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1. Abstract 

An innovative adaptive optic concept is discussed that provides a dramatically improved dynamic bandwidth over 
existing approaches. This innovation is associated with membrane adaptive optics such as silicon nitride and polymer 
based films. This concept utilizes a volume control manifold that is co-located with the electrostatic actuators to 
dramatically improve total actuator force which in turn improves dynamic bandwidth and stroke. Presented is the result 
of a laboratory experiment showing time lapse images of a polymer film that is actuated by a single volume control 
actuator. An important constraint of the concept involves the depth of the air gap between the activated membrane and 
the backplate which includes both the electrostatic and volume control actuators. This depth is nominally less than 100 
μm. At these depths, the viscosity of air becomes an important physical phenomenon. 

 

2. Introduction 

This Adaptive Optic (AO) concept referred to as a Volume Control Manifold for Membrane Adaptive Optics was 
enabled by products produced under the membrane mirror program at AFRL which developed the technology to 
manufacture large diameter (10-100 cm) optical quality polyimide based membrane films with dielectric coatings.[1,2] In 
this paper we review the stiffening and damping effect caused by the viscous nature of air trapped in the gap between 
the membrane and the actuation backplate.  This phenomenon is used to dramatically improve the actuation force and 
overwhelmingly augment the force of a typical electrostatic actuator. Data from a single volume control actuator 
experiment will be shown, a summary of the relative force produced by a volume control actuator and an electrostatic  
actuator at a single design point, and the effects on the fundamental frequency of the membrane will also be discussed.  

Since the late 1970's, when the earliest attempts at construction of adaptive mirrors using membranes were made by 
Grosso and Yellin,[3] it has been known that the air gap between membrane and backplate affects the dynamic behavior 
of the mirror. However, to the present day, this interaction does not appear to be well-understood, and to our knowledge 
has never been treated systematically with quantifiable results. By systematic and quantifiable, we mean an 
understanding of the mirror dynamics obtained by application of an appropriate theory. In fact, to our knowledge, the 
only attempt to explain the effects of the air gap occurred in the original paper by Grosso and Yellin[3] . A report 
generated by Wilkes [4] adds considerable details to this original paper. 

Choosing the correct pressure within the air gap will result in a critically damped membrane where the air pressure is 
necessarily a small fraction of an atmosphere at the gap depths considered. The low air pressure reduces the load on the 
electrostatic actuators and improves stroke range.  A critically damped device is an excellent choice for many designs, 
but the volume control manifold is better served by leaving the gap pressure at an atmosphere or even increasing the 
pressure above one atmosphere. Higher air pressure adds damping to the system, raising the fundamental frequency of 
the membrane and significantly enhances the performance of a volume control actuator which provides an 
overwhelming increase in the actuation force when compared to an electrostatic actuator. The following sections will 
 
 
                         
 
 
 



describe the experiment, calculate the effects on the fundamental frequency using a single point design, compare 
electrostatic actuator force to the volume control actuator force, and present supporting laboratory data. 

3. Hardware Description 

The essential hardware used in the volume control experiment, consisting of a membrane, backplate, and a single PZT 
actuator, is shown in Figure 1. The gap depth is adjusted from 25-500 μm while the “nozzle” (drill thru) diameter is 
approximately 1 cm. The PZT is driven with a step function that expands the PZT by nominally 1 μm which in turn 
axially deforms the membrane by approximately one μm. The diagnostic snaps a series of interferograms that ultimately 
produce a sequence of surface deformations at 10 μs intervals. The backplate is 10 cm in diameter. There is no 
electrostatic actuator in the experiment. 

 PZT drive electronicsPZT

membrane

backplate
gap

diagnostics

Figure 1. Experimental setup 

The experimental membrane shown in Figure 2 is a 30 cm diameter, 5 μm thick polymer film (CP-1DE) manufactured 
by NeXolve Corporation (formerly SRS Technologies).[2] Note the spherical greenish pattern consisting of a number of 
concentric rings in the photo.  This coloration is a result of the membrane producing Fizeau fringes from ambient light 
where the pattern is created by a slowing varying film thickness from center to edge. 

 

Figure 2. CP1-DE, 5 μm polyimide film used in experiment 

4. Fundamental frequency 

One atmosphere of pressure in the gap will stiffen the system and significantly dampen the membrane’s “fundamental” 
modes of vibration; reducing the amplitude of these modes to indiscernible levels of deflection. Again, this fortunate 
circumstance is made possible by the viscous nature of the air within the gap. A comprehensive model of the gap fluid 
dynamics should account for the viscous nature of the gas both within the gap and on the surface of the membrane. The 
analysis is thus complicated as one must consider the coupling of the membrane dynamical equation to the Navier-



Stokes and mass conservation equations of viscous fluid dynamics. Further investigation is needed to gain a full 
understanding of the implications, but the initial results are promising.[4]  

An indication of what might be expected of the resonant frequency when one particular limit is examined will help cast 
some light on the effect of the gap. We find that in the infinite-viscosity limit, the radial and circumferential velocity 
components of the gas must vanish, assuming no-slip boundary conditions at the surfaces of the enclosure.[5] The 
governing equations can then be solved for the resonant frequencies, which are given by the simple expression 
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where  p₀ is the scale factor used to scale the pressure difference (taken to be standard atmospheric pressure),  αmn is the 
mth zero of the ordinary Bessel function Jn of order n. ܶ, are properties associated with the membrane such 
as stress long the boundary, mass per area, and radius respectively while l is gap depth. The additional term   ௣

௟
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the radical indicates a stiffening effect of the gas, and is equivalent to the gas acting purely as a spring. A significant 
amount of work is still required to sort out the impact of this and other results, and to put the entire design parameter 
space into perspective. This paper will not report on a parametric study of the design space but will present the results of 
a calculation assuming a representative membrane mirror device.  This single point evaluation is accomplished at two 
pressures where p₀ൌ 1 Atm and p₀ൌ 0. These devices are frequently operated at a pressure that critically damps the 
membrane oscillations which is often a small percentage of an atmosphere, so choosing these two pressures will capture 
the essence of the relative magnitude of the two principle terms within the radical and demonstrate the stiffening effect 
of the trapped air within the gap. Choosing 
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Figure 3 shows a set of time-laps images of the membrane’s surface. The images are spaced at 10 μs intervals with P-V 
amplitudes proportional to the diagnostic wavelength of 633 nm. The total length of the x and y axes are 2.5 cm long. 

we calculate; 

. 

The resonant frequency increased well over an order of magnitude and this of course allows one to increase the control 
bandwidth.  At one atmosphere of pressure the first term under the radical that is normally associated with the 
membrane mode of vibrations plays almost no role in the calculation.  

Actuator force 

The previous section shows the possibility of a substantial increase in control bandwidth but the electrostatic actuator 
force does not allow operation at the higher frequencies required when the gap pressure is at an atmosphere. We now 
compare the actuation force (pressure) of the electrostatic actuator to that of the volume control actuator.  This 
approximation assumes no lateral movement of the air within the gap, so the calculation will prove to be slightly 
optimistic.  Comparing the pressure from a 100 volt electrostatic actuator and a volume of air changed by 0.1% will 
produce a pressure more than an order of magnitude greater than the electrostatic counterpart. The force of the volume 
control actuator dominates and, since the volume actuator is not opposed by the trapped air within the gap (the air is 
removed by the volume actuator) like the electrostatic actuator, the actuation force should allow for a much larger stroke 
at higher frequencies. Note that the volume control actuator must work in unison with an electrostatic actuator because 
volume control by itself will eventually equilibrate to some undesirable shape. Using electrostatics in conjunction with 
volume control, however, should allow the shape formed by volume control to be maintained.   

Experimental data 



This data supports the claim that the control bandwidth could be substantial but a tremendous amount of research would 
be required to determine and quantify how such an idea would work in unison with a set of electrostatic actuators. One
might imagine the volume control actuator quickly moving the membrane to a new shape like the shape shown in frame 
3 (P-V=.68) of Figure 3, for example, and then electro-statically freeze that shape, never allowing the remaining 
sequence (dynamics) to occur. One would also want to learn more about the extent of spatial control. Here the 
centimeter diameter actuator is large and the gap is 225 μm which is much thicker than the 50 μm to 100 μm one 
expect in a typical system. Much must be done to explore the range of spatial control. 

 

 

might 

 

Figure 3. Evolution of surface profile on the membrane shown in Figure 2. 

Conclusion 

proach to increase the bandwidth of an adaptive optic is complex. Membrane mechanics may be 
l understood, but nozzle and gas dynamics are not. This entry level experiment suggests that 50 to 100 
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kHz operation may be obtainable but more must be done to quantify the performance opportunities. The spatial
actuation is a significant unknown, but experimental results suggest that control can be applied below a one centimeter
diameter region. A decreased gap depth and a smaller nozzle diameter would help reduce the actuation area and 
substantially increase the frequency of the first resonance. Note that polymer based adaptive optic could be built to 
diameters approaching a meter giving rise to the idea of an adaptive primary mirror. The combination of these tw
technologies creates interesting possibilities but that contemplation is left to the reader. 
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