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ABSTRACT 
 

A technique is presented to cluster geospatial features on an electronic display and determine a meaningful measure 
of display clutter.  An algorithm previously developed by the Naval Research Laboratory (NRL) to cluster objects in 
sidescan imagery has been modified to cluster any displayed features in three dimensions: geospatial location (x, y) 
and color (z).  This paper presents preliminary results of the clustering algorithm and cluster density calculations for 
a series of electronic displays with varying levels of clutter.  The clutter metric correlates with preliminary, 
subjective clutter rankings.  Our next step in validating this method will be correlating the metric with user 
performance. 
 

INTRODUCTION 
 
Objective  
 
The objectives of this project are to develop a reliable technique for measuring clutter in navigation displays (e.g., 
electronic charts) and to link this clutter metric to the performance of a person using the display.  The metric then 
could be used in the evaluation of new displays to determine the optimum amount of information that should be 
displayed, based on user requirements. 
 
Background 
 
The Navy is implementing electronic charts throughout the fleet and has already installed moving-map displays in 
many of its aircraft, including the F/A-18 and AV-8B.  As new sources of information become available for display, 
and as new and innovative display techniques are developed, there is a tendency to display everything that might be 
of interest to the user.  These new displays introduce potential human factors’ issues with regard to the ability of the 
user to access and interpret the displayed information.  Many studies have linked display complexity to user 
performance, especially in terms of a pilot's ability to utilize the displayed information (e.g., Aretz, 1988; Schons 
and Wickens, 1993; Wickens and Carswell, 1995).  The last two reports found that display clutter can disrupt a 
pilot's visual attention, resulting in greater uncertainty concerning target locations.  When a moving-map scrolls at a 
high rate of speed, as in the case of a large-scale cockpit display in a fighter jet, the chart's effectiveness can 
decrease substantially.  As nautical electronic charts become more commonplace in the Navy, similar problems can 
be expected to arise for this user community as well. 
 
While researchers have demonstrated a link between user performance and the presence of so-called “clutter” 
(which can include both the overcrowding of otherwise important information as well as unwanted data or noise), 
we still lack a reliable method of automatically quantifying display clutter in a way that can be empirically tied to 
performance. 
 

APPROACH 
 
Hypothesis 
 
We theorize that our perception of clutter is primarily related to saliency and color uniformity.  Saliency refers to 
how clearly one color or feature “pops out” from the surrounding features in an image, which we estimate by a 
weighted average of color gradients between adjacent features.  Color uniformity refers to how closely-packed are 
similarly-colored pixels within the image.  To discover this value, we have adapted a clustering algorithm, which we 
originally developed to cluster seafloor objects detected in sidescan sonar imagery.  The algorithm clusters features 
detected within a predetermined geospatial distance from each other, produces vertices for a bounding cluster 
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polygon, and calculates the cluster’s density as the number of clustered features divided by the area of the polygon.  
For this project, we adapted the clustering algorithm to operate in 3D space, where the third dimension is color.  Our 
“color uniformity” value is then derived from the density of similarly-colored pixels within a 3D cluster (e.g., 
density = a weighted number of points within the cluster divided by the cluster’s volume). 
 
We describe image clutter in terms of both local and global clutter components.  A Local Clutter Metric (LCM) 
described in this paper represents the contribution of one color or feature to the overall image clutter, and equals 1 
minus the weighted average (by area) of the densities of all clusters centered on that color or feature.  A Global 
Clutter Metric (GCM) represents the overall image clutter, equal to the weighted average of the LCM’s for all colors 
or features in the image.   
 
Figure 1 illustrates our proposed clutter function, in terms of saliency and LCM/GCM.  The following sections 
describe in more detail how each of these metrics is calculated. 
 

 
Figure 1.  Clutter as a function of saliency and LCM (for local clutter) or GCM (global clutter). 

 
3D Clustering using Geospatial Bitmaps (GB) 
 
The original clustering algorithm relies on a geospatial bitmapping (GB) technique patented by NRL in 2001 
(Gendron, et. al, 2001).  The clustering algorithm itself was disclosed to the NRL Legal Office as another potential 
patent in June 2003.  The algorithm is unique in that it is an autonomous, computationally efficient “single-pass” 
method and operates on a user-defined area of interest.  The algorithm performs the following tasks: 1) cluster 
features by 2D geospatial location; 2) smooth and simplify the resultant cluster boundaries (optional); and 
3) calculate a numerical measure of “cluster density,” which considers the number and size of objects clustered in a 
given area, as well as the scale or resolution of the complete dataset.  An enhancement to the original algorithm for 
this project is the ability to cluster features in three or more dimensions: two geospatial (x, y) dimensions plus a third 
(z) dimension such as color, size, or feature type.  This paper presents preliminary results of clustering by geospatial 
location and color. 
 
The clustering algorithm discussed in this paper is a non-hierarchical algorithm similar to – but more efficient than – 
Nearest Neighbor (NN), which iteratively calculates and compares the distances between every pair of elements in 
the dataset to determine which elements should be clustered together.  The GB algorithm is non-iterative, faster, less 
computationally intensive, and requires less computer memory than NN.  The authors suggest that the GB algorithm 
is well-suited to autonomous clustering applications, because the ordering of elements input to the GB algorithm has 
no effect on the resulting clusters (unlike NN and other single-pass methods), and the GB algorithm does not require 
a seed point to initiate clustering (unlike K-means and other relocation methods). 
 
The GB algorithm uses simple bitmaps – with a depth of one bit per pixel – which are binary structures (e.g., binary 
images) in which bits are turned on (set = 1) or off (cleared = 0).  The index of each bit is unique and denotes its 



position relative to the other bits in the bitmap.  In a 2D bitmap, each bit is indexed by its column (x) and row (y); in 
3D, each bit is indexed by x, y, and depth (z).  A set bit indicates that an element of interest exists at that location, 
accurate to within the resolution of the bitmap.  A cleared bit indicates the absence of any element at that location.  
Although a GB can be defined for an entire finite space, memory is only allocated – dynamically – when groups of 
spatially close bits are set, resulting in a compact data structure that supports very fast Boolean and morphological 
operations. 
 
For this project, 3D bitmaps were used to cluster the pixels in an image of interest, based on geospatial location (x, 
y) and color (z).  A separate clustering was performed for each color in the image.  For example, figure 2 illustrates 
the results of clustering the shoreline pixels (darker brown color) in the sample image (left).  All pixels within a 
geospatial distance of 1 (x and y) and a color distance of 9 (using the Commission Internationale d'Eclairage (CIE) 
L*a*b* color space) are included in the clusters, which are shown in green (right).  In this case, the resulting clusters 
only contain the shoreline pixels themselves.  If z were increased to 10, every pixel in this image would be contained 
in a single cluster, because every pixel in this image is immediately surrounded by pixels that are within a color 
distance of 10 in CIE L*a*b* space. 
 
 

  
Figure 2.  Example of clustering by geospatial location and color: all pixels within a predetermined 

distance in geospatial (x=1, y=1) and color (z=9) space of the shoreline pixels (brown pixels in the original 
image, left) are clustered together.  The resulting clusters are shown in green, right.  The zoomed-in 

section shows a detail of the pixels being clustered. 
 
Calculating Cluster Density 
 
After clustering all pixels in the image into bounded polygons for a given “seed color” s, a cluster density DP is 
calculated for each cluster polygon p: 
 
DP = Σ(WCNC) / AP  where: 
WC = Weighting factor for color c  
 = 1 – EC / M 
EC = Euclidean distance between colors c and s in the chosen color space; e.g., for CIE L*a*b: 
 = SQRT [(LC – LS)2 + (aC – aS)2 + (bC – bS)2] 
M = Maximum distance between colors in chosen color space 
NC = Number of pixels of color c in the cluster polygon 
AP = Area of cluster polygon p 
 
The color of each pixel in the cluster will be within a color distance of z from all immediately surrounding pixels in 
the cluster, starting with pixels of color s.  In other words, the cluster will “chain” pixels together to form the 
cluster, starting with each pixel of color s and subsequently including all other pixels within a geospatial distance of 
x, y and a color distance of z.  If z = 0, then DP = NS / AP.   



 
Note the inverse relationship between clutter and “density” as it is used here: higher density tends to predict lower 
clutter, since density describes how closely-packed like-pixels are in the image. 
 
Local and Global Clutter Metrics 
 
Local density (DS) estimates how much an individual seed color (s) contributes to the overall clutter of the image.  
DS is computed as the weighted average of the densities for all clusters centered on color s: 
 
DS = Σ(DP AP) / AS where: 
DP = Density of cluster p (described in the previous section) 
AS = Sum of areas of all clusters for color s 
 
Global density (DI), which estimates clutter for the entire image, is computed as the weighted average of the local 
clutter densities for all colors in the image: 
 
DI = Σ(DS AS) / AI where: 
DS = Weighted average of clutter densities for all clusters centered on color s (described above) 
AI = Sum of all AS’s for image i 
 

We will refer to (1- DS) as the Local Clutter Metric (LCM) for color s, and (1- DI) as the Global Clutter Metric 
(GCM) for image i.   
 
Saliency 
 
We estimate the local saliency of a given color or feature as a weighted average of the color differences between 
each color or feature of interest and immediately adjacent colors or features.  For example, if one feature in the 
image (e.g., a yellow lighthouse symbol on a nautical chart) is completely surrounded by another feature (e.g., solid 
blue water), we would estimate the saliency of the lighthouse as the Euclidean distance between these two colors 
(yellow and blue) in a perceptually representative color space.  If this lighthouse symbol were placed on a shoreline 
(brown), such that 40% of the lighthouse symbol was bordered by the blue water, 40% by tan land, and 20% by the 
brown shoreline, we would estimate the saliency of the lighthouse by 0.4*(blue-yellow) + 0.4*(tan-yellow) + 
0.2*(brown-yellow).  Global saliency is estimated as the weighted average of the local saliencies for all colors (or 
features) in the image.  Greater color distances result in greater saliency.  
 

 
Figure 3.  CIE L*a*b* color space, with colors from a sample electronic  

display plotted using the ColorSpace program (Colantoni, 2005). 
 

The choice of an appropriate color space is central to this theory.  Unfortunately, no single color space has been 
shown to perfectly model human visual perception.  For this paper, we chose the CIE L*a*b* color space (pictured 
in figure 3), but we are continuing to search for improved options.   



RESULTS 
 
Clutter Metrics for Sample Chart Series 
 
Figure 4a presents a sample image (a nautical chart) comprised of 9 primary features and 18 total colors.  Figure 4b 
shows the LCM for each color component and each feature in the image.  The LCM does not account for saliency, 
which might explain why certain features (e.g., the green feature off the northeast corner of the small island) are 
listed with higher clutter values than expected.   
 
Figure 5 presents the GCM for five different charts in this nautical chart series.  As more features are added to the 
chart, the GCM increases, indicating higher levels of clutter. 
 

  (a)       (b)  
Figure 4a).  Sample nautical chart comprised of 9 primary features and 18 total colors.  4b) LCM for each 
color and feature in the image (sorted from lowest to highest LCM).  Higher LCM values indicate greater 
contributions to image clutter, but do not account for saliency. 
 
 

 
Figure 5.  GCM for five charts in a nautical chart series. 

 
Correlation between Subjective Clutter Ratings and Saliency, LCM, and GCM 
 
As a first attempt to ascertain whether the proposed clutter metrics corresponded at all with perceived clutter (prior 
to receiving approval to perform human subject trials), the first author rated the individual features of several 



images, to indicate how much each feature contributed clutter to the image, according to the following rudimentary 
rating scale: 

Low clutter: feature contributes very little clutter to image 
Medium clutter: feature contributes some clutter to image 
High clutter: feature contributes substantial clutter to image 

 
For 330 features rated from 28 images, the probability that a correlation between subjective ratings of local clutter 
and each tested clutter metric (alone) was due to chance was p<0.0001 (χ2 = 314.3) for LCM, and p<0.0001 (χ2 = 
27.9) for salience.  An ordinal logistic fit of the ratings with a combination of both metrics was slightly more 
significant than with the LCM metric alone (χ2 = 316.3).  Figure 6 plots local salience figures vs. LCM, with each 
data point colored according to its subjective clutter rating. 
 

 
Figure 6.  Comparison of subjective clutter ratings with local saliency vs. LCM. 

 
 
Likewise, the author rated the images for how cluttered, overall, each appeared: 

Low clutter: very easy to read image 
Medium clutter: can read some information on the image; other information is hard to discern 
High clutter: difficult to make sense of the image 

 
For 28 images, the probability that a correlation between the subjective ratings of global clutter and each tested 
clutter metric (alone) was due to chance was p<0.0001 (χ2 = 25.4) for GCM, and p< 0.05 (χ2 = 4.1) for salience.  An 
ordinal logistic fit of the subjective ratings with a combination of both metrics was more significant than with either 
metric alone: p<0.0001 (χ2 = 38.0).   Figure 7 plots global salience figures vs. GCM, with each data point colored 
according to its subjective clutter rating. 
 
Of course, with only a single subject, these results are very preliminary.  A follow-on study is underway to collect 
subjective ratings from a larger user population for comparison with these clutter metrics. 
 



 
Figure 7.  Comparison of subjective clutter ratings with global salience vs. GCM. 

 
 

DISCUSSION 
The theory proposed at the beginning of this paper appears to have merit: a preliminary subjective evaluation of both 
local and global clutter seems to correlate with the LCM and GCM values, especially when saliency is considered in 
conjunction with these metrics.  Four global clutter examples are provided in figure 8, illustrating the extremes for 
GCM and salience. 
 

   
 Figure 7a.  Low global saliency and  Figure 7b. High global saliency and  
 high GCM = moderate-to-high clutter. high GCM = high clutter. 
 

    
 Figure 7c.  Low global saliency  Figure 7d. High global saliency and  
 and low GCM = low clutter. low GCM = low-to-moderate clutter. 
 



For example, Low GCM (i.e., high color uniformity) and low saliency tends to result in low clutter, such as in 
images with relatively large, uniform areas that do not contrast sharply with each other (e.g., figure 7c).  Conversely, 
high GCM and high saliency tends to result in high clutter (e.g., figure 7b).  Low saliency and high GCM tends to 
result in moderate-to-high clutter (e.g., figure 7a), in which the image is populated with smaller features that don’t 
contrast well and may be difficult to discern.  Finally, high saliency and low GCM results in low-to-moderate 
clutter, in which relatively large features contrast sharply with each other (such as the land and water areas, clearly 
delineated by black shoreline boundaries, in figure 7d). 
 
The next phase of this project includes analyzing over 150 images of various types (e.g., aeronautical charts, nautical 
charts, topographic maps, city/road maps, weather / meteorological charts, subway maps, airport terminal maps, etc.) 
to correlate subjective evaluations of clutter with the GCM, LCM, and saliency metrics described in this paper.  User 
performance studies are also planned, to determine whether these metrics can predict performance. 
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