the surrounding areas. This 
was accomplished by etching a 2μm wide groove all around the electrodes. The depth of the 
groove was carefully designed so that it would not interfere with the 
mode interference. The device simulations indicated that a groove 
depth of 2.4μm would result in an additional loss of 12dB while a 
groove depth of 1.45μm only resulted in an additional loss of 0.25dB. 
In the fabricated device, the isolation groove around each electrode 
was carefully etched to a depth of 1.45μm. Figure 6 shows 
photographs of the output facet of the device with and without applied 
bias and figure 7 shows the normalized intensities of the two complementary output as a function 
of injected current. The preliminary results shows that the splitting ratio between the two output 
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Fig. 5.  Schematic drawing of MMI quantum dot 

switch and the BPM simulation results 
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ports can be continuously tuned from a 1:24 ratio 
to a 22:1 ratio with about 24mA injected into one 
of the electrode. A 50:50 split ratio was achieved 
with a 16.5mA current bias. 

The future plan is to fabricate a similar device 
based on the etched quantum dots and compare 
the performances of the devices. 

In conclusion, the project embarked upon a highly 
ambitious task of creating highly uniform 
quantum dots by employing electron beam 
lithography coupled with highly anisotropic 
etching process of ICP-RIE of multiple quantum 
wells. Although all the required resources were in 
place in our new nanofabrication cleanroom 
facility at CREOL, we were continuously plagued 
with breakdowns of our ICP-RIE tool. After many months of diagnosing and parts replacement, 
finally a vacuum leak detection revealed an incorrectly assembled vacuum chamber. After this 
defect has been repaired, the equipment is operating satisfactorily although. Unfortunately we 
ran out of time on the duration of this project to arrive at a definitive outcome.  
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Fig. 6. Switching characteristics of the 
quantum dot MMI switch. 


