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1. Introduction 

Existing semiconductor models are based primarily on modeling the active components of the 
intrinsic device (1).  The design of monolithic microwave integrated circuits (MMIC) is 
dependent on the ability to generate accurate device models. In order to accurately model the 
intrinsic device, one needs a mechanism for extracting external parasitics.  A well-known 
procedure for measuring external parasitics has been implemented with a modification (1–3).  
The results observed from using the extraction technique suggest that it is a reliable method for 
determining parasitic elements. 

2. Theory 

The difficulty in determining the component values of the equivalent circuit model of either a 
large-signal model or a small-signal model comes from ambiguity.  For the purposes of this 
report, the term ambiguity, in the general case, refers to a calculated result that may result from 
several different inputs.  In the specific case, ambiguity refers to a set of scattering parameters 
(S-parameters) that could be the result of different equivalent circuits or multiple instantiations 
of a single equivalent circuit using different sets of component values.  The key to eliminating 
ambiguity and solving for a single unique solution is being able to perform experiments capable 
of isolating different parts of the circuit model so that they can be measured separately.  This is 
done by applying a bias to a device that causes it to behave in a predictable manner.  Outside of 
the normal operating regime of the device, a high electron mobility transistor (HEMT) can be 
forced to behave as either a short circuit or an open circuit.  Figure 1 shows the model for the 
external parasitics that is used in this report and the equivalent circuit models currently under 
development at the U.S. Army Research Laboratory (ARL) (1).   
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Figure 1.  External parasitic equivalent circuit model. 

The intrinsic device model is not relevant to the topic of this report and as such is treated as a 
black box.  During the cold field-effect transistor (FET) measurements, the source and the drain 
are both held at zero volts.  When biased in this manner, the device behaves like a diode. 

2.1 Reverse Bias: Shunt Parasitic Capacitor Extraction 

The device is reversed biased by setting the drain and source to zero volts and applying a 
negative voltage to the gate.  When the device is reversed biased, the intrinsic device small-
signal low frequency behavior can be modeled as an open circuit.  In this case the diode is 
reverse biased.  This setup allows the equivalent circuit model to be represented as a set of 
capacitors in parallel, as shown in figure 2. 

 
 (a) (b) 

Figure 2.  (a) Simplified equivalent circuit model of the reverse biased device and (b) with series 
components removed. 
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The circuit then becomes a three-terminal system connected by shunt capacitors.  The equivalent 
Y-parameter model is shown in figure 3 (4).   

 

Figure 3.  Admittance matrix equivalent circuit model. 

The procedure for calculating the parasitic capacitances is shown below: 

1. Apply a sufficiently negative bias to the device to pinch off the gate and drain. 

2. Measure the S-parameters of the device. 

3. Convert the S-parameters into admittance parameters. 

4. Calculate the parasitic capacitances using the admittance parameters. 

Equations 1–3 are used to calculate the parasitic capacitance for a given set of admittance 
parameters: 

 )Im( 12


Y

Cpgd


  (1) 

 )Im()Im( 1211


YY

Cpgs   (2) 

 )Im()Im( 1222


YY

Cpds   (3) 

2.2 Forward Bias: Series Parasitic Capacitor Extraction 

The procedures for extracting the series parasitic component values from the forward-biased 
device are analogous to those for the reversed-biased device but are more complicated and 
include several additional considerations.  When the device is forward biased, the intrinsic 
device behaves like a short circuit.  Measurement has shown that at high frequencies, a residual 
gate capacitance is present on the device and must be included in the model when extracting  
the parasitics.  Figure 4 shows the model used to extract parasitics when the device is  
forward biased. 

-Y12

Y11 +Y12 Y22 +Y12
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Figure 4.  High frequency model of the forward-biased device. 

The procedure for calculating the parasitic capacitances is as follows: 

1. Apply a positive voltage to the gate to drive sufficient current through the device to put the 
diode into the “on” state but not enough current to damage the device. 

2. Measure the S-parameters of the device. 

3. Convert the S-parameters to Y-parameters. 

4. Subtract the shunt parasitic capacitances. 

5. Convert the S-parameters to Z-parameters. 

6. Calculate the component values of the series elements. 

In step 4, the admittance of the shunt capacitors are subtract from the extrinsic Y-parameters.  
The equations used for subtracting the Y-parameters are shown below: 
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Following this, the admittance parameters with the parasitic capacitances removed are converted 
into impedance parameters.  The equivalent circuit with the parasitic capacitance removed is 
shown in figure 5. 

 

Figure 5.  High frequency model of the forward-biased 
device with parasitic capacitances deembeded. 

This model shows a three-terminal passive device. A well-known technique for determining the 
Z-parameters of such a system is shown in figure 6 (4). 

 

Figure 6.  Impedance matrix equivalent circuit model. 

From this, we can determine the impedance parameters of the model.  Equations 8–10 show how 
to calculate the impedance parameters of the model in figure 5 (2):  
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Based on these equations, the parameter values can be calculated:  

 )Re( 12zRs   (11) 

 sg RzR  )Re( 11  (12) 

 sd RzR  )Re( 22  (13) 

 


)Im( 12z
Ls   (14) 

 sd L
z

L 


)Im( 22  (15) 

 
gs

sg C
L

z
L

2
11 1)Im(


  (16) 

The term Cgs must be determined by a separate procedure.  There are several useful techniques 
for calculating Cgs.  One can calculate Cgs using a polynomial fit function on the reactive 
component of the impedance.  We have developed a technique that uses differentiation to isolate 
elements that have different frequency dependence.  Others have used knowledge of the 
fabrication process to estimate Cgs.  This component can also be determined by examining the 
resonance properties of that branch of the T junction. 

3. Measurement Procedure and Software Operation 

We implemented the cold FET method in the Radio Frequency (RF) Test lab.  Figure 7  
shows a graphic representation in flow chart form of the programs used to perform the cold  
FET measurement. 
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 (a) (b) (c) 

 

Figure 7.  Flow chart for cold FET programs (a) instrument control (b) parasitic capacitance 
calculation (c) series parasitic calculation. 

3.1 System Hardware 

We used the ARL load pull system depicted in figure 8 to perform the cold FET measurements.  
 

 

Figure 8.  Block diagram of the cold FET measurement system. 
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to apply a bias to the device, measure the current, and measure the S-parameters.  The bias 
controls the operating regime of the device under test (DUT).  The current must be monitored in 
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state.  The S-parameters are used to measure the high frequency model of the device. In our 
setup, the voltage and current were both provided and measured by an HP4142B power supply.  
The S-parameters were measured using an Agilent E8364A. 

The hardware is connected to a computer from where the instruments are externally controlled.  
We used the programs written for the scripting language program MATLAB to control the 
experiment and record the measurements.  We recorded the data into a series of files, and then 
analyzed this data using different algorithms, as well as implemented the data in MATLAB and 
calculated and recorded the values for the parasitic elements. 

3.2 Procedures 

Prior to performing the experiment, we calibrated the Vector Network Analyzer (VNA) using the 
thru, reflect, line (TRL) calibration procedure.  The DUT is placed on the test station and the 
probes are landed on the device.   

The function that controls the instruments that perform the measurements during the cold FET 
test is Measure_Gate_Data. 

The format for the function is as follows: 

[Ig] = Measure_Gate_Data(Dev_name, Max_gate_power, Max_gate_V, Min_gate_V) 

The inputs are as follows: 

Dev_name (Text string) The device name is a text string that used is in generating the 
output files. 

Max_gate_power (Milliwatts, floating point decimal number) This is the maximum power 
that is allowed to pass through the device before the experiment is 
terminated. 

Max_gate_V (Volts, floating point decimal number) This is upper limit of the voltage 
sweep. 

Min_gate_V (Volts, floating point decimal number) This is lower limit of the voltage 
sweep. 

The outputs are as follows: 

Ig (Milliamps, floating point decimal vector) This is a vector that consists of 
the gate current for each voltage measure. 

The function generates two types of output files: 

• %Dev_name_VDS0.0_VGS#.#.s2p: This file records the measured S-parameters for a 
given bias in touchstone format. 
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• % Dev_name_Gate_IV.dcp: This file records the gate current and voltage of the device 
over the range of the voltage sweep. 

An example usage of the function would take the following form: 

[Ig] = Measure_Gate_Data(‘Dev_1_test_1’, 0.1, 3, -5) 

The function begins by biasing the device to the minimum voltage.  The S-parameters at this bias 
are measured and recorded in a file.  The voltage is increase incrementally.  Once the voltage 
passes positive one volt, the program begins measuring and recording the forward bias S-
parameter measurements.  The sweep terminates when the DC power being dissipated exceeds 
the maximum power or when the voltage reaches the maximum voltage. 

At the successful conclusion of the program, S-parameter files in touchstone format for different 
biases are written to the hard drive, and a file containing the current-voltage parameters is 
generated. 

At this point the measurements are completed and the data must be analyzed.  The S-parameters 
are uploaded into MATLAB and two separate functions are used to calculate the values of the 
parasitic elements of the DUT. 

The first function has the format shown below and is used to compute the parasitic capacitances 
from the negatively biased S-parameters: 

[Cpgd, Cpds, Cpgs] = extract_pad_cap(S,Start_freq,Stop_freq) 

The inputs are as follows: 

S (S-parameters, N×5 complex floating point decimal matrix) This input 
contains the S-parameters in touchstone format for the reversed biased DUT. 

Start_freq (GHz, floating point decimal) This is the lowest frequency in the S-parameters 
that is used in the calculations. 

Stop_freq (GHz, floating point decimal) This is the highest frequency in the 
S-parameters that is used in the calculations. 

The outputs are the parasitic capacitances: 

Cpgd (Farads, floating point decimal) This is the gate drain parasitic capacitance. 

Cpds  (Farads, floating point decimal) This is the drain source parasitic capacitance. 

Cpgs  (Farads, floating point decimal) This is the gate source parasitic capacitance. 

An example usage of the function would take the following form: 

[Cpgd, Cpds, Cpgs] = extract_pad_cap(S_pinch_off,.2,1); 
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The other function has the format shown below and is used to compute the parasitic capacitances 
from the negatively biased S-parameters: 

[Rs, Rg, Rd, Ls, Lg, Ld] = extract_L_R(S,Start_freq,Stop_freq, Cpgd, Cpds, 
Cpgs) 

The inputs are as follows: 

S (S-parameters, N×5 complex floating point decimal matrix) This input 
contains the S-parameters in touchstone format for the forward-biased DUT. 

Start_freq (GHz, floating point decimal) This is the lowest frequency in the S-parameters 
that is used in the calculations. 

Stop_freq (GHz, floating point decimal) This is the highest frequency in the 
S-parameters that is used in the calculations. 

Cpgd (Farads, floating point decimal) This is the gate drain parasitic capacitance. 

Cpds  (Farads, floating point decimal) This is the drain source parasitic capacitance. 

Cpgs  (Farads, floating point decimal) This is the gate source parasitic capacitance. 

The outputs are the series parasitic values: 

Rs  (Ohms, floating point decimal) This is the series source parasitic resistance. 

Rg  (Ohms, floating point decimal) This is the series gate parasitic resistance. 

Rd  (Ohms, floating point decimal) This is the series drain parasitic resistance. 

Ls  (Henries, floating point decimal) This is the series source parasitic inductance. 

Lg  (Henries, floating point decimal) This is the series gate parasitic inductance. 

Ld  (Henries, floating point decimal) This is the series drain parasitic inductance. 

An example usage of the function would take the following form: 

[Rs, Rg, Rd, Ls, Lg, Ld] = extract_L_R(S_forward, 20,38, Cpgd, Cpds, Cpgs); 

These functions calculate the parasitic parameter values in the manner described in section 2. 
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4. Results 

The procedure was performed on a number of devices.  The values of the components in the 
equivalent circuit model were extracted and S-parameters for the equivalent circuit model were 
calculated.  A representative example of these calculations is presented.  We used Agilent’s 
Advanced Design System (ADS) computer aided design program to compare measured data with 
modeled data. Figure 9 shows the circuit used to compare the reverse bias measured data with 
the modeled data.  

S-Parameter Simulation
Linear Frequency Sweep
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Figure 9.  ADS circuit used to compare measured data with the model for the reverse biased device. 

Figure 10 shows the comparison of the measured and modeled data from 1 to 20 GHz. 
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Figure 10.  Reverse biased measured and modeled S-parameters compared (a) S11 and S12 and (b) S22 and S21. 

Note: The lower numbered (1,2) S-parameters are modeled and higher numbers (3,4) are measured. 

The circuit used to model the forward-biased devise is shown in figure 11. 
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Figure 11.  ADS circuit used to compare measured data with the model for the forward-biased device. 
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The measured S-parameters for the forward-biased device are compared to those of the modeled 
device in figure 12 from 10 to 40 GHz.  The frequency ranges shown in figures 10 and 12 were 
selected to be where the parasitics being measured would have the largest effect.  These are low 
frequencies for capacitors and high frequencies for inductors.  

We calculated the error by taking the absolute value of the difference between measured and 
calculated values divided by the absolute value of the measured value. The average error for S11 
and S22 for the reverse bias model was less than 6%.  The error for the S11 and S22 for the forward 
bias model was less than 7%.  The forward and reverse transmission parameters (S12 and S21) 
were higher but on average less than 15%.  The magnitude of the transmission parameters was 
much smaller than the reflection coefficients.  This aspect makes them more susceptible to 
measurement errors. These errors are from the directly extracted values, and we have 
successfully reduced these values by using optimization algorithms. Optimizing the parasitic 
elements together with the small-signal model of the device resulted in errors of less than  
a few percent.  
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Figure 12.  Forward biased measured and modeled S-parameters compared (a) S22 and S21 (b) S11 and S12.  

Note: The lower numbered (1,2) S-parameters are modeled and higher numbers (3,4) are measured. 

5. Conclusions 

The ability to isolate and determine the parasitic capacitances of a device under test is a crucial 
step in generating either small-signal or large-signal device models. We have implemented a 
well-known parasitic extraction algorithm that determines the component values of a device 
model that reliably reproduce the measured data. Our technique builds upon existing parasitic 
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extraction algorithms by numerically determining the residual intrinsic device gate  
capacitances.  This technique has been fully automated and can be integrated into other  
model generation procedures. 

The software used to perform the measurements and calculations describe in the report is 
available upon request for use in the interest of the Government on a case-by-case basis as 
determined by the authors. 
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