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Preface 

This report details the work done by Honeywell Aerospace Advanced Technology to 
address two key challenges in the transition of Augmented Cognition (AugCog) 
technology to the Army’s Future Force: 1) integration of the Honeywell AugCog system 
into the Future Force Warrior (FFW) soldier system and 2) deployment and evaluation of 
the dry electrodes for the collection of electroencephalogram (EEG) data under the 
helmet in an operational environment. Separate evaluations were conducted to test the 
success of both efforts.  
 
This work was performed under contract number W911QY-07-C-0037 to the Natick 
Soldier Research, Development and Engineering Center (NSRDEC) during the period 
February 2007 to May 2008. Under this contract Honeywell also worked with NSRDEC 
to develop an AugCog Concept of Operations (CONOPS). The AugCog CONOPS was 
developed to further explore the potential application and utility of cognitive state 
information by Army commanders in the field. 
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Executive Summary 

Honeywell Aerospace Advanced Technology addressed two key challenges in the 
transition of Augmented Cognition (AugCog) technology to the Army’s Future Force: 
integration and deployability. Specifically, efforts focused on (1) integration of the 
Honeywell AugCog system into the Future Force Warrior (FFW) soldier system, and (2) 
deployment and evaluation of the dry electrodes for the collection of 
electroencephalogram (EEG) data under the helmet in an operational environment. 
Separate evaluations were conducted to test the success of both efforts.  
 
The Honeywell team integrated AugCog hardware and software with FFW leader 
systems during the U.S. Army’s Command, Control, Communication, Computers, 
Intelligence, Surveillance, and Reconnaissance (C4ISR) 2007 On-The-Move (OTM) 
Event at FT Dix, NJ. The team then collected electrocardiogram (ECG) and EEG data on 
the 3rd squad leader during force-on-force exercises. The primary goal was to 
demonstrate the capability of the AugCog hardware and software system to successfully 
integrate and execute within the FFW Leader System Software. Honeywell demonstrated 
a successful integration and achieved a secondary goal of collecting ECG and EEG 
signals of a quality sufficient to classify cognitive state classification in a harsh 
operational environment. Based on EEG alone, classification of workload, in the field, 
exceeded 80% accuracy.  
 
The secondary goal of this project was to advance the deployability of EEG sensor 
systems. Toward that goal, Honeywell worked with QUASAR to integrate their dry EEG 
electrodes under a combat helmet, coordinated a field test at the Aberdeen Test Center, 
and conducted post hoc classification analyses on the collected EEG signals. Together 
these successes represent an advance in integration maturity of the AugCog system as it 
moves toward transition into the Army’s future systems. 
 
In addition, Honeywell has worked with the Natick Soldier Research, Development and 
Engineering Center (NSRDEC) to develop an AugCog Concept of Operations 
(CONOPS). The AugCog CONOPS was developed to further explore the potential 
application and utility of cognitive state information by Army commanders in the field. 
 
The proposed AugCog System will benefit joint human-automation performance due to 
the following: shortened decision-making cycle time, decreased task time, increased 
accuracy of multitask performance, optimized workload to avoid periods of low 
involvement and extreme engagement by subordinates, reduced cognitive fatigue and 
stress, and increased support for human involvement at the appropriate level of detail 
needed for optimal performance. Development of these technologies will provide new 
capabilities that are required to realize the goal of closing the loop in military operational 
decision-making for the dismounted soldier. 
 
The success at FT Dix represents an advance in integration maturity for AugCog since the 
system was previously tested at the Aberdeen Test Center in 2006. During that test, the EEG 

 ix 



 x 

and ECG signals were transmitted wirelessly to an off-the-body system; during OTM 2007, 
the sensing hardware and signal processing software were hosted on the solider-borne FFW 
Leader System. Likewise, fielding dry EEG electrodes was another step toward improving the 
deployability of a sensor-based cognitive state classification system such as the Honeywell 
AugCog system described in this report. 
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AUGMENTED COGNITION TRANSITION  
  

 1 Introduction 
 
 
The aim of Augmented Cognition (AugCog) research is to use physiological and 
neurophysiological sensors to detect, in real time, cognitive states where cognitive 
resources may be inadequate to cope with mission-relevant demands. Human 
performance as a function of workload fluctuates subject to fatigue, stress, overload, or 
boredom. Efforts have focused on ways to leverage cognitive state information to drive 
adaptive systems to manage information flow when detected human cognitive resources 
may be inadequate for the tasks at hand.  
  
Work in the field of AugCog began by classifying aspects of cognitive processing 
(attention, working memory, executive function, and sensory processing) with well-
defined, well-understood laboratory tasks (often referred to informally as “Psych 101” 
tasks). Over the past five years, researchers have moved from the laboratory environment 
to the field environment, introducing the artifacts (motion, electrical, networking traffic, 
and disconnect) and stressors (information overload, physical load, competition, and 
threat of pain) inherent in some operational environments to which AugCog systems 
would be transitioned. The move from the laboratory to mobile field environments brings 
several unique challenges that must be addressed if cognitive state assessment is to be 
used successfully during mobile tasks. Tough sacrifices need to be made, with limitations 
on the sensors to be used, processing power, and knowledge of the task environment  
  
From the start of the program, the Honeywell AugCog team worked closely with the U.S. 
Army to address the problem of information overload, expected to occur with the 
deployment of future Command, Control, Communications, Computers, Intelligence, 
Surveillance, and Reconnaissance (C4ISR) technologies. The Honeywell team has 
worked to apply AugCog technologies to the Future Force Warrior (FFW) domain of the 
individual soldier. FFW will require an AugCog capability to manage information 
overload during operational task performance—because soldiers within future units of 
action will be required to process more information afforded by C4ISR, assume more 
complicated decision-making responsibility (e.g., calling in netted fires), and manage 
multiple organic autonomous assets (e.g., armed unmanned air vehicle, robotic mule) 
within fast-paced, dynamic military operations in urban terrain (MOUT).   
  
Current work has focused on transition challenges, in addition to developing wireless and 
wearable components for sensing soldier states and supporting interactions with 
information devices, supporting mobile users in physically taxing environments, enabling 
multitasking in an environment where mission and task priorities can change frequently 
and rapidly, detecting and managing information overload conditions, and supporting 
complex decision-making responsibilities. To realize both the AugCog and FFW 
Advanced Technology Demonstration (ATD) goals, Honeywell addressed two principal 
objectives to move forward on the path of transition: integration and deployability.  



 2

Specifically, efforts focused on (1) integration of the Honeywell AugCog system into the 
FFW soldier system, and (2) deployment and evaluation of the QUASAR dry electrodes 
for the collection of EEG under the helmet. Separate evaluations were conducted to 
evaluate the success of both of these objectives.  
  
In addition, Honeywell has worked with the Natick Soldier Research, Development and 
Engineering Center (NSRDEC) to develop an AugCog Concept of Operations 
(CONOPS). The AugCog CONOPS (see Appendix B) was developed to further explore 
the potential application and utility of cognitive state information by Army commanders 
in the field.  
  
The proposed AugCog system will benefit joint human-automation performance due to 
the following: shortened decision-making cycle time, decreased task time, increased 
accuracy of multitask performance, optimized workload to avoid periods of low 
involvement and extreme engagement by subordinates, reduced cognitive fatigue and 
stress, and increased support for human involvement at the appropriate level of detail 
needed for optimal performance.  
  
Development of these technologies will provide new capabilities that are required to 
realize the goal of closing the loop in military operational decision-making for the 
dismounted soldier.  
  
Section 2 of this report describes the generalized Honeywell AugCog system architecture. 
Section 3 describes how that system was integrated into the FFW Early Increment Leader 
System. Section 4 describes the evaluation of the integrated system at the On-The- Move 
(OTM) technology demonstration. Section 5 describes the integration and evaluation of 
dry electrodes technology. Section 6 discusses next steps.  
 



2 System Description 

2.1 General Architecture 
The Honeywell closed-loop integrated prototype (CLIP) is depicted in Figure 1.  

Mobile Processing and Data Collection Platform

Signal
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Figure 1. CLIP demonstration architecture. 

 

Physiological and neurophysiological sensors collected real-time data. These raw signals 
were processed to remove artifacts due to noise, motion, and the environment. After 
signal processing, the clean signals were classified into levels of cognitive states of 
interest. Honeywell has focused on classifying cognitive workload. Cognitive workload 
of the soldier was sent over a communications network to be displayed on the 
Commander’s Display. The commander then determined if any mitigation was needed. 

2.1.1 Sensor Hardware 
Each participant was outfitted with an Advanced Brain Monitoring, Inc. (ABM) EEG 
system, a Vital Signs Detection System (VSDS) for cardiac data, and a wireless 
microphone for recording ambient noise and verbal communications. 

2.1.1.1 ABM EEG System 
EEG data were collected from the ABM EEG sensor headset (Figure 2). The sensor 
headset acquired six channels of EEG using a bipolar montage. Differential EEG were 
sampled from bipolar channels CzPOz, FzPOz, F3Cz, F3F4, FzC3, and C3C4 at 256 
samples per second with a bandpass from 0.5 and 65 Hz (at 3-dB attenuation) obtained 
digitally with Sigma-Delta analog-to-digital (A/D) converters. Data were transmitted 
across a Bluetooth radio frequency (RF) link to the collection laptop via an RS-232 
interface.  
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Figure 2. ABM’s wireless EEG sensor headset. 

 
The sensor headset was developed by ABM as a portable system to record EEG signals. 
The headset fit snugly on the head and housed EEG sensors like many Food and Drug 
Administration (FDA) approved laboratory EEG systems, such as the Quick-Cap by 
Neuromedical Supplies or the Electro-Cap by Electro-Cap International. Physiological 
recordings were made with an experimental seven-channel digital physiological recorder 
with low-powered EEG and electrooculogram (EOG) amplifiers designed specifically for 
ambulatory recordings. The analog box included input jacks for the electrode leads that 
carried event markers, an on/off switch, amplifiers, and optical isolation designed to meet 
UL544 requirements. The analog box was coupled to a Real Time Devices 
microcomputer (commercially available model DSi486SLC, State College, 
Pennsylvania), which provides A/D conversion, operates the data acquisition software, 
and stores the data to hard drive. 

2.1.1.2 Hidalgo Vital Signs Detection System (VSDS) 
The VSDS (Figure 3) measured heart rate, respiration rate, and body motion and position. 
The VSDS (Bluetooth-enabled version) came with a Bluetooth (Mini Mitter Co. and 
Hidalgo Ltd.) radio that operated in full disclosure mode. In this mode, both waveform 
and summary data were transmitted across a Bluetooth communications link. The 
AugCog system utilized the ECG waveform (two views, sampled at 256 Hz) and the 
three-axis accelerometry waveform (sampled at 25.6 Hz) signals. 
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Figure 3. Hidalgo Vital Signs Detection System (VSDS). 

2.1.2 Signal Processing 
Conducting military maneuvers in operational environments (e.g., urban terrain) often 
does not allow an individual to remain stationary and can demand simultaneous cognitive 
and physical activity. Inferring cognitive state from noninvasive neurophysiological 
sensors is a challenging task even in pristine laboratory environments. Artifacts ranging 
from eye blinks to muscle artifacts and electrical line noise can mask the subtle electrical 
signals associated with cognitive functions of interest. These concerns were particularly 
pronounced in the context of the dismounted ambulatory soldier. For instance, difficulties 
related to processing of EEG signals in real-world settings include factors associated with 
both participant motion and the operational environment itself. Specifically, artifacts 
related to participant motion include high-frequency muscle activity, verbal communica-
tion, and ocular artifacts (consisting of eye movements and blinks), whereas artifacts 
related to the operational environment include electrical noise that creates interference 
with the EEG signal. Thus, utilization of research methods involving EEG in operational 
environments necessitates the use of real-time algorithms for signal detection and 
removal of artifacts. Although real-time signal processing and classification of the EEG 
has been implemented previously, the Honeywell team was the first to realize this 
classification in a truly mobile, ambulatory environment with dismounted soldiers 
(Dorneich et al., 2007). 
 
The ABM system supported an independent signal processing stream. Quantification of 
the EEG in real time was achieved using signal analysis techniques that identified and 
decontaminated eye blinks and identified and rejected data points contaminated with 
electromyographic (EMG) artifacts, amplifier saturation, and/or excursions due to 
movement artifacts (see Berka, Levendowski, Cvetinovic, Petrovic et al., 2004, for a 
detailed description of the artifact decontamination procedures). Decontaminated EEG 
was then segmented into overlapping 256-data-point windows called overlays. An epoch 
(the temporal window of analysis) consisted of three consecutive overlays. Fast-Fourier 
transform (FFT) was applied to each overlay of the decontaminated EEG signal 
multiplied by the Kaiser window (α = 6.0) to compute the power spectral densities 
(PSDs). The PSD values were adjusted to take into account zero values inserted for 
artifact-contaminated data points. The PSD between 70 and 128 Hz was used to detect 
EMG artifacts. Overlays with excessive EMG artifacts or with fewer than 128 data points 
were rejected. The remaining overlays were then averaged to derive PSD for each epoch 
with a 50% overlapping window. Epochs with two or more overlays with EMG or 
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missing data were classified as invalid. For each channel, PSD values were derived for 
each 1-Hz bin from 3 to 40 Hz and the total PSD from 3 to 40 Hz. Relative power 
variables were also computed for each channel and bin using the formula (total band 
power/total bin power). 

2.1.3 Real-Time Cognitive State Classification 
The use of EEG as the basis for cognitive state assessment was motivated by charac-
teristics such as good temporal resolution, low invasiveness, low cost, and portability. 
While EEG offers several benefits, there were shortcomings that were addressed by this 
research effort, including the noise artifacts described above and the non-stationarity of 
neural signals over time (Popivanov & Mineva, 1999). Despite these challenges, research 
has shown that EEG activity can be used to assess a variety of cognitive states that affect 
complex task performance. These include working memory, alertness, executive control, 
and visual information processing. These findings point to the potential for using EEG 
measurements as the basis for cognitive state assessments in complex task environments 
such as dismounted soldiering.  
 
Estimates of spectral power formed the input features to a pattern classification system. 
The classification system used parametric and nonparametric techniques to assess the 
likely cognitive state on the basis of spectral features, i.e., to estimate p(cognitive state | 
spectral features). The classification process relied on probability density estimates 
derived from a set of spectral samples. These spectral samples were gathered during the 
same field mission as the other samples that would be used to evaluate classification 
performance.  
 
The classification system utilized a support vector machine to discriminate between low 
and high task load. Support vector machines are linear classifiers that use a quadratic 
optimization procedure to find an optimal orientation and location for a discriminating 
hyperplane between two classes of data. The optimization procedure finds a location and 
orientation for the hyperplane that lies as far away as possible from examples in each 
class that were likely to be confused with each other (see Figure 4).  
 

Class 1
Class 2

Hyperplane

Hyperplane Optimal
Hyperplane

 
Adapted from Takahashi, 2006 

Figure 4. Hyperplane orientation. 
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Separating hyperplanes identified using this procedure has been shown to maximize 
generalization performance (Vapnick, 1999). Although they were linear classifiers, 
support vector machines were used to solve nonlinear problems by means of the so-called 
kernel trick. Data that may not have been linearly separable in the original feature space 
were projected into a high-dimensional space where the data may be linearly separable 
(Figure 5). The support vector machine used in this effort employed a radial basis 
function kernel with a kernel parameter of 1 and a slack parameter of 0.05.  

 
projection

Original Feature Space Higher Dimensional
Feature Space  

Adapted from Takahashi, 2006 
Figure 5. Kernel trick projection to higher dimensional space. 

2.1.4 Mobile Processing Platform and Communications Network 
Ideally, to enable maximum mobility, all the processing power needed to collect and 
process the sensor data should be located on the body of the soldier. In addition to 
logging the data, the raw sensor data were processed by the signal processing algorithms 
to produce a clean signal for Honeywell’s cognitive state classification algorithms.  
That cognitive state assessment was transmitted via a communications network to “publish” 
the information for wider use. 

2.1.5 Commander’s Display 
Experiments in previous phases explored the feasibility and utility of “closing the loop” 
by providing a company commander (CO) with real-time cognitive state information of 
subordinate platoon members (Dorneich et al., 2007). This was operationalized by 
displaying cognitive state information to the CO to allow them to adjust the flow of 
communications to better match the subordinates’ current capacity to process 
information. In previous evaluations, Honeywell explored using automation to close the 
loop, where the automation was driven by assessments of cognitive state (Dorneich et al., 
2006; Dorneich et al., 2005). In the 2006 evaluation, the loop was closed by a human 
leader using cognitive state feedback of subordinates and then modifying the information 
flow to those subordinates. This mitigation strategy most closely aligned with the 
interests of the FFW ATD, which saw cognitive state feedback as useful information for 
a leader when assessing the combat readiness of his or her troops. 
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3 Integration with FFW 

3.1 Overview 
The primary goal of this phase of the project was to integrate the Honeywell AugCog 
system into FFW systems. Specifically, the project worked toward full integration into 
the FFW Early Increment 2 Leader System for demonstration in the C4ISR  OTM 
technology demonstration at FT Dix, New Jersey, in July 2007 (see Figure 6). 
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Figure 6. Honeywell AugCog system integrated into the FFW Network. 

 

3.1.1 Mobile Processing Platform and Communications Network 
The Early Increment 2 Leader System package was a soldier-worn hardware and software 
ensemble that provided next-generation digital capabilities to the dismounted soldier (see 
Figure 7). The core of this system was the Panasonic CF-18 Toughbook laptop that 
supported processing and the ITT Wearable Soldier Radio Terminal (WSRT) that 
provided voice and data communication to the FFW Network. The Honeywell signal 
processing and classification software was hosted on the CF-18, and the output of this 
software was formatted as a cursor-on-target (CoT) message (standard information 
schema that supported information interoperability and presentation of information on all 
FalconView™ displays) and transmitted across the FFW Network via WSRT radios. 
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Figure 7. The FFW Early Increment 2 Leader System. 

3.1.2 Commander’s Display 
Cognitive state assessments of a soldier were published over the FFW Network in CoT 
format for display on a Commander’s FalconView™ display. Since there is no standard 
symbology definition for the individual soldier level, let alone for cognitive state 
feedback, symbology was proposed and implemented for the OTM demonstration. These 
symbols are shown in Table 1. See Appendix C for the derivation of AugCog symbology 
that follows tactical symbol conventions from the Common Warfighting Symbology from 
MIL-STD-2525B (Department of Defense, 1999). 

Table 1. Tactical symbols for cognitive state feedback. 

Cognitive 
State Low Workload Medium Workload High Workload System Fault 

Alert 

Symbol 
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4 OTM Experiment  

4.1 OTM Overview 
In 2007, the U.S. Army held the C4ISR OTM technology demonstration at FT Dix, New 
Jersey. The goal was to showcase innovative technologies that would improve soldiers’ 
effectiveness by increasing their situation awareness in battlefield environments (see 
Figure 8). The OTM involved FFW Experimental Force (EXFOR) soldiers in realistic 
war game scenarios, utilizing more than 100 live communication, sensor, and battle 
command systems (CERDEC, 2007). 
 

    
Figure 8. OTM Event at FT Dix, New Jersey. 

4.2 Honeywell Participation  
The Honeywell/NSRDEC team integrated AugCog hardware and software with FFW 
Leader Systems during the 2007 PM C4ISR OTM event. The team then collected ECG 
and EEG data on the third squad leader during force-on-force exercises that were 
conducted on July 19, 2007, at FT Dix. In addition to satisfying the integration goal of 
this program, Honeywell’s participation at OTM provided an additional opportunity to 
evaluate the ability to distinguish between low and high cognitive task load in an 
operational setting. The ability to reliably differentiate these two states could be 
leveraged for operational advantage to augment the commander’s awareness of the state 
of his subordinates, as well as serving as input to future adaptive systems that could tailor 
information presentation and management to the state of the recipient. This section 
documents the classification approach and results. 
 
The AugCog system was tested and data were collected during two OTM exercises that 
involved live, virtual, and distributed assets. On the first day, the platoon conducted a 
phased attack on a MOUT site, which was defended by the opposing force (OPFOR). The 
second day of data collection involved a six-hour mission where the platoon first 
approached the objective in High Mobility Multipurpose Wheeled Vehicles (HMMWVs), 
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dismounted, and moved to the objective rally point (ORP), which they took by force. The 
third squad leader participated in a leader recon, where the platoon leader led his squad 
leaders to reconnoiter the objective. Rather than returning to the ORP, the leaders utilized 
their FFW systems to relay the plan electronically to the platoon, which then moved up to 
take positions per the plan. The third squad was tasked with leading a feint to divert the 
OPFOR attention before the main force attacked the MOUT site. The OPFOR were 
holding hostages, so there was a mix of OPFOR and civilians in the battlespace. The third 
squad eventually attacked and occupied a building by force before they placed unattended 
ground sensors for remote monitoring. 

4.3 Equipment Setup 
The AugCog team collected EEG signals from ABM’s wireless EEG sensor headset, 
which was integrated under the FFW helmet (see Figure 9); ECG data from Hidalgo’s 
Vital Signs Detection Unit, part of the U.S. Army’s Warfighter Physiological Status 
Monitoring program, were also collected and fused with the EEG signals in order to 
classify real-time cognitive state information. Utilizing the FFW CF-18 Toughbook 
computer as a processing platform, signal processing algorithms cleaned the sensor 
signals so that advanced algorithms could status the third squad leader’s cognitive state 
on a moment-to-moment basis. The resultant cognitive state assessment information was 
then formatted in the CoT XML tags needed to push the information over the FFW 
network to support the display of AugCog state information on FalconView icons that 
were viewable by those superior to the sensed soldier, platoon leader, and platoon 
sergeant. 
 

 
Figure 9. EEG setup. 

4.4 Research Objectives 
The primary goal of the AugCog-OTM experiment was to demonstrate the capability of 
the AugCog mobile system to deliver robust ECG and EEG signals and to classify 
cognitive state classification in a harsh operational environment. The cognitive state 
classification would output an assessment of cognitive workload into one of two levels: 
low workload and high workload. The two levels of workload were defined operationally. 
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The soliders were experiencing low workload when they had spare capacity to handle 
task demands. In low workload, the soldier could take on additional tasks without 
compromising performance on current tasks. Low workload did not mean that the soldier 
was doing nothing; rather, the soldier was handling the current task load well and could 
take on additional tasks. Examples included mission lulls or the mission being executed 
flawlessly with little variation from the preplanned, well-versed drill. 
 
The soliders were experiencing high workload when the task load maximized or even 
exceeded the soldier’s cognitive capacity. The soldier absolutely could not take on an 
additional task without compromising performance on current tasks, and current task 
performance was possibly suboptimal due to excessive cognitive demands. Examples that 
drove workload into the high range included unexpected and unplanned events that 
required rapid replanning and extensive coordination by the leadership. 

4.5 Classification Approach 
The Honeywell classification approach used EEG PSD features, decomposed into the 
different clinical bands, as input to the classifier. The EEG PSD features that form the 
basis for classification contain information pertinent to the classification of cognitive 
states, as well as irrelevant components and noise. Accurate classification of workload 
based on EEG called for a system that could estimate workload by identifying 
dimensions or features of EEG that were informative with respect to distinctions among 
workload levels. The analysis relied on the logistic classifier. A logistic classifier 
assumes that the relationship between a set of independent variables (EEG features in this 
context) and the estimated probability of membership in a class (high or low workload) 
can be modeled in terms of a sigmoid function: P(c|y) = 1/(1+ey). Model parameters were 
identified using maximum likelihood estimation. The decision boundary created by this 
classifier was linear. Linear classifiers are widely used by EEG researchers as their 
inherently low complexity limits the possibility of overfitting — an issue of concern in 
artifact-rich mobile task contexts.  

4.6 Data Analysis Methodology 

4.6.1 Ground Truth 
The first step in evaluating a classification system in the field is to collect data during the 
exercise that can establish ground truth for the phenomenon of interest. In this case, 
disparate task loads experienced by soldiers in the field, i.e., low and high task loads, 
were of interest. Accordingly, a videographer was deployed to record the activities of the 
third squad leader while he conducted a force-on-force mission in the pine barrens of FT 
Dix, New Jersey. Next, multiple expert reviewers analyzed the video footage to identify 
periods of high and low task load. These reviewers used the following criteria to select 
suitable periods: 
 

• Sustained periods (> 5 minutes) of consistent task load 
• Periods that did not contain transitions from low-to-high or high-to-low task load 
• Good EEG signal quality during the period 
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It is worth noting that the analysis was not constrained by ECG signal quality, since the 
battery in the Wearable Physiological Status Monitor (WPSM) died prior to the end of 
the long exercise. As a result, all classification results presented here were based on EEG 
data only. 

4.6.2 Classification Metric 
A metric used to evaluate classification performance was the area under the Receiver 
Operating Characteristic (ROC) curve (see Duda, Stork, & Hart, 2001). ROC curves plot 
true positives (on the y-axis) against false positives (on the x-axis) as a threshold for 
discriminating between targets and distracters. The ROC curve provides a way to assess 
the degree of overlap between two univariate distributions. It is widely used to evaluate 
human and machine signal detection capabilities. The ROC curve provides a way to 
assess the degree of overlap between the outputs of a classifier for two classes of data. 
Perfect classification produces an area under the curve value (Az) of 1.0, while chance 
performance produces an Az value of 0.5. 
 
In noisy operational environments, EEG and other electrophysiological sensors can be 
compromised by noise over short temporal windows. One strategy for dealing with 
momentary fluctuations in classification accuracy is to median filter the output of the 
classifier over different time windows. One consequence of such temporal smoothing of 
classifier output is that it may introduce a lag in the decision process. The analysis must 
consider the tradeoff in accuracy as the temporal window of output smoothing is varied 
(Dorneich et al., in press). This strategy assumes that task demands remain stable over the 
span of the smoothing window. Smoothing was accomplished using a median filter on the 
output of the classifier over specific time windows. The analysis considered the tradeoff 
in accuracy as the temporal window of output smoothing was varied. 
 
One way to explore the bias and variance of a classifier is through a process called n-fold 
cross-validation. This procedure entails splitting the data into n subsets. At each iteration 
of the validation procedure, one of these subsets (ni) was used for testing the classifier, 
while the remaining 1 – 1/n sets were used for training the classifier. A typical choice of 
n is 10. Estimates of bias and variance get more conservative as the size of n decreases—
the classifier has to be trained with less of the data and is assessed by generalizing to a 
larger subset of unseen data.  
 
Classification performance was assessed using cross-validation. With 10-fold cross-
validation, the data set was split into 10 subsets. Over the course of 10 iterations, a new 
subset was picked to serve as testing data, while the remaining 9 subsets served as the 
training data.  

4.7 Results 

4.7.1 Ground Truth 
After expert review of the video, two periods each of low and high task load were 
identified, as shown in Table 2. 
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Table 2. Periods of identifiable high and low task load. 

Task 
Load 

Duration 
(mm:ss) Description 

High 05:15 Squad leader was leading a detailed mission planning session with his team 
leaders immediately prior to attack. 

Low 08:09 Squad leader was waiting for platoon leader to return. 
Low 09:45 Squad leader was sitting quietly. 
High 07:57 Squad leader was positioning his men during early phases of attack. He was 

also firing on enemy targets and coordinating ongoing activities. 
 
In addition to assessing the cognitive task load of each segment, pains were taken to 
select those segments of relatively low physical activity (e.g., standing, crouching) and to 
equate the activity level between the selected low- and high-workload periods. Primarily 
this was done to provide the best quality EEG signals for the classification analysis. This 
was also done to eliminate a spurious data source (i.e., motion artifacts) that could 
inadvertently drive the classification results, even though it has been previously 
demonstrated that the Honeywell classification approach was not driven by physical 
activity (Dorneich et al., 2007). 

4.7.2 Classification Results 
The results presented here were from EEG-based classification only since the VSDS’ 
battery died prior to the critical high-workload periods near the end of the six-hour 
mission. For any classifier to work, there need to be differences among the features for 
the classes of interest, in this case, low and high task load. To highlight the inherent 
differences, the feature outputs were normalized and plotted against the six bipolar 
channels (C3C4, F3Cz, FzC3, CzPO, F3F4, FzPO) across the clinical bands (delta, theta, 
alpha, beta, and gamma). Figure 10 illustrates that there was separation in the average 
power between workload levels in all channels, and across all bands, which formed the 
basis of the classifier’s ability to distinguish between workload levels. 
 

 14 



 
Figure 10. Feature amplitude by clinical band for all six channels of EEG. 

 
Figure 11 presents the classification accuracy as a function of the temporal smoothing 
window. 
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Figure 11. Classification accuracy as a function of temporal smoothing. 
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Temporal smoothing up to one minute was investigated. Classification accuracy rose 
monotonically up to a one-minute-long temporal smoothing window; however, the rate at 
which temporal smoothing benefited accuracy appeared to diminish as window sizes 
increased. Given the criteria in workload period selection, it was likely that task demands 
remained stable up to the one-minute window.  
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5 Dry EEG Electrode Evaluations 

5.1 Motivation 
The second goal of this project was to advance the deployability of EEG sensor systems. 
Toward that goal, Honeywell integrated the QUASAR RF dry EEG electrodes under a 
combat helmet in the Honeywell AugCog system. This moved the system that much 
closer to a deployable setup. The OTM 2007 EEG data were collected with a 
conventional “wet” electrode setup that required the application of electrolyte gel, which 
has obvious soldier acceptability and logistical issues. The QUASAR dry electrode 
system delivered low size, weight, and power performance and was designed with 
suspension under the helmet to maximize isolation from helmet motion. This improved 
signal quality and soldier comfort. The combination of NSRDEC’s domain expertise and 
strategic leadership, Honeywell’s signal processing and classification algorithms, and 
QUASAR’s deployable dry EEG sensor supported a compelling AugCog offering with 
superior soldier acceptance and utility. 

5.2 QUASAR Dry Electrodes 
EEG data were collected from a QUASAR’ EEG sensor headset (see Figure 12). The 
sensor headset acquires six channels of bipolar montage EEG data using eight sensors. 
Differential EEG were sampled from bipolar channels CzPOz, FzPOz, F3Cz, F3F4, 
FzC3, C3C4, and a reference sensor at P4, all at 240 samples per second with a signal 
bandwidth from DC to 100 Hz. Data were transmitted across a 2.4-GHz wireless link 
(similar to 802.11g in character) to a base station and then the collection laptop via a 
USB interface. Quantification of the EEG data in real time was achieved using signal 
analysis techniques to identify and decontaminate eye blinks and identify and reject data 
points contaminated with electromyography (EMG), amplifier saturation, and/or 
excursions due to movement artifacts. 
  
The military version of the Sensor Headset and wireless data acquisition system 
developed by QUASAR was made from a modified FFW helmet and harness. This fit 
snugly on the head and houses EEG sensors like many FDA-approved laboratory EEG 
systems. Unlike the conventional wet electrode EEG sensors, the QUASAR EEG 
electrodes were dry and required no prior skin preparation and no conducting gels to 
operate. Physiological recordings were made with low-powered EEG and EOG 
amplifiers and 16-bit A/D converters designed specifically for ambulatory recordings. 
The Sensor Headset was only used for recording physiological signals and did not 
introduce energy into the body except for very minor electromagnetic radiation typically 
emitted by small electronic devices. The only risk posed by this device was mild 
discomfort due to the pressure exerted by the FFW harness and sensors on the user’s 
head. To minimize this risk, prior studies at QUASAR have assessed comfort and 
wearing time versus sensor load; the individual sensor loading was adjustable and was 
measured for each participant prior to testing. 
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Figure 12. QUASAR’s wireless EEG sensor headset. 

 
Two experiments were conducted to assess the viability of the dry electrode technology. 
The first was a laboratory experiment, followed by a field experiment where the system 
was used on soldiers performing operational tasks in a training setting. 

5.3 Laboratory Evaluation 

5.3.1 Research Objectives 
The purpose of this experiment was to record EEG data under controlled laboratory 
conditions using QUASAR’s hybrid EEG sensor system (which features dry, wireless 
silver sensors exhibiting capacitive coupling at low frequencies and resistive coupling at 
high frequencies) to assess signal quality during during the performance of high- and 
low-workload tasks with helmet on and helmet off under both static and ambulatory 
conditions.  

5.3.2 Method 

5.3.2.1 Experiment 1: Auditory N-back Lab 
Four participants were tested in two experiments using QUASAR’s hybrid EEG sensor 
system. The first experiment consisted of an n-back test under all combinations of three 
independent variables workload (low, high), mobility (seated, walking), and helmet (on, 
off): see Figure 13. The goal was to test artifact reduction methods and workload 
classification algorithms on spectral features of the data. 
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Figure 13. Independent variables in the dry electrode lab evaluation. 

 
The working memory assessment was conducted using an auditory n-back task. The 
n-back task required participants to process a sequence of letters presented on a computer 
screen. With every presentation of a letter, the participant had to both encode the letter in 
memory and indicate whether the letter corresponded to a letter shown n presentations 
ago. Working memory load encountered by a participant was controlled by manipulating 
the value of n. For this experiment, the low workload condition was a 0-back test (does 
the current letter presented match the first letter presented in the entire sequence?). High 
workload was a 3-back test (does the current letter match the letter from three 
presentations ago?). Participants responded affirmatively by clicking the left mouse 
button of a wireless mouse when the current letter matched the target (either the first 
letter in the sequence for 0-back or the letter presented three presentations ago in 3-back). 
In the walking trials, participants walked around the perimeter of a medium- sized room 
(24 x 24 feet) at a regular pace as dictated by a metronome — to ensure that participants 
walked at the same pace for both low- and high-workload trials (since it was suspected 
that participants might inadvertently slow down during high-workload blocks as more of 
their attention was focused on the n-back task). Walking pace was controlled to remove a 
potential confound with workload level and to control the level of motion artifacts across 
conditions.   Participants listened to the letters played through the PC speakers and 
responded with a wireless mouse during the walking trials. 

5.3.2.2 Experiment 2: Evoked Response Potentials (ERP) Study 
The goal of the second experiment was to test the ability of the dry electrode system to 
detect Evoked Response Potentials (ERP) associated with a Rapid Serial Visual 
Presentation (RSVP) task. The RSVP task consisted of rapid presentations (every 200 
milliseconds) of a series of satellite images with and without relevant missile-launch 
stimuli (targets). The participant seeing a target provokes an observable ERP which can 
be related to well-known waveform features revealed in previous research (Mathan et al., 
2007).  

5.3.2.3 Data Analysis 
As discussed earlier, it was important to know how effectively a classification approach 
can differentiate between classes on a moment-to-moment basis. The ROC-curve metric 
was used to evaluate classification performance. Ten-fold cross-validation was used to 
evaluate the classification approach. 
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5.3.3 Results 
Overall, the sensors and hardware/software integration between stimulus presentation and 
data acquisition systems performed well, and quality EEG data were observed, at least 
with preliminary subjective analyses, in each of the four participants during both 
experiments. As with “gold-standard” wet electrode systems, more artifacts were 
observed during dynamic ambulatory conditions than during seated conditions, and the 
extent of artifact contamination varied by participant.  

5.3.3.1 Auditory n-back Lab Results 
Table 3 shows the results from the auditory n-back lab classification. The classification 
results were obtained using Ten-fold cross-validation and logistic regression. The area 
under the ROC curve was used as the performance metric. Participants 1 and 4 did not 
participate in a helmet-off condition due to limited availability. 
 

Table 3. Auditory n-back lab classification results. 

Condition p1 p2 p3 p4 

Seated 0.45 0.75 0.74 0.90 

Walking 0.89 0.73 0.70 0.70 

Helmet Off x 0.68 0.82 x 

Helmet On 0.72 0.71 0.74 0.78 

Overall 0.72 0.69 0.72 0.78 

 
It is not clear how to explain Participant 4’s very low classification during seated trials. 
The best results for the other three participants were obtained during seated trials, as 
expected given the better signal quality afforded by low levels of mobility. However, the 
falloff in performance due to motion varied depending on the participant (~0.02 to ~ 
0.21). The results in the “helmet on” condition were comparable with results seen with 
wet electrodes (Mathan et al., 2007). The overall classification results pooled data from 
both mobility conditions and both helmet conditions. Performance was in line with what 
has been seen in previous laboratory evaluations. 

5.3.3.2 ERP Study 
Table 4 lists the single trial ERP results using QUASAR’s dry electrode system. These 
results were obtained using a nonlinear support vector machine with 10-fold cross-
validation. 

Table 4. Classification accuracy for ERP detection. 

 p1 p2 p3 p4 

Classification 
Accuracy 0.94 0.74 0.76 0.97 
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Participants 1 and 4 showed classification performance in line with similar studies 
conducted with 32 channels of wet electrodes (Mathan et al., 2006); however, 
participants 2 and 3 were far below the classification level expected for this task. It 
should be noted that these dry electrodes were only prototypes and that the super-high 
impedance connection to the participant’s scalp was sometimes unstable. 

5.3.4 Next Steps 
Further analyses were conducted by both Honeywell and NSRDEC to examine strategies 
for removing artifacts in dynamic mobile conditions (e.g., bandpass filter settings, 
independent component analysis), and different parameters for applying spectral analyses 
were discussed (e.g., window length, overlap) in terms of optimizing time/frequency 
resolution and bias of spectral estimates. Honeywell and NSRDEC coordinated efforts to 
compare and contrast signal processing techniques that provide optimal data for 
derivation of ERP (RSVP task) and workload classification (n-back task). QUASAR 
continued to make improvements to the sensor system in terms of comfort and 
miniaturization, although the overall consensus was that all parties were confident that 
the prototype system was ready to be tested in an operational environment on soldiers 
performing MOUT. 

5.4 Field Experiment 

5.4.1 Research Objectives 
The Honeywell-QUASAR AugCog test event was a joint effort between the Aberdeen 
Test Center (ATC), Honeywell, QUASAR, and NSRDEC to validate the ability of dry 
EEG sensors to reliably detect cognitive state signatures in soldiers executing high-
fidelity training in an operational environment. The AugCog team conducted field tests of 
the QUASAR dry electrode system in conjunction with a training event for a 19-man 
element of the 7th Special Forces Group during the week of March 17, 2008. The 
objective of the experiment was to test the dry electrode sensor system in realistic 
conditions, where participants were stressed both physically and cognitively. 

5.4.2 Method 

5.4.2.1 Schedule of Events 
An experienced military trainer conducted the training event as the observer/controller 
(O/C). The O/C led the troops in training exercises at ATC’s Mulberry Point MOUT 
grounds. The troops received two days of training prior to executing data collection runs 
with the EEG system in order to familiarize themselves with the facility and reach a 
certain level of competency in the MOUT skills.  
 
On March 19 and 20, two data runs were conducted, one in the afternoon and one in the 
evening (see Table 5). 
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Table 5. Participant schedule. 

Time of Day March 19 March 20 
Afternoon Team Leader 1 Team Leader 2 
Evening Team Leader 2 Team Leader 1 

5.4.2.2 Participants 
Prior to the start of the training event, the element’s leadership and the O/C selected two 
junior members, who would be leading the training missions, to be instrumented with the 
EEG system. The decision to assign junior members to the leadership position for the two 
days of data collection was motivated by the need to induce very high workload during 
the mission, which may have been more difficult with senior leaders. 

5.4.2.3 Tasks 
For each of the four data collection runs, the assigned team leader (TL) led 12 soldiers on 
a mission to “kill or capture an HVT” whose last known location was in one of the 
buildings in Mulberry Point. Up to six other Special Forces soldiers acted as OPFOR 
loyal to the high-value target (HVT). The O/C and the element’s leadership managed 
OPFOR activity to achieve the experimental objectives of inducing sustained periods of 
high and low cognitive workload in the instrumented leader. All soldiers were armed with 
simunitions (i.e., soap bullets) to increase realism and stress during these missions. 
 
Once the experimental team of Honeywell and QUASAR had instrumented the soldier 
(see Figure 14) and was ready to record the activity for “ground truth” review, the 
element’s leader briefed the participants on their mission no more than five minutes prior 
to a required briefing of the soldiers they would be leading. 
 

 
Figure 14. Preparing soldier participant for data collection. 

 
The TL then briefed his 12-soldier element on his plan for achieving mission objectives. 
After a short briefing, the TL led his soldiers outside, where he requested radio checks 
and ordered them to load their weapons.  The element was then split into two teams, and 
each team loaded into its HMMWV for a mounted approach to the objective.  
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5.4.2.4 Data Collection 
Two members of the experimental team “shadowed” the TL to record EEG that was 
streamed wirelessly from the soldier and to videotape the activity to conduct post hoc 
“ground truth” assessment of low- and high-workload periods. The O/Cs also followed 
the movement of the TL to support the deployment of OPFOR. 
 
The missions were very fast paced and involved numerous engagements between OPFOR 
and Friendly (Blue) Force (BLUFOR). Radio communications were inconsistent due to 
connectivity issues exacerbated by the metal substructures of most of the MOUT 
buildings. This effectively induced high workload since the TL had to do more 
replanning when he was unable to communicate with the other team under his command. 
During most missions, the TLs led their elements in entering and clearing many buildings 
(6-10) as they moved toward their objectives and as security required. The TLs also had 
to deal with wounded and killed soldiers (casualty state determined by the location of the 
simunition hit). 
 
In each case, the element captured or killed the HVT before receiving authorization to 
exfiltrate off the objective. Missions were typically a frantic 70-90 minutes of high tempo 
activities, culminating in a hectic exfiltration by vehicle under heavy fire by OPFOR. 
 
Once BLUFOR arrived back at the homebase building, the TL led an after action review 
(AAR) with the O/Cs and his element on the mission. The element’s actual leader 
provided feedback on how the mission was executed. The TL then led a full AAR with 
the entire element to include the perspective of OPFOR. After the full AAR, the 
experimental team removed the EEG system and then reviewed the audio/video footage 
of the mission to allow them to “talk through” the mission with regard to their moment-
to-moment mental workload. 

5.4.3 Results 
A variety of EEG based measures have been shown to be sensitive to variations in 
workload (e.g., Wilson & Hankins, 1994; Gevins, Smith, McEvoy, & Yu, 1997). EEG 
sensors, worn on the scalp, record electrical signals associated with neural activity. 
Signals recorded using these sensors were typically spectrally decomposed for analysis 
using the FFT. The FFT operation decomposes each waveform into sinusoidal 
components that were described by three parameters: amplitude, frequency, and phase. 
The amplitude of EEG over various frequency bands - delta (1 to 4 Hz), theta (4 to 8 Hz), 
alpha (8 to 13 Hz), beta (13 to 30 Hz), and gamma (30 to 40 Hz) - have been shown to 
vary in conjunction with different brain states. For example, delta activity is dominant 
during deep sleep, alpha activity is typically observed during wakeful but relaxed states, 
and beta and gamma activity is prominent during problem solving and other complex 
cognitive tasks (Scerbo et. al. 2001). While the relationship between the EEG signatures 
mentioned above and various cognitive states were apparent in averages across tasks and 
individuals, there was considerable variability in the prominence of these features for a 
given individual in a specific task context. In the analysis reported below, a statistical 
machine learning process was used to develop an individualized and task specific 
workload estimator to assess mental demands in each session. 
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5.4.3.1 Classification Approach 
The spectral features that form the basis for classification contain both information 
pertinent to the classification of cognitive states, and irrelevant components/noise. 
Accurate classification of workload based on EEG calls for a system that can estimate 
workload by identifying dimensions or features of EEG that were informative with 
respect to distinctions among workload levels. A ten-fold cross-validation procedure was 
used in conjunction with logistic regression to identify a subspace projection that would 
permit discrimination between high and low workload on the basis of EEG signals.   
 
The linear projection described above was optimized (see Figure 15) using the logistic 
regression technique that assumes the class conditional probability given the projection 
followed a logistic model, 
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This likelihood was parameterized by the weight vector w and bias b. The parameters 
were adjusted by maximizing the likelihood of the data so that the data matches the 
logistic model distribution in (1). The decision boundary created by this classifier was 
linear. Linear classifiers are widely used by EEG researchers, as their inherently low 
complexity limits the possibility of overfitting – an issue of concern in artifact rich 
mobile task contexts. 
 

 
Figure 15.  Example of subspace projection to optimize discrimination between classes 

 
Under ten-fold cross-validation, the data were split into ten subsets. Over the course of 
ten iterations, a new subset was picked to serve as testing data, while the remaining nine 
folds served as the training data. This concept is illustrated in Figure 16, using three-fold 
and two-fold cross validation for simplicity. EEG samples from high- and low-workload 
conditions were used for training.  Each fold left out of training was then projected onto a 

 24 



set of weights identified using logistic regression in order to derive a workload estimate 
associated with the sample.  
 

 
Figure 16.  N-fold cross validation illustrated with n =3 and n=2. 

 
Data were split into n equally sized segments. Over n iterations each data subset were 
used in turn for testing while the remaining data were used for training.  

5.4.3.1.1 Classification Metric 
The metric used to evaluate classification performance in this effort was the area under 
the ROC curve. ROC curves plot true positives (on the y-axis) against false positives (on 
the x-axis) as a threshold for discriminating between targets and distracters was varied. It 
is widely used to evaluate human and machine signal detection capabilities. The ROC 
curve provides a way to assess the degree of overlap between the outputs of a classifier 
for two classes of data. Perfect classification produces an area under the curve value (Az) 
of 1.0, while chance performance produces an Az value of 0.5.   

5.4.3.1.2 Qualitative Analysis 
As shown in the summaries of spectral features for each participant in each session 
(Figure 17, Figure 18, Figure 19, and Figure 20), differences in alpha stood out as the 
most consistent pattern across participants, sessions, and channels. Alpha power was 
higher in the low-workload condition. Differences in beta power were also apparent 
across workload conditions. But, these differences were less consistent across channels, 
sessions, and participants.  
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Figure 17.  Participant 1- Session 1. Difference in spectral features under low (green ‘+’) and high 

(red ‘.’) workload 
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Figure 18. Participant 1- Session 2. Difference in spectral features under low (green ‘+’) and high 

(red ‘.’) workload 
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Figure 19.  Participant 2- Session 1. Difference in spectral features under low (green ‘+’) and high 

(red ‘.’) workload 
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Figure 20.  Participant 2- Session 2. Difference in spectral features under low (green ‘+’) and high 

(red ‘.’) workload 
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5.4.3.1.3 Classification Analysis 
These classification results, as summarized in Figure 21, point to the feasibility of 
accurate cognitive state estimation in challenging field settings.  Average base 
classification on a sample-by-sample basis was 0.75. 
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Figure 21. Classification accuracy as a function of smoothing (for both participants in both sessions) 

 
Temporal smoothing was considered as a strategy for dealing with intermittent 
classification errors stemming from the noise inherent in the field environment.  This 
strategy assumes that task demands remain stable over the span of the smoothing 
window. Smoothing was accomplished using a median filter on the output of the 
classifier over specific time windows. One consequence of temporal smoothing of 
classifier output is to introduce a lag in the decision process. The analysis considered the 
trade off in accuracy as the temporal window of output smoothing was varied. 
  
Classification accuracy for both participants rose monotonically up to a one-minute-long 
temporal smoothing window.  However, the rate at which temporal smoothing benefits 
accuracy appeared to diminish as window size increased. Temporal smoothing of ten 
seconds contributed to a rise in classification accuracy— average accuracy rose from 
0.75 to 0.87. With the exception of Session 1 for participant 2 – classification accuracy 
reached .90 or higher for both participants with 10 seconds of temporal smoothing, 
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6 Conclusions and Next Steps 
 
The success at FT Dix represents an advance in integration maturity for AugCog since 
the system was tested at the ATC in 2006. During that test, the EEG and ECG signals 
were transmitted wirelessly to an off-the-body system. During the OTM 2007, the 
sensing hardware and signal processing software were hosted on the solider-borne FFW 
Leader System. Likewise, fielding dry EEG electrodes, which supported comparable 
classification performance to wet electrodes, was another step toward improving the 
deployability of a sensor-based cognitive state classification system such as the 
Honeywell AugCog systemdescribed in this report.  

To date, the constraints of field test execution have precluded sufficient data collection to 
develop robust models of classification that would perform well across conditions and 
timeframes. Additional research is required to validate the extent to which classification 
modelscan generalize. Potential follow-up studies should require collaboration with a 
U.S. Armypartner experienced in manipulating tonic states during long-term studies. It 
would be important to conduct long-term data collection in an operational environment 
with “ground truth” for task load, fatigue, stress, sleep deprivation, and physical load in 
order to develop larger data sets to support improved model development and more 
robust classifier performance. The goal would be to enable real-time classification 
approaching 90% with historical participant models. In addition, future studies could 
investigate classification performance as a function of tonic states and workload across 
multiple time frames. The feasibility of building a general classifier that works across 
tonic state levels should be investigated to determine whether it is necessary to build 
separate classifiers for each tonic state level. Finally, the fusion of slower-changing tonic 
state information (arousal, stress, fatigue, etc.) with faster changing moment-to-moment 
oscillatory EEG might yield more discriminating models. 
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Appendix A 
List of Acronyms 

 
Acronym Description 

AAR After Action Review 
ABM Advanced Brain Monitoring, Inc. 
A/D Analog-to-digital (converter) 
ARL Army Research Lab 
ATC Aberdeen Test Center  
ATD Advanced Technology Demonstration 
AugCog Augmented Cognition 
BLIT Battle Lab Integration Team 
BLUFOR Friendly (Blue) Force 
C4ISR Command, Control, Communications, Computers, Intelligence, 

Surveillance, and Reconnaissance 
CLIP Closed-Loop Integrated Prototype 
CO Company Commander 
CONOPS Concept of Operations 
CoT Cursor on Target 
CP Command Post 
DARPA Defense Advanced Research Projects Agency 
ECG Electrocardiogram 
EEG Electroencephalogram 
EMG Electromyogram 
EOG Electro-oculogram 
ERP Evoked Response Potential 
EXFOR Experimental Force 
FCS Future Combat Systems 
FDA Food and Drug Administration 
FFT Fast-Fourier Transform 
FFW Future Force Warrior 
FRAGO Fragmentary Orders 
FT Fire Teams 
HMMWV High Mobility Multipurpose Wheeled Vehicle 
HRED Human Research and Engineering Directorate 
HVT High-Value Target 
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IBI Interbeat Interval 
I/O Input/Output 
MOUT Military Operations in Urban Terrain 
NCO Network-centric Operations 
NCW Network-centric warfare 
NSRDEC Natick Soldier Research, Development and Engineering Center 
O/C Observer/Controller 
OPFOR Opposing Force 
ORP Objective Rally Point 
OTM On-the-Move 
PDA Personal Digital Assistant 
PL Platoon Leader 
PSD Power Spectral Densities 
QUASAR Quantum Applied Science and Research 
recon Reconnaissance 
RF Radio Frequency 
ROC Receiver Operating Characteristic 
RSVP Rapid Serial Visual Presentation 
RTO Radio-Telephone Operators 
SCU Small Combat Unit 
TL Team Leader 
TTP Tactics, Techniques, and Procedures 
UI User Interface 
VSDS Vital Signs Detection System 
WPSM Wearable Physiological Status Monitor (system) 
WSRT Wearable Soldier Radio Terminal 

  
 
 



Appendix B 
Augmented Cognition System Small Unit CONOPS 

 

B.1 General Introduction 
“Network-centric warfare (NCW), now commonly called network-centric operations 
(NCO), is an emerging theory of war in the information age that seeks to translate an 
information advantage into a competitive warfighting advantage through the robust 
networking of well-informed geographically dispersed forces allowing new forms of 
organizational behavior. This “networking” utilizes information technology via a robust 
network to allow increased information sharing, collaboration, and shared situational 
awareness, which theoretically allows greater self-synchronization, speed of command, 
and mission effectiveness.” (Wikipedia, 2007)  
 
The proposed system has four basic tenets: 

 
a. A networked force improves information sharing;  
b. Information sharing enhances quality of information and team situation 

awareness;  
c. Team situation awareness enables collaboration and synchronization and 

speed of command; and  
d. These, in turn, dramatically increase mission effectiveness.  
 

The recently completed Future Force Warrior (FFW) Advanced Technical Demonstration 
(ATD) focused on NCO technology wherein members of a platoon size unit are 
interconnected via electronic communications. Work on the future small combat unit 
(SCU) maintains this same focus on communication technologies. With the advance of 
this technology, modern infantry platoons are evolving from tight formations with one or 
two radio-telephone operators (RTO) with legacy radio technology to disbursed teams 
where every soldier is equipped with some form of advanced digital communication 
device (e.g., radio-phone with display, PC tablet, Personal Digital Assistant (PDA)) 
(Micro Analysis & Design, 2004; Infantry Magazine, 2006). Tactically, this allows the 
platoon to spread out in urban environments where a platoon leader (PL) can maintain 
contact with his/her squad and team leaders for tactical control even under conditions of 
low visibility (fog, sand storms, night ops) (Future Force Warrior Small Unit CONOPS, 
2005). The potential down side is that the PL will lose some immediate awareness of the 
soldiers’ physical and mental states normally gained from direct observation. Because 
effective decision making about which squad or fire team member should execute a 
tactical movement is often made by judging the physical and mental readiness of one’s 
soldiers, there will be a need to regain information lost in the new technologically based 
formations (Akavia & Gofer, 2006). 
 
The AugCog system∗, which originated as a Defense Advanced Research Projects 
Agency (DARPA) program, is designed to provide SCU leaders with real-time 
                                                 
∗ Co-joined with the Wearable Physiological Status Monitor (WPSM) system. 
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information on the psychophysical readiness of their soldiers. This is achieved through 
the use of body-worn sensors and microprocessor classification algorithms. The derived 
cognitive state information can then be fed to an intelligent information system directly to 
the leadership via the net-centric technology. Leaders will have either head-mounted 
displays or hand-held devices that can present graphical summaries of individual and 
team states of readiness. The PL will be able to maintain team situation awareness and 
thus control teams in broad formations and difficult terrain or conditions.  
 
The sensors worn by soldiers are expected to be part of their uniform/equipment and will 
not require any special attention or care by the soldier. Thus, the system is to be a 
seamless component of an overarching warfighting system of systems that serves the 
solider and leader and is value added versus mission demanding.   
  
The AugCog system will not only provide current cognitive state information, but 
information about the recent “history” of each soldier’s cognitive state. For example, a 
soldier’s cognitive load may currently be low, but recent history shows an exceedingly 
high workload for a prolonged period, in which case that soldier may be less ready than 
one who has a current high workload but a recent history of low demand. Therefore, the 
AugCog system will indicate cognitive readiness states of individual soldiers. In addition, 
cognitive state feedback can be aggregated to display “Team-at-a-glance” information 
that allows leaders to assess a team’s combat effectiveness and readiness from a cognitive 
load perspective. 

B.2 Assumptions 

B.2.1 Assumptions Of CONOPS 
The AugCog CONOPS adopts the same purpose and assumptions as established by the 
FFW system, as expressed in the following quote:  
 
“CONOPS are normally developed when there is either a change in basic organizational 
structure of a unit ... or when new technologies and equipment are overlaid on an existing 
organizational structure. This is the case with FFW. The program is not creating a new 
organizational structure, rather FFW and its embedded technologies are being overlaid on 
both Stryker (Current Force) and FCS [Future Combat Systems] (Future Force) Infantry 
small units. For purposes of this document, a small unit is defined as Infantry Platoon and 
below. Although there are various uses and users of CONOPS, the primary purpose of the 
FFW CONOPS is to provide the vision for how systems/capabilities are operated and 
utilized at the small unit level.” (Future Force Warrior Small Unit CONOPS, 2005) 

B.2.2 Assumptions of the AugCog System 
Given the expected change of the operational mode of the FFW SCU leaders (viz., 
operating more remotely from subordinate units), the AugCog system provides 
information about unit status usually gained by direct visible contact. In addition, the 
system is expected to provide information about the psychophysical states of 
subordinates that are not normally observable. The AugCog gauges will provide internal 
state information about cognitive and physical readiness of key individuals that are not 
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always displayed in outward behaviors. And last, the AugCog system will be able to feed 
directly into other technologies for subsystem automation.   

B.3 Mission For Net-Centric SCUs 
NCW changes the way commanders look at their armies. Instead of a contest of numbers 
(my 3,000 troops can beat your 1,000 troops), the U.S. Army becomes one entity with 
many parts that can shift and adapt to quickly developing situations. Information is 
shared across the entire network.  
 
According to a press release, “The Army transformation requirements includes the ability 
to put a combat-capable brigade anywhere in the world within 96 hours, a full division in 
120 hours, and five divisions on the ground within 30 days. One way to increase strategic 
agility is to allow fewer soldiers to do more work (emphasis added).” (Grabianowski, 
2007) 
 
Thus, the concept of “fewer” may be mirrored down to companies and platoons or even 
lower. Companies may be sent on missions expected of battalions, and platoons may be 
expected to do company-sized operations. Information net-centric technology (the larger 
support system of small units) is expected to enable this capability. Relevant here is a 
statement from the 2005 FFW CONOPS about SCU missions (Future Force Warrior 
Small Unit CONOPS, 2005).  

B.4 Operations: An Illustration 
Given an assault and secure mission of an urban objective, the tasks include isolating the 
objective, gaining a foothold on the objective, systematically clearing rooms and 
structures, and finally securing and defending the isolated objective. The action begins 
with Fragmentary Orders (FRAGO) from the company commander (CO). However, 
rather than going to the company command post (CP), the PLs and staff will “meet” with 
the CO at the platoon site via Net-Comms. In the virtual CP, the PL obtain mission 
orders. PLs may interact with the CO while the squad leaders (SL) and fire team leaders 
(TLs) observe via their display devices.  

 
The PLs then meet with their subordinate leaders, initially face-to-face; then, as they 
move to the objective rally point (ORP), they will interact increasingly via their displays 
and local networks, depending on unit formations and conditions. During mission 
execution, plans are refined as information is acquired from intelligence feeds from 
remote sensors, forward observers, and scouts. PLs and SLs develop and lay out specific 
plans of attack for their sector. SLs then meet face-to-face with their fire teams (FTs) and 
establish FT responsibilities. Leaders and fire team members select and prepare their 
equipment.  Reconnaissance (recon) teams may still do “eyes-on” reconnaissance, but the 
PL would also get additional intelligence through remote sensors and the network. The 
assault may be executed as planned in a manner not too different from current tactics, 
techniques, and procedures (TTP), but as action and events unfold, decisions about who 
does what must be revised. Whereas previously PLs were co-located with many of their 
subordinates, in future operations where fewer soldiers conduct larger scale operations, 
the PL will be coordinating the mission largely through his or her communication device. 
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Via the AugCog systems’ cognitive state feedback, the PL is able to maintain situation 
awareness of subordinates’ mission effectiveness and current workload. As the PLs focus 
on display mission maps, the AugCog summary icons will help them gauge the states of 
the squads and fire teams. 

B.5 AugCog System Characteristics 

B.5.1 General Description 
The system comprises a variety of sensors, which can be used individually or together as 
a sensor suite. The sensor suite consists of wearable (body- and head-borne), unobtrusive 
mobile computer systems capable of delivering clean electrocardiogram (ECG) and 
electroencephalogram (EEG) signals in harsh operational environments. ECG signals can 
be obtained from the Wearable Physiological Status Monitor (WPSM) system that would 
not require any additional sensing equipment. Adding EEG sensors will, however, require 
modification of the helmet to add dry electrodes capable of detecting EEG signals. The 
existing mobile computing platform will host advanced signal processing capability to 
improve sensor measurements. For instance, signal processing to improve heart rate 
(HR), HR variability, and interbeat-interval (IBI) signals can be used to improve the 
WPSM system and casualty care metrics. 

 
The system provides real-time cognitive state classification processing from either ECG, 
EEG, or fused ECG and EEG signal components. The soldier is therefore outfitted with a 
mobile sensor-based ensemble that monitors states of cognitive attention and readiness 
during tactical movement. The system:  
 

• Integrates sensor-driven classification of cognitive state to detect a change in the 
soldier’s cognitive state between low-task-load and high-task-load conditions,  

• Provides information about soldier cognitive states to leadership displays that 
reflect potential changes in operational performance,  

• Uses the ECG-derived HR variability signal to reliably distinguish between 
different cognitive workload states, 

• Can additionally use a differential EEG system to provide the EEG data required 
to distinguish cognitive state levels,  

• Can use additional sensors (e.g., accelerometers) to improve cognitive state 
classification by providing context information (i.e., accelerometers to distinguish 
running from stationary) for understanding the cognitive state feedback. 

B.5.2 Description of User Interface (UI) Display and Input/Output (I/O) Devices 
Near-term application of cognitive state information utilizes a leader’s ability to “close 
the loop” by providing PLs and a CO with real-time cognitive state information of 
subordinate platoon members. Displaying cognitive state information to leaders allows 
them to adjust the flow of communications to better match the subordinate’s current 
capacity to process information. This mitigation strategy most closely aligns with the 
interests of the FFW ATD, which sees cognitive state feedback as useful information for 
a leader when assessing the combat readiness of his/her troops. 
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Cognitive state information of the subordinates is displayed to the PL or CO via the 
commander’s display. For instance, a CO’s commander’s display would relay 
information pertaining to the cognitive state of the PL and the platoon sergeant. The CO’s 
display might show the current real-time assessment of cognitive state via a color-coded 
text box, where the capacity of the soldier relative to the task demands is labeled 
“Unknown” (blue), “Spare Capacity” (green), “At Capacity” (yellow), or “Exceeds 
Capacity” (red). In addition, the history of the moment-to-moment assessment of a 
soldier’s cognitive state is shown via a line graph. The background could be redundantly 
color coded to support “at a glance” processing. The scale of the timeline should be user-
controllable. 

 
In addition, aggregate measures of a team’s current workload could be displayed to 
identify possible mismatches between expected workload and the actual workload. This 
would allow a leader to maintain situation awareness of the current combat readiness of 
groups of soldiers at a glance. 

B.6 AugCog as an SCU Enabler 
One of the core capabilities of the Army Transformation is the unparalleled connectivity 
via netted communications, enabling information sharing (Parmentola, 2004). Real-time 
collaboration enhances the kind of situational understanding that drives decisive actions. 
The inundation of information can be expected to grow between soldier and ground and 
air sources. The potential data overload, coupled with the efficiency of information flow 
required in executing Army doctrine, places an overabundance of critical information 
throughput on a single point of contact, the individual soldier. A means to help manage 
information overload of an individual soldier’s mental and cognitive state is needed 
beyond that provided by external means (Dorneich et al., 2006).  

 
Often it is the PL or the CO that controls the flow of information to subordinates as they 
manage an operation. The situation changes rapidly, requiring rapid replanning and 
continual updating of the current status of the soldiers, current locations, and enemy 
movements and intentions. The PL must understand the current capabilities of the 
platoon’s soldiers in order to best utilize them to drive the action forward. Understanding 
the individuals’ or team’s current workload provides crucial information to the PL to 
rapidly deploy teams to tasks that are best suited to their current demands. In addition, 
knowledge of the individuals’ or team’s current workload allows the PL to adapt the 
information flow to the current capacity of the soldier to receive and understand that 
information. 

 
Some training will be required to help leaders understand how to interpret and utilize 
cognitive workload feedback appropriately. As experience grows, it will become clear 
when cognitive state feedback is most useful. 
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B.7 Mission Operations 

B.7.1 Reconnaissance 
When a PL sets up a leader recon, he/she takes the risk of having some of his/her most 
essential platoon members clustered together, creating the potential for serious loss as 
they attempt to collect information about the target and the terrain. If there could be more 
separation among the recon team members, the risk of major team loss would be reduced. 
However, separation from the team reduces the PL’s awareness of his soldiers’ 
conditions and states. Remote sensors for understanding the cognitive states and 
conditions of the soldiers would facilitate decisions about how to move and direct the 
team. Workload gauges might also indicate difficult points along the approach. This all 
could be done with a smaller team. In fact, with sufficient sensing and communication, 
the PL could remain back at the ORP and direct a small recon.  

 
If the PL is directing a leader recon remotely, he or she would use a larger display 
platform like a tablet PC. Given the smaller number of soldiers involved in this mission, 
he or she would have greater detail and more sensor information on individual team 
members and conditions than with a larger team (see offensive operations). 

B.7.2 Offensive Operations 
When a PL sets up offensive operations, he or she takes the same risks as for the leader 
recon. Again, if there could be more separation among team members, the risk would be 
reduced. Here, too, remote sensors for understanding cognitive states and conditions of 
key soldiers would facilitate decisions about how to move and direct the squads, and the 
operations could be done remotely. Workload gauges would indicate difficult paths of 
movement and, with other technologies for navigation, would help in decision making.  

 
Unlike for the leader recon, the display would have less information on many of the 
individual team members. In fact, for multi-squad operations, the PL mainly needs the SL 
gauge and perhaps a summary gauge for the fire teams. A combination of the SL and the 
subordinate cluster information, along with radio communications, may be sufficient for 
the PL to “read and understand” the cognitive states of his squads. The more experience a 
PL has with this combined information, the better he/she would be able to build 
situational knowledge for offensive operations. 

B.7.3 Defensive Operations 
Defensive operations may not need the same level of remote sensing as either leader 
recon or offensive operations except on active patrols. In the case of defensive patrols, 
the remote sensing technology would work the same as in offensive operations.  

 
In the case of static defenses, where there is little or no action, soldiers may become 
inattentive and may suffer decrements in cognitive vigilance. When the leadership is 
aware of this lowered state among soldiers, it interacts with them and request actions that 
will improve their states of alertness. This function can also be automated so as not to 
require action by the leaders. 
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B.8 Training 

B.8.1 Training Requirements of System 
The AugCog technology may not be totally intuitive to an untrained operator. The 
technology’s advantage may only be realized after leaders have gained experience using 
it and have developed the skills to more accurately “read” the states of their men under 
the context and conditions of the operation. This is not unlike the situation for radar 
operators. Once the skill of using the technology has been acquired, the advantage of 
using it versus not using it will be more fully appreciated. Hence extended training will 
be required on this and other sensor-display technologies. Interestingly, the technology 
itself can be used to monitor and accelerate the training process. The workload gauges 
can be used to indicate where extra training may be required. The gauges may also 
indicate where changes might be needed in operational training. Thus, the technology 
will perform multiple roles. 

B.8.2 Training Applications 
The AugCog system can be used during training to determine the impact of training 
modules or routines on the development of skills. As certain skills improve, the gauges 
will show reductions in cognitive workload during training of specific tactical operations. 
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Appendix C 
FFW–OTM Augmented Cognition Symbology 

C.1 Objective 
Definition of appropriate symbology to represent individual soldiers and appropriate 
modifiers to display cognitive state assessment derived from AugCog soldier-worn 
systems. 

C.2 References 
[FFT MSIT] FFW Medical Systems Integration Team: FFW - OTM ’07 Exercise: 

Remote Personnel Monitoring Symbology (v1.2), 9 April 2007. 

[2525B] Department of Defense Interface Standard: Common Warfighting 
Symbology (MIL-STD-2525B w/CHANGE 1, 1 July 2005). 

C.3 Definitions 
• Electroencephalogram (EEG): neurophysiologic measurement of the electrical 

activity of the brain by recording from electrodes placed on the scalp. 
• Electrocardiogram (ECG): physiological measurements of the electrical activity 

of the heart over time. 
• Cognitive State Classification (CSC): real-time determination of a soldier’s 

current cognitive workload from sensor-based (EEG and ECG) signals. 
• Augmented Cognition: real-time, sensor-based cognitive state classification 

systems. 

C.4 Strategy 
Since a standard symbology definition for the individual soldier level does not exist, the 
proposed symbology for cognitive state has followed the lead of the Futire Force Warrior 
(FFW) Medical Systems Integration Team (MSIT) approach. Since this document is 
modeled after the MIST draft, the symbology proposed here is modeled after that  
proposed by the MSIT (see [FFT MSIT]). 

C.5 Symbology 

C.5.1 Soldier Symbol  
As of this report, there is no standard 2525B tactical symbol definition for the individual 
soldier. When a 2525B symbol is defined and is used for specific soldiers, the 2525B 
definition will take precedence. But for the FFW OTM 2007, the new generic soldier 
symbology proposed by the FFW MSIT was used (Figure C-1). 
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New generic soldier symbology 

 
Reference: [FFT MSIT], page 1. 

Figure C-1. New generic soldier symbology. 
.  
The features of the symbol (listed in Table C-1) will follow the MIL-STD-2525B 
specification for the composition of tactical symbols (2525B, section 5.4, page 46). See 
this specification for definitions of the form and fill of the proposed individual soldier. 

Table C-1. Feature specifications for the soldier symbol. 

Feature Specification Reference 
Frame Circle for the individual soldier. [FFW MSIT] 
Affiliation Friend (only). Since there is no cognitive 

state classification information on non-
friendly forces, “Friend” is the only 
affiliation. 

[2525B], Section 5.3.1.1, page 48 

Fill Crystal Blue (128,224,255) for friendly 
affiliation. 

[2525B], Table XIII, page 51 

Icon Person icon illustrated in Figure C-1 [FFW MSIT], page 1. 
ID “…the tactical ID for each soldier needs to 

be appended to his individual symbol to 
ensure that he can be properly identified 
on the Common Operating Picture. Since 
this is a tactical requirement rather than 
medical specific, that tactical ID will be 
appended to this symbol.” 

[FFW MSIT], page 1. 

C.5.2 Healthy Soldier 
When the combat effective soldier has a fully functioning CSC system and the CSC does 
not detect any elevated cognitive workload states, then no alert is generated. In this case, 
the default soldier symbol is used, without modifiers. It is anticipated that this will be the 
most frequently used symbol. 

C.5.3 Cognitive State Alerts 
In monitoring cognitive state, the CSC system will continually assess the soldier’s 
physiology (ECG) and neurophysiology (EEG). Computer algorithms will process the 
data to determine: 
 

(a) whether soldier is operating under increased cognitive workload and  
(b) whether the CSC system itself is working properly. 

 
If the CSC system is working properly and it detects that the soldier is operating under 
increased workload, the computer algorithms will generate and transmit the appropriate 
status alert (i.e., Medium or High workload). 
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The modifier for the appropriate CSC status alert will be appended to the lower right 
corner as the “K” modifier. The “K” modifier is designated for Combat Effectiveness 
([2525B], Table IV, page 52). Form, length, and coloring will follow MIL-STD-2525B. 
The modifier is placed in a small text box to allow background color coding to emphasize 
the distinction between the levels of the CSC status alerts. 

C.5.4 System Fault Alert 
If at any point the soldier’s CSC system itself is not functioning properly, a modifier for 
the modifier for the CSC system fault alert will be appended to the symbol on the middle 
of the right side as the “H” modifier. The “H” modifier is designated for Additional 
Information ([2525B], Table IV, page 52). This alert needs to be distinct from other 
defined alerts.  

C.5.5 Unit Roll-Up 
For the FFW OTM 2007, there will be no unit roll-up since only one soldier will be 
equipped with the CSC system. 

C.5.6 Final Composite Symbols 
Table C-2 illustrates the tactical symbols for cognitive state feedback. 

Table C-2. Tactical symbols for cognitive state feedback. 

State Cognitive State: 
Medium Workload 

Cognitive State: 
High Workload 

CSC 
System Fault 

Alert 

Symbol 

 
 

C.6 System Logic 
Figure C-2 illustrates the system logic of the CSC system. 
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Figure C-2. CSC system logic. 
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