
AFRL-RH-WP-TR-2009-0027

 Extending Interactive Electronic

Technical Manuals (IETMs) with Real

and Virtual Animated Content for

Maintenance Task Training

Norman I. Badler

Ben Sunshine-Hill

Center for Human Modeling and Simulation

University of Pennsylvania

Philadelphia PA 19104-6389

Patrick J. Vincent

Northrop Grumman Information Technology

2555 University Boulevard

Fairborn OH 45324-6501

December 2008

Final Report for November 2007 to December 2008

Air Force Research Laboratory

711th Human Performance Wing

Human Effectiveness Directorate

Warfighter Readiness Research Division

Logistics Readiness Branch

Wright-Patterson AFB OH 45433-7604

Approved for public release;

distribution is unlimited.

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for

any purpose other than Government procurement does not in any way obligate the U.S.

Government. The fact that the Government formulated or supplied the drawings,

specifications, or other data does not license the holder or any other person or corporation;

or convey any rights or permission to manufacture, use, or sell any patented invention that

may relate to them.

This report was cleared for public release by the 88
th

 Air Base Wing Public Affairs Office

and is available to the general public, including foreign nationals. Copies may be obtained

from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RH-WP-TR-2009-0027 HAS BEEN REVIEWED AND IS APPROVED FOR

PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

 //SIGNED// //SIGNED//
DENNIS J. RIECHMAN DANIEL R. WALKER, Colonel, USAF

Work Unit Manager Chief, Warfighter Readiness Research Division

Logistics Readiness Branch Human Effectiveness Directorate

 711th Human Performance Wing

 Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its

publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

November 2007 – December 2008

4. TITLE AND SUBTITLE

Extending Interactive Electronic Technical Manuals (IETMs) with Real and

Virtual Animated Content for Maintenance Task Training

5a. CONTRACT NUMBER

FA8650-04-D-6546 DO#11
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

62202F
6. AUTHOR(S)

1
Norman I. Badler,

1
Ben Sunshine-Hill,

2
Patrick J. Vincent

5d. PROJECT NUMBER

7184
5e. TASK NUMBER

D2
5f. WORK UNIT NUMBER

7184D211
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
1Center for Human Modeling and Simulation 2Northrop Grumman Information Technology

 University of Pennsylvania 2555 University Boulevard

 Philadelphia PA 19104-6389 Fairborn OH 45324-6501

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Air Force Materiel Command

Air Force Research Laboratory

711th Human Performance Wing

Human Effectiveness Directorate

Warfighter Readiness Research Division

Logistics Readiness Branch

Wright-Patterson AFB OH 45433-7604

711

HPW/RHAL

11. SPONSOR/MONITOR’S REPORT

 NUMBER(S)

AFRL-RH-WP-TR-2009-0027

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

88
th

 ABW/PA cleared on 18 May 2009, 88ABW-2009-2090.

14. ABSTRACT

This report documents the research associated with the design and development of a prototype virtual training system referred to as the

Course Resource with Active Materials (CRAM) which is intended to help augment the training of aircraft maintenance procedures. The

system is intended to help Air Force personnel receiving initial skills training in aircraft maintenance career fields gain deeper insight and

knowledge of system, procedural, and safety/hazard information associated with a maintenance task prior to performing the task on the

actual aircraft. The system uses a virtual coach agent to guide the user’s instruction, giving information on hazards as necessary to

maximize knowledge retention. The system allows multiple users to collaborate on a training procedure, and to communicate during the

procedure. The system also allows instructors to augment the standard instructions for completing a maintenance procedure with their own

course material. Also discussed is the implementation of such a system in a manner which maximizes reusability and the efficiency of

creating new content.

15. SUBJECT TERMS Course Resource with Active Materials (CRAM), Interactive Electronic Technical Manuals

(IETMs), Avatars, Maintenance Task Training, Virtual Maintainers
16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

Dennis J. Riechman
a. REPORT

 U

b. ABSTRACT

 U

c. THIS PAGE

 U

SAR

40

19b. TELEPHONE NUMBER (include area

code)

 NA
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

 i

THIS PAGE LEFT INTENTIONALLY BLANK

ii

iii

Table of Contents

1.0 INTRODUCTION... 1

1.1 Summary ... 1

1.2 Scope.. 1

1.3 Background .. 2

1.4 Historical Background... 3

1.5 Context for CRAM Research .. 3

1.6 Structure of the Report ... 4

2.0 CRAM PRIMARY RESEARCH CONSIDERATIONS ... 4

2.1 Multiuser Integration .. 5

2.2 The Virtual Coach.. 6

2.2.1 Coaching Content... 7

2.3 Three-Dimensional (3D) User Interaction ... 8

2.3.1 The Importance of Dimensionality ... 8

2.3.2 Intuitive Navigation ... 9

2.4 Procedure Description ... 10

2.5 Wiki ... 11

3.0 CRAM PRIMARY USER INTERFACE COMPONENTS .. 11

3.1 Trainee User Interface Elements ... 12

3.1.1 Task List Panel ... 12

3.1.2 Step Detail Panel .. 12

iv

3.1.3 Video Panel ... 13

3.1.4 Interactivity Panel .. 13

3.1.5 Chat Panel... 13

3.2 Using the Interface ... 13

4.0 CRAM PROTOTYPE DEMONSTRATION AND TESTING 14

5.0 CONCLUSIONS AND RECOMMENDATIONS .. 15

BIBLIOGRAPHY .. 17

APPENDIX A: CRAM DESIGN DISCUSSION AND ANALYSIS 19

A.1.1 Content Representation Architecture ... 19

a. Integrated Code and Content .. 19

b. Simple Scripted Content .. 21

c. Layered Content .. 23

A.1.2 Application Platform .. 24

A.1.3 Interactive Plug-In .. 26

A.1.4 Multi-user Strategy ... 28

A.1.5 Other Design Parameters ... 29

APPENDIX B: CRAM DEVELOPMENT CHRONOLOGY .. 31

B.1.1 Version 0.1.. 31

B.1.2 Version 0.2.. 31

B.1.3 Version 1.0.. 32

B.1.4 Version 1.1.. 32

v

B.1.5 Version 1.2.. 32

B.1.6 Version 1.3.. 33

B.1.7 Version 1.4.. 33

vi

THIS PAGE LEFT INTENTIONALLY BLANK

1

1.0 INTRODUCTION

 The ―Extending Interactive Electronic Technical Manuals (IETMs) with Real and

Virtual Animated Content for Maintenance Task Training‖ research task was sponsored by

the Air Force Research Laboratory‘s Logistics Readiness Branch (AFRL/RHAL) under the

Technology for Agile Combat Support (TACS) contract (FA 8650-D-6546, Delivery Order

#11). The period of performance for this effort extended from 1 November 2007 to 31

December 2008. The purpose of this effort was to investigate the selective addition of

multimedia content, especially segmented video and 3D animated virtual maintainers, to

existing IETM presentations as a training aid. This research effort produced a prototype

system referred to as the Course Resource with Active Materials (CRAM) system – an

interactive virtual reality system – that could potentially be used to augment current aircraft

maintenance initial skills training for Air Force personnel.

1.1 Summary

 CRAM is an interactive computer application that allows aircraft maintenance trainees

to become familiar with and practice maintenance procedures in a virtual reality simulated

environment. The primary purpose of this research effort was to design and implement such

an application in a manner which would maximize the benefit of the application (from a

learning perspective) in the context of a maintenance training course. The course selected as

the focus of our research was the Air Force Fighter Aircraft Maintenance Apprentice Course

(J3AQR2A333A025A) conducted by the 82
nd

 Training Wing at Sheppard AFB, TX. The key

components of CRAM include a Virtual Coach agent to guide trainees‘ instruction, as well as

a Wiki component to assist trainees helping each other, particularly in tasks that would

involve multiple personnel. One of the key objectives of CRAM is to help extend student

knowledge of system, procedural and safety uptake, and retention in the context of aircraft

maintenance.

1.2 Scope

 The CRAM system is intended to help train Air Force personnel receiving initial skills

training in aircraft maintenance career fields to perform various maintenance procedures. It is

intended that any procedure described in an Electronic Technical Manual (ETM) or

2

Interactive ETM (IETM) should be able to be converted into a virtual training procedure. For

demonstration the research focused on one particular maintenance procedure: aircraft jacking

procedures for the F-15 fighter aircraft.

1.3 Background

 Any virtual simulation system which is intended for use in a training environment

must be evaluated along two axes. First, the practicality of virtual simulation versus actual

hands-on training must be considered. In the case of surgical procedure training, for instance,

a virtual training system can offer trainees the opportunity to participate in a procedure as

many times as desired, without having to recruit a volunteer to undergo surgery each time.

Moreover, mistakes made in the simulation, as opposed to mistakes when operating on an

actual patient, carry no real-world consequences. In contrast, training on a procedure such as

rope tying does not significantly benefit from virtual simulation: Rope is cheaply available,

and the consequences for an improperly tied rope (at least during training) are negligible. A

training program for a procedure which is problematic to practice in the real world stands to

gain significantly from virtual simulation. Secondly, the actual benefit to trainees from using

the system must be considered. Recent research into virtual training simulation has made the

point that such simulation has the potential to provide practice without providing a deeper

understanding of the system. That is, a trainee who practices a procedure in a virtual

simulation may improve his skill at completing the simulation without actually becoming

significantly better at completing the actual procedure. This becomes a danger whenever the

parameters of the simulation are not exactly those of the real-world procedure: When the

graphics are not fully immersive, for example, or when the haptic (touch) interaction in the

simulation is significantly different from that of the real procedure.

 The use of virtual training simulation for aircraft maintenance clearly ranks well on

the first axis: the cost of maintaining an aircraft is high, and the danger to trainees from

unsupervised practice would be great. On the second axis, there is considerable difficulty.

Because the CRAM system is intended to be used on readily available consumer-level

hardware with user input through a mouse or keyboard and visual output through a 2D

monitor, the gulf between simulation and reality is vast. Therefore, the CRAM system begins

with a significant disadvantage: it cannot hope to exactly replicate the real world experience

associated with performing aircraft maintenance tasks. Instead, our system concentrates on

3

enabling learning by giving trainees an opportunity to familiarize themselves with a

procedure, and more importantly, by facilitating the uptake of systems knowledge. That is,

the trainee should not only begin to remember the steps of a procedure, but to understand the

reasoning behind the steps as it relates to the functionality of the aircraft as well. (Note: this

was the basis for the Virtual Coach agent that is described in Section 2.2).

1.4 Historical Background

 Early computer-based training simulations were extremely limited, requiring trainees

to carry out a set of tasks in a carefully predefined fashion (Tennyson & Buttrey 1980). This

was as much a function of the strict limitations of the computer hardware available at the time

as it was a reflection of the prevailing attitudes towards the most effective educational mode

for training simulations. Later approaches often took the opposite approach, using the

enriched simulation tools offered by advancing computer technology to give trainees a more

open-ended experience; the idea was to simulate, as closely as possible, the actual nature of

the real-world scenarios the trainee was being trained to correctly interact with (Steinberg,

1977). Although there is no doubt that the resultant simulations were richer and more

realistic, studies have suggested that the increased learner control over the simulation that

naturally evolved with the enrichment of the simulation itself was counterproductive (Brown,

2001). Other studies have broken this effect down further, correlating several variables with a

trainee‘s ability to effectively self-direct this training. In particular, younger subjects without

a college education and with limited self-education experience were less likely to use self-

directed training simulations to effectively absorb the material presented (Williams, 1993).

Although some designers have tried to combat this by giving trainees ongoing feedback about

their performance on a simulation (Kluger & DeNisi 1996), this requires that the simulation

incorporate precise and detailed ongoing diagnostics, which themselves can interfere with the

learning process.

1.5 Context for CRAM Research

 The CRAM system is not intended to serve as a standalone instructional system.

Despite the promising successes in using virtual reality technology as an instructional tool

(e.g., Washburg & Gosen, 2001, show an average 10 percent improvement from simulation-

based training over conventional learning methods), it is generally felt that virtual training

4

alone is not sufficient for providing technical training where the demonstration of skill

proficiency is essential to assessing performance (Thomas & Hooper 1991). Hands-on

practice is essential for both familiarizing trainees with the physical ―feel‖ of the procedureas

well as receiving the guidance of trained instructors. In fact, many failures in the field of

virtual training can be traced to systems which did not augment the virtualized component

with real-world instruction (Bell, Kanar, & Kozlowski 2008). Instead, CRAM is intended to

be used in the following contexts:

 Before training for a procedure has begun, as a low-risk way to explore the

procedure.

 After the training for a procedure has begun, during a trainee‘s discretionary time,

if the trainee feels he needs greater familiarity with the procedure.

 After training is complete, to maintain familiarity with the procedure.

 Although the creation of specific training content for the CRAM system was not a

formal element of this research task, the use of some test content was important to correctly

orient the design of the system as well as to test the design decisions that were made. For

purposes of development, the task of jacking and lowering an F-15 aircraft was chosen.

1.6 Structure of the Report

 Section 2 identifies and discusses the features of CRAM designed to meet the

challenges of a virtual training simulation environment. Section 3 describes the user interface

components of CRAM, and Section 4 discusses prototype demonstrations of the CRAM

system and feedback. Section 5 discusses conclusions from the research and proposes

recommendations for future work. The appendices discuss and analyze the technical design of

the CRAM system, and give a detailed chronology of the development process.

2.0 CRAM PRIMARY RESEARCH CONSIDERATIONS

 This section discusses the key research considerations that were addressed for the

CRAM prototype system. These features were considered essential to the successful

demonstration of CRAM as a training application and are discussed in the following sections.

Additional technical considerations related to the design of other components, as well as

considerations are addressed in more detail in Appendix A.

5

2.1 Multiuser Integration

 Although using a computer is an inherently single-person activity due to the nature of

the input devices, maintaining and repairing an aircraft is not. For instance, up to eight

people were simultaneously involved in the F-15 aircraft jacking procedure, each with a

distinct role to carry out. There is a significant difference in accomplishing a maintenance

procedure alone versus performing the task as part of a team for the following reasons:

 • Separation of Responsibilities. A team carrying out a maintenance procedure will

assign each participant a role, either explicitly at the outset of the task procedure or through

emergent behavior that occurs during the task. For instance, a participant may decide to work

entirely with a single aircraft jack. This decision encourages the participant to think of the

procedure in terms of everything happening to that specific jack, which may enable insights

that would be lost if the participant were constantly moving to other sites. Of course, only

working on that jack would limit the trainee‘s overall exposure to the procedure, meaning that

trainees should rotate through roles for maximum benefit.

 • Inter-Participant Communication. If a procedure has any required ordering on steps

which are delegated to different participants, and it is not immediately and fully obvious to all

participants which steps have or have not been completed, communication between

participants is key. This is no different in a virtual simulation than in real life. A multiuser

training simulation forces participants to communicate with each other, vocally or otherwise,

regarding which steps have been completed and which participant is expected to act next.

Multiuser integration, therefore, gives trainees exposure to a non-physical dimension of the

procedure which would be lost without collaboration.

 • Coordinator Role. Closely related to the preceding two points, just as a participant

may not be directly involved in all physical actions taken during the procedure, so some

participants may not act physically at all. This is particularly the case in the jacking

procedure, wherein one participant is required to act as a spotter to ensure that jacks are

raised evenly, reducing the risk of the aircraft falling off the jacks. In a single user

environment, there is no need for this role; the participant must run back and forth between

jacks anyway, so he can himself step back from the aircraft and assess its attitude on a regular

basis. The addition of a multiuser component, therefore, gives trainees experience in a unique

maintenance role which would otherwise be ignored.

6

 Some maintenance task procedures require multiple trainees to perform the task, such

as jacking an aircraft; however, CRAM does not require that such procedures be carried out

with several participants. Flexibility is key: If trainees are encouraged to participate in

training simulations on their own schedule, an individual trainee may at times wish to

participate when a full team of participants is not available. If only a few trainees are

available, they should have the ability to double up on roles in order to carry out the entire

procedure, even to the point of a single participant fulfilling all roles. Additionally, just as

separation of responsibilities gives participants an otherwise unavailable experience,

completing a multi-participant procedure as a single trainee offers another perspective.

2.2 The Virtual Coach

 In the early days of virtual reality training, it was felt that giving trainees a rich,

realistic simulation environment and allowing them to direct their own learning was enough

to realize the full benefits of virtual training. The research of Johnson et al., however, has

suggested that entirely self-directed training is not as effective as externally directed

training (Johnson et al., 1998). Self-directed students are not impartial judges of their own

progress and are apt to spend too little time on portions of the material that they do not

immediately see as useful or entertaining. On the other hand, an overly directed simulation

would not be a simulation at all: merely a sequence of mouse clicks advancing through the

steps of a procedure with little opportunity for the trainee to build an understanding of the

steps he would be completing.

 The most effective solution to this dilemma, as suggested by Johnson et al., is a

Virtual Coach agent, whose presence and input are carefully curtailed to interfere only in

situations in which it is necessary to optimize learning. Under normal circumstances, the

Virtual Coach agent (henceforth referred to as the "Coach") would not have a visible presence

in the virtual simulation. Like an instructor supervising trainees in a procedure in which they

were already experienced, it‘s normal role is to stand back and observe, ensuring that the

situation remains safe and that trainees are following the steps of the procedure correctly. If,

however, the Coach sees that an unsafe condition has arisen (or is about to arise), or the

procedure is not being correctly followed, the coach takes on actual, visual presence within

the simulated environment and gives the trainees help with the procedure. This type of help

may simply take the form of a message delivered to the trainees (either text, pre-recorded

7

audio, or text-to-speech), or may involve multimedia content. Once the Coach has

successfully intervened to correct the problem, the virtual presence is removed until it is

needed next.

2.2.1 Coaching Content

 The presentation of the message is important. Recall that a stated purpose of CRAM is

to extend system, procedural, and safety knowledge. Simply telling trainees that they have

made a mistake would correct their behavior, but it would miss an opportunity to extend their

knowledge. A better approach is to formulate the correctional message in the form of a

targeted hypothetical: ―You have done ‗A‘; if you do ‗A‘; ‗B‘ could happen.‖ The message

should clearly connect the error and the consequence of the error, and should be placed in the

proper context of the actual operation of the system. For instance, compare the message

communicated to a trainee who fails to electrically ground an aircraft before beginning

maintenance. A conventional computer-based training (CBT) system would simply give a

message such as ―You must electrically ground the aircraft,‖ which may correct the trainee‘s

future behavior during the procedure but fails to leverage any deeper training opportunity. A

better message would be ―You have failed to electrically ground the aircraft, which could

lead to an explosion.‖ This message ties the error to the consequences, with the result that the

trainee will form a stronger negative association with the act of failing to ground the aircraft.

Even better, however, would be ―Failing to electrically ground the aircraft before beginning

maintenance increases the risk of accumulated static charge causing a spark, which could

ignite fuel and cause an explosion. Grounding the aircraft safely dissipates static charge.‖ In

addition to tying error and consequences, this message uses the error as an opportunity to

explain the specific cause-and-effect linkages involved in the consequences. This could result

in the trainee generalizing the knowledge beyond the specific step of the specific procedure;

for instance, double-checking the grounding wire following a fuel spill.

 As previously mentioned, the information presented to a trainee following an error

need not be limited to text and speech, but can incorporate multimedia content. One key type

of multimedia envisioned is a physically simulated animation of the potential consequences

of the erroneous actions. For instance, in the case of an unevenly jacked aircraft, the system

could display an animation of such an aircraft falling off the jacks due to the overbalance.

Like the ideal correctional message formulation previously discussed, such an animation

8

makes a clear and educational argument about the importance of following the procedure

correctly, and the inherently compelling nature of seeing catastrophes in progress. Even if

only simulated, this should dramatically improve retention over simple textual messaging.

2.3 Three-Dimensional (3D) User Interaction

 This section discusses key issues involved in designing a three-dimensional (3D)

training simulation from the point of view of maximizing ease of use and training

effectiveness. First, the importance of a three-dimensional system is discussed. Then

approaches to dealing with the inherent difficulty of navigating and operating in a three-

dimensional environment are explored.

2.3.1 The Importance of Dimensionality

 Conventional CBT modules often consist of two-dimensional (2D) imagery, although

the images may be of 3D objects. The content of these modules may appear realistic, but

trainees are not free to navigate spatially in the simulated ‗world‘ to arbitrary points. Rather,

the trainee is constrained to look at what the module designers want the trainee to look at,

presumably the areas that are to be manipulated during the given procedure. This is arguably

suboptimal in two respects:

 • The trainee does not have an opportunity to form a spatially directed mental map of

the areas under maintenance. Witmer et al., demonstrated that the ability to navigate a

simulated region dramatically improves users‘ ability to locate objects and places in the real

world situations which were simulated over users who were merely allowed to study a map or

schematic (Witmer et al., 1996). Even showing the subject a video with the camera moving

around the region did not compare. In order to get this ―spatial learning,‖ it seems the user

must be in control of a camera which can be moved around the scene at will.

 • The maintenance area is often laid out in a partially schematic manner which

facilitates site identification and overall mechanical comprehension. This is due to the

difficulty of representing many 3D systems in a compact 2D form. This stylistic decision can

give trainees a confusing or incorrect assessment of the actual layout of the corresponding

area in the real world.

9

2.3.2 Intuitive Navigation

 Navigating through a 3D world using a two-dimensional interface is an inherently

difficult task. People have deep seated instincts regarding how they look around and how to

get from place to place in the real world, learned since birth. Replacing these instinctual

motions with mappings to a keyboard and a mouse imposes a great cognitive burden on a

user; even skilled users often subconsciously lean or crane their neck when playing video

games, despite these actions having no effect in the virtual world. The dual burdens presented

by a three-dimensional training simulation—of fighting instinctive navigational behaviors

and of absorbing and applying training information—can cause a situation known as

―cognitive overload,‖ in which a student, overwhelmed by the learning demands being

simultaneously placed on him, becomes unable to usefully absorb and retain the knowledge

being presented. For CRAM to be useful, cognitive overload must be minimized by making

the system as intuitive to use as possible. In ―The Design of Future Things,‖ an influential

work in human-computer interaction, Donald Norman explains ways an interface may be

made more intuitive (Norman, 2007). One of the most important is that an interface be

culturally conventional. For instance, when people approach a door with a fixed bar which is

horizontal, as opposed to vertical, they naturally push it, because the modern convention is

for pull-handles to be mounted vertically.

 What cultural conventions exist for navigating a virtual world through a computer?

Because consumer-level three-dimensional virtual interactions were unknown until recently,

such conventions do not have a long pedigree. However, now that video games have become

commonplace, motion control schemes have sprung up, competed with each other for

primacy, and evolved into a de facto standard for navigating a virtual world. For example,

video games known as ―first-person shooters‖ where the user engages in simulated firearm-

based combat, the mouse is used both to orient the view as well as to pick objects of interest;

other video games known as ―role-playing games‖ tend to use the keyboard for orienting the

view and the mouse for picking objects, allowing finer-grained control of non-shooting tasks.

Additionally, all control schemes tend to use the W, A, S, and D keys for navigation, because

the right hand is used for the mouse and the left hand is more naturally oriented to use these

keys than the arrow keys on the right hand side of the keyboard. Waller demonstrated that

users familiar with computer games—to include most learners in the new generation—are

10

more than capable of applying the control skills learned there to virtual training simulations,

and thereby reaping the benefits of avoiding cognitive overload (Waller, 2000). By carefully

following the established video game control conventions, the CRAM system leverages

trainees‘ existing knowledge to maximize usability.

2.4 Procedure Description

 When reviewing lessons given by USAF maintenance instructors to their trainees, one

invariant was obvious: education always went beyond the material in the Technical Orders

(T.O.). An instructor who simply recited the T. O. material — even repeating pieces of it at

appropriate moments in a demonstration — would not have effectively trained students to

carry out the procedure in question. This is not the result of a deficiency in the T.O.s

themselves. Indeed, if a T.O. did contain all the information conveyed by an instructor in the

course of a lesson, it would be hopelessly pedantic and verbose for use in actual maintenance.

The extra information not contained in the T.O. does not take the form of corrections or extra

steps, but rather peripheral information, timely warnings, and insights engendering systems

knowledge. For instance, the T.O. for aircraft jacking specifies, at one point, that the

mechanic should check that all three jack feet are firmly seated on the ground. During

instruction, the instructor demonstrated how to use the cover of the maintenance manual itself

as a feeler gauge to check seating. This detail is anything but crucial: a mechanic would have

access to more conventional feeler gauges during maintenance and, in any case, could figure

out a way to check the seating on his own, given some time. Rather, the inclusion of this

detail streamlines the practice of the procedure, maximizing efficiency in a clever and

generally useful way.

 An ideal virtual training system must make allowances for this sort of ―oral tradition.‖

So, although the textual content for the procedure is taken directly from the T.O., the system

allows instructors to augment that information with their own content. This can simply take

the form of text, placed below the T.O. text on the same panel, or it can consist of multimedia

content such as video of the instructor explaining or demonstrating the point. The instructor-

added information which is displayed to a given trainee can be dependent on the instructor to

whom that trainee is assigned.

11

2.5 Wiki

 A second ―oral tradition‖ for information additional to that contained in the T.O. is

relayed from one student to another. During real-world training, students collaborating on a

procedure may explain confusing steps, give advice on correcting problems, etc., based on

their own experience or on information that has been relayed to them. This oral tradition is

less reliable than the first for two reasons. First, a trainee with the necessary knowledge for a

particular situation is not necessarily around when that situation arises. Secondly, there is a

chance that the information relayed could be erroneous, and be either unhelpful or

counterproductive (or even dangerous). Because of this, allowing trainees to add their own

notes to a T.O. to be viewed by other trainees is not necessarily a good idea.

 An ideal tool for coping with the first shortcoming of the trainee-trainee oral tradition

would be a Wiki. A Wiki is a web-based system for collaborative knowledge sharing. Any

person with access to a Wiki can add, change, or delete information at will. The anarchy

inherent to this unrestricted approach to knowledge sharing is tempered by making the

reversion of unhelpful or misguided changes as simple as possible, making the act of making

mistakes much more difficult than the act of fixing those mistakes.

 The Wiki approach may or may not correct for the second shortcoming of the trainee-

trainee oral tradition, that of misleading information being added. Trainees may be hesitant to

correct mistakes made by others in Wiki content if they are not absolutely certain that the

information is wrong. Giving instructors the ability to review all changes to the Wiki before

they become visible to other trainees may fix this issue, but at the cost of making the Wiki

less immediately responsive and increasing the instructor‘s workload. Further evaluation is

necessary to determine how crucial an issue is this factor.

3.0 CRAM PRIMARY USER INTERFACE COMPONENTS

 In this section, the main elements of CRAM‘s trainee user interface are discussed.

The software details associated with the process of trainee authentication, plug-in installation,

etc., which are only meaningful in the context of integrating the CRAM system into a larger

on-line instructional system, are not included in this discussion. The interface elements

described in this section are visible to the trainee once the trainee has authenticated himself

and chosen to begin virtual training of a particular procedure.

12

3.1 Trainee User Interface Elements

3.1.1 Task List Panel

 This panel, located on the left side of the interface depicted in Figure 1, displays the

top-level sequence of steps in the T.O. The next step which must be completed to advance

through the procedure is clearly indicated. Additionally, all steps are clickable; selecting a

step causes the details of the step to be displayed in the step detail panel.

Figure 1: The CRAM User Interface

3.1.2 Step Detail Panel

 This panel, located in the bottom center of the interface in Figure 1, displays details of

the currently selected step. These details are taken verbatim from the T.O., but may be

supplanted with reminders and advice from the instructor, as well as whatever multimedia

content is desired. This multimedia, when selected, plays in the video panel. This panel also

contains a text box to allow trainees to ask questions and make content suggestions, to be

reviewed later by the instructor.

Task List Panel

Interactivity Panel

Step Details Panel

Chat Panel

Video Panel

13

3.1.3 Video Panel

 This panel, located to the left of the step detail panel in Figure 1, is responsible for

playback of video and other multimedia content included by the instructor.

3.1.4 Interactivity Panel

 This panel, located directly above the step detail panel in Figure 1, displays the

interactive 3D world in which the procedure takes place. Trainees can move in the 3D world

and manipulate objects using a control scheme familiar to them from 3D video games. During

multi-trainee collaboration, other trainees are visible as avatars in this world. Additionally,

the Virtual Coach agent appears in the virtual environment when necessary to give advice to

the trainee as described in section 2.2.

3.1.5 Chat Panel

 This panel, located in the lower right of Figure 1, allows trainees to communicate

during multi-trainee collaboration, and its design reflects standard online ―instant messaging‖

behavior. It consists of a text entry field to allow a trainee to type a message, which is then

sent to all other trainees participating in the simulation. Past messages sent by all trainees are

visible above this field, in chronological order. Additionally, the Virtual Coach uses this

space to send its own messages to the trainees whenever necessary.

3.2 Using the Interface

 The design of the interface is oriented around the concept of giving a trainee various

tools to complete a given procedure in the interactivity panel. At any time, the user can use

the task list panel to monitor progress through the procedure. The user can click a step to

view its details in the step detail panel but, by default, that panel displays the details for the

next step to be executed. The step detail panel is the user‘s main conduit for procedure

completion information: it contains both the material in the T.O. as well as additional

instructional multimedia content. Finally, the chat panel is used to communicate with other

trainees and the virtual coach. For example, a trainee may begin the procedure by clicking

through the steps in order to see what needs to be done. The trainee then returns to the details

of the first step to view any associated video content before beginning, and after doing so,

performs the step in the interactive pane. The system, recognizing that the step has been

14

completed properly, advances the simulation and displays the details for the next step. The

trainee can go on to complete that step, but may first review the details of the first step if

desired.

 The instructor’s interface when using the CRAM system is very similar to the

trainee’s interface. The primary differences are twofold. First, questions and comments made

by trainees are visible in this interface, to be responded to either on an individual basis or by

adding content to the training unit. Secondly, the instructor has the ability to add content to

each step’s details, which will appear when trainees are viewing or performing the step. This

content may consist of text, images, or links to video content or other external multimedia

content.

4.0 CRAM PROTOTYPE DEMONSTRATION AND TESTING

 This section describes the demonstration and in-house user testing for the CRAM

software that occurred during the research effort. The key features associated with each of

these versions are discussed in more detail in Appendix B.

 CRAM Version 1.2 was demonstrated for the Northrop Grumman TACS program

manager and AFRL/RHAL project managers as an initial proof-of-concept of all major

features. The primary feedback received regarding the Virtual Coach functionality was that

the Coach‘s presence was too confusingly fragmented. Because the Coach‘s avatar did not

visibly move at the same time the Virtual Coach messages were given to the trainee, the two

aspects were not associated with each other. The fact that clicking the Coach‘s avatar toggled

the visibility of the Wiki pane deepened the confusion. Additionally, the lack of an aircraft

for an aircraft jacking procedure caused confusion, and the limited amount of screen space

dedicated to the jacking procedure meant that the interface for navigating and completing the

procedure was unwieldy. Finally, it was suggested that the demonstration procedure be

expanded to cover both jacking and lowering of the aircraft.

 CRAM Version 1.3 (described in Appendix B) was demonstrated at Sheppard AFB to

several USAF maintenance instructors with the goal of checking assumptions and receiving

suggestions regarding the relative utility of different features and the proper positioning of the

tool within the larger context of aircraft maintenance training. Reaction from USAF

instructors was generally positive, although some instructors expressed concern that the

CRAM user interface could be unfamiliar to trainees and difficult for them to understand.

15

One instructor also pointed out that trainees should not necessarily be allowed to give advice

to other trainees through the Wiki system, as that could perpetuate misconceptions. Finally,

the instructors unanimously and stridently asked about the possibility of using a system like

CRAM to augment training of the ―aircraft safe for maintenance‖ procedures, as a significant

amount of time is spent training that procedure and the wash-back rate is high. This was

taken under consideration but is beyond the scope of this effort.

 Informal user testing was performed using CRAM Version 1.4 on three computer

science students who had not previously had experience with the CRAM system. Subjects

were given a short textual introduction to the CRAM system and were then directed to

complete the aircraft jacking and lowering procedure. Although all subjects completed the

procedure correctly in well under the allotted time, they experienced difficulty

comprehending various aspects of the interface. In particular, most were confused with the

semantic difference between the ―next step to complete‖ and the ―step currently being

viewed.‖ These results led us to improve the user interface by clearly indicating whether the

step being viewed was the next step to perform, and allowing users to jump directly to the

next step to perform if it was not.

5.0 CONCLUSIONS AND RECOMMENDATIONS

 The CRAM system is an efficient, effective, and even enjoyable tool for training

certain aircraft maintenance task procedures. As a software prototype, it is robust and

implements all required functionality to be maximally effective as a training tool for practical,

everyday use. Although the system has yet to be formally evaluated (this will be

accomplished as part of the TACS DO-15 research effort) in a controlled study, maintenance

instructors at Sheppard AFB appeared to react positively to the CRAM demonstration, and

felt that the system had great potential in the context of a course of instruction. The facility

with which the F-15 jacking task could be represented within CRAM suggests that the

architectural underpinnings of the system, specifically the layered approach to the procedure

content and their training, represent a useful and novel paradigm for modeling mechanical

procedures, their relationship to deeper systems understanding issues, and their support of

multi-person coordinated tasks. Finally, the existing body of research into guided training

simulations suggests that the Virtual Coach agent has the potential to greatly improve the

effectiveness of the virtual training process. The wiki component, while potentially useful for

16

improving the educational experience, has not been thoroughly vetted; more research into the

dynamic between trainee and instructor is necessary to discover the optimal modality for the

wiki system.

 As mentioned previously, a controlled study is necessary to assess how useful an

application such as CRAM is relative to other instructional mediums such as traditional

computer based instructional systems. Instructors at Sheppard AFB recommended that the

training of maintenance procedures involving making the aircraft ―safe for maintenance‖

might be an even more useful context for a system like CRAM for the purpose of: a) helping

extend the general knowledge of system, procedural, and safety information associated with

this task; and b) allowing trainee review and self-test outside of the classroom with the goal

of helping reduce student washback rates associated with this training. Future research

might focus on implementing and evaluating user interactivity in CRAM to support training

for this type of maintenance task. Additionally, the possibility of implementing the CRAM

system on a mobile or handheld device could be explored to provide broader access to

trainees.

17

BIBLIOGRAPHY

1. Badler, N.I., Allbeck, J., Megahed, A., & Whitmore, M. (2006). RIVET: Rapid

interactive visualization for extensible training. Proceedings of the 2006 Conference on

Habitation Research and Technology Development, February 5-8, Orlando, FL.

2. Bell, B.S., Kanar, A.M., & Kozlowski, S.W.J. (2008). Current issues and future directions

in simulation-based training in North America. International Journal of Human Resource

Management, 19(8), 1416-1434.

3. Brooks, F.P. (1995). Sharp tools. In F.P. Brooks, The mythical man-month: Essays on

software engineering (2
nd

 Ed., pp. 127-140). Reading, MA: Addison-Wesley.

4. Brown, K.G. (2001). Using computers to deliver training: Which employees learn and

why? Personnel Psychology, 54(2), 271-296.

5. Johnson, W.L., Rickel, J., Stiles, R., & Munro, A. (1998). Integrating pedagogical agents

into virtual environments. Presence: Teleoperators and Virtual Environments, 7(6), 523-546.

6. Kluger, A.N. & DeNisi, A. (1996). The effects of feedback interventions on performance:

A historical review, a meta-analysis, and a preliminary feedback intervention theory.

Psychological Bulletin, 119(2), 254-84.

7. Norman, D.A. (2007). The design of future things. New York, NY: Basic Books .

8. Stalhane, T., Dingsøyr, T., Hanssen, G.K., & Moe, N.B. (2003). Post mortem - An

assessment of two approaches. Lecture Notes in Computer Science, 2765, 129-141.

9. Steinberg, E.R. (1977). Review of student control in computer-assisted instruction.

Journal of Computer-Based Instruction, 3(3), 84-90.

10. Tennyson, R.D. & Buttrey, T. (1980). Advisement and management strategies as design

variables in computer-assisted instruction. Educational Communication and Technology

Journal, 28(3), 169-176.

11. Thomas, R. & Hooper, E. (1991). Simulations: An opportunity we are missing. Journal of

Research on Computing in Education, 23(4), 497-513.

12. Waller, D. (2000). Individual differences in spatial learning from computer-simulated

environments. Journal of Experimental Psychology: Applied, 6(4), 307-321.

13. Washbush, J. & Gosen, J. (2001). An exploration of game-derived learning in total

enterprise simulations. Simulation & Gaming: An Interdisciplinary Journal, 32(3), 281-296.

18

14. Williams, M.D. (1993). A comprehensive review of learner-control. Proceedings of

Selected Research and Development Presentations of the Annual Conference of the

Association for Educational Communications and Technology (pp. 1083-1114). January

13-17, New Orleans, LA.

15. Witmer, B.G., Bailey, J.H., Knerr, B.W., & Parsons, K.C. (1996). Virtual spaces and real

world places: Transfer of route knowledge. International Journal of Human-Computer

Studies, 45(4), 413-428.

19

APPENDIX A

CRAM Design Discussion and Analysis

 The material in this Appendix focuses on discussing approaches and considerations (with

supporting analysis) related to the design and implementation of CRAM features dealing with

task procedures, Wiki content, Virtual Coach messages, etc. that are part of the CRAM

prototype system.

A.1.1 Content Representation Architecture

 Three high-level paradigms (or models) were considered for CRAM content

representation. These models include: a) integrated code and content; b) simple scripted

content; and c) layered content. Each of these approaches is described below from a technical

perspective, including the advantages and disadvantages of each, and concluding with a

summary of our analysis.

a. Integrated Code and Content

Description

 In this approach, there is no formal separation between the underlying behavior code

driving the simulation as a whole, and the actual training content which is presented to users:

the two intermix in a monolithic representation. This organization (or lack thereof) is often

referred to as ―hard-coded,‖ reflecting the inflexibility of the resultant software. This

approach most closely resembles most common standalone computer-based training (CBT)

modules. All content representation is in the form of program code for the language in which

the application is written; there is no domain-specific language. Simple abstractions may be

used to reduce code repetition, but nevertheless all content (other than multimedia content

such as images and sounds) is a part of the same code as the underlying facilities of the

application (e.g., tracking mouse motion).

Advantages

 The primary advantage of such a simple approach is that work can proceed on content

20

creation almost immediately. Hard coding monolithic content requires very little up-front

design work: because no framework needs to be designed or implemented to support

standalone content, up-front design is limited to deciding on various development parameters.

Additionally, the lack of a domain-specific language means that, as long as the application

language is one with which the programmers are familiar, there is no lead time necessary for

the programmers to familiarize themselves with the technology in use.

 A secondary advantage is that since no decisions go into the design of an underlying

framework (because there is no such framework), it is not possible to make those decisions

incorrectly. The most common reason for a codebase to become inflexible is that it is invested

in abstractions which prove to be unwieldy in implementing design decisions made late in the

development process. With a monolithic approach such as this, only minor, low-risk

abstractions are used, and this issue does not arise. Therefore, feature changes can be made in

response to feedback even if they involve changes to the underlying design principles

involved in earlier iterations. This can be ideal for an experimental project such as this one.

Disadvantages

 A monolithic approach to content, however, misses out on many of the benefits of modern

software development. Of primary concern is the lack of reusability. The code written for a

given procedure, under a given set of feature assumptions, will likely be nearly useless in

developing code for a new procedure or with a new set of feature assumptions. Because the

content and the framework are interleaved throughout the application, changing one entails

rewriting both. Additionally, this development approach tends to entail a lot of code

duplication, leading to a longer development cycle particularly for complicated procedures.

 Debugging is also problematic. Without reusable abstractions, bugs that occur are likely

to be localized to a particular step, and will not manifest themselves except on that step. This

makes detection of bugs more time consuming: A short ―test‖ procedure is not sufficient to

find bugs in the code except those arising directly from the test procedure itself. Worse,

where systemic bugs do exist, propagating the fix to all steps is likely to be time-consuming

and prone to introducing additional bugs.

 Finally, and most compellingly, the design of such a monolithic application does not lend

itself to insightful post-analysis. Because any needed feature can be coded in on an ad-hoc

basis, no high-level patterns emerge as clearly as they would in the context of a framework.

21

 Simply stated, a monolithic approach to content leads to a system which is larger, less

maintainable, and more inscrutable than it needs to be.

Analysis

 The quick turnaround time of the monolithic approach is appealing, given limited

development time and several development cycles. However, we felt that we had a clear

enough idea of the requirements of the system that we could build a framework in a manner

that limited the risk of it turning out to be poorly conceived. Furthermore, we felt that the

lessons learned from implementing this framework would be useful in future iterations of the

application.

b. Simple Scripted Content

Description

 As with the fully integrated approach described in the previous section, this content

representation describes a procedure in terms of programming code. Unlike the monolithic

approach, however, this approach clearly separates the code relating directly to procedures

from the code relating to underlying application services. To accomplish this, a Domain

Specific Language (DSL) is created, specifically designed to be ideal for the representation of

virtual training procedures. The application then consists of two parts: the program code

(written in the DSL) directly encoding the procedure, and the program code (written in the

underlying platform programming language) which can interpret and execute the DSL

program code. (In keeping with standard practice, in the remainder of this section, we refer to

code written in the DSL as a ―script,‖ and the code written in the underlying platform

programming language simply as ―code‖ or ―native code.‖)

Advantages

 The primary advantage of separating out procedure code and giving it a dedicated

language is that developing new procedures can be dramatically more efficient. The

efficiency gain comes from the use of a language which is designed to be ideal for the task,

allowing the procedure to be expressed in natural terms rather than having to be translated

into the underlying native code representation. Such an approach also reduces debugging

22

time as well as the chance that bugs will go undetected. Bugs in the implementation of the

DSL are generally easy to localize and correct when tested with short procedures intended for

that task, and once the DSL implementation is debugged, as much scripting code as desired

may be written with little need for further testing on the implementation. The scripting code

may itself have bugs, but bugs in such languages tend to manifest themselves obviously with

a minimum of testing (though this is by no means always the case). In an ideal case, such an

approach can also ―future-proof‖ content created for the application: If the application is re-

implemented later on a different platform, only the DSL interpreter needs to be re-

implemented; the content can be reused.

 Finally, the design of the DSL itself becomes a useful exercise in requirements elicitation,

as it forces the designer to consider all capabilities that those implementing individual

procedures are likely to ever want. The degree to which procedures may be easily

implemented in the resultant DSL becomes a test of the success of that elicitation. If several

procedures, spanning different areas of maintenance, are successfully implemented without

any workarounds for deficiencies in the DSL, that success makes a compelling case that the

design of the DSL reflects a fundamentally correct apprehension of the needs of a virtual

training application, no matter what its implementation.

Disadvantages

 Although in the long run the use of a DSL can improve development efficiency, its initial

development cost can be dramatically higher than the monolithic approach. The design of a

DSL is no easy task; as mentioned above, it is impossible to do well without extensive

requirements elicitation. Additionally, if the DSL turns out to be incapable of supporting a

feature that is recognized late in the development process, modifying it to support the feature

may require extensive recoding of content already written.

Analysis

 Stalhane et al., have thoroughly demonstrated the enormous potential value to be gained

from the development of a carefully-structured domain-specific content representation

(Stalhane et al., 2003). This benefit far outweighs the potential development costs. Moreover,

such development costs may in fact be more favorable than the integrated approach: software

23

 engineering professionals have long felt that such domain-specific tools more than pay for

their initial development cost in the long run (Brooks, 1995).

c. Layered Content

Description

 The layered content approach, eventually settled on for CRAM content representation, is

very much like the previous approach, in that procedure code and the underlying application

code are separated. However, this approach stratifies the content itself as well. Rather than

the content for a procedure consisting of a single file, it consists of multiple interacting code

entities, each one a different ―layer.‖ There are many potential layers to choose from. In our

implementation, the following layers are used:

Physical Layer. This layer consists of a description of the physical properties of the system,

such as determining what happens when a given valve is turned. It provides limited

qualitative description but is primarily quantitative in nature.

Practical Layer. This layer provides a method of tracking, and qualitatively describing, the

―state‖ of the objects in the training simulation at any given time. For instance, in the case of

a training simulation involving aircraft jacking, the practical layer would include whether the

release valve on each jack was open or closed. The practical layer takes information directly

from the physical layer for updates, but the qualitative information it contains can be

expressed independently of the information from the physical layer.

Procedural Layer. This layer provides a top-level description of what step of a given

technical order the trainees are currently completing. The content for this layer is drawn

directly from the technical order. Unlike the other two layers, this layer stores no information

except that which can be directly derived from the practical layer: merely by examining the

state of the simulation it is possible to determine what the ―next step‖ should be, or to

determine that the trainee has failed to complete a particular step successfully. Each step

within a procedure has a set of success conditions, qualitative items which the practical layer

must satisfy before the step is complete. It also contains a set of failure conditions which

24

indicate that the step has been completed incorrectly. This includes virtual coach messages,

textual and otherwise, which can be used in response to the failure conditions.

Advantages

 The primary advantage of this approach is that content in each layer can be built up and

used independently. Given a sufficiently expressive physical and practical content description

for the landing gear system, for instance, it should be possible to write a procedural layer for

any procedure involving the landing gear, without any need to rewrite or change the physical

or practical content. In addition, this approach subsumes most of the advantages of the

simple scripting approach. For instance, we believe that the future-proofing advantage of the

simple scripting approach is even more pronounced with this approach: Although devices

with differing graphical and interactive capabilities (e.g., cell phones) will most likely require

a re-write of the physical layer, the practical and procedural layers need not be changed

because the data they receive is still the same. Additionally, the efficiency gain of the

scripting approach is even greater with this approach, because different programmers can be

tasked to different layers simultaneously.

Disadvantages

 The potential disadvantages of this approach are the same as those of the simple scripting

approach: The development of a DSL takes time and development resources, and an incorrect

design can lead to problems later in the development process.

Analysis

 As with the simple scripting approach, we feel that the potential benefits more than make

up for the developmental risk. Additionally, we feel that the layering approach will simplify

the development of several novel features of the application, such as the virtual coach, by

localizing their functionality to a single layer of the content model.

A.1.2 Application Platform

 The ―platform‖ for an application consists of the computer hardware required to run the

application, coupled with operating system software and presentation software such as a web

browser or a Java virtual machine. The choice of an application platform dictates both the

25

hardware/software configuration required to successfully execute the application, and the

capabilities of the application. The following application platforms were considered:

Microsoft Windows, running on an x86-based architecture. This would involve designing

the application to interact natively with the driver software, as well as the creation of a user

interface using standard Windows tools. This is by far the most common hardware/software

configuration in personal use today, meaning the majority of existing computers could be

used for the simulation. Such a ―close to the metal‖ approach would also maximize the

potential performance of the application by minimizing overhead. However, desktop

applications of this type are inherently single-user, having no standardized inter-computer

communications framework. Additionally, deployment of native applications is inherently

more difficult than that of other platforms, because of the installation process involved.

Apple OSX, running on Apple hardware. This is similar to the previous option, but market

penetration is considerably lower.

Pure web-based client-server. With this option, the application on the client would consist

of a web page, programmed with Javascript, interacting with a web server. The primary

advantage of this platform is hardware independence: All modern operating systems have

standards-compliant web browsers installed, and would thus be able to run the application.

Such a platform would also be ideal for structured text with multimedia inclusions, a format

that has been the web‘s bread and butter for a decade. However, simulation on such a

platform would be problematic: There is no standard method to display 3D content without

installing additional software. Simulation would therefore be limited to simple 2D

representations.

Web-based client-server with plug-in based interactivity. Like the previous option, this

platform houses the application on a web page. However, it uses a separately installed

software program known as a ―plug-in‖ to offer interactive 3D content within the web

browser window. This plug-in will generally communicate with the surrounding web page

using Javascript method calls, allowing integration between the plug-in and the rest of the

26

web page. The interactive capabilities of such plug-in content can far surpass those of plain

web pages, since the plug-ins are generally written specifically for interactive content. These

plug-ins are generally not as adept at web pages at rendering structured textual data, but due

to the integration with the web page, that sort of content can still be displayed in the rest of

the browser window. The main disadvantage of this blended approach is a more complicated

development environment: the interactive content must be developed using a different

language and content pipeline, increasing the amount of domain knowledge necessary to

comprehend all the code involved in the application.

 Despite the added complexity, the web page/plug-in platform was determined to be the

optimal platform for this task. The differing natures of the interactive 3D area and the

surrounding, primarily textual content meant that it was prudent to assign them to different

programmers anyway, so there was no need for one programmer to familiarize himself with

both subplatforms. The web technologies current in use consist of the following:

Hypertext Markup Language, or HTML. This is the language used by the World Wide

Web to format the content of web pages.

PHP (not an acronym). This is a programming language run on a Web server to generate

customized web pages to serve to browsers, as well as to perform server-side tasks such as

database queries.

Javascript. This language is used to customize the behavior of web pages by executing

directly on the client computer.

Asynchronous Javascript And XML (AJAX). This technology allows interactive updating

of web page content at any time, with no need for users to manually reload the web page.

A.1.3 Interactive Plug-In

 The decision to use Web technology for most of the display, but not the interactive

 simulation component raised an additional question: which interactive plug-in to use? The

following options were considered:

27

Adobe Flash. This is the de facto industry standard for multimedia-rich interactive content.

Most web-based multimedia games, for instance, are developed using Flash. Additionally,

although Flash is not installed by default with any existing web browser, most users choose to

install Flash due to the prevalence of Flash content as well as the high percentage of modern

web sites which require the plug-in to be installed in order to be viewed correctly. Flash has

support for full-motion video using a proprietary file format, as well as bitmap and vector

graphics. However, its support for 3D content is limited at best, requiring all mathematics

involved in the 3D rendering process to be performed manually. This sharply limits the level

of display quality which is feasible while still maintaining a reasonable frame rate. Because

we felt that a freely navigable and realistic training environment was essential for the system,

Flash was thereby an untenable option.

Virtual Reality Modeling Language, or VRML. This format was created in 1994 as a

standard to support the first generation of interactive 3D content on the World Wide Web.

While sufficient for displaying 3D content, interactivity is limited to mouse clicks.

Additionally, while a primary advantage of using an industry standard format would normally

be its widespread adoption, in practice VRML is rarely used, and the average user does not

have a VRML plug-in installed.

X3D. This standard is the official successor to VRML. Capabilities and adoption are similar

to that of VRML.

Hypercosm. First released in 1999, Hypercosm is a proprietary technology developed

specifically for web-based 3D interactivity. Hypercosm supports real-time physical

simulation, and can use 3D objects developed in 3ds max, an industry-standard modeling

applications. Training is one of the main applications for which Hypercosm was intended,

making it ideal for our purposes. The primary disadvantages of Hypercosm are its high cost

 ($1000 for the content authoring environment, although the player plug-in is free) and the

sharp learning curve for OMAR, its proprietary scripting language.

28

Analysis

 As a proprietary solution, choosing to use Hypercosm subjects the project to greater

vendor lock-in than choosing to use the other, more widely implemented technologies would.

However, the fact that Hypercosm was developed specifically to enable solutions in this

specific area (i.e., 3D simulations of manual procedures for training purposes), it was decided

that the benefits far outweighed the risks. Other than its lack of support for 3D graphics, Flash

is an ideal technology as well, and we would probably favor it for applications that did not

stand to gain from 3D interactivity over 2D interactivity.

A.1.4 Multi-user Strategy

 The choice of technology involved in connecting trainees together for multi-user

simulation has important consequences for the usability of the system. The two main

approaches for networking of this sort are known as client-server and peer-to-peer. We

discuss each one of these approaches below:

Client-Server. The client-server networking model consists of an unequal partnership

between client computers, which are directly used by trainees, and a single server computer,

which is responsible for coordinating the client computers. In a theoretically pure client-

server model, the server computer is not directly used by a trainee, but in practice it is

possible, and at times expedient, to have one of the client computers additionally acting as a

server. A web site is a classic example of a client-server model; one web server provides web

site content to many client web browsers.

Peer-to-Peer. The peer-to-peer networking model consists of several “peer” computers,

none of which serves as an unequal coordinator. Any computer can communicate with any

other and all share the responsibility of maintaining a coherent application state across the

different peers. Few, if any purely peer-to-peer applications are in use today due to the

difficulty of peers finding each other over a wide-area network such as the Internet, but some

applications, most notably file sharing applications, operate on a primarily peer-to-peer

model, with a server providing only matchup services.

29

Analysis

 The main advantage of the client server model, beyond ease of development, is the

existence of a canonical shared state. In a peer-to-peer application, for instance, a single peer

that changes the state of the simulated world must communicate that change to all peers. This

can lead to a situation where different peers have a different conception of the state of the

world at a given time, and coordinating between the peers can become quite tricky. In

computer science this is known as the ―Dining Philosophers‖ problem, and solutions tend to

be complex and fragile. Therefore, we use the client-server model to coordinate the large-

scale state of the simulation. Specifically, the server coordinates changes to the practical

layer. Additionally, the client-server model was used to deploy all procedure scripts to

clients; thus removing the need to manually install the procedures on each computer.

 For continuous changes to fine-scale positioning of objects, however, we use peer-to-peer

communication directly through Hypercosm. This approach, which leverages off-the-shelf

functionality already available in Hypercosm, minimizes the latency time between one user

moving an object and the other users seeing the results of that motion.

A.1.5 Other Design Parameters

 In this section we describe other, less important development parameters of the CRAM

system, including the handling of video content, graphics, and documents, as well authoring

of 3D content.

Video Content. We encode all video content using the MPEG-4 audio/video compression

standard, and industry standard format. We use Apple Quicktime, embedded in the web

browser, to display the video content (although any embeddable MPEG-4-compatible player

can be used alternatively).

Graphics. We encode still images, such as diagrams and photographs, in the PNG format,

which provides both ―lossless‖ compression (useful for diagrams) and ―lossy‖ compression

(preferred for photographs).

30

Documents. We use the Adobe Acrobat format to store long, pre-formatted documents such

as technical orders.

3D Modeling Pipeline. Autodesk 3ds Max was selected for creating 3D content. Hypercosm

tools are available that convert exported 3ds Max models to Hypercosm-playable modules.

31

APPENDIX B

CRAM Development Chronology

 This section gives a summary history of the software development activities coinciding

with each version of the CRAM prototype in chronological order.

B.1.1 Version 0.1

 This initial version represented an attempt to produce a simple proof-of-concept virtual

simulation engine based on the RIVET interactive training tool (Badler et al., 2006). It was

felt that by leveraging the RIVET system‘s existing support for task-based semantic

description of a procedure, development risks and time could be minimized. In attempting to

reuse the RIVET codebase, the following shortcomings manifested themselves:

 The RIVET codebase was written entirely in Java, and had no support for connecting

to other platform technologies. While this was suitable for the RIVET project, which

used a dedicated handheld device, we felt that our solution should use technologies

more useful for widely available consumer hardware.

 The RIVET codebase did not include support for the virtual coach functionality, nor

did it directly support the hazard modeling necessary to implement such functionality.

 The RIVET codebase was exclusively single-user. Retrofitting multiuser capabilities

may have required extensive revision.

 The presentation layer in the RIVET codebase did not support the rich multimedia

content envisioned.

 Although the RIVET codebase was not directly leveraged in building the CRAM system,

several lessons were taken from its design. Most importantly, we felt that the RIVET

system‘s step-based view of a procedure, even in a system designed to be partly exploratory,

was an ideal way to orient the user towards the successful completion of the procedure.

B.1.2 Version 0.2

 This version included an initial mockup of the user interface to be used for the CRAM

system. This nonfunctional design test was meant to help elucidate the relative importance of

32

various user interface elements, as well as to provide a jumping-off point for discussion. In

particular, this was the time at which the precise role of the Virtual Coach was first being

nailed down.

 The fundamental layout embodied in this mockup would be used in the final

implementation of CRAM. Various other graphical elements, however, were discarded as

taking up too much screen real estate, and the design as a whole was simplified for future

versions.

B.1.3 Version 1.0

 This version saw the first code which would be used in the final implementation of

CRAM. While having very little graphical presence (the interactivity consisted of a set of

check boxes) this version had most of the computational functionality needed for the final

version: full implementations of the procedural and practical layer reasoning engines. For

this version, a very simple procedure for testing was used: the task of making tea. Although

this is obviously not a difficult procedure, it allowed us to test our hazard modeling ideas,

finding that transient hazards (which require no corrective action) and persistent hazards

(which remain until corrected) required subtly different content representation.

B.1.4 Version 1.1

 This version was the first version incorporating Hypercosm. This added the physical

layer, the final layer in the semantic model of the procedure. As before, we used making tea

as our test procedure. This version also saw the first revision of the Virtual Coach system,

with messages from the Virtual Coach appearing in a red text box.

B.1.5 Version 1.2

 This version incorporated an initial demonstration of the aircraft jacking procedure, with

graphical models of the jacks but no graphical model of the aircraft itself. (Rectangles were

used as stand-ins for the jack pads.) Additionally, chat and wiki functionality was added here,

the latter as simply a longer-persisting chat system. Finally, a 2D model representing the

Virtual Coach was added, and some video content was integrated into the procedure

description.

33

B.1.6 Version 1.3

 This version incorporated several substantive changes. The Virtual Coach was given

physical presence in the world, appearing and pointing to the subjects of messages. An

aircraft model replaced the stand-in jack pads. The ability to resize the 3D interactivity

window was added. Finally, the demonstration procedure was expanded to cover lowering the

aircraft.

B.1.7 Version 1.4

 At this point, in response to instructor feedback the wiki component was split into

student-to-instructor and instructor-to-student portions, removing persistent student-to-

student content entirely. Instructor-to-student content was then incorporated visually into the

step details pane, removing the need for a separate wiki pane (which dramatically increased

the screen space available to the interactive simulation).

 It is anticipated that minor additional changes will be made prior to final delivery with

content as part of DO-15.

