
Numerical Analysis for Relevant Features

in Intrusion Detection

(NARFid)

THESIS

José Andrés González, Captain, USAF

AFIT/GCE/ENG/09-02

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCE/ENG/09-02

Numerical Analysis for Relevant Features
in Intrusion Detection

(NARFid)

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

José Andrés González, BS

Captain, USAF

March 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/09-02

Numerical Analysis for Relevant Features

in Intrusion Detection
(NARFid)

José Andrés González, BS

Captain, USAF

Approved:

/signed/ 5 March 2009

Michael J. Mendenhall, Maj, PhD
(Chairman)

date

/signed/ 5 March 2009

Barry E. Mullins, PhD
(Member)

date

/signed/ 5 March 2009

Gilbert L. Peterson, PhD
(Member)

date

AFIT/GCE/ENG/09-02

Abstract

Identification of cyber attacks and network services is a robust field of study

in the machine learning community. Less effort has been focused on understanding

the domain space of real network data in identifying important features for cyber

attack and network service classification. Motivations for such work allow for anomaly

detection systems with less requirements on data “sniffed” off the network, extraction

of features from the traffic, reduced learning time of algorithms, and ideally increased

classification performance of anomalous behavior.

This thesis evaluates the usefulness of a good feature subset for the general

classification task of identifying cyber attacks and network services. The generality

of the selected features elucidates the relevance or irrelevance of the feature set for

the classification task of intrusion detection. Additionally, the thesis provides an

extension to the Bhattacharyya method, which selects features by means of inter-class

separability (Bhattacharyya coefficient). The extension for multiple class problems

selects a minimal set of features with the best separability across all class pairs.

Several feature selection algorithms (e.g., accuracy rate with genetic algorithm,

RELIEF-F, GRLVQI, median Bhattacharyya and minimum surface Bhattacharyya

methods) create feature subsets that describe the decision boundary for intrusion

detection problems. The selected feature subsets maintain or improve the classifica-

tion performance for at least three out of the four anomaly detectors (i.e., classifiers)

under test. The feature subsets, which illustrate generality for the intrusion detec-

tion problem, range in size from 12 to 27 features. The original feature set consists

of 248 features. Of the feature subsets demonstrating generality, the extension to

the Bhattacharyya method generates the second smallest feature subset. This the-

sis quantitatively demonstrates that a relatively small feature set may be used for

intrusion detection with machine learning classifiers.

iv

Acknowledgements

A thank you to my wife for her encouragement and putting up with me (I mean the

long hours). I get so focused sometimes that she truly brings me out of it. In fact,

my mother would say, “if my head wasn’t attached, I would leave it at home.”

Additionally, thanks to my adviser, Maj Mendenhall, for his guidance. Dr.

Seuss provides a keen description, “We like our Mike and this is why: Mike does all

the work when the hills get high.” [50] His insights for surmounting the “mental hills”

have been invaluable in my coursework and thesis.

José Andrés González

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

I. Introduction . 1-1
1.1 Background . 1-1

1.1.1 National Cyberspace Security Strategy 1-2

1.1.2 Network Centric Warfare 1-2
1.2 Problem Statement . 1-4
1.3 Scope . 1-5

1.4 Organization . 1-5

II. Background . 2-1

2.1 Intrusion Detection . 2-2
2.2 Related Work . 2-4

2.2.1 Feature Selection 2-4
2.2.2 Classification 2-9

2.3 Machine Learning Algorithms 2-11

2.3.1 C4.5 Decision Tree 2-14
2.3.2 Näive Bayes Classifier 2-18

2.3.3 Multilayer Perceptron 2-19

2.3.4 Generalized Relevance Learning Vector Quanti-
zation Improved 2-23

2.3.5 RELIEF-F . 2-26
2.3.6 Probability of Error and Average Correlation Co-

efficient . 2-27
2.3.7 Classifier Accuracy Rate 2-29

2.4 Summary . 2-30

III. Feature Selection Methodology 3-1

3.1 Intrusion Detection and Feature Selection 3-1
3.2 Establishing and Evaluating Feature Subsets 3-3

3.2.1 Ordering Subsets for Evaluation 3-4

3.2.2 Determining a Subset for Each Feature Selection
Algorithm . 3-6

vi

Page

3.2.3 Generality of Features 3-8

3.3 A Proposed Feature Selection Approach 3-12

3.4 Evaluation Techniques 3-14

3.4.1 Measuring Classifier Performance 3-14

3.4.2 Determining the Statistical Significance of Clas-
sifier Improvement for Retained Features 3-15

3.5 Summary . 3-19

IV. Experimental Results and Analysis 4-1

4.1 Design of Experiments 4-1

4.1.1 Data Set . 4-1
4.1.2 Experimental Parameters 4-5

4.2 Results of Experiments 4-7

4.2.1 Subset Selection for Each Feature Selection Algo-
rithm . 4-7

4.2.2 Subset Comparison by Classifier 4-13

4.3 Validation of Results . 4-18
4.4 Summary . 4-20

V. Conclusions . 5-1
5.1 Summary of Results . 5-1

5.2 Contributions . 5-2
5.3 Recommendations for Future Work 5-3

Appendix A. Feature Selection Results A-1

Appendix B. List of Features from [61] B-1

Bibliography . BIB-1

vii

List of Figures
Figure Page

1.1. Joint Tactical Radio System Network 1-3

2.1. Intrusion Detection System Architecture 2-3

2.2. Overlayed Histogram of Feature 177 2-8

2.3. Example C4.5 Decision Tree 2-13

2.4. Normal Approximation of Binomial Distribution 2-18

2.5. Multilayer Perceptron . 2-20

2.6. Processing Element . 2-21

3.1. Feature Analysis Process . 3-2

3.2. Feature Selection Process . 3-3

3.3. Expected Performance of Ordered Subsets 3-8

3.4. Classifier Taxonomy Schematic 3-10

3.5. Example of Bhattacharyya Coefficient Surfaces 3-11

4.1. Accuracy Rate with Best First search: Performance difference. 4-9

4.2. Accuracy Rate with Best First search: Multiple Comparison of

means. 4-10

4.3. Accuracy Rate with Best First search: Multiple Comparison of

mean ranks. 4-10

4.4. Rank Comparison of Selected Subsets: Näive Bayes Classifier. . 4-14

A.1. Feature Selection: Accuracy Rate with Best First search. . . . A-2

A.2. Feature Selection: Decision Tree Method (C4.5). A-3

A.3. Feature Selection: Accuracy Rate with Genetic algorithm. . . . A-4

A.4. Feature Selection: RELIEF-F. A-5

A.5. Feature Selection: Probability of Error and Average Correlation

Coefficient (POEACC). A-6

viii

Figure Page

A.6. Feature Selection: Generalized Relevance Learning Vector Quan-

tization Improved (GRLVQI). A-7

A.7. Feature Selection: Median Bhattacharyya. A-8

A.8. Feature Selection: Minimum Surface Bhattacharyya. A-9

A.9. Comparison of Selected Subsets: Näive Bayes Classifier. A-10

A.10. Comparison of Selected Subsets: C4.5 Classifier. A-11

A.11. Comparison of Selected Subsets: Multilayer Perceptron with Back-

propogation (BP) Classifier. A-12

A.12. Comparison of Selected Subsets: Generalized Relevance Learning

Vector Quantization Improved (GRLVQI) Classifier. A-13

ix

List of Tables
Table Page

3.1. Characteristics of Feature Selection Methods 3-5

3.2. Top Four Features from Accuracy Rate with Genetic Algorithm 3-6

3.3. Characteristics of Classification Methods 3-10

3.4. Critical Values for Testing Normality using modified Anderson

Darling Test from [16] . 3-17

3.5. Example Wilcoxon Signed Rank Test 3-20

4.1. Data Sets - Number of Instances in each Class 4-3

4.2. Example Features by Category 4-3

4.3. Pairs of Features with Perfect Correlation 4-4

4.4. Uninformative Features . 4-4

4.5. Parameters for Machine Learning Algorithms 4-6

4.6. Performance of Selected Subsets 4-13

4.7. Performance of Selected Subsets in Relation to All Features . . 4-16

A.1. Selected Subsets by Feature Selection Method A-14

x

Numerical Analysis for Relevant Features

in Intrusion Detection

(NARFid)

I. Introduction

The new United States (US) Air Force mission statement expands the Air

Force’s role from the physical domains of air and space to include cyberspace. The

adoption of computer networking as part of this mission domain highlights the de-

pendencies of the US’ physical war-making capabilities, national infrastructure, and

economy on computer systems and communication technologies. The US national

infrastructure and defense systems are placed at risk due to the low cost and minimal

knowledge required to cause harm in the cyberspace domain. The ability to recognize

threats is critical to the US Air Force’s ability to find, fix, track, target and engage

in cyberspace.

1.1 Background

The United States heavily relies on information technologies in the private and

public sectors to maximize effectiveness through automation, communication, situa-

tional awareness, and decision support. The loss or degraded operation of commercial

and government services due to cyber attacks could cause havoc on productivity, over-

all performance and safety, if critical infrastructures are affected. Entrenched usage

of information technologies is core to the business community, the government, and

a way of life for many. Even though the commercial sector has pushed hard for net-

work and computer security improvements over the past decade, a virtual “arms race”

between unethical hackers and security professionals has resulted with no expected

end to the exploit cycle [79]. Without flawless systems with absolute security, novel

methods of detecting and responding to attacks are required.

1-1

1.1.1 National Cyberspace Security Strategy. The importance of cyberspace

and information technologies illicits planning at all levels of government. At the high-

est level, the National Strategy to Secure Cyberspace [53] provides a framework to

deter, prevent and respond to threats covering the physical and logical cyber infras-

tructure. The strategy emphasizes the need for cooperation among US government,

other public entities, private institutions, international organizations, and govern-

ments to secure cyberspace. The Department of Homeland Security has a central role

in facilitating this national strategy. The Department of Defense’s (DoD’s) role is to

secure the defense industrial base, quickly attribute the source of cyber attacks, and

develop capabilities to prevent attacks from reaching critical systems and infrastruc-

tures.

A foundational principle in deterring attacks in cyberspace is removing anonymity

from the offender and holding them accountable. The Internet and most common op-

erating systems were developed as open systems. Cyber attack techniques highlight

these characteristics by obfuscating their origins so the source of a packet is not nec-

essarily the source of the attack. The botnet used against Estonia is a prime example,

where attacks came from all over world [65]. No state or other actor claimed responsi-

bility or was deemed culpable. Implementing a secure cyberspace with accountability

will require a concerted effort in research and development of software and operat-

ing systems, and security-oriented standard development. The National Strategy to

Secure Cyberspace addresses all of these areas and relies heavily on market forces to

correct these issues along with government research and development.

1.1.2 Network Centric Warfare. Communication systems reside at the heart

of the United States warfighting capability and ability to implement network centric

warfare. The DoD strongly pursues the concept of network centric warfare since a

“networked force” has been identified as a decisive factor to success [52]. The DoD

intends to accelerate processes and provide data integration for seamless operations

by optimizing members’ capabilities with information technologies. The concept pro-

1-2

Figure 1.1: Joint Tactical Radio System Network: Denotes the extensive integra-
tion of DOD systems with network communication capabilities

vides an increased warfighting advantage through information sharing of situational

awareness and commander’s decisions. The warfighter then benefits from the speed of

command, and increased lethality and survivability. The network centric operations

concept will accelerate the deployment of networked forces and capabilities placing

an even heavier burden on the DoD’s communication systems. Network centric oper-

ations blanket the operational environment and are entwined with operation systems.

For example, Figure 1.1 depicts the planned Joint Tactical Radio System, which will

integrate operational and tactical systems to the DoD’s Global Information Grid.

Extensive developmental and operational test are performed on warfighting systems

to mitigate vulnerabilities and operational flaws. Even so, the military’s unclassified

and classified network must be monitored for threats.

1-3

1.2 Problem Statement

Identification of cyber attacks and network services is a robust field of study in

the machine learning community [1,2,5,11,18,20–23,25,27,39,42,44,45,48,49,54,58–

62,64,66,72,77,80,81,85]. Less effort has been focused on understanding the domain

space of real network data to identify important features for cyber attack and network

service classification. Motivations for identifying the most relevant features allows for

anomaly detection systems with fewer requirements on data “sniffed” off the network,

extraction of features from the traffic, reduced learning time of algorithms, and ideally

increased performance in accuracy.

For the purpose of intrustion detection, this thesis seeks to minimize the number

of features while obtaining statistically-significant improvement in classification, and

decipher the relationships and traits of the selected feature subsets. Feature selection

of a high dimensional data may allow for improvement of a classifier’s generalizabil-

ity and comprehensibility, and data simplicity [46]. Generalizability of a classifier

provides the ability of a classifier to model the data for the sake of improving clas-

sification accuracy. Predictive accuracy (or error) is often the metric for assessing

generalizability; the higher the accuracy the greater the performance of the model on

unseen data. Comprehensibility of a classifier entails understanding the relationships

within data that support accurate classification. The simpler the model, the easier

it is to understand the relationships generated between the features. Data simplicity

pertains to the number of features and potential samples. In real world scenarios,

features are often real numbers resulting in an infinite number of possible samples.

In a contrived scenario provide by Liu and Motoda [46], one may have a maximum of

two binary features that results in only four possible samples. Dimensionality reduc-

tion by selecting a subset of features and a discretization of the features provides for

simpler models that require less learning and improved accuracy.

This thesis evaluates the usefulness of a good feature subset for the general

classification task of identifying cyber attacks and network services. The generality

1-4

of the selected features elucidates the relevance or irrelevance of the feature set for

the classification task [46]. Feature selection utilizing a single classifier for verification

may lead to a feature subset that only performs well for the implemented classifier.

Classification performance across a varied group of classifiers demonstrates that the

feature subset provides inherent classification advantage vice preferring the bias of a

single classifier.

1.3 Scope

This research focuses on the ability to find cyber attacks over a network. Cur-

rent methods for intrusion detection systems analyze network traffic predominantly

by signature-based and policy-based methods. Current research of anomaly-based

methods assesses various machine learning techniques in clustering and classifying

network traffic. This thesis places a greater focus on developing and validating the

features (e.g., statistics, metrics or other measures) of network traffic used to describe

a network flow for identifying cyber attacks. The feature sets may be further op-

timized by determining a minimal set for clustering and classification. The thesis

will pursue machine learning approaches to analyzing network traffic for the purpose

of detecting anomalous behavior with network traffic. Machine learning is used in

selecting, validating and decreasing the dimensionality of relevant features.

1.4 Organization

The following chapters discuss areas of machine learning and their application

to the problem of intrusion detection by seeking a useful set of features to describe

the decision boundary. Chapter II delves into the established research in the area of

intrusion detection, classification methods and feature selection algorithms. Chap-

ter III outlines a methodology for assessing useful features for the intrusion detection

problem and recommends an extension to a current feature selection method. Chap-

ter IV provides results of the experiments and analysis of why certain features may

1-5

be beneficial. Chapter V summarizes this thesis’ effort, details the contribution of

this work, and recommends future work.

1-6

II. Background

Research in the area of intrusion detection appears to be in two “camps.” The first

camp revalidates established results for the classification of network traffic, with little

apparent extension to the field of study. For example, several works demonstrate

the effectiveness of the multilayer perceptron to classify traffic types from monitored

traffic [11,22,25,44,62,64]. A majority of whom utilize the same data sets developed

by a Defense Advanced Research Projects Agency (DARPA) study [27,45]. Analysis

of well performing classifiers for a given application is certainly warranted; there are

numerous extensions to the multilayer perceptron in regards to intrusion detection

(e.g., string handling and layered approaches [23, 49]). Redundant and gratuitous

works, which profess similar conclusions, serve little utility in extending the current

body of knowledge.

The second camp of research assesses novel methods in developing a framework

for anomaly detection. It is this body of work that this thesis intends to extend by as-

sessing relevant features for inclusion in an intrusion detection system. The Network

and Operating Systems group at the University of Cambridge addresses important

facets to the intrusion detection system. A key component from a research perspec-

tive is data for experimentation. The University of Cambridge group has developed

a broad feature set as well as a test suite (see Section 4.1.1). Additionally, the group

addresses multiple components of the intrusion detection system to include moni-

toring of data and detection methods [2, 58, 60]. The monitoring system is capable

of examining network traffic at gigabit speeds and extracting features pertinent to

classification off-line. The group has demonstrated extensions to established classifi-

cation methods for intrusion detection, (e.g., multilayer perceptron and Näive Bayes

classifiers), which is discussed further in Section 2.2.2. An area lacking is analysis of

the features relevant to the intrusion detection problem. Identification of a relevant

feature subset allows for the possible online extraction of those features for (near)

real-time classification. This chapter continues by discussing the generic framework

2-1

of intrusion detection and pertinent work in the field of machine learning for anomaly

detection and feature selection.

2.1 Intrusion Detection

Intrusion Detection Systems (IDS) serve as a defensive tool against cyber at-

tacks on a network, host, or application. A network-based IDS monitors network

traffic over a single or multiple network nodes. A host-based IDS monitors a given

machine’s operating system, software, and files. An application-based IDS monitors a

specific application-level system such as a database or accounting system. The basic

framework of a typical IDS is illustrated by Figure 2.1. A given system is monitored

and data is extracted for real-time or post analysis with an IDS. The core function

of the IDS identifies malicious behavior within the monitored system or network.

Pending on the IDS type, responses may vary from blocking ports, quarantining files,

or revoking user access. The malicious behavior may have an internal or external

source. An internal bad actor is a legitimate user or process performing a disallowed

operation. An unauthorized user or process gaining access and executing commands

constitutes an external bad actor. Data gathering methodologies, detection engines,

and responses may function irrespective of source or be tailored to address a given

system threat. As discussed, an IDS contains several components, but much of the

difficulty resides in the central component, the detector. There are two methodologies

for implementing a detector within an IDS: anomaly and signature detection.

Anomaly detection annotates outliers, often termed abnormal, from all traffic.

The identified outliers are expected to be indicative of malicious traffic. This method-

ology is stigmatized with having large false alarm rates [3, 39]. In general, anomaly

detection may be implemented via various methods like agents, expert systems and

machine learning techniques. This research address methods for feature selection and

classification pertinent to anomaly detection. These methods are directly applicable

to other domains that contain high dimensional data requiring classification, regres-

2-2

Figure 2.1: This is an architecture of a typical intrusion detection system from [40]

sion, or clustering. Previous work on the techniques and challenges for network traffic

classification are discussed in Section 2.2.

Signature detection (commonly known as misuse detection) may utilize pattern

matching techniques and/or rule-based models to compare observed traffic with an

established “library” of known attacks. It provides a high confidence in detection

since the attacks are known and described in detail in a library. Issues arise with

these types of systems due to the lag in adding new signatures to a given library or

missed variations of known attacks.

Although both methodologies fundamentally support the same capability, the

two techniques address the problem of intrusion detection from opposite angles.

Signature-based detection uses the attributes of all possible (known) attacks to find

an attack. Where anomaly-based detection baselines the operation of the system (to

include network) and determines attacks based on variations from the baseline. This

description makes certain assumptions to imply the effectiveness of a given approach.

Signature-based detection requires knowledge of all possible attacks to always be suc-

2-3

cessful and anomaly-based detection requires in-depth knowledge of how a system is

suppose to “behave.” How to define the behavior of a system has significant com-

plexity. A signature-based approach relies on maintaining an up-to-date file of the

malicious software. Anomaly-based detection relies on updates of “appropriate” be-

havior of the system to assess changes and recognize the actions of malicious software.

The output of a signature-based system is deterministic. A given file or collection of

network traffic must match a signature of malicious code to illicit a detection. Many

anomaly-based detection methods utilize stochastic or statistical approaches. The

detection bases its conclusion on probabilistic evidence of whether a behavior is ma-

licious or not, which may require further assessment. Since anomaly detection is not

limited to a set of identified malicious code, it will have the capability to find new

cyber attacks with a degree of certainty (or uncertainty pending your perspective).

2.2 Related Work

There is a large body of research into the use of machine learning algorithms

for traffic classification and identification of network attacks for anomaly detection.

Traditionally, well-known port numbers are used to distinguish types of network traf-

fic. Of course, this approach is not feasible for cyber attacks, but many applications

obscure their high-level application by using a well-known port of an alternate ap-

plication. This is common among peer-to-peer networks. Vice solely relying on port

numbers, supervised and unsupervised techniques utilize statistical trends among like

flows to perform classification or clustering. Claffy and Paxson [15, 67] illustrate

the separation of network traffic volume distributions and transmitted byte statistics

that make machine learning techniques plausible from data collected with a network

“sniffer.” Specifically, flow duration and packet volume distinguished Domain Name

System packets from other types for network traffic.

2.2.1 Feature Selection. Dash and Liu define feature selection as selecting

the minimally sized subset of features, which does not significantly reduce classifica-

2-4

tion accuracy and maintains the original class distribution given all of the features [17].

The adoption of a large number of “ad hoc” features for real-world classification prob-

lems is to be expected, since an adequate understanding of the domain is unlikely.

Features may be redundant, uninformative, or even distractors for a given applica-

tion. Features may have no relevance alone, but together with other features they may

provide synergies for significant performance gains [26]. An ideal classification pro-

cess would involve only relevant features to minimize running time, improve learning

performance, and illustrate understanding of the specific classification problem.

Feature selection is an intractable, exponentially hard, O(2N), search problem

where N is the number of features and 2N − 1 is the number of feature subsets,

ignoring the null set, to be searched for determining optimal performance [47]. The

number of combinations with k elements drawn from a set of n elements [57] may be

calculated with
(

n

k

)

=
n!

k!(n− k)!
. (2.1)

The number of subset combinations to be searched is proved with the binomial theo-

rem, when x and y are equal to 1, as follows:

(x + y)n =
n

∑

k=0

(

n

k

)

xn−kyk

(1 + 1)n =
n

∑

k=0

(

n

k

)

1n−k1k

2n =
n

∑

k=0

(

n

k

)

. (2.2)

By ignoring the null set (k = 0), the precise search space may be calculated:

2n =
n

∑

k=1

(

n

k

)

+

(

n

0

)

2n − 1 =
n

∑

k=1

(

n

k

)

. (2.3)

2-5

There are two major components to the optimization task of feature subset se-

lection for classification, as with other optimization problems [17]. First, a generation

method traverses subsets utilizing tree-based, stochastic, or other search methods.

Second, an evaluation measure estimates the (expected) performance of a given sub-

set.

Generation methods are search methods of the feature subset space. In choosing

a search method, one would want a complete search that is guaranteed a solution (e.g.,

breadth-first search). Whether the solution is optimal or not for a given evaluation

measure would be beneficial. Search methods take advantage of costs, heuristics

and stochasticity in pruning the space. Running times are significantly less than if

one performs an exhaustive search of every possible combination. Evaluating features

individually or using a heuristic reduces the search problem time complexity to O(N2)

or less [17]. For example, a heuristic may be used to reduce the search space by

greedily selecting features so the space is reduced by one each iteration. In this case,

the search space is O(N2) since the number of features to search goes from N to

one and is calculated by N + ... + 2 + 1 = N(N − 1)/2. Additionally, the use of a

classifier for determining the evaluation measure would hinder the running time by

the complexity of the classification technique, which may be significant for iterative

methods.

Evaluation measures provide a cost for the performance optimization of a feature

or feature subset in classification. Measures are based on distance, information theory,

dependency, consistency, or classifier accuracy rate. Distance, information theory, de-

pendency, and consistency measures allow for broad application of a selected feature

set since the algorithms depend on intrinsic characteristics and relationships of the

features, including class label at times [17]. Utilizing classification as the evaluation

measure provides a direct performance measure of the pertinent task on a represen-

tative test set. Without assessing the actual performance of the feature subset, one

would not be able to determine any synergies from grouping certain subsets of fea-

2-6

tures together. It is not necessarily true that the best-performing feature set for a

given classifier is universally useful for all classification techniques.

Blum and Langley [7] categorize feature selection methods into three camps:

embedded, filter, and wrapper. An embedded method performs feature selection

as part of a learning algorithm. A filter method removes irrelevant features utilizing

internal characteristics of the features, vice an external learning algorithm to quantify

performance. Lastly, a wrapper method utilizes a learning algorithm to evaluate

subsets in the search space. Feature selection methods may contain characteristics of

multiple groupings in Blum’s [7] and/or Dash’s [17] taxonomy.

Specifically for the intrusion detection problem, Lunt [48] attests to the lack

of a priori knowledge on the effectiveness of a given set of features for classification.

For some classifiers like Näive Bayes, redundant and irrelevant features chosen due to

intuition may significantly encumber network traffic classification performance [60].

Predominantly, discussion of feature selection algorithms for the purpose of intrusion

detection focus on increasing the performance of a given classifier with a reduced

subset [13,14,80]. For example, Auld [2] and Zainal [89] compare the constituents of

selected subsets on differing data sets to illustrate consistency among selected features.

They demonstrate high classification rates after feature selection of characteristic

discriminators that do not include reliance on port numbers. On the other hand,

Moore [60] discusses the separation between classes in feature space as an important

feature characteristic for classification. To illustrate the point, Figure 2.2 shows a

high degree of separability among attack and WWW Transmission Control Protocol

(TCP) connections using the mean bytes in an Ethernet packet (feature 177 from

the experimental data set discussed in Section 4.1.1) as a descriptor of the TCP

connection.

2.2.1.1 Bhattacharyya Method. Utschick [84] discusses feature selec-

tion based on the separability between classes for a given feature for a multiple-class

classification problem. The Bhattacharyya coefficient is used as a measure of the sep-

2-7

50 100 150 200
0

5

10

15

20

25

30

35

40

45

ATTACK
WWW

Mean Bytes in an Ethernet Packet

P
er

ce
n
ta

ge
of

S
am

p
le

s

Stacked Histograms of Feature 177 for Two Classes

Figure 2.2: The plot illustrates histograms of feature 177 from the perspective of
two classes. The histograms demonstrate the separability between at-
tack and WWW traffic

arability of two classes, a and b, for a given feature f . The Bhattacharyya coefficient

for a given feature, Bf , is calculated by

Bf =
k

∑

i

√

pa
i p

b
i , (2.4)

where there are k bins of the data, and pi represents the probability (or contribution)

of a bin in a feature’s histogram in respect to samples of a given class, a or b. The

Bhattacharyya coefficient ranges from [0,1], where a value of one indicates that the

two distributions are identical and zero indicates absolutely no overlap of the distri-

butions. The mean Bhattacharyya coefficient is used as the measure for comparing

features among multiple classes, where there are C(C−1)/2 possible pairs of C classes

and the smallest mean is the most important feature. Sorting by the mean is analo-

gous to sorting by the median Bhattacharyya coefficient, since both represent differing

perspectives of the “center” of a sample set. Correlation is shown between the predic-

tive accuracy of a classifier and the Bhattacharyya coefficient of the features used in

training. Feature selection by way of mean Bhattacharyya coefficient is extended by

2-8

Benediktsson [4] to consider feature selection based on a weighted average of separa-

bility if one seeks to optimize the classifier for a given class or set of classes. Utschick

and Benediktsson [4,84] assume the distributions of the features among the classes are

Gaussian in order to utilize the Bhattacharyya coefficient. Thacher, et al. [82] show

the Gaussian assumption need not be made; the Bhattacharyya coefficient may be

used as a measure for a data set with any distribution of the features. Additionally,

Thacher argues that the Bhattacharyya coefficient is an absolute similarity metric,

vice a measure of relative separation.

Utilizing the Bhattacharyya coefficient results in a O(S) runtime in respect to

the number of samples (S). This is due to the fact that there is a constant number

of passes through all the data for the sake of generating counts and binning the class

histogram of the feature. The runtime in respect to the number of features (N) would

still be O(NlogN) due to the sorting of the features by Bhattacharyya value. For the

purposes of this thesis, this feature selection approach is referred to as the mean or

median Bhattacharyya method. The runtime performance for this method is on the

low end in comparison to the other feature selection methods discussed. The sorting

of features by the mean Bhattacharyya coefficient does not contribute to the worst

case runtime performance as long as the number of samples is significantly greater

than the number of features.

2.2.2 Classification. Laskov [42] shows that supervised algorithms greatly

outperform unsupervised algorithms for “known” attacks. For “unknown” attacks,

both techniques perform equally poor. Performance of the unsupervised algorithms

are consistently below 80% accuracy. For supervised learning, Laskov defines an at-

tack as “known” if it exists in the test and training sets and “unknown” if it exists

only in the test set. Unsupervised algorithms are not typically trained with class label

information so only the test sets are used. There is a clear advantage for favoring

supervised learning algorithms for this application. However, the effort required in

labeling data and the uncertainty in the true label for training makes supervised tech-

2-9

niques laborious and potentially unreliable. Extensive preparation of training data

may be necessary to accurately portray the classification of network flows. A reliable

mechanism of clustering network flows for classification would provide a step in the

direction for automated training of a supervised classification method. Unsupervised

clustering algorithms are successfully adapted as classifiers with some papers report-

ing accuracies in the 80 - 90% range [5, 20, 90]. This thesis deals with supervised

learning techniques for the purpose of feature selection.

The multilayer perceptron with backpropagation (BP) provides the capability to

analyze traffic in a non-linear construct and handle incomplete or noisy data. These

characteristics are directly applicable to a real computer network, which will have

failures, lost packets, and complex relations among flow statistics and a flow’s be-

havior. Furthermore, the feedforward through a BP for classification is extremely

fast and of benefit for this application with massive volumes of flows. As more in-

formation on a specific site’s traffic is known, a BP may be retrained to provide

increased accuracy. Of most interest, BPs may correctly identify previously unseen

attacks, where a signature-based method would not. BPs relax the need for accurate

modeling of statistical distributions of a given metric. Furthermore, BPs have the

advantage of learning and performing well with a host of features, which may not be

important to the task, by minimizing their contribution to reduce error. Numerous

works [2, 11, 18, 22, 25, 44, 62, 64, 81] demonstrate the effectiveness of BPs on the clas-

sification task to identity network services and cyber attacks. A majority of which

succeed at detection rates of 90% with some reaching an unbiased estimate of 99%.

Despite its success, the BP has its share of problems. Training a BP often

requires a significant amount of data to provide adequate representation of the domain.

Unlike signature-based methods that use expert systems and rule-based approaches, a

BP serves as a “black box” and does not provide an intuitive or meaningful structure

for imparting the knowledge learned aside from the achieved output [31]. Additionally,

a BP biases the output classification to a given class if it constitutes a significantly

2-10

large portion of the training set. A BP learns the given class with more training steps

than alternate classes causing the bias [2].

The Näive Bayes classifier with Gaussian distribution is another common clas-

sification model used for exploring the problem of identifying network services and

cyber attacks. Moore and John [33, 60] illustrates the classification potential of a

variant of the Näive Bayes classifier utilizing kernels, while highlighting the deficiency

of the algorithm’s assumption. For complex data sets, the features are likely not

independent. When modeling the distribution of the features utilizing kernels, the

classification performance is significantly increased compared to using a Näive Bayes

classifier assuming a Gaussian distribution. This may be explained by features with

multi-modal distributions. Nguyen [66] demonstrates the capacity of the Näive Bayes

classifier to statistically model flows and identify network services with a sliding win-

dow. The sliding window only captures a portion of the flow so classification occurs

with missing data and accounts for real-time changes in traffic over a network. Spe-

cific to intrusion detection, the Näive Bayes classifier provides ample classification

performance even with a small set of features in detecting Internet worms [1].

2.3 Machine Learning Algorithms

This section discusses methods for classification and feature selection, which are

further investigated in this work. Most methods exclusively function as a classification

or feature selection algorithm. Two algorithms, C4.5 decision tree with pruning and

Generalized Relevance Learning Vector Quantization Improved (GRLVQI), perform

both functions in the development of the classifier. The classification algorithms

consist of the following:

1. C4.5 Decision Tree

2. Näive Bayes Classifier

3. Multilayer Perceptron with backpropagation (BP)

4. Generalized Relevance Learning Vector Quantization Improved (GRLVQI)

2-11

C4.5 decision tree develops a decision tree that segments the domain space based

on entropy-derived feature values. The Näive Bayes classifier, in this thesis, models

classes as joint probability distribution functions (PDFs) as the product of Gaussian

distributions. Each dimension is assumed Gaussian and independent. The estimates

of the joint PDFs, the likelihood of the class, and a maximum likelihood are used in

the classification process. The BP utilizes a directed graph that performs a nonlinear

combination of the features to model a class. Lastly, GRLVQI uses prototype vectors

to represent the boundary of the modeled classes.

This research delves into various feature selection algorithms in assessing a work-

ing set of features for intrusion detection. All of these algorithms are capable of han-

dling continuous, discrete and nominal data and capable of dealing with large data

sets [17]. The possible combinations of feature selection generation and measures are

substantial. This survey of feature selection methods covers the following algorithms:

1. RELIEF-F

2. Probability of Error and Average Correlation Coefficient (POEACC)

3. Decision Tree Method

4. Generalized Relevance Learning Vector Quantization Improved (GRLVQI)

5. Classifier Accuracy Rate and various search methods

RELIEF-F provides a feature specific weighting based on a distance within the

given dimension. Probability of Error and Average Correlation Coefficient provides

a feature specific ranking based on dependency and classifier performance of a given

feature. The Decision Tree Method utilizes the C4.5 decision tree with pruning to

generate a subset based on information theory and probability of error. GRLVQI

utilizes a distance-based approach for a feature relevance, which is iteratively updated

with each training step of generating the classifier. The final feature selection methods

utilize the classifier accuracy rate evaluation measure with a genetic algorithm and

best first search to find a well performing feature subset.

2-12

Client Port (2) <= 20: FTP-DATA
Client Port (2) > 20
| Server Port (1) <= 53
| | Server Port (1) <= 23
| | | Server Port (1) <= 21: FTP-CONTROL
| | | Server Port (1) > 21: INTERACTIVE
| | Server Port (1) > 23
| | | Server Port (1) <= 25: MAIL
| | | Server Port (1) > 25: SERVICES
| Server Port (1) > 53
| | Server Port (1) <= 80
| | | RTT avg a b (119) <= 0.213446
| | | | max data wire (15) <= 251
| | | | | med data wire b a (176) <= 60.5
| | | | | | FFT a b (Frequency #4) (232) <= 0.003286
| | | | | | | RTT samples a b (113) <= 1: WWW
| | | | | | | RTT samples a b (113) > 1: ATTACK
| | | | | | FFT a b (Frequency #4) (232) > 0.003286: WWW
| | | | | med data wire b a (176) > 60.5: P2P
| | | | max data wire (15) > 251
| | | | | zero win adv a b (91) <= 0
| | | | | | RTT min a b (115) <= 0.002001
| | | | | | | avg segm size a b (85) <= 150
| | | | | | | | mean data ip (20) <= 603.75: WWW
| | | | | | | | mean data ip (20) > 603.75
| | | | | | | | | triple dupacks b a (142) <= 0: ATTACK
| | | | | | | | | triple dupacks b a (142) > 0: WWW
tree continues...

Figure 2.3: This is an example decision tree generated from the test set discussed
in Section 4.1.1

2-13

2.3.1 C4.5 Decision Tree. A tree functions as the classifier, where the

nodes represent features for a decision and the edges pertain to values or conditions

for all possible outcomes. The algorithm intends to provide a classification capability

by uncovering “the structure of the domain” [70]. Figure 2.3 illustrates an example

decision tree generated by the data set discussed in Section 4.1.1. A sample is classified

by following a path from the root to a leaf, where the leaf node represents the class.

The tree is generated by dividing a sample set into two or more partitions based on

a set of mutually exclusive outcomes for a decision node. A decision node constitutes

a test on a selected feature. This process iteratively splices the partitions to develop

additional decision nodes until each partition contains a single class or no further

improvement may be made. The algorithm performs a greedy selection of tests for

decision nodes, based on entropy gain. Extensions to the algorithm utilize alternate

evaluation functions (e.g., Gini index, misclassification rate) [9]. For each decision

node, tests are examined on the entire feature set resulting in multiple decision nodes

with a given feature, but distinct tests. For a nominal feature, the test constitutes an

edge for each possible value of the feature or a subset of distinct values may define an

edge. For a continuous feature, a demarcating value is selected to split the set into 2

partitions.

To select a feature and test for a decision node, the gain ratio for entropy of the

partitions is maximized. The standard form of entropy in bits (i.e., expected value of

information in bits), H, is

H = −
n

∑

i=1

pi × log2 pi, (2.5)

where there are n values, and pi is the probability of a given event. Entropy may also

be calculated by

H =
n

∑

i=1

pi × I, (2.6)

where I = − log2 pi is the amount of information in a given event. Entropy, H, is

used multiple times in the splitting process to assess the amount of information in

a set based on three perspectives. The three perspectives of a set’s entropy are in

2-14

regards to the classes in the set, the classes in partitions of the set and the size of the

set’s partitions (e.g., info(S), infoX(S), and split info(X), respectively).

The entropy of the training set or a partitioned subset, S, in regards to sepa-

rating classes is determined by

info(S) = −
k

∑

j=1

[

freq(Cj, S)

|S| × log2

freq(Cj, S)

|S|

]

, (2.7)

where there are k classes, Cj is a given class, freq(Cj, S) is the count of the given

class in set S, and |S| is the cardinality of the set. Entropy of the classes in partitions

for a given test, X, on a set is determined by

infoX(S) =
n

∑

i=1

[|Si|
|S| × info(Si)

]

, (2.8)

where there are n partitions and Si is a given partition. The information gain of the

test, X, is calculated as

gain(X) = info(S)− infoX(S). (2.9)

The gain must be normalized to prevent situations where a single uninformative fea-

ture causes partitions consisting of a single sample or very small sets. Partitions of

a single sample result in an infoX(S) = 0 so the gain would be maximized, but the

classifier would provide no utility. This situation is alleviated by determining the

entropy of a set in regards to partition size for a given test as

split info(X) = −
n

∑

i=1

[|Si|
|S| × log2

|Si|
|S|

]

. (2.10)

In Equation 2.10, split info(X) approaches zero for uninformative splits with small

numbers of samples in the partitions. By maximizing the gain ratio,

gain ratio(X) = gain(X)/split info(X), (2.11)

2-15

one will be able to maximize the information gain of a given test, while preventing

uninformative splits. An additional constraint may restrict partitions to “reasonable”

number of samples (like two) to avoid trivial splits of individual partitions, where

the gain ratio would be acceptable. As mentioned earlier, the C4.5 algorithm divides

subsets with new tests until a given set has one class or the tests do not improve the

gain ratio significantly. The class of the leaf is determined by the mode of samples

class labels pertaining to the given path. The resulting decision tree “over fits the

data” [70] so the C4.5 algorithm then prunes the tree of decision nodes that do not

facilitate classification. Each time the tree is built, it is pruned by a holdout set within

the training set. The holdout set is treated as a random sample set for which the

probability of error may be estimated for the whole population of potential samples.

The number of errors is modeled as a binomial distribution. The binomial distribution

is appropriate due to a set number of samples (N) and the errors are independent.

Hence, the occurrence of an error has no impact on any other error. The probability

of error is calculated by

p =
e + 0.5

N
, (2.12)

where N is number of holdout samples and e is the number of misclassified samples.

The C4.5 method assumes the single observation of errors represents the mean of the

binomial distribution of errors for a given branch. The addition of 0.5 to the assumed

mean of errors is a “half-unit correction for continuity” to improve the approximation

of the binomial distribution as a Normal distribution [57, 78]. The Normal approxi-

mation of the binomial distribution is used to estimate the upper confidence limit at

a given confidence level of the probability of error. The Normal approximation may

not be technically valid for a small sample size, but it is used as an estimation of

error. By using the Wilson Score interval [86], the probability of the confidence limit

is determined by

pupper =
p + z2

α

2N
+ zα

√

p

N
− p2

N
+ z2

α

4N2

1 + z2
α

N

, (2.13)

2-16

where zα is the 100× (1−α)th percentile of the Normal distribution for the one-sided

confidence limit. Quinlan [70] notes that the default confidence level is a nonsensical

25%. One-sided confidence levels less than 50% account for occurrences in a tail of the

Normal distribution that goes out towards infinity (i.e., not inclusive of the mean) and

two-sided confidence levels that low would have no meaningful interpretation. Quinlan

is actually referring to a p-value, α, of 0.25 and with a one-sided confidence level of

75%. The 75th percentile of the Normal distribution, z0.25, is 0.67. Figure 2.4 (b)

illustrates the discussed interpretation of the confidence level. The upper confidence

limit of the number of predicted errors is calculated with

eupper = pupper ∗N. (2.14)

To illustrate the error estimate of the upper confidence limit, Figure 2.4 shows two

plots of a binomial distribution (with p = 0.4 and N = 10) overlayed with the corre-

sponding Normal approximation and a horizontal line to denote the upper confidence

limit. Without the correction for continuity, Figure 2.4 (a) underestimates the upper

confidence limit of error (5.06) [69]. The Normal approximation does not account

for the entire bin with the mean (4) in the lower 50% of the distribution causing a

smaller upper confidence limit. Figure 2.4 (b) illustrates a upper confidence limit of

5.55 by shifting the distributions to the right with the correction for continuity and

provides a more accurate estimate of error [69]. By beginning at the bottom of the

tree and traversing up, each subtree is evaluated to determine if replacement with a

potential leaf or branch reduces eupper. By replacing with minimal predicted errors,

the tree theoretically minimizes the error rate. The C4.5 decision tree is an extension

of the algorithm, known as ID3, which preprunes the tree by stopping branch growth

for features that do not have a statistically-significant association with a class and

utilizes the gain for selecting decision nodes [68].

The Decision Tree method (DTM) utilizes the pruned C4.5 decision tree dis-

cussed as a classifier to select relevant features. Once the pruned tree has been de-

2-17

0 2 4 5.066 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

e
upper

Number of Errors

P
er

ce
n
ta

ge

PDF with No Continuity Correction

(a)

0 2 4 5.55 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3
75% Confidence level 25% p−value

e
upper

Number of Errors
P
er

ce
n
ta

ge

PDF with Continuity Correction

(b)

Figure 2.4: The Probability Density Functions (PDFs) illustrate the difference in
the upper confidence limit of the error (eupper) pending whether the
correction of continuity is used or not. The confidence level for the
upper limit is 75%

veloped, every feature remaining in the tree is chosen for the subset of features. This

method illustrates an embedded approach to feature selection. Cardie [12] shows

the success of using DTM with k-nearest neighbor for reducing the feature set and

selecting matches for natural language processing.

2.3.2 Näive Bayes Classifier. Näive Bayes classifier uses Bayes theorem

to determine the conditional probability of a class given a set of features [33]. The

algorithm makes a couple of simplifying assumptions. All of the features are assumed

to be independent and there are no hidden attributes that affect the classification of

a sample. The largest posterior identifies the class of the sample. One determines the

posterior of a sample using Bayes theorem,

p(C = c|X = x) =
p(C = c)p(X = x|C = c)

p(X = x)
, (2.15)

where C and X are the random variables for the class and the sample vector, respec-

tively. The prior, p(C = c), may be estimated by counting the occurrences in the

2-18

training set or by assuming equiprobable classes. With the independence assump-

tion, the likelihood of the sample vector is the product of the likelihood of all of the

features,

p(X = x|C = c) =
∏

i

p(Xi = xi|C = c), (2.16)

where Xi is the random variable for a given feature in the sample vector and there are i

features. For a numeric feature, the likelihood of the given feature, p(Xi = xi|C = c),

is estimated by determining the unknown parameters of a given distribution. Typi-

cally, Näive Bayes uses the Gaussian distribution,

p(Xi = xi|C = c) =
1√
2πσ

e−
(xi−µ)2

2σ2 , (2.17)

in estimating the likelihood. The unknown parameters for a Gaussian are the mean, µ,

and standard deviation, σ. For a nominal feature, the likelihood is the probability of

the discrete attribute, Xi given a class. The normalizing constant may be calculated

with

p(X = x) =
∑

j

p(Cj)p(X = x|Cj), (2.18)

where Cj is the class label and j are the class indices [85]. The normalizing constant

does not need to be calculated since one only needs to normalize the numerator of

the posterior for all the classes to obtain the posterior for each class.

2.3.3 Multilayer Perceptron. A multilayer perceptron with backpropagation

(BP) is composed of multiple layers of processing elements (PEs) that emulate neu-

rons to provide a nonlinear model for classification [6, 73, 75]. Each PE takes in as

input a linear combination of the outputs of every node from the previous layer and

an associated weight. The product of input and weight pairs are summed and manip-

ulated with an activation function to generate the output to the next layer. Typical

activation functions include the sigmoid and hyperbolic tangent. The BP will have an

input layer, zero or more hidden layers, and an output layer in a directed graph, which

is fully connected from one layer to the next. Figure 2.5 illustrates the conceptual

2-19

Figure 2.5: Pictured here is a conceptual layout of a multilayer perceptron with
three input nodes (x0

i), two hidden layers of processing elements (PEs)
and two output PEs for classification. The input nodes (x0

i) and PEs
(yj

i) are fully connected from one layer to the next. The variables i and
j indicate a reference label and layer, respectively

layout of a BP with one input layer, two hidden layers and one output layer. The

nodes in the input layer consist of a single feature from a sample, so the samples fed

into the BP example (Figure 2.5) would only have three features. Each layer after

the input layer consists of nodes that function as PEs. Hidden layers lie between the

input and output layers. They add non-linearity to a decision boundary (classifier) or

when representing data (regression). The output layer is simply the final layer of PEs,

whose outputs are used for classification. The network learns from labeled samples

and encodes the output as a bit vector with a single high (e.g., 001, 010, and 100)

denoting the classification. The learning process occurs via backpropogation through

the network to update the edge weights based on the error in classification generated

2-20

Figure 2.6: The processing element (PE) is an example from the first hidden layer
in Figure 2.5. The PE calculates the linear combination (a1

1) from its
inputs (x0

i) to include a bias (x0
0) and their respective weights (w0

i1). An
activation function (h(·)) is applied to a1

1 to generate the PE’s output
(y1

1). The variables i indicates a reference label for the nodes

for a given input sample. This type of neural network may get large with increased

input features, nodes per hidden layer and the number of hidden layers.

As illustrated by Figure 2.6, each PE consists of two parts [73]. The first part

of a PE calculates the linear combination (al
k) of M inputs for the kth node in the

lth layer by

al
k =

M
∑

j=0

wl
kj yl−1

j . (2.19)

The weight, wl
kj, is for layer, l, and pertains to the input to node k from node j of

the preceding layer. The output (yl−1
j) from node, j, in the preceding layer, l − 1 is

an input for the PEs in layer, l. As illustrated in Figure 2.6, the outputs of the nodes

2-21

in the input layer are referred to as x0
j , vice y0

j . A bias, wl
k0, for node k in layer l is

inserted to allow for shifts in the linear combination. To allow for such shifts, yl−1
0

is always equal to one. In the second part of a PE, the linear combination, al
k, is

then transformed with an activation function to obtain the output of the given PE as

shown by

yl
k = h(al

k). (2.20)

The use of a given activation function, h(·), may require scaling or normalization of

the input sample’s features to obtain the desired performance. The algorithm relies on

nonlinear activation functions since linear combinations of linear activation functions

are strictly linear. There would be no benefit in adding hidden layers. Propagating a

given sample through the BP network constitutes the feedforward process that is used

for classification. Often, classification is performed by having a single output node

for every class, where the desired response is a one for the output PE corresponding

to the class of interest and all the other class output PEs have a response of zero.

Training the network involves propagating the classification error back through

the network to adjust the weights between nodes. To perform the backpropagation

process, the nonlinear activation function must be differentiable so h′(x) exists. First,

one calculates the errors, δl
k, of the output layer, L using

δL
k = (Tk − yL

k) h′(aL
k), (2.21)

where yL
k is the result of the feedforward process and output of the last layer, L, and

Tk equals the expected value of the output node (e.g., zero or one). The weights of a

layer may then be adjusted by

wl
kj = wl

kj + α δwl
kj. (2.22)

The weight update allows for a learn rate, α, and accounts for the error in the edge

weight, δwl
kj. The edge weight is determined by the node’s error in the succeeding

2-22

layer, δl
k and the output from the node in the preceding layer, yl−1

j by

δwl
kj = δl

k yl−1
j . (2.23)

The node’s error in the preceding layer, δl
k, is calculated with

δl
k = h′(al

k)
∑

z

wl+1
zk δl+1

z , (2.24)

where wl+1
zk is the weight of the edge from node k in the preceding layer to node z in

succeeding layer l +1, and δl+1
z is the error of the succeeding node, z. One recursively

calculates the weights and errors of nodes in preceding layers until the first layer of

PEs is updated. This results in an update of all of the weights within the BP to allow

for training to a desired accuracy or within a given training time.

2.3.4 Generalized Relevance Learning Vector Quantization Improved. Gen-

eralized Relevance Learning Vector Quantization Improved (GRLVQI) models the

boundary among classes with prototypes [56]. This version of learning vector quan-

tization implements the concepts of in-class conditional update [56], relevance of fea-

tures [29], conscience learning [19], and the LVQ2.1 prototype update strategy [37].

Classification of a given sample is determined by assigning the class label of the closest

prototype. A set number of prototypes are associated to each class and are randomly

initialized. Each feature has a relevance, λi, which is initialized to the reciprocal of the

number of features and lies within the range [0,1], where larger values have a greater

relevance. For each training sample, an in-class and out-of-class winning prototype is

found by determining the closest prototypes in relevance-weighted squared Euclidean

distance. The relevance-weighted squared Euclidean distance is

d =
∑

features

λi(xi − wi)
2, (2.25)

2-23

where xi is the value of a given sample’s feature and wi is the value of a given

prototypes feature. The prototypes are updated based on the in-class conditional

update rule, where only the in-class prototype is updated if the sample is classified

correctly. Otherwise, both the in-class and out-of-class prototypes are updated. The

in-class (wJ
i) and out-of-class (wK

i) prototypes of a feature i are updated by a gradient

descent from a given time-step, t, by

wJ
i(t + 1) = wJ

i(t) +
4 ǫJ(t) dK f ′|µ(x)

(dJ + dK)2
× λi

(

xi − wJ
i (t)

)

, and (2.26)

wK
i (t + 1) = wK

i (t)− 4 ǫK(t) dJ f ′|µ(x)

(dJ + dK)2
× λi

(

xi − wK
i (t)

)

. (2.27)

The in-class variables include ǫJ(t) for the learn rate at a given time step (t), and dJ

for the relevance-weighted squared Euclidean distance. The out-of-class variables are

denoted with a superscript K. The derivative of the sigmoid (f ′|µ(x)) is evaluated for

a given value of the misclassification function, u(x):

µ(x) =
dJ − dK

dJ + dK
. (2.28)

The misclassification function of a sample (x)produces results on the interval [-1,1].

Values less than zero identify samples that have been classified correctly and values

greater than zero identify misclassified samples. After the prototypes are updated,

the relevance, λi, of the attributes are modified by

λi(t + 1) = λi(t)−
2 ǫλ f ′|µ(x)

(dJ + dK)2

(

dK
(

xi − wJ
i (t)

)2 − dJ
(

xi − wK
i (t)

)2
)

, (2.29)

where ǫλ is the relevance learn rate [30]. If a relevance is less than zero, it is set to

zero. Additionally, all the relevances are normalized to sum to one.

The GRLVQI algorithm attempts to maintain consistent in-class prototype win-

ner selection via conscience learning [19]. Conscience learning has been shown to in-

crease classification performance with a hyperspectral data set for DeSieno’s LVQ2.1

2-24

classification paradigm [56]. A biased distance, dBias, is used in determining the win-

ning in-class prototype and updates of weight and relevance, where the prototype

bias, BP , is dependent on the prototype selection frequency, F P and the distance to

the prototype from the input sample dP = dJ . The biased distance 1 is determined

by

dBias = dP (1−BP). (2.30)

The winning prototypes frequency is updated using a user-defined parameter, β, by

F P
new = F P

old + β (1− F P
old). (2.31)

All the other prototypes with the same class have their frequency updated by

F P
new = F P

old + β (0− F P
old). (2.32)

The bias is calculated with another user-defined parameter, γ, and the number of

prototypes with the same class, P :

BP = γ

(

1

P
− F P

old

)

. (2.33)

This algorithm refines the updates of the prototypes by means of a learn schedule

for the learn rates, γ and β. The learn schedule will likely be data set specific. This

learning algorithm may be used as a feature selection method of the embedded type.

The feature relevances are used as weightings to select a subset. GRLVQI provides an

iterative approach to developing the feature weights, which is refined as the classifier

learns. This is distinct from the C4.5 algorithm which prunes features after the

generation of the classifier.

1In reality, the dBias is computed as Equation 2.30 [55]. The original publication of GRLVQI
specifies it as dBias = d

P −B
P [56].

2-25

2.3.5 RELIEF-F. RELIEF-F is an extension of the RELIEF algorithm

developed by Kira and Rendell [35, 36] and expanded by Kononenko in [38]. The

RELIEF algorithm for the two class problem estimates the quality of features based

on within feature dimension distances. The algorithm searches for the two nearest

neighbors of a given sample. One is the in-class nearest neighbor denoted the nearest

hit. The other is the out-of-class nearest neighbor denoted the nearest miss. The

weights of the features are adjusted based on single feature distances from the nearest

hit and nearest miss. The RELIEF algorithm works as follows: set all weights W [A] =

0

for i = 1 to m

randomly select an instance R

find nearest hit H and nearest miss M

for A = 1 to number of features

W [A] = W [A]− diff(A,R,H)/m + diff(A,R,M)/m

where m is the number of neighbors to search (at most the training set) and diff(·)
is the distance between the values of a given feature, A, for two instances (e.g., a

given instance (R) and nearest hit (H). For continuous features, the difference is

the normalized distance for the interval [0, 1]. For nominal values, the difference is

either one for distinct values or zero for identical values. Dash and Liu [17] incorrectly

assess the time complexity of the RELIEF algorithm by stating it “requires linear time

in the number of given features and number of instances.” The RELIEF algorithm

has a linear runtime of in respect to the number of features (N), if the result remains

unsorted. In terms of the number of samples (S), the runtime complexity is O(SlogS)

since the nearest in- and out-of-class neighbor must be found for each sample.

RELIEF-F is one of two modifications to the RELIEF algorithm to account

for missing values, noisy data, and multiple classes. RELIEF-F accounts for a near-

est miss, M(C), for each class and the prior probability of the classes, P (C). The

weighting of a feature is determined by the expected difference from the nearest miss.

2-26

RELIEF-F is similar to the RELIEF algorithm above, with a change in the calculation

of the weighting,

W [A] = W [A]− diff(A,R,H)/m + · · ·
∑

C 6=class(R)

P (C) · diff(A,R,M(C))/m.

Kononenko shows that RELIEF-F doubles the classification accuracy with noisy data,

and significantly improves classification with noise-free data in his experiments [38].

2.3.6 Probability of Error and Average Correlation Coefficient. Mucciardi

and Gose [63] discuss seven methods for selecting features. These methods seek to

overcome the computationally intractable problem of searching all possible combina-

tions of dimension subsets in finding a “good” subset for classification. The authors

use the term “good” because the methods do not find optimal subsets. This thesis

discusses three of the seven techniques to include probability of error (POE), av-

erage correlation coefficient (ACC), and the weighted sum (POEACC). The three

approaches are examples of filter methods.

The first method, POE, ranks features in ascending order of the likelihood of

classification error. The POE associated with a feature is determined by classifying the

training set by the given feature. The resulting percentage of misclassified samples is

then used as the POE for the given dimension. POE inherently makes the assumption

that the features independently influence the classification performance.

The second method, ACC, ranks features by their average correlation coeffi-

cients. The correlation used here is the absolute value of Pearson’s correlation coeffi-

cient, r, of a pair of features and is calculated by

rx,y =

∣

∣

∣

∣

cov(x, y)

sxsy

∣

∣

∣

∣

, (2.34)

2-27

where cov(x, y) is the sample set covariance of a pair of features (x and y) and s is a

sample set standard deviation of a given feature. A correlation value of one indicates

a linear relationship between the two sets (x and y) and a value of zero indicates

no linear relationship. The first feature is selected by the lowest POE. The second

feature is selected with the smallest correlation to the highest ranked feature (lowest

POE). Additional features are selected in order of lowest mean correlation to the set

of features already ranked. The mean correlation of a given feature, x with a set of

selected features is determined by

rmean =

∑

F rx,yi

F
, (2.35)

where there are F selected features and yi is a given selected feature. For example, the

10th feature is selected based on its mean correlation with the first 9 ranked features.

The third method, weighted sum or POEACC, ranks the features in order of

smallest to largest of a weighted sum of POE and ACC. Again, the ordering begins

with the feature with the lowest POE. Succeeding features are chosen by minimizing

the weighted sum,

W = w1 ∗ (POE) + w2 ∗ (ACC). (2.36)

The weights, w1 and w2, must sum to 1. Before the first iteration, the POE values

for the features are normalized by

POEnorm
i = (POEi − POEmin)/(POEmaxPOEmin). (2.37)

With each iteration of selecting the next feature, ACC is also normalized in the same

fashion. As stated by Mucciardi and Gose, the rescaling “represent[s] the true measure

of importance of the terms in Equation 2.36”. This method functions as POE or ACC

depending on whether w1 or w2 is set to 1, respectively.

It is not intuitively obvious to this author how correlation is determined for

nominal data in the POEACC algorithm. The Correlation-Based Feature Selection

2-28

algorithm implements a method of determining a weighted Pearson’s correlation co-

efficient of nominal data by using the prior of the possible nominal values [28]. This

probabilistic method for determining the correlation of nominal data is incorporated

into the POEACC to handle the requirements of the data set.

2.3.7 Classifier Accuracy Rate. This section addresses an alternate type of

feature selection that are referred to as wrapper methods. These methods literally

search the combinatorial space of feature subsets. As an example, one may have 248

features which will result in over 4.5 × 1074 possible combinations. One may search

the subset space and evaluate a given feature utilizing a classifier’s accuracy rate. The

classification accuracy provides a direct performance measure of the subset’s capacity

to define the domain boundary. To be able to efficiently and effectively select a

subset of features, one must take advantage of heuristics, local search optimizations

and stochastic sampling to direct the search to a local but useful solution. This thesis

discusses two search algorithms genetic algorithms and best first search.

2.3.7.1 Genetic Algorithms. Genetic algorithms take advantage of

stochasticity to search a breadth of the state space by evolving states over a series of

generations [76]. The search method modifies the state’s genotype, representation of

the subset, in traversing the space to identify potential solutions called a phenotype.

A combination of random successors and successors developed by combining parents

are used to search the space. The combination of parent genotypes is called crossover

and random selection is considered a mutation. One optimizes a fitness function to

identify and retain valued states (i.e., a defined number of feature subsets) for a given

generation. In this case, the fitness function is the classifier accuracy rate. The search

for a well performing phenotype typically ends after a set number of generations.

2.3.7.2 Best First Search. A heuristic-based search called best first

search greedily traverses the combinatorial space of features via a tree structure [76].

The classifier accuracy rate serves as the heuristic in guiding the search path. To

2-29

expand the search region and reduce the chance of ending in a relatively poor per-

forming local maxima, a backtracking capability is used to traverse back up the tree

from stale paths that do not increase the performance.

2.4 Summary

This chapter discusses the framework of intrusion detection and the methodolo-

gies for detecting cyber attacks. The two major methodologies include signature-based

and anomaly-based detection. Several anomaly-based machine learning approaches

are reviewed. Research on classification techniques for intrusion detection have been

studied in depth with a large interest in the area of BPs. On the other hand, feature

selection of network flows has been limited to improving performance for a given clas-

sifier. Finally, a survey of feature selection methods outlines varied approaches, which

spans the feature selection taxonomy. This review of the literature has not found an

indepth analysis of features for improving performance, minimizing data extraction

requirements, or validating a useful feature subset for the intrusion detection domain.

2-30

III. Feature Selection Methodology

Feature subsets and subset generality for intrusion detection are determined by as-

sessing subset classification performance and analyzing the features composing the

subsets based on domain knowledge. Figure 3.1 illustrates the methodology in creat-

ing a subset for each feature selection method and evaluating the subsets for generality.

Feature selection methods generate feature weightings and subsets, which are ranked

to develop an ordered list of subsets in association with each feature selection method.

The subsets are ordered by the number of highest ranked features composing the sub-

set. A common classifier evaluates the performance of the subsets and down select to

a single subset for each feature selection algorithm. The selected subsets are evaluated

for generality based on their performance on a diverse grouping of classifiers. This

chapter continues by discussing the motivation for the work, methods to establish

and evaluate features, an extension to a feature selection method, and the evaluation

techniques for classification performance and statistical analysis.

3.1 Intrusion Detection and Feature Selection

Intrusion detection provides an application and motivation for the feature selec-

tion objective of this thesis. An intrusion detection system obtains information from

sensors within a network to record and possibly process raw data [40]. The detection

system generates alarms, which may generate an action back on the network or notify

a network administrator. Feature selection may significantly improve classification

performance and/or reduce the required capacity to monitor, manipulate, evaluate,

and store the massive amount of real-time data expected to be seen over a network.

Some feature selection methods add a significant amount of processing time and may

require retraining of a classifier (e.g., C4.5 Decision Tree) so real-time implementation

of some feature selection methods is not feasible without extraordinary processing ca-

pacity. Feature selection can play a role in reducing the quantity of data read off the

network by utilizing it as a preprocessing step in developing a classifier-based anomaly

3-1

Figure 3.1: The feature analysis process assesses the effectiveness of feature selec-
tion methods, and analyzes feature subset generality

detector. Additionally, feature selection may be utilized to enhance the classification

performance via post-processing analysis of recorded traffic.

Figure 3.2 illustrates the feature selection process for determining and validat-

ing a good feature subset. In this thesis, a number of feature selection algorithms

are compared to determine a good feature set. The feature selection algorithms per-

form the generation and evaluation methods, and a stopping criteria in obtaining a

subset from a previously extracted and processed set of features. The classification

methods under test identify cyber attacks and network services for the evaluation and

validation components of the process. The validation piece involves testing the se-

lected feature subset for performance in several cases for usefulness such as predictive

accuracy, number of features selected and the generality of the features. The intru-

sion detection system is not integrated into a genuine architecture for the purpose of

network surveillance. Although, processed data from real network traffic is used in

selecting features and testing the effectiveness of subsets. The intended results of this

3-2

Figure 3.2: This is the feature selection process from Dash and Liu [17]. Subsets
of features are generated and evaluated. Based on a stopping criteria,
the highest evaluated subset is selected

work includes a validated feature subset for intrusion detection and an analysis as to

why the features function well.

3.2 Establishing and Evaluating Feature Subsets

One may accomplish an evaluation of features in a direct or indirect fashion.

Direct evaluation involves a priori knowledge of the features. Absolute understanding

of the features and their role in classifying attacks or network services would mean

an expert may just select the optimal feature set. In actuality, a person understands

aspects of the domain, which would allow for identification of a modicum of represen-

tative features or analysis as to why certain features perform well. For example, an

expert would come to the correct conclusion that well-known port numbers provide a

very good method for classifying network services. However, port numbers would be

uninformative when a flow is masquerading as another network service (e.g., spoof-

ing attack or peer-to-peer traffic). Analysis of other flow features may provide the

needed information to classify these flows. Indirect evaluation requires assessment of

the performance of a classifier to determine a good feature subset. Even though a

specific feature selection technique may provide an optimal subset for the given eval-

uation method, the selected subset would not be optimal for the general classification

3-3

task [17]. This thesis indirectly evaluates feature subsets with classifier performance

and directly evaluates the relevance of the selected features.

A set of feature selection methods are used to evaluate important features for

performing intrusion detection (Figure 3.1 (A)). The chosen feature selection al-

gorithms for comparison span the taxonomy discussed in Section 2.2.1 to include:

RELIEF-F, the C4.5 Decision Tree Method (DTM), Probability of Error and Average

Correlation Coefficient (POEACC), Generalized Relevance learning Vector Quantiza-

tion Improved (GRLVQI), classifier accuracy rate with genetic algorithms and best

first search, and median Bhattacharyya methods. Additionally, the comparison in-

cludes the minimum surface Bhattacharyya method, which is a proposed extension

to the median Bhattacharyya method (see Section 3.3). Table 3.1 outlines some

differences and commonalities between the methods. These methods utilize varied

approaches for finding and measuring relevant features such as distance, dependen-

cies, information theory, separability, actual performance, individual weightings of

features, stochastic subset search, and heuristic subset search. The methods encom-

pass all three categories of Blum and Langley’s taxonomy [7] and cover a majority

of Dash and Lui’s evaluation and generation methods [17]. Individually, the methods

provide a capacity for handling noisy, irrelevant, redundant, and/or interdependent

data. Furthermore, all of the feature selection methods handle continuous, discrete

and nominal data. These methods are not couched to be the best approaches for

this domain, since top performing feature selection methods have not been identi-

fied in the literature. This diverse group of feature selection algorithms allows for

varied “perspectives” to accentuate relevant features that may not be selected oth-

erwise. Consistency among the subsets suggests strengthened evidence of a feature’s

relevance.

3.2.1 Ordering Subsets for Evaluation. This section discusses the method

for ranking and ordering subsets for selecting a subset per feature selection method

(Figure 3.1 (B)). Some feature selection algorithms such as GRLVQI, POEACC and

3-4

Table 3.1: Characteristics of Feature Selection Methods
Feature Selection Method Evaluation Measure Generation Method Blum and Langley Category

Best First Accuracy Rate Best First Search Wrapper
C4.5 Entropy feature evaluation Embedded
Genetic Accuracy Rate Genetic Algorithm Wrapper
RELIEF-F Feature distance Class-based feature evaluation Filter
POEACC Correlation Feature evaluation Filter
GRLVQI Sample distance Prototype-based feature evaluation Embedded
Median Bhattacharyya Separability Inter-class feature evaluation Filter
Minimum Surface Bhattacharyya Separability Inter-class feature evaluation Filter

RELIEF-F provide a list of weighted features. A rank is assigned to each feature

based on its weighting, where the highest and lowest weighted features receive a rank

of one and the number of features, respectively. For a set of T -Monte-Carlo runs with

k-folds each, the median rank is used to order the complete set of features. If there is

a tie based on median rank, it is broken by the skewness of the features’ rank results

over the folds. Smaller skewness results in a feature coming first in the order, since

positive skew results in a right-handed tail (tending toward larger rank) and negative

skew indicates a left-handed tail (tending toward smaller rank). Ordered subsets for

a weighted feature selection algorithm may be generated by starting with the first

feature of smallest median rank and adding successively ranked features iteratively.

For example, the three highest ranked features from the POEACC algorithm are

initial window in bytes from client to server (rank 1: feature 95), minimum inter-

arrival time (rank 2: feature 3), and the variance of the inter-arrival time (rank 3:

feature 9). The first three ordered subsets are:

• Subset 1: 95

• Subset 2: 95, 3

• Subset 3: 95, 3, 9.

Some feature selection algorithms (DTM and classifier accuracy rate with ge-

netic and best first search) select a feature subset for each fold. For a set of T -Monte-

Carlo runs with k-folds each, features are ranked by the number of folds, where a

feature is included in a selected subset. Features that appear in the greatest number

of folds (maximum of T × k folds) are ranked highest. For example, the seven highest

3-5

Table 3.2: Top Four Features from Accuracy Rate with Genetic Algorithm

Feature Index Feature Name Times Selected for Subset Rank

1 Server Port 300 1
2 Client Port 300 1
83 Minimum Segment Size from Client to Server 299 2
129 Maximum Full-size RTT sample 286 3
86 Average Segment Size from Server to Client 278 4
105 Truncated Packets from Client to Server 276 5
168 First Quartile Size of Data Control Portion of Packet 276 5

ranked features from the accuracy rate with a genetic algorithm method are listed

in Table 3.2. Sets of features included in the same number of folds are considered

a grouping (e.g., features 1 and 2 are a grouping) and feature 83 is a grouping of

one. Ordered subsets are generated by iterating down the set of ranked features. The

first ordered subset consists of the grouping with the largest number of folds (i.e.,

the highest rank). Successively lower-ranked groupings are iteratively added to the

preceding ordered subset to generate all the ordered subsets. For accuracy rate with

a genetic algorithm, the ordered subsets from the top seven features are:

• Subset 1: 1, 2

• Subset 2: 1, 2, 83

• Subset 3: 1, 2, 83, 129

• Subset 4: 1, 2, 83, 129, 86

• Subset 5: 1, 2, 83, 129, 86, 105, 168.

3.2.2 Determining a Subset for Each Feature Selection Algorithm. With

successive subsets for a given feature selection algorithm, a single subset for the specific

feature selection algorithm may then be found (Figure 3.1 (C)). There are two typical

approaches to selecting a subset [17,46]. The first is to set a weighting threshold or a

predefined limit in the number of features. The second method utilizes classification

performance to choose a subset as implemented in this thesis. The Näive Bayes

classifier discussed in Section 2.3.2 determines the classification performance of each

of the ordered subsets. Classification performance is evaluated with the Näive Bayes

3-6

classifier primarily due to computational speed, which allows for a multitude of subsets

to be evaluated within a reasonable amount of time. Approximately 1,800 ordered

subsets are evaluated to down select to 8 subsets, one per feature selection method.

Furthermore, Witten, et al. [87] and Moore [60] notes that the performance of the

Näive Bayes classifier is sensitive to redundant and irrelevant features. Hence, the

trend in Näive Bayes classification performance is indicative of how well a given feature

selection method identifies relevant features.

One expects that the domain space and decision boundary to be adequately

represented by more than one feature subset. If a feature selection algorithm appro-

priately ranks the subsets, one would expect a consistent and dramatic increase in

performance until the domain has been adequately represented. Figure 3.3 illustrates

the hyperbolic tangent, which is analogous to the behavior anticipated from ordered

subsets from a feature selection method. For the ordered subsets from a perfect feature

selection algorithm, the first subset of the plateau is the smallest subset of the entire

feature set that best represents the domain. From the first subset of the plateau,

added features cause diminishing returns in classification performance. Based on this

expectation of behavior, one may select the first subset where the difference between

adjacent subsets stabilizes below a given threshold, which indicates a plateau in per-

formance. Additionally, a multiple comparison of the classification performance from

the subsets indicates whether there are statistically-significant differences between the

performance of ordered subsets as discussed in Section 3.4.2. This allows one to select

a smaller subset in number of features (than the plateau indicates) if the classification

performance of the smaller subset is the same as or better than a larger subset (i.e.,

the initially selected subset due to the plateau).

With a set of selected feature subsets from each algorithm, reduction to a single

subset of features to represent the domain is ideal but may not be effective. If a

sufficiently small number of distinct features remain in the final set, then an exhaustive

search of all combinations likely determines the best performer with the Näive Bayes

classifier [8,17]. If the number of features remaining (i.e., union of the selected subsets)

3-7

Number of Features in Subset

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Ordered Subsets

Figure 3.3: The hyperbolic tangent represents the expected trend in classification
performance of ordered subsets from feature selection algorithms

is too large, one may re-rank the features and down select to a single subset in a similar

manner to that discussed in Section 3.2.1. Neither approach helps in establishing a

subset to ”appropriately” describe the decision boundary. Since the feature selection

algorithms have significant differences among them, their capacity to provide the

best subset for the given data set is unequal. Some feature selection algorithms will

perform better than others in different respects. Due to the differences in feature

selection methods, a cogent method for combining the subsets may not be warranted.

For example, some will handle synergies (e.g accuracy rate with best first search)

while others will not (e.g., RELIEF-F). Synergistic combinations would likely be lost

with the ordered approach. An unsatisfying approach selects the statistically best

performing subset. Even this approach may result in a subset which does not have

generality. A down selection to a single subset will not be performed; all the feature

subsets will be assessed for generality.

3.2.3 Generality of Features. The final step of the process determines

whether the selected feature subsets provide an adequate description of the domain

3-8

space for establishing a set of decision boundaries (Figure 3.1 (D)). A subset demon-

strating generality is able to represent the domain in such a manner. One may de-

termine generality by answering the following question: Does the subset increase

performance for a set of classifiers [46]? In the worst case, a feature subset would op-

timize the performance of only a given classifier due to the specific learning method.

There are numerous classifiers that may be utilized for assessment of generality. Fig-

ure 3.4 is recreated from Holmström, et al. [32], which paints the relationships between

common classifiers. The schematic relationships provide a basis for selecting differing

types of classifiers. The x-axis represents architectural flexibility, which is indicative

of error-based correction techniques, incremental learning, or other learning methods

that provide adaptation to the training set. The y-axis pertains to neural or non-

neural training approaches so neural training would implement processing elements

or prototypes requiring “local computations” [32]. Nonneural training is categorized

by statistical representations of the training set such as local averages or kernel esti-

mation. C4.5 and Näive Bayes were added to Figure 3.4 based on the thesis author’s

interpretation of the depiction.

With time as a limiting factor, four classifiers of different learning and identi-

fication methods are selected to illustrate the generality of the features: C4.5, Näive

Bayes, GRLVQI, and multilayer perceptron with backpropagation (BP). Figure 3.4

shows the four classifiers covering a broad range over the classifier taxonomy. Näive

Bayes lies in the lower left-hand quadrant and C4.5 lies near the center-right. BP

and GRLVQI lies at the top right, where GRLVQI is an extension of LVQ. Addition-

ally, Table 3.3 denotes the distinctions between the specific classification methods.

C4.5 is an information theory based classifier that is assembled using a divide and

conquer approach and then prunes based on the probability of error of the subtrees.

Quinlan [70] refers to C4.5 as a “logical” classification model since the decision tree

may be described with expressions of predicate logic. Näive Bayes utilizes maximum

likelihood based on a Gaussian distribution, while treating the features as statistically

independent (this is the “näive” assumption). GRLVQI provides a prototype-based

3-9

Figure 3.4: The schematic of the classifier taxonomy from [32] illustrates the dis-
tinctions in learning and architecture between the classification meth-
ods for assessing generality (e.g., C4.5, Näive Bayes, GRLVQI, and BP)

Table 3.3: Characteristics of Classification Methods

Classification Method Evaluation Method Classification Model

C4.5 Entropy Logical
GRLVQI Sample Distance Prototype-based
BP Non-linear combination Nonlinear
Näive Bayes Bayes Theorem Probabilistic

3-10

0 5 10 20 30 35 40 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
z
y
x
min surface

Class Pairing

B
h
at

ta
ch

ar
y
ya

co
effi

ci
en

t

Example Surfaces from Three Features

Figure 3.5: Feature z has poor performance in general. For two class pairs (e.g., 5
and 35), feature z provides the best (minimum) separability. The mean
performance for this example is 0.2, 0.5, and 0.6782 for x, y, and z,
respectively. The current minimum surface consists mostly of feature x
and two class pairs of feature z

learning method based on distance, which prioritizes features based on their classifica-

tion potential. The GRLVQI classifier learns and prioritizes features simultaneously.

Finally, the BP is a nonlinear neural network trained based on the backpropogation

of error through the network.

Statistically-significant improvement between subsets is determined by multiple

comparison of the classification performance results for a given classifier as discussed

in Section 3.4.2. For the identified classification algorithms, the classification perfor-

mance of the selected subsets from each feature selection method are compared to the

classification performance of all the features. Performance gains for all the classifiers

by a given feature subset demonstrates generality for the network traffic classification

problem.

3-11

3.3 A Proposed Feature Selection Approach

The mean or class-weighted Bhattacharyya methods for feature selection, from

Section 2.2.1.1, is lacking in finding the smallest set of features for the multiple-class

classification problem. This section details a new approach for selecting features based

on Bhattacharyya coefficients. The approach treats the Bhattacharyya coefficient for

the C(C − 1)/2 pairs of C classes as a surface and sorts the features by iteratively

selecting members consisting of the minimum surface. This feature selection approach

will be referred to as the minimum surface Bhattacharyya method. For example,

Figure 3.5 depicts the surfaces of three features. The mean of the features are 0.2,

0.5 and 0.6782 for features x, y, and z, respectively. The mean of the three surfaces

obfuscates features with the best separability for a given class pair. That is, the

mean (or median) Bhattacharyya represents average (or median) performance and

has no intelligent way of adapting to local “best performance” in its ordering process.

By selecting the features creating the minimum surface (e.g., features x and z in

the first iteration), the separability for each class pair is optimized in the feature

ordering. Hence, features are greedily selected in a manner that preserves the best

separability without searching through all combinations of features. The order of the

features utilizing the minimum surface are x, z, and then y. If the number of class

pairs exceeds the number of features, the ordered list of features from the minimum

surface method approaches the median method when there is high variability in the

Bhattacharyya values across the class pair space. Modifying the example in Figure 3.5,

lets make the three features (x, y, and z) each have a minimum of 0.1 at separate

class pairs. A minimum surface method results in a sorted list of features based on

the median.

Algorithm III.1 details the pseudocode for implementing the sorting method

based on the minimum surface. The proposed minimum surface method for sorting the

features maintains an open list of all the features. The method selects all the features

that have a minimum value for a given class pair across the entire combinatorial space

of pairings. If there is a tie in the minimum value for a given class pair, the feature

3-12

Algorithm III.1 Minimum Surface Bhattacharyya Pseudocode: The Pseudocode
sorts based on the minimum surface of Bhattacharyya coefficients. If two features lie
on the minimum surface at the same class pair, the tie is resolved by the feature with
smallest median Bhattacharyya value.

Require: Array f [0, number of features − 1] of value arrays {a value array per
feature}

Require: Arrays value[0, number of class pairs − 1] of real numbers {a Bhat-
tacharyya coefficient per class pair}
sorted list← <empty list>
open list← [1, number of features] {list of all feature indices}
while open list is not empty do

min value ← min(f, open list) {array of minimum Bhattacharyya coefficients
for each class pair in open list}
min surface← <empty list>
for i = 0 to number of class pairs do {find the features that generate the
current minimum surface}

temp← −1
for each feature index, j, in open list do

if f [j].value[i] = min value[i] then

if temp = -1 or median(f [j].value) < median(f [temp].value) then {if
multiple features have minimum value, select feature with smallest me-
dian}

temp← j
end if

end if

end for

min surface← union(min surface, temp)
end for

sort min surface from smallest to largest median Bhattacharyya value
append min surface to end of sorted list
open list← difference between sets(open list,min surface) {remove features in
min surface from open list}

end while

return sorted list {sorted list of feature indices}

3-13

with the smallest median Bhattacharyya value is selected. The selected features

(composing the minimum surface) may then be sorted by their median value, added

to the end of the sorted list, and then removed from the open list. The method is

performed iteratively until all of the features have been removed from the open list.

The result of method is an ordered list of features, where a subset may be selected

based on a threshold or approach outlined in Section 3.2.2.

By sorting the features based on their minimum Bhattacharyya coefficient, one

will guarantee the features that provide the best separability for each class will be or-

dered first. Assuming the correlation of separation and performance is maintained for

various classification problems, this method should result in a smaller subset provid-

ing comparable performance to that of the mean or median Bhattacharyya method.

Fundamentally, the Bhattacharyya coefficient bases a given feature distribution on a

sampling of data, not a model of the data. The method assumes the sampling accu-

rately represents the data population in selecting features. Redundant features will

impact the capacity in obtaining the minimal set. Although they will not lie on the

same minimum surface, the redundant features will be sorted in successive surfaces.

Hence, the method does not have a manner for handling highly correlated data. For

features that are highly correlated, one of the features may be removed from the open

list in advance of the sort to minimize the feature set.

3.4 Evaluation Techniques

This section expands on two aspects of the feature analysis process that are

not explicitly depicted in Figure 3.1, but Section 3.2 outlines as criteria or methods

of analysis. First, the criteria for portraying classification performance is defined.

Second, the statistical analysis methods for analyzing the classification performance

results are covered.

3.4.1 Measuring Classifier Performance. A classifier’s equal weighted ac-

curacy (EWA) is used to compare the classification performance of a given feature

3-14

subset with another subset or the entire set for a given classification method. The

EWA is a non-biased performance estimate, where each class accuracy contributes

equally. The EWA is computed as:

EWA =
1

C

M
∑

m=1

C
∑

c=1

1(ifxm ∈ Xc & ym = c)

Mc

, (3.1)

where M is the number of samples, Mc is the number of samples in class c, C is

the number of classes, and 1(·) is an an indicator function. The indicator function

evaluates true (i.e., 1) if the sample xm is a member of the class c set (Xc) and the

predicted class label, ym, is class c. Otherwise, the indicator function evaluates false

(i.e., 0). A less formal definition is the average of all the class accuracies. For a

non equal weighted accuracy (NEWA), the accuracy is calculated by the number of

correctly classified samples divided by the total number of samples. The NEWA is

biased by the performance of the classes with disproportionately large samples, which

is the case for some classes in this thesis as discussed in Section 4.1.1.

3.4.2 Determining the Statistical Significance of Classifier Improvement for

Retained Features. Statistical analysis intends to highlight statistically-significant

differences among the results. The method for determining statistical significance is

dependent on the distribution of a given set of results to be analyzed. The Anderson

Darling Test determines the type of test which needs to be performed. Then, one of

two methods for performing a multiple comparison are used. At times, the nonpara-

metric multiple comparison method is too conservative so a paired nonparametric test

called the Wilcoxon Signed Rank test determines statistical significance between two

sets of runs (i.e., classification performance of two subsets).

3.4.2.1 Anderson Darling Test. The Anderson-Darling test is used

to determine whether a set of EWA results for T -Monte-Carlo runs follow a Normal

distribution with a confidence level of 95%. Analysis of normally distributed and non-

normally distributed results warrant distinct techniques due to limiting assumptions

3-15

and performance attributes of the techniques. The Anderson-Darling test has been

demonstrated a more powerful test than other approaches like the χ2 test and performs

well with long tails where the Shapiro-Wilk test suffers [83]. The Anderson-Darling

test does not require estimates of key parameters (e.g., mean and standard deviation)

and works for any distribution. In testing for normality, a random variable, X, is

assumed to be Normal (null hypothesis) and assessed whether the test statistic exceeds

the prescibed critical value for a given p-value. Tables of critical values have been

established for comparison with the test statistic and may be found in [83]. The

Anderson Darling test functions by first normalizing the classification performance

results from the runs, Xi, with the mean, X̄ and standard deviation, s, using

Yi =
Xi − X̄

s
. (3.2)

The original test statistic, A2, is calculated using the CDF of the sample data, F (Yi),

A2 = −n− 1

n

n
∑

i=1

(2i− 1)[log F (Yi) + log(1− F (Yn−i+1))] , (3.3)

where n is the number of performance samples (i.e., T -Monte-Carlo runs). A modi-

fication of the Anderson Darling test statistic for normality by Stephens [16] reduces

the required table of critical values to a single vector that does not need to account

for the sample size. The modified test statistic is calculated by,

A∗ = A2

[

1 +
0.75

n
+

2.25

n2

]

. (3.4)

If A∗ exceeds the critical values listed in Table 3.4 from [16], then the sample data

set is not normally distributed at the indicated p-value. The procedure is valid for

sample sizes greater than eight.

3.4.2.2 Multiple Comparison of Classification Performance Runs.

Classification performance results from unique subsets are compared for statistically-

3-16

Table 3.4: Critical Values for Testing Normality using modified Anderson Darling
Test from [16]

p-value 0.1 0.05 0.025 0.01 0.005
Critical Value 0.631 0.752 0.873 1.035 1.159

significant differences utilizing multiple comparison methods. The multiple compari-

son methods are useful for parametric and nonparametric analysis. Parametric anal-

ysis assumes a distribution of the results (i.e., Gaussian in this case). Nonparametric

analysis allows for comparison of distributions, which do not meet the normality cri-

terion. Both methods are similar in approach but the data is viewed from distinct

perspectives. The multiple comparison of normally distributed results utilize the val-

ues of a set of runs for a given subset to determine means and standard deviations.

The nonparametric method ranks each data sample (run) of all the subsets in the

multiple comparison to establish am ordering every sample from smallest to largest.

Nonparametric analysis utilizes the rank means and rank standard deviations.

A multiple comparison of the T -Monte-Carlo runs of k-fold cross validation uti-

lizes a family-wise confidence level of 95% to determine a statistically-significant differ-

ences [71]. The family-wise confidence level accounts for the compound uncertainty

generated by the combination of pairwise comparisons. The pairwise comparisons

cause very low family-wise confidences with a combination of paired hypothesis tests.

The comparison of multiple sets utilizes halfwidth confidence intervals determined

by

halfwidth = Mprocedure ∗ SE, (3.5)

where Mprocedure is a procedure-specific multiplier and SE is the standard error of

the pooled sets. Any overlap in confidence intervals centered at the sets’ mean or

mean rank indicates no statistical difference. The standard error, SE, is calculated

as follows

SE = sp

√

∑

g

1

ni

, (3.6)

3-17

where sp is the pooled standard deviation, g the number of groups (i.e., subsets for

comparison), and ni a given groups sample size (i.e., T -Monte-Carlo runs). The

pooled standard deviation is defined as

sp =

√

∑

g (ni − 1)s2
i

∑

g ni − 1
, (3.7)

where si is the standard deviation of group i. Nonparametric analysis of the systems

may be performed by replacing the standard deviation, si with the standard deviation

of the ranks.

There are several methods for determining the multiplier such as the Tukey-

Kramer and Bonferroni procedures [71]. Tukey-Kramer assumes normally distributed

results, where Bonferroni does not. The Tukey-Kramer multiplier provides highly

accurate intervals for a given confidence level and is calculated by

MTukey−Kramer =
qI,d.f.(1− α)√

2
, (3.8)

where qI,d.f.(1−α) is the 100× (1−α)th percentile of the Studentized Range distribu-

tion for I groups and d.f. degrees of freedom. Alternatively, the Bonferroni multiplier

for non-normally distributed results is the 100x(1−α/k)th percentile of the Student’s

t distribution, td.f.(1 − α/2k). The number of possible paired comparisons is k and

determined by

k =
I(I − 1)

2
. (3.9)

The confidence level utilizing the Bonferroni multiplier is not predictable like the

Tukey-Kramer multiplier. Although, the Bonferroni multiplier always results in a

conservative confidence interval [71].

3.4.2.3 Wilcoxon Signed Rank Test. The difference in performance

between two classifiers of distinct feature subsets is established with hypothesis test-

ing for a p < 0.05. Two generally accepted paired tests include the Student’s t-test

3-18

and Wilcoxon signed-rank test [57]. These methods for hypothesis testing may be

applicable depending on whether a given set of performance runs are normally dis-

tributed or not. For this thesis, the Wilcoxon sign-rank test is required at times for

non-normally distributed results due to the overly conservative nature of the multiple

comparison test with the Bonferroni multiplier.

The Wilcoxon signed-rank test compares pairs of observations from two sample

sets to determine whether they have the same median. The test assesses the null

hypothesis that the difference between the sample sets is zero [24]. Hence, sample

sets X and Y contain samples X1, X2, X3, Y1, Y2, and Y3. The absolute differences

between the samples, |Xi − Yi|, are ordered and ranked from smallest to largest from

one to the number of pairs, n. If there is a tie, the rank is the average rank of the

tied differences. The rank is given a sign that matches the true difference between

the samples, except for when there is a difference of zero. The sign given to the rank

of a difference of zero will hinder the rejection of the null hypothesis. The two-sided

test statistics can then be computed by selecting the smaller value of the sums of the

absolute of the negative ranks (W−) or the sum of the positive ranks (W+). The test

statistics may then be compared to a critical value from a table found in a statistics

book [24, 57] based on the desired p-value and the number of sample pairs, n. If the

test statistic is less than the critical value, the null hypothesis may be rejected and

there is a statistically-significant difference in the medians of the sample sets. For

example, Table 3.5 illustrates the Wilcoxon signed rank test on two classifiers over

four runs. The test statistics are W− = 12.5 and W+ = 8.5 and the critical value for

a two-sided test with a p-value of 0.05 is 1. Since neither test statistics are less than

one, there is no statistically-significant difference between the classifiers at a two-sided

95% confidence interval.

3.5 Summary

This chapter outlines a methodology for quantitatively selecting a reduced fea-

ture subset and assessing the generality of feature subsets with classifier performance.

3-19

Table 3.5: Example Wilcoxon Signed Rank Test

Run Classifier A Classifier B Difference Rank

1 0.70 0.90 -0.20 -5
2 0.95 0.85 0.10 2.5
3 0.95 0.65 0.30 6
4 0.88 0.98 -0.10 -2.5
5 0.90 0.95 -0.05 -1
6 0.80 0.95 -0.15 -4

Statistical methods are covered for the comparative analysis of the performance eval-

uations. The resulting feature subsets will also be scrutinized against studies into

the characterizations of network traffic. The process intends to lead to a well bal-

anced and thorough evaluation of established techniques of feature selection methods

to include a proposed extension to a current method for analyzing separability. The

results of this work are discussed in the following chapter.

3-20

IV. Experimental Results and Analysis

This chapter covers the experimental design, results and validation of results. The

experimental design covers the data set and parameters for implementing the exper-

iments. The results detail the analysis for subset selection and assessment of the

generality of the selected subsets. Lastly, the results are validated and reaffirmed

using the literature on flow characterization of several flow types.

4.1 Design of Experiments

This section discusses particularities of the experimental setup and runs. The

rationale for the selecting the data set are reviewed. The composition of the data set

and complexity for the given task are also discussed. The section outlines the specifics

on the parameters of the machine learning algorithms and the Monte-Carlo runs.

4.1.1 Data Set. Many references pertaining to intrusion detection utilize

a training and testing data set developed from Defense Advanced Research Projects

Agency’s (DARPA’s) Intrusion Detection Evaluations [27,45]. The data sets contain

weeks of simulated traffic with labels for identifying malicious from normal traffic.

The Massachusetts Institute of Technology Lincoln Laboratory modeled the network

traffic of an Air Force Base and inserted known cyber attacks. Lincoln Laboratories

performed two evaluations on the simulated data sets in 1998 and 1999. A portion

of this data was used to generate a data set for a 1999 competition by the University

of California, Irvine, Knowledge Discovery in Data (KDD99) [10]. The DARPA and

KDD99 data sets and other artificial data sets are not ideal for training or testing a

classifier or assessing classification methodologies. The underlying problem of such

data sets result from the generation of background traffic from probabilistic models

with attack traffic injected into the flows [74]. Since background traffic conforms to

ideal distributions, a classifier based on such a data set does not contend with the

noise of real network traffic. Furthermore, McHugh [54] comments that no apparent

validation was performed on the artificial background traffic of the DARPA data set,

which may bias the results.

4-1

Ideally, real network traffic provides the basis for a data set to train a classifier.

Moore [61] developed such a data set and documented a detailed description of its

features, and method for generation. Moore’s data set contains a day of authentic net-

work traffic that was classified by the type of traffic in accordance with the procedure

in [59]. The traffic labeled as cyber attacks have been determined utilizing known sig-

natures. The attack traffic are mostly categorized as worms and viruses. A recreated

table of the features contained in the data set from [61] is listed in Appendix B.

The data set provides a look into a real world application of the feature selection

problem since it is extracted from a day of network traffic and has already been

processed for metrics and statistics [61]. The data set contains 377,526 samples of

network flows, 248 features, and 12 classes, whose features include nominal, discrete,

continuous, missing and noisy values. The samples of the data are restricted to bi-

directional Transmission Control Protocol (TCP) flows. A portion of the data set is

utilized for this work since the original data set consists of too many network flows

to handle in a reasonable amount of time and the author encountered unresolvable

heap space issues with the original data set. The reduced data set consists of 40,858

flows. A majority of the flows consist of email and world wide web traffic so they

have been limited in the reduced data set. One class has been entirely removed due

to insufficient instances. The composition by class of the original and reduced data

set is shown in Table 4.1.

The features may be categorized by protocol parameters, performance, volume

and size. The categories describe the type of flow characteristics (e.g., features)

extracted in creating the data set. The protocol parameters include information taken

directly from packet-level headers. Performance pertains to a combination features

that are affected by flow and network dynamics (e.g., throughput). Volume includes

the quantity of certain distinguishing packet traits. Size encompasses features that

describe the flows in terms of bytes. Table 4.2 provides several examples of features

by category. The features describe host to host sub flows and aggregate bidirectional

4-2

Table 4.1: Data Sets - Number of Instances in each Class

Class Original Data Set Reduced Data Set

Games 8 0
Interactive 110 110
Multimedia 576 576
Attack 1,793 1,793
Peer-to-peer 2,094 2,094
Services 2,099 2,099
Database 2,648 2,648
File Transfer Protocol-passive 2,688 2,688
File Transfer Protocol-control 3,054 3,054
File Transfer Protocol-data 5,797 5,797
Mail 28,567 9,999
World Wide Web 328,092 10,000
Total 377,526 40,858

statistics and metrics. Specifically, the features include quartile, min, max, average

and median statistics.

Table 4.2: Example Features by Category
Protocol Parameters Performance Volume Size

stream length inter-arrival time number of out-of-order packets average packet size
average window size throughput number of acknowledgment packets total bytes sent

request for max segment size round trip time number of retransmissions amount of control bytes set

The data set presents a complex domain with high dimensionality, varied corre-

lation, multiple feature types and missing values. Analysis of the data sets show that

some features are redundant and/or uninformative for the classification task. Uti-

lizing Pearson’s correlation coefficient, the feature pairs indicated in Table 4.3 have

a perfectly linear association indicated by |r| = 1. Of the pairings, only a single

member of a pair would need to be assessed for feature selection. Additionally, the

data set contains features with no utility since all their values are zero or missing.

Uninformative features are noted in Table 4.4 and may also be removed. Many pairs

of features contain extremely high correlations in excess of 0.99. For the 248 features,

there are 30,628 possible combinations of pairings. There are 74 and 326 feature pair-

ings that have absolute correlations greater than 0.99 and 0.9, respectively. The data

4-3

set contains features whose values are binary, whole and real numbers. Additionally,

nearly a third of values for some features are missing data.

Table 4.3: Pairs of Features with Perfect Correlation

Index A Feature A Index B Feature B

6 mean IAT 198 mean IAT a b
6 mean IAT 205 mean IAT b a

198 mean IAT a b 205 mean IAT b a
7 q3 IAT 199 q3 IAT a b
7 q3 IAT 206 q3 IAT b a

199 q3 IAT a b 206 q3 IAT b a
217 Effective Bandwidth a b 218 Effective Bandwidth b a

Table 4.4: Uninformative Features

Index Feature

76 urgent data pkts b a
78 urgent data bytes b a
103 truncated data a b
104 truncated data b a
106 truncated packets b a
219 FFT all Frequency # 1
229 FFT a b Frequency # 1
239 FFT b a Frequency # 1

As discussed in Section 3.3, the Bhattacharyya methods do not handle redun-

dant features. These redundant and uninformative features in Tables 4.3 and 4.4

were removed from the Bhattacharyya methods to prevent the similar ranking of

highly correlated features. All the remaining feature selection methods utilize all the

features. Except for RELIEF-F, all the other feature selection methods handle re-

dundant features. The redundant and uninformative features should also be removed

from the RELIEF-F runs, but the RELIEF-F runs have been executed in advance

of the analysis of redundant features. Due to the amount of computational time in

reevaluating the features for 30 Monte-Carlo runs, the RELIEF-F algorithm was not

repeated without the redundant and uninformative features. Since the redundant fea-

tures would be ranked similarly, the subset selected using RELIEF-F may be larger

4-4

than if the features were excluded. In the case of this thesis, the size of the selected

subset for RELIEF-F was not affected. The redundant and uninformative features

referenced in Tables 4.3 and 4.4 do not appear in the selected subset for RELIEF-F.

Hence, there is no impact on the results of this thesis by not reevaluating the features

with RELIEF-F.

4.1.2 Experimental Parameters. Cross validation allows for the use of in-

dependent training and test sets, while testing each sample in the set exactly once.

A single run of k-fold cross validation provides an estimation or sample of the per-

formance of the classifier, while reducing the bias of the results [46]. By stratifying

the folds, each fold will have a near equal number of samples per class. Stratification

ensures a representative number of of each class is in all training and test sets. There

are ample samples to perform runs of a stratified 10-fold cross validation since the

reduced data set has 40,858 samples with only 2 classes containing less than 1,000

samples. This thesis assesses the performance of a classifier for a given subset of fea-

tures with 30 runs of stratified 10-fold cross-validation. A run ascribes to a specific

seed that partitions the folds for the cross validation of each run. The same seeds,

integers 1 through 30, are used for all classifications and feature selection methods to

provide uniformity for comparison of performance.

Table 4.5 provides a listing of the parameters for the machine learning algo-

rithms of interest to this work. The C4.5 decision tree parameters are based on Quin-

lan’s discussion [70] as described in Section 2.3.1. Mucciardi and Gose [63] provide

the POEACC parameters that perform well in their experiments. As suggested by

Kononenko [38], the simplification of using all the instances to determine the weight-

ing is used for RELIEF-F. The parameters for the remaining algorithms (GRLVQI,

BP, classifier accuracy rate with best first (BF) search and classifier accuracy rate

with genetic algorithm) are based on experimentation, in order to find a reasonable

performance in classification performance and runtime. The GRLVQI learn schedule

refers to a reduction in the learn rates by a half and the β by 20% every 250k training

4-5

Table 4.5: Parameters for Machine Learning Algorithms
Näive Bayes None

C4.5
Confidence Factor 0.25
Min Num of Objects per Leaf 2

GRLVQI

In-Class Learn Rate (ǫJ) 0.02
Out-of-Class Learn Rate (ǫK) 0.02
Relevance Learn Rate (ǫλ) 0.01
Training Steps 2M
Learn Schedule Every 250k steps
Number of Prototypes per Class 10
β for Conscience Learning 0.5
γ for Conscience Learning 2

BP
Learning Rate 0.3
Training Epochs 10
Hidden Nodes 248

POEACC
Classifier Näive Bayes
Weight for ACC 0.9
Weight for POE 0.1

RELIEF-F Number of Neighbors All

Acc Rate w/ BF Search
Classifier Näive Bayes
Direction Forward
Amount of Backtracking 5 nodes

Acc Rate w/ Genetic Algorithm

Classifier Näive Bayes
Generations 20
Crossover Probability 0.6
Mutation Probability 0.3

Median Bhattacharyya None
Minimum Surface Bhattacharyya None

steps. The Näive Bayes, and median and minimum surface Bhattacharyya methods

do not require input parameters. Although, the performance of the Bhattacharyya

methods are sensitive to the binning approach taken for the comparison of histograms.

Implementations of the algorithms for this thesis may be found in the WEKA

library [87]. WEKA is a Java library of machine learning algorithms for classifica-

tion, clustering and feature selection. The library includes a graphical user interface,

mechanisms for input and output of data sets, visualization of results and input

data, testing of algorithms, and ample documentation. This tool set may be used

to implement additional machine learning methods. A few algorithms, which were

4-6

not included in the WEKA library (e.g., POEACC and GRLVQI), have been imple-

mented to interface with the library and take advantage of the performance analysis

and reporting tools. The median and minimum surface Bhattacharyya methods are

implemented in Matlab, vice WEKA, to reduce development time. For example, Mat-

lab contains predefined functions for generating histograms, which is used to calculate

the Bhattacharyya coefficient.

4.2 Results of Experiments

This section discusses the results and analysis in establishing and evaluating

feature subsets for intrusion detection. The subsets for each feature selection method

are quantitatively justified. Feature selection methods, which develop the subsets,

demonstrate varied capacities in identifying relevant features for the given data set.

A few subsets well describe the decision boundary by improving or maintaining per-

formance across a varied grouping of classifiers. Trends in the classifiers are also

brought to light based on the comparative classification performances of the subsets.

4.2.1 Subset Selection for Each Feature Selection Algorithm. By execut-

ing the method in Section 3.2.1, each feature selection method provides an ordered

list of subsets for evaluation. The subsets of a given feature selection algorithm are

referred to by the number of features in a subset. A single subset for each feature

selection algorithm is chosen based on statistically-significant classification perfor-

mance with the Näive Bayes classifier (statistical significance determined as discussed

in Section 3.4.2). The leading subset where the classification performance plateaus

is selected for the feature selection method for reasons discussed in Section 3.2.2. If

a smaller subset performs statistically better or the same than the selected feature

subset, then the smaller subset is selected at the expense of the larger subset. This

section reviews the assessment of the performance for each feature selection algorithm.

Figures A.1 through A.8 in Appendix A illustrate the results and analysis of the or-

dered subsets’ classification performance from the following feature selection methods:

4-7

classifier accuracy rate with best first search, Decision Tree (C4.5), classifier accuracy

rate with genetic algorithm, RELIEF-F, Probability of Error and Average Corre-

lation Coefficient (POEACC), Generalized Relevance Learning Vector Quantization

Improved (GRLVQI), median Bhattacharyya and minimum surface Bhattacharyya

methods.

Each figure contains three plots to illustrate the results of the subsets’ per-

formances for a given feature selection method. The (a) plots show differences in

classification performance (i.e., equal weighted accuracy (EWA)) between consecu-

tive subsets. The difference is calculated by EWASubset (i+1) − EWASubset i, where i

is the number of features in a given subset. When the difference stabilizes to below

1.5% accuracy, classification performance has reached a representative plateau based

on empirical trends of the results. The leading subset of the plateau is initially se-

lected as the selected subset for the given feature selection method. The (b) plots

provide a multiple comparison of the mean performance of subsets with normally

distributed results to demonstrate statistical significance. The (b) plots do not con-

tain the confidence intervals because the intervals are too small for the given axis.

The confidence intervals will be referred to in relation to the mean, µEWA, when

a statistically-significant difference in performance is not clear. The (c) plots pro-

vide a multiple comparison of mean ranks with confidence intervals for comparison

of non-normally distributed results. The rank confidence intervals will be referred to

in relation to the mean rank, µrank. The family-wise rank confidence intervals may

be overly conservative and misleading since the comparison method of mean ranks

accounts for a pooled standard error in rank. Hence, analysis by rank negates large

differences in performance. Given 3 accuracies of 0.6, 0.9 and 0.91, the ranks are 1,

2 and 3, respectively. If there is a significant overlap of numerous subsets of close

performance the family-wise rank confidence interval becomes tremendous in com-

parison with the actual difference in performance. Alternate methods of analysis may

be required for these cases (e.g., a paired hypothesis test or a multiple comparison of

a smaller subset of features).

4-8

0 11 37 50 100 115
0

0.1

0.2

Subset 11

Subset 10

Number of Features in SubsetD
iff

er
en

ce
in

P
er

fo
rm

an
ce Difference in Performance among Adjacent Subsets

Figure 4.1: The classification performance of ordered subsets, generated by accu-
racy rate with best first search, stabilizes at subset 11. Based on the
given feature selection and classification method, subset 11 contains the
most important features

The results in Figure A.1 and interpretation for the classifier accuracy rate with

best first search are discussed in detail below. The three plots in Figure A.1 are in-

cluded in this section (e.g., Figures 4.1, 4.2, and 4.3). Figure 4.1 shows the difference

in performance from adjacent subsets by the number of features in a given subset for

classifier accuracy rate with best first search. The smallest subset generated contains

three features and the classification performance changes significantly for successive

subsets. The classification performance stabilizes below 1.5% starting with subset

11. Subset 11 is initially selected as the feature subset for classifier accuracy rate

with best first search. Based on the given feature selection and classification method,

subset 11 contains the most important features, but statistical analsyis determines

whether it is the smallest set of important features.

For classifier accuracy rate with best first search, subset 11 is compared to

smaller subsets to determine whether it provides improved classification performance

with statistical significance. All results for feature subsets smaller than subset 11 are

normally distributed, except for subset 10. Figure 4.2 shows the mean classification

performance by the number of features in a subset. For the figure, the family-wise

confidence interval is µEWA±8.863×10−4. With such a tight interval, no subset smaller

than subset 11 has a classification performance that approaches the performance of

4-9

0 11 24 50 100
0.2

0.4

0.6

0.8

Subset 11

Number of Features in Subset

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

Figure 4.2: Multiple comparison of the mean classification performance is used to
determine statistically-significant differences of normally distributed re-
sults for ordered subsets from accuracy rate with best first search

0 1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

Number of Features in Subset

M
ea

n
R

an
k

Performance Rank of Subsets

Figure 4.3: Multiple comparison of the mean ranks in classification performance
is used to determine statistically-significant differences of non-normally
distributed results for ordered subsets from accuracy rate with best first
search. Subset 10 is the only non-normally distributed subset smaller
than Subset 11

subset 11. Hence, the classification performance results from subset 11 perform better

than all the smaller, normally distributed subsets with statistical significance.

Subset 10 is non-normally distributed so analysis of statistical significance using

rank is appropriate. Figure 4.3 illustrates the rank-based multiple comparison with

confidence intervals. Based on the classification performance rank intervals, subsets

10 and 11 clearly overlap so the results are not statistically different from this perspec-

tive. Based on the large difference in mean EWA, a lack of statistical significance is

counterintuitive. The family-wise rank confidence interval in this case is too conserva-

4-10

tive to make an accurate determination of statistical significance. A paired Wilcoxon

signed rank test shows the results for subsets 10 and 11 do not have equal classifica-

tion performance with statistical significance, p-value = 1.7235× 10−6. Based on the

given feature selection and classification method, subset 11 contains the smallest set

of important features.

The analysis for the remaining figures (feature selection methods) are analo-

gous to that of the classifier accuracy rate with best first search method. They are

summarized below:

• Decision Tree (C4.5): Figure A.2 (a) illustrates that the results stabilize at

subset 23. Figure A.2 (b) shows the mean performances are clearly less than

subset 23 for smaller subsets. Figure A.2 (c) shows no overlap below subset 23.

• Classifier accuracy rate with Genetic algorithm: Figure A.3 (a) illustrates that

the results stabilize at subset 12. Figure A.3 (b) shows the mean performances

are clearly less than subset 12 for smaller subsets. Figure A.3 (c) shows no

overlap below subset 12.

• RELIEF-F: Figure A.4 (a) illustrates that the results stabilize at subset 19.

Figure A.4 (b) shows the mean performances are clearly less than subset 19 for

smaller subsets. Figure A.4 (c) shows no overlap below subset 19.

• POEACC: Figure A.5 (a) shows the performance stabilize at subset 86. Due

to the poor performance of the feature selection method, many redundant and

uninformative features are ranked high. One must relax the 1.5% difference

among adjacent subsets to obtain a comparably-sized subset that captures the

most relevant features. Subset 12 may be selected with a difference of approx-

imately 5%. Figure A.5 (b) shows the nearest performer to subset 12 is subset

11 and a statistically-significant difference is not clear. The confidence inter-

val around the mean is µEWA ± 1.4 × 10−3. The upper and lower ends of the

confidence intervals for subsets 11 and 12 are µEWA + interval = 0.6783 and

µEWA− interval = 0.6904, respectively. Hence, there is no overlap of the inter-

4-11

vals. Subsets one to four have non-normally distributed results. The multiple

comparison among all the subsets is too conservative so Figure A.5 (c) shows a

multiple comparison between subset 12 and smaller subsets. There is no overlap

with subsets one to four.

• GRLVQI: Figure A.6 (a) illustrates that the results stabilize at subset 27. Fig-

ure A.6 (b) shows the mean performances are clearly less than subset 27 for

smaller subsets. Non-normally distributed results include subsets 1-5, 6, and

12. Figure A.6 (c) shows no overlap with subsets 1-5, 6, and 12 with subset 27.

• Median Bhattacharyya: Figure A.7 (a) illustrates the results do not stabilize

until after a severe reduction in performance at subset 71. The subset with

the best classification performance below subset 71 is subset 23. Figure A.7

(b) is unclear whether there is an overlap of the confidence intervals. The

nearest performer to subset 23 (µEWA−interval = 0.8692) is subset 22 (µEWA+

interval = 0.8668) and there is no overlap of the intervals. The non-normally

distributed results below subset 23 include subsets 1, 2, 6, and 8. Figure A.7

(c) shows no overlap of rank confidence intervals between subset 23 and the

non-normally distributed results.

• Minimum Surface Bhattacharyya: Figure A.8 (a) illustrates that the results

stabilize at subset 16. Figure A.8 (b) shows the mean performances are clearly

less than subset 16 for smaller subsets. Figure A.8 (c) shows no overlap of subset

16 with non-Normal results from subsets 1, 5, and 9.

Table 4.6 compares the selected subset sizes for each feature selection method

discussed and subsets generated from two additional feature selection methods from

Auld [2] and Moore [60]. The two additional subsets were generated, by Bayesian

Neural Network Feature-Interdependent Ranking (BNN) and Fast Correlation-Based

Filter (FCBF) methods, from the features in Appendix B, except port numbers. All

of the feature selection methods drastically reduce the dimensions of the feature set.

4-12

Section 4.2.2 compares the performance of the subsets with four classifiers: Näive

Bayes, C4.5, multilayer perceptron with backpropogation (BP), and GRLVQI.

Table 4.6: Performance of Selected Subsets

Feature Selection Method Number of Selected Features

Best First 11
Decision Tree (C4.5) 23
Genetic 12
RELIEF-F 19
POEACC 12
GRLVQI 27
BNN [2] 20
FCBF [2,60] 10
Bhattacharyya-median sort 23
Bhattacharyya-min surface sort 16
None (All Features) 248

4.2.2 Subset Comparison by Classifier. Figures A.9 through A.12 in Ap-

pendix A illustrate the multiple comparisons of the selected subsets’ performances

for the Näive Bayes, C4.5, BP, and GRLVQI classifiers. The analysis treats the per-

formance of all the features for a given classifier as a baseline. Performance is based

on an improvement or decline in EWA for the subsets selected for each feature selec-

tion method in relation to the baseline. The (a) plots show comparison of means with

family-wise confidence intervals. The (b) plots show mean ranks with family-wise rank

confidence intervals. A similar issue with the multiple comparison of ranks results in

overly-conservative rank confidence intervals for non-normally distributed results. A

paired hypothesis test may be required for non-normally distributed results. The

subsets generating non-normally distributed results for a given classification method

are listed below:

• Näive Bayes: C4.5 and FCBF

• C4.5: Accuracy rate with genetic algorithm and median Bhattacharyya

• BP: none

4-13

0

200

400

Bes
t F

irs
t

C4.
5

Gen
et

ic

RELI
EF−F

POEACC

GRLV
QI

Bha
tt

(m
ed

ian
)

Bha
tt

(m
in

su
rfa

ce
)

BNN
FCBF

All F
ea

tu
re

s

M
ea

n
R

an
k

Performance Rank of Subsets

Figure 4.4: Multiple comparison of the mean ranks in Näive Bayes classifier perfor-
mance is used to determine statistically-significant differences of non-
normally distributed results for selected subsets. The method is overly
conservative for the non-normally distributed results from C4.5 and
FCBF feature selection methods

• GRLVQI: C4.5

The only case, where the figures do not provide an accurate representation of

the results, is for the non-normally distributed results for the Näive Bayes classifier in

Figure 4.4. The results generated by subsets from C4.5 and FCBF feature selection

methods are non-normally distributed. Wilcoxon signed rank tests between the results

of C4.5 and All Features, and FCBF and All Features show unequal performance.

Each of the two tests has a p-value equal to 1.73 × 10−6. The subset from the C4.5

method has a better performance and the FCBF has a worse performance than the

baseline of All Features.

As indicated by Table 4.7, most of the feature selection methods provide a de-

gree of generality in the selected subsets. The far-left column of the table lists the

feature selection method from which a given subset is generated. The remaining two

columns provide a count of the number of classifiers, where the selected subset has

outperformed or maintained performance in respect to all the features with statisti-

cal significance. Only the subset generated by the RELIEF-F algorithm improved or

maintained performance for all of the classifiers. The RELIEF-F algorithm weights

4-14

the features based on the nearest distance from in-class and out-of-class samples along

a given dimension (feature). Interestingly, GRLVQI updates feature weightings based

on distances to the nearest in-class and out-of-class samples and its selected sub-

set provides good generality by improving or maintaining performance for three out

of the four classifiers. Surprisingly, the subset generated from GRLVQI improved

performance for every classifier except itself. Ranking the features, based on the

Bhattacharyya coefficient, provides a slightly different distance measure approach,

which seeks to determine the difference between classes for a given feature. Both

methods utilizing Bhattacharyya coefficients improve performance for three classi-

fiers. Regardless of specific approach, this shows distance to be a reliable measure for

analyzing features for this data set. The methods that do not perform well for the

intent of generality is classifier accuracy rate with best first search, POEACC, and

the two methods taken from papers, BNN and FCBF. The feature selection method

utilizing accuracy rate with best first search improved performance for a single classi-

fier (Näive Bayes), while maintaining classification performance for another classifier

(C4.5). Even though POEACC improved and maintained classification performance

for two classifiers (GRLVQI and C4.5, respectively), POEACC performed near the

worst of the feature selection methods across all of the classifiers. The subsets from

BNN and FCBF clearly do not provide generality by improving classification perfor-

mance for one classifier (GRLVQI). The methods do not to include server and client

ports in their subsets (BNN and FCBF), which demonstrates the importance of ports

for the classification task.

Nearly every selected subset increased performance for the Näive Bayes classifier

as illustrated in Figure A.9. The feature subsets not containing port numbers, BNN

and FCBF, reduced performance approximately 30%. For the most part, the perfor-

mance of the Näive Bayes classifier is highly susceptible to the included features. Even

though most feature subsets increase performance, the increase is highly varied from

3% to 12%. The method utilizing accuracy rate with best first search performs well

in optimizing a minimal set of features (11) and increases the Näive Bayes classifica-

4-15

Table 4.7: Performance of Selected Subsets in Relation to All Features

Feature Selection Method Outperform Equal Performance

(Number of Classifiers) (Number of Classifiers)
Best First 1 1
Decision Tree (C4.5) 3 0
Genetic 2 1
RELIEF-F 2 2
POEACC 1 1
GRLVQI 2 1
BNN [2] 1 0
FCBF [2,60] 1 0
Bhattacharyya-median sort 3 0
Bhattacharyya-min surface sort 3 0

tion performance by 10%. This is entirely reasonable since the heuristic used in the

search is the accuracy from the Näive Bayes classifier. This is an example of a feature

selection method optimizing for a given classifier. One may suspect that classifier ac-

curacy rate with a genetic algorithm would result in a similar or better optimization

for the Näive Bayes classifier. This likely do not occur because of the small number

of generations and high mutation rate used for parameters. These parameters are not

ideal for optimizing the search; they are used to reduce the search time and broaden

the search space within the limited number of generations. In this case, the genetic

search parameters result in a the smallest subset with good generality.

Figure A.10 shows the C4.5 classifier maintain outstanding performance across

all the subsets. Even the worst performers (e.g., BNN and FCBF), have EWAs greater

than 90%. Only the subsets generated from the Decision Tree and Bhattacharyya

selection methods improved performance. The C4.5 classifier is robustly consistent

regardless of the selected subset with most subsets providing EWA performance in

excess of 98%.

The BP is stridently resilient to improvement in classification performance. Fig-

ure A.11 shows that no feature subset improved classification performance, which is

consistent with Auld [2]. Two subsets (e.g., RELIEF-F and GRLVQI) maintained

4-16

performance with the entire feature set. Three other subsets (e.g., accuracy rate with

best first search, Decision Tree, and accuracy rate with a genetic algorithm) provided

mean performance within 2% of that of all the features. The subsets generated by

mean and minimum surface Bhattacharyya methods had performance within 4% of all

the features. As discussed in Section 2.2.2, BP performs well with noisy and incom-

plete data so the consistent classification performance from the subsets demonstrates

the traits of the classifier.

Performance of GRLVQI is dramatically improved by feature selection with this

data set as illustrated by Figure A.12. This susceptibility to the feature set is not

intuitive since GRLVQI preferentiates features based on classification performance.

Two subsets hindered performance to include the subset generated by GRLVQI as the

feature selection method and accuracy rate with best first search. The results suggest

that the relevance initialization or update approaches for GRLVQI is suboptimal for

its own learning paradigm with this data set. Perhaps, initially weighting the features

by their normalized median Bhattacharyya measure between classes or RELIEF-F

weighting would be beneficial in guiding the the creation of the domain boundary,

vice an equal weighting for all features.

Table A.1 lists the features by the feature selection method. The most commonly

selected features include server and client ports, size of the packets/segment sizes, and

window sizes/advertisements. Less commonly selected features include Internet Pro-

tocol (IP) indicators (e.g., synchronization, acknowledgment, request packets), and

timing (e.g., inter-arrival time, round trip time, and idle time). An important ques-

tion to answer is why the selected features improve performance. Feature selection

methods identify features, which characterize unique connection traits of the network

traffic classes and provide separability between the classes for classification. For exam-

ple, the subset generated via RELIEF-F demonstrated generality for all the classifiers

and the features provide separability among the classes, as indicated by their Bhat-

tacharyya coefficient. Of the features selected using RELIEF-F, 16 out of 19 features

have mean Bhattacharyya coefficients less than 0.5 for all combinations of classes.

4-17

Additionally, the results demonstrate that the RELIEF-F algorithm performs poorly

in handling highly correlated features. The RELIEF-F rankings of highly correlated

data are similar.

In general terms, the selected features provide a relevant representation of the

domain space and boundaries as reinforced by research into the characteristics of

network traffic. Many of the selected features may be deduced based on the behavior

of flow types. A more detailed discussion on established flow characteristics and their

validation of the generality of the selected features follows.

4.3 Validation of Results

Self-identification of network service via client and server ports is ranked high

for every feature selection method. For good reason, the Internet Assigned Num-

bers Authority (IANA) has defined well-known server ports (server ports less than

1,024) to a defined network service. Furthermore, IANA registers ports for propri-

etary applications and those server ports range from 1,024 to 49,151 [51]. A server

configured appropriately will accept connections for a given service on the predefined

port. Hence, the server port feature will correctly define the application in most cases.

An exception is for the FTP protocol where the server initiates the connection for

data transfer on port 20. In this case, the “server” sending the data is considered a

client in respect to the connection and port 20 is assigned to the client port feature

of a FTP-data flow. In addition, network attacks target specific services (e.g., the

deloader worm and MS SQL-snake worm connect on ports 445 and 1433, respectively)

so the port number may also be used in identifying the type of attack or conceal the

attack among regular traffic [88]. Some peer to peer (P2P) traffic utilize predefined

ports (e.g., BitTorrent operates on server ports 6881 to 6889). Other P2P appli-

cations have grown more elusive and operate on any port number and attempt to

conceal the application by operating on port 80 [34]. Reliance on port numbers will

lead to misclassifications and studies have shown other important characteristics to

describe traffic.

4-18

The foremost characteristic of P2P traffic aside from port numbers is packet

size [34] (e.g., features 11-23, 81-84, 153-166, 174-187). Differing P2P applications

implement varied packet sizes for control packets to manage and search its overlay

network. The P2P control packet size may be an indicator, aside from maintaining

a high rate of packets that meet the maximum segment size. P2P networks are

notorious for utilizing a significant amount of bandwidth over the Internet backbone.

A likely indicator is the amount of bytes sent and the effective bandwidth of a flow

(e.g., features 43-44, 47-48, 216-218).

Lakhina, et al. [41] provide ample discussion on the characteristics of network

anomalies, of which attacks are a subset. Denial of Service (DOS) attacks become

evident by the number of packets in a flow and the number of flows between a host

pair. Furthermore, DOS attacks typically target a given IP address or small set of IP

addresses. A high number flows between hosts are indicative of features that monitor

the number of packets (e.g., features 31, 32) and a low time since a last connection,

feature 209. The high rate of packets in a given flow suggests a low inter-arrival time

(e.g., features 3-9, 195-208) and low idle time (e.g., features 109, 110).

A large number of IP flows to multiple ports is characteristic of scanning. Like

a DOS attack, a low time since last connection is indicative of multiple connections

between two hosts. Scanning is also a short-lived activity that takes advantage of un-

documented events in network protocols to evade firewalls. For example, a connection

may be initiated with an acknowledgment packet, vice the expected synchronization

packet. Informative features may be stream length or duration (e.g features 99-100,

107-108). The data set strictly contains full TCP connections that begin with a syn-

chronization packet so such methods of scanning are not included. Self-propagating

worms target a given vulnerability over a set port with a large spike in packets to

spread the worm. The features discussed should provide fidelity in characterizing

worms.

4-19

The features do not provide indicators for analyzing unsuccessful or incom-

plete connections. These characteristics correspond to attacks such as synchroniza-

tion flooding, scans and network mapping. A problem from the intrusion detection

perspective is that the feature set focuses on flow-level characteristics. Ren, et al. [72]

shows how network-level trends of synchronization and acknowledgment packets, time,

port numbers and IP addresses may be used in intrusion detection.

4.4 Summary

Only a single algorithm, RELEIF-F, demonstrate generality of the selected fea-

ture set based on classification performance on all four classifiers. Five other feature

selection methods (e.g., Decision Tree, accuracy rate with a genetic algorithm, GR-

LVQI, mean Bhattacharyya, and minimum surface Bhattacharyya methods) show

good generality by maintaining classification performance on three of the classifiers

and a majority of them nearly met performance for a fourth classifier. The decision

boundary may be well described with 12 to 27 features, while providing significant

improvement to classification performance in some cases. The proposed minimum

surface Bhattacharyya method generates the second smallest subset of 16 with good

generality. Accuracy rate with genetic search creates the smallest subset with good

generality.

The (a) plots from Figures A.3 through A.8 in Appendix A demonstrate that

the feature selection algorithms (e.g., accuracy rate with genetic algorithm, RELIEF-

F, GRLVQI, median Bhattacharyya and minimum surface Bhattacharyya methods)

that generated features with generality displayed a unique behavior. The performance

reaches a climax with small subsets sizes and tappers off to a worse performance with

large subset sizes. The feature selection methods that do not demonstrate generality

in their selected features (e.g., accuracy rate with best first search and POEACC)

illustrate different characteristics in their subset performance charts. Plot (a) of

Figures A.1 and A.5 show a consistent increase or stable performance as the ordered

subsets become larger. The climax and plateau illustrates an appropriate ordering of

4-20

the most relevant features first followed by features that serve as distractors or redun-

dant features. Figure A.5 for the POEACC algorithm illustrates a poor performing

feature selection algorithm for the data set with the performance increasing until

large subsets. It would be intriguing to observe the performance by subset graphs of

the other classification methods. Is the climax an attribute of the ordered features

or the Näive Bayes classifier? Do the performances plateau at similar subsets sizes?

Additionally, one may rank the selected features in Table A.1 and assess the ordered

subsets as discussed in Section 3.2.

4-21

V. Conclusions

The goal of this thesis is to assess relevant features for the purpose of intrusion

detection on a computer network. The relevant features may allow for improved clas-

sification performance for real-time or post-analysis of network traffic. In order to

perform the task, a review of the taxonomy of feature selection algorithms and in-

trusion detection methods are discussed. Prevalent methods in the machine learning

intrusion detection field of study are incorporated into the methodology to include

a diverse group of feature selection and classification methods. Additionally, an ex-

tension to utilizing separability as a feature selection method is proposed. The thesis

outlines a set of features and feature types relevant to the intrusion detection task and

provides quantitative justification by means of classification performance and qualita-

tive validation from works characterizing network traffic. Specific features have been

demonstrated to provide ample characterization of the decision boundary for clas-

sification. The feature selection methods analyzed include accuracy rate with best

first search, Decision Tree (C4.5), accuracy rate with a genetic algorithm, RELIEF-

F, Probability of Error and Average Correlation Coefficient (POEACC), Generalized

Relevance Learning Vector Quantization Improved (GRLVQI), median Bhattacharyya

and minimum surface Bhattacharyya methods.

5.1 Summary of Results

For a selection of real traffic flows, the results of this thesis demonstrate mul-

tiple feature subsets that drastically reduce the size of a feature set while providing

ample generality to describe the domain and enhance performance for some classi-

fiers. The figures in Appendix A illustrate several trends for the feature selection and

classification methods like confirmation of the hypothesis that classification perfor-

mance plateaus with added features. Six feature selection methods provide subsets

with a degree of generality. Although, if one applied a distinct approach for selecting

larger subsets, from the feature selection methods, generality would be found with

more feature selection methods. The RELIEF-F feature selection method generates a

5-1

subset with generality across all the classifiers. The minimum surface Bhattacharyya

method generates the second smallest set of features to describe the decision boundary

well. Where the POEACC algorithm regularly performs near the bottom of the pack.

Accuracy with best first search demonstrates its capacity in selecting the smallest fea-

ture set (11), while optimizing the performance of a given classifier. Based on review

of the selected feature subsets, the key feature characteristics required for generality

include ports, packet size, timing attributes, and other protocol-specific indicators.

Analysis of evaluations into network traffic characteristics support the finding of this

thesis.

Unintentionally, the thesis also acts as a survey of common classification meth-

ods. Contrary to some prior work, the C4.5 demonstrates very good classification

across all of the network traffic classes. Previous work implementing C4.5 and other

decision trees show mixed results in classifying network services and attacks on sim-

ulated and real traffic [1, 21, 43]. A majority of the works utilize the Massachusetts

Institute of Technology Lincoln (MIT) Laboratory data set discussed in Section 4.1.1

and show relatively poor accuracy for all attack types except Denial of Service attacks.

Sabhnani [77] argues that the poor detection performance of some attack types is due

to deficiencies in the MIT data set. This thesis shows a clear performance advantage

for C4.5 classifiers, versus alternate methods, with an equal weighted accuracy per-

formance of 98%. The attack types, in this thesis, consitute worms and viruses at a

high accuracy, where Agosta [1] demonstrates classification accuracies ranging from

57% to 88% in detecting worms on a homemade data set.

5.2 Contributions

This work provides several contributions to the field of intrusion detection and

machine learning. First, generality has been shown for a relatively small subset of

features to describe the classification decision boundary of Transmission Control Pro-

tocol flows. A second smallest set of 16 features may be extracted in real-time or near

real-time to improve the performance of anomaly detection methods utilizing varied

5-2

machine learning techniques. Second, the C4.5 decision tree classification method

has been shown to perform well on real traffic with worms and viruses consisting of

the labeled attack traffic. The decision tree may be simply interpreted to develop

fast and understandable rule sets for implementation in an expert intrusion detection

system. Lastly, an extension, minimum surface Bhattacharyya method, to a current

feature selection method demonstrates comparable performance with other methods,

while minimizing the size of the feature subset. The minimum surface Bhattacharyya

method takes advantage of the intrinsic separability with a data set for multiple class

problems, optimizing selection of the most separable features across all class-pair com-

binations. Additionally, the minimum surface Bhattacharyya method runs with a low

time complexity in comparison to other feature selection methods.

5.3 Recommendations for Future Work

To improve upon current classification and feature selection methods for intru-

sion detection, a data set is required with ground truth knowledge of the sub-classes

constituting the attack class. Development of a data set containing, a broad spectrum

of attack types would be ideal. Flows of known attacks may be monitored on an iso-

lated network to obtain the required breadth. Then, the flows from varying sources

could be combined to develop a data set with a combination of wild, genuine flows of

network services and a plethora of attack types.

In regards to the classification algorithms implemented, there are several unan-

swered questions which may improve understanding of the algorithms and the domain.

For the C4.5 algorithm, there are multiple types of evaluation measure and pruning

methods that may be implemented. Is there an optimal measure for segmenting the

network flow domain space for classification? The feature evaluation methods showed

class-based distance to be effective. For the GRLVQI algorithm, evaluation of alter-

native feature relevance update methods appears to be warranted. A performance

comparison of all features with subsets in Figure A.12 illustrates improved perfor-

mance for multiple subsets selected from alternate means.

5-3

Numerous papers [11, 62, 81] argue that machine learning provides an effective

anomaly detection capability. The capability of machine learning algorithms to truly

detect anomalous behavior has not been shown empirically. A basic premise for ma-

chine learning classifiers requires testing on unseen samples to provide an estimation

of the performance of a learned model. A rarely tested hypothesis is the capability

to identify unseen attack types [42]. One may develop a training and test set, where

the test set contains attack types that are left out of the training set. Successful

classification with the feature subset of unseen attacks provides strong evidence of

the functionality and the robustness of a feature set and classification technique.

Lastly, the burden of obtaining genuine, labeled network traffic and attacks for

analysis would likely be too difficult or involved a task for a production anomaly

detector. Additionally, detecting traffic in the wild and trying to label after the

fact induces error and limits the traffic to that observed over a given network. The

analysis of the effectiveness of training on simulated traffic would be of great benefit

in employing a production anomaly detection system based on machine learning. This

effort would require work in developing traffic models and validating the effectiveness

of classifiers trained on simulated traffic by testing on real network traffic.

5-4

Appendix A. Feature Selection Results

A-1

0 11 37 50 100 115
0

0.1

0.2

Subset 11

Subset 10

Number of Features in SubsetD
iff

er
en

ce
in

P
er

fo
rm

an
ce Difference in Performance among Adjacent Subsets

(a)

0 11 24 50 100
0.2

0.4

0.6

0.8

Subset 11

Number of Features in Subset

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

Number of Features in Subset

M
ea

n
R

an
k

Performance Rank of Subsets

(c)

Figure A.1: Feature Selection: accuracy rate with best first search. Analysis of
the plots determines a single subset for accuracy rate with best first
search. Plot (a) illustrates where the performance plateaus. Plot (b)
and (c) provide a multiple comparison of classification performance for
determining statistically-significant differences for normally and non-
normally distributed results, respectively

A-2

0 23 50 100 150 200
0

0.02

0.04 Subset 23

Number of Features in SubsetD
iff

er
en

ce
in

P
er

fo
rm

an
ce Difference in Performance among Adjacent Subsets

(a)

0 23 50 100 150 200

0.6

0.8

1

Subset 23

Number of Features in Subset

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

(b)

0 23 50 100 150 200
0

2000

4000

Number of Features in Subset

M
ea

n
R

an
k

Performance Rank of Subsets

(c)

Figure A.2: Feature Selection: decision tree method. Analysis of the plots de-
termines a single subset for decision tree method (C4.5). Plot (a)
illustrates where the performance plateaus. Plot (b) and (c) provide
a multiple comparison of classification performance for determining
statistically-significant differences for normally and non-normally dis-
tributed results, respectively

A-3

0 12 50 100 150 200 250
0

0.05

0.1

0.15

Subset 12

Number of Features in SubsetD
iff

er
en

ce
in

P
er

fo
rm

an
ce Difference in Performance among Adjacent Subsets

(a)

0 12 50 100 150 200 250
0.2

0.4

0.6

0.8

Subset 12

Number of Features in Subset

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

(b)

0 12 50 100 150 200 250
0

1000

2000

3000

Number of Features in Subset

M
ea

n
R

an
k

Performance Rank of Subsets

(c)

Figure A.3: Feature Selection: accuracy rate with genetic algorithm. Analysis of
the plots determines a single subset for accuracy rate with genetic al-
gorithm. Plot (a) illustrates where the performance plateaus. Plot (b)
and (c) provide a multiple comparison of classification performance for
determining statistically-significant differences for normally and non-
normally distributed results, respectively

A-4

0 19 50 100 150 200 250
0

0.05

0.1

0.15

 Subset 19

Number of Features in SubsetD
iff

er
en

ce
in

P
er

fo
rm

an
ce Difference in Performance among Adjacent Subsets

(a)

0 19 50 100 150 200 250
0.2

0.4

0.6

0.8

Subset 19

Number of Features in Subset

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

(b)

0 19 50 100 150 200 250
0

2000

4000

6000

8000

Number of Features in Subset

M
ea

n
R

an
k

Performance Rank of Subsets

(c)

Figure A.4: Feature Selection: Analysis of the plots determines a single subset
for RELIEF-F. Plot (a) illustrates where the performance plateaus.
Plot (b) and (c) provide a multiple comparison of classification perfor-
mance for determining statistically-significant differences for normally
and non-normally distributed results, respectively

A-5

0 12 50 100 150 200 250
0

0.1

0.2

0.3

1.5% line

5% line

Subset 86
Subset 12

Number of Features in SubsetD
iff

er
en

ce
in

P
er

fo
rm

an
ce Difference in Performance among Adjacent Subsets

(a)

0 12 50 100 150 200 250
0.2

0.4

0.6

0.8

Subset 12

Number of Features in Subset

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

200

400

Number of Features in Subset

M
ea

n
R

an
k

Performance Rank of Subsets

(c)

Figure A.5: Feature Selection: probability of error and average correlation coef-
ficient (POEACC). Analysis of the plots determines a single subset
for POEACC. Plot (a) illustrates where the performance plateaus.
Plot (b) and (c) provide a multiple comparison of classification perfor-
mance for determining statistically-significant differences for normally
and non-normally distributed results, respectively

A-6

0 27 50 100 150 200 250
0

0.1

0.2

Subset 27

Number of Features in SubsetD
iff

er
en

ce
in

P
er

fo
rm

an
ce Difference in Performance among Adjacent Subsets

(a)

0 27 50 100 150 200 250
0.2

0.4

0.6

0.8

Subset 27

Number of Features in Subset

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

(b)

0 27 50 100 150 200 250
0

2000

4000

6000

8000

Number of Features in Subset

M
ea

n
R

an
k

Performance Rank of Subsets

(c)

Figure A.6: Feature Selection: Generalized Relevance Learning Vector Quantiza-
tion Improved (GRLVQI). Analysis of the plots determines a single sub-
set for GRLVQI. Plot (a) illustrates where the performance plateaus.
Plot (b) and (c) provide a multiple comparison of classification perfor-
mance for determining statistically-significant differences for normally
and non-normally distributed results, respectively

A-7

0 23 50 100 150 200 250
0

0.05

0.1

0.15
Subset 23 Subset 71

Number of Features in SubsetD
iff

er
en

ce
in

P
er

fo
rm

an
ce Difference in Performance among Adjacent Subsets

(a)

0 23 50 100 150 200 250
0.2

0.4

0.6

0.8

Subset 23

Subset 71

Number of Features in Subset

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

(b)

1 5 10 15 20 23
0

200

400

600

800

Number of Features in Subset

M
ea

n
R

an
k

Performance Rank of Subsets

(c)

Figure A.7: Feature Selection: Median Bhattacharyya. Analysis of the plots deter-
mines a single subset for Median Bhattacharyya. Plot (a) illustrates
where the performance plateaus. Plot (b) and (c) provide a multiple
comparison of classification performance for determining statistically-
significant differences for normally and non-normally distributed re-
sults, respectively

A-8

0 16 50 100 150 200 250
0

0.05

0.1

0.15

Subset 16

Number of Features in SubsetD
iff

er
en

ce
in

P
er

fo
rm

an
ce Difference in Performance among Adjacent Subsets

(a)

0 16 50 100 150 200 250
0.2

0.4

0.6

0.8

Subset 16

Number of Features in Subset

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

(b)

0 16 50 100 150 200 250
0

2000

4000

6000

8000

Number of Features in Subset

M
ea

n
R

an
k

Performance Rank of Subsets

(c)

Figure A.8: Feature Selection: Minimum Surface Bhattacharyya. Analysis of the
plots determines a single subset for Minimum Surface Bhattacharyya.
Plot (a) illustrates where the performance plateaus. Plot (b) and
(c) provide a multiple comparison of classification performance for
determining statistically-significant differences for normally and non-
normally distributed results, respectively

A-9

0.4

0.5

0.6

0.7

0.8

0.9

Bes
t F

irs
t

C4.
5

Gen
et

ic

RELI
EF−F

POEACC

GRLV
QI

Bha
tt

(m
ed

ian
)

Bha
tt

(m
in

su
rfa

ce
)

BNN
FCBF

All F
ea

tu
re

s

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

(a)

0

200

400

Bes
t F

irs
t

C4.
5

Gen
et

ic

RELI
EF−F

POEACC

GRLV
QI

Bha
tt

(m
ed

ian
)

Bha
tt

(m
in

su
rfa

ce
)

BNN
FCBF

All F
ea

tu
re

s

M
ea

n
R

an
k

Performance Rank of Subsets

(b)

Figure A.9: Comparison of Selected Subsets: Näive Bayes Classifier. Compares
Näive Bayes classifier performance of selected subsets with the entire
feature set to determine, which subsets improve performance. Plot (a)
and (b) provide a multiple comparison of classification performance for
determining statistically-significant differences for normally and non-
normally distributed results, respectively

A-10

0.9

0.95

1

Bes
t F

irs
t

C4.
5

Gen
et

ic

RELI
EF−F

POEACC

GRLV
QI

Bha
tt

(m
ed

ian
)

Bha
tt

(m
in

su
rfa

ce
)

BNN
FCBF

All F
ea

tu
re

s

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

(a)

0

200

400

Bes
t F

irs
t

C4.
5

Gen
et

ic

RELI
EF−F

POEACC

GRLV
QI

Bha
tt

(m
ed

ian
)

Bha
tt

(m
in

su
rfa

ce
)

BNN
FCBF

All F
ea

tu
re

s

M
ea

n
R

an
k

Performance Rank of Subsets

(b)

Figure A.10: Comparison of Selected Subsets: C4.5 Classifier. Compares C4.5 clas-
sifier performance of selected subsets with the entire feature set to de-
termine, which subsets improve performance. Plot (a) and (b) provide
a multiple comparison of classification performance for determining
statistically-significant differences for normally and non-normally dis-
tributed results, respectively

A-11

0.5

0.6

0.7

0.8

Bes
t F

irs
t

C4.
5

Gen
et

ic

RELI
EF−F

POEACC

GRLV
QI

Bha
tt

(m
ed

ian
)

Bha
tt

(m
in

su
rfa

ce
)

BNN
FCBF

All F
ea

tu
re

s

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

Figure A.11: Comparison of Selected Subsets: multilayer perceptron with back-
propogation (BP) Classifier. Compares BP classifier performance of
selected subsets with the entire feature set to determine, which subsets
improve performance. Plot provides a multiple comparison of classifi-
cation performance for determining statistically-significant differences
for normally distributed results

A-12

0.5

0.6

0.7

0.8

Bes
t F

irs
t

C4.
5

Gen
et

ic

RELI
EF−F

POEACC

GRLV
QI

Bha
tt

(m
ed

ian
)

Bha
tt

(m
in

su
rfa

ce
)

BNN
FCBF

All F
ea

tu
re

s

M
ea

n
E

q
u
al

W
ei

gh
te

d
A

cc
u
ra

cy

Performance of Subsets

(a)

0

200

400

Bes
t F

irs
t

C4.
5

Gen
et

ic

RELI
EF−F

POEACC

GRLV
QI

Bha
tt

(m
ed

ian
)

Bha
tt

(m
in

su
rfa

ce
)

BNN
FCBF

All F
ea

tu
re

s

M
ea

n
R

an
k

Performance Rank of Subsets

(b)

Figure A.12: Comparison of Selected Subsets: Generalized Relevance Learning Vec-
tor Quantization Improved (GRLVQI) Classifier. Compares GRLVQI
classifier performance of selected subsets with the entire feature set to
determine, which subsets improve performance. Plot (a) and (b) pro-
vide a multiple comparison of classification performance for determin-
ing statistically-significant differences for normally and non-normally
distributed results, respectively

A-13

Table A.1: Selected Subsets by Feature Selection Method
Feature Description Index BestFirst C4.5 Genetic RELIEF-F POEACC GRLVQI Median Bhatt Min Surf Bhatt BNN [2] FCBF [2,60] Index
Server Port 1 x x x x x x x x 1
Client Port 2 x x x x x x x x 2
min IAT 3 x 3
var IAT 9 x 9
q1 data wire 11 x x x 11
med data wire 12 x 12
mean data wire 13 x x 13
max data wire 15 x x x x 15
mean data ip 20 x x 20
max data ip 22 x 22
min data control 24 x x 24
med data control 26 x x 26
max data control 29 x 29
var data control 30 x 30
ack pkts sent b a 34 x 34
pure acks sent a b 35 x 35
sack pkts sent a b 37 x x 37
dsack pkts sent b a 40 x 40
unique bytes sent a b 43 x 43
actual data pkts a b 45 x 45
zwnd probe pkts a b 53 x 53
zwnd probe bytes b a 56 x 56
pushed data pkts a b 59 x x 59
pushed data pkts b a 60 x x 60
SYN pkts sent a b 61 x 61
req 1323 ts a b 66 x 66
req 1323 ws b a 67 x 67
req 1323 ts b a 68 x 68
req sack a b 71 x x 71
req sack b a 72 x x 72
mss requested a b 79 x 79
mss requested b a 80 x 80
max segm size a b 81 x x x 81
max segm size b a 82 x x x 82
min segm size a b 83 x x x x x x x 83
min segm size b a 84 x x 84
avg segm size a b 85 x x x 85
avg segm size b a 86 x x x x 86
max win adv a b 87 x x 87
max win adv b a 88 x 88
min win adv b a 90 x x x 90
zero win adv a b 91 x x 91
zero win adv b a 92 x 92
avg win adv a b 93 x x 93
avg win adv b a 94 x x 94
initial window-bytes a b 95 x x x x x x 95
initial window-bytes b a 96 x x x x 96
initial window-packets a b 97 x x x 97
truncated packets a b 105 x 105
data xmit time b a 108 x 108
idle time max a b 109 x x 109
idle time max b a 110 x 110
throughput a b 111 x 111
throughput b a 112 x 112
RTT samples a b 113 x 113
RTT min a b 115 x 115
RTT max a b 117 x 117
RTT stdv a b 121 x 121
RTT from 3WHS b a 124 x 124
RTT full sz max a b 129 x 129
RTT full sz stdev a b 133 x 133
RTT full sz stdev b a 134 x 134
post-loss acks b a 136 x 136
segs cum acked a b 137 x 137
mean data wire a b 156 x x 156
q3 data wire a b 157 x 157
max data wire a b 158 x x x x 158
min data ip a b 160 x 160
med data ip a b 162 x 162
mean data ip a b 163 x x x 163
max data ip a b 165 x x 165
q1 data control a b 168 x x 168
med data control a b 169 x 169
mean data control a b 170 x 170
q3 data control a b 171 x x 171
max data control a b 172 x 172
min data wire b a 174 x 174
mean data wire b a 177 x x 177
q3 data wire b a 178 x 178
max data wire b a 179 x x x x x 179
var data wire b a 180 x 180
min data ip b a 181 x 181
med data ip b a 183 x 183
mean data ip b a 184 x x 184
max data ip b a 186 x x x x 186
q1 data control b a 189 x 189
var data control b a 194 x 194
q3 IAT b a 206 x 206
Time since last connection 209 x 209
No. transitions bulk/trans 210 x x x 210
Time spent idle 214 x 214
FFT Frequency#3 b a 241 x 241

A-14

Appendix B. List of Features from [61]

Number Short Long

1 Server Port Port Number at server; we can establish server and client ports as we limit

ourselves to flows for which we see the initial connection set-up.

2 Client Port Port Number at client

3 min IAT Minimum packet inter-arrival time for all packets of the flow (considering

both directions).

4 q1 IAT First quartile inter-arrival time

5 med IAT Median inter-arrival time

6 mean IAT Mean inter-arrival time

7 q3 IAT Third quartile packet inter-arrival time

8 max IAT Maximum packet inter-arrival time

9 var IAT Variance in packet inter-arrival time

10 min data wire Minimum of bytes in (Ethernet) packet, using the size of the packet on the

wire.

11 q1 data wire First quartile of bytes in (Ethernet) packet

12 med data wire Median of bytes in (Ethernet) packet

13 mean data wire Mean of bytes in (Ethernet) packet

14 q3 data wire Third quartile of bytes in (Ethernet) packet

15 max data wire Maximum of bytes in (Ethernet) packet

16 var data wire Variance of bytes in (Ethernet) packet

17 min data ip Minimum of total bytes in IP packet, using the size of payload declared by

the IP packet

18 q1 data ip First quartile of total bytes in IP packet

19 med data ip Median of total bytes in IP packet

20 mean data ip Mean of total bytes in IP packet

21 q3 data ip Third quartile of total bytes in IP packet

22 max data ip Maximum of total bytes in IP packet

23 var data ip Variance of total bytes in IP packet

24 min data control Minimum of control bytes in packet, size of the (IP/TCP) packet header

25 q1 data control First quartile of control bytes in packet

26 med data control Median of control bytes in packet

27 mean data control Mean of control bytes in packet

28 q3 data control Third quartile of control bytes in packet

29 max data control Maximum of control bytes in packet

30 var data control Variance of control bytes packet

B-1

Number Short Long

31 total packets a b The total number of packets seen (client (a) to server (b)).

32 total packets b a (server (b) to client (a))

33 ack pkts sent a b The total number of ack packets seen (TCP segments seen with the ACK bit

set) (client (a) to server (b)).

34 ack pkts sent b a (server (b) to client (a))

35 pure acks sent a b The total number of ack packets seen that were not piggy-backed with data

(just the TCP header and no TCP data payload) and did not have any of the

SYN/FIN/RST flags set (client (a) to server (b))

36 pure acks sent b a (server (b) to client (a))

37 sack pkts sent a b The total number of ack packets seen carrying TCP SACK [6] blocks (client

(a) to server (b))

38 sack pkts sent b a (server (b) to client (a))

39 dsack pkts sent a b The total number of sack packets seen that carried duplicate SACK (D-SACK)

[7] blocks. (client (a) to server (b))

40 dsack pkts sent b a (server (b) to client (a))

41 max sack blks/ack a b The maximum number of sack blocks seen in any sack packet. (client (a) to

server (b))

42 max sack blks/ack b a (server (b) to client (a))

43 unique bytes sent a b The number of unique bytes sent, i.e., the total bytes of data sent excluding

retransmitted bytes and any bytes sent doing window probing. (client (a) to

server (b))

44 unique bytes sent b a (server (b) to client (a))

45 actual data pkts a b The count of all the packets with at least a byte of TCP data payload. (client

(a) to server (b))

46 actual data pkts b a (server (b) to client (a))

47 actual data bytes a b The total bytes of data seen. Note that this includes bytes from retransmis-

sions / window probe packets if any. (client (a) to server (b))

48 actual data bytes b a (server (b) to client (a))

49 rexmt data pkts a b The count of all the packets found to be retransmissions. (client (a) to server

(b))

50 rexmt data pkts b a (server (b) to client (a))

51 rexmt data bytes a b The total bytes of data found in the retransmitted packets. (client (a) to

server (b))

52 rexmt data bytes b a (server (b) to client (a))

53 zwnd probe pkts a b The count of all the window probe packets seen. (Window probe packets are

typically sent by a sender when the receiver last advertised a zero receive

window, to see if the window has opened up now). (client (a) to server (b))

B-2

Number Short Long

54 zwnd probe pkts b a (server (b) to client (a))

55 zwnd probe bytes a b The total bytes of data sent in the window probe packets. (client (a) to server

(b))

56 zwnd probe bytes b a (server (b) to client (a))

57 outoforder pkts a b The count of all the packets that were seen to arrive out of order. (client (a)

to server (b))

58 outoforder pkts b a (server (b) to client (a))

59 pushed data pkts a b The count of all the packets seen with the PUSH bit set in the TCP header.

(client (a) to server (b))

60 pushed data pkts b a (server (b) to client (a))

61 SYN pkts sent a b The count of all the packets seen with the SYN bits set in the TCP header

respectively (client (a) to server (b))

62 FIN pkts sent a b The count of all the packets seen with the FIN bits set in the TCP header

respectively (client (a) to server (b))

63 SYN pkts sent b a The count of all the packets seen with the SYN bits set in the TCP header

respectively (server (b) to client (a))

64 FIN pkts sent b a The count of all the packets seen with the FIN bits set in the TCP header

respectively (server (b) to client (a))

65 req 1323 ws a b If the endpoint requested Window Scaling/Time Stamp options as specified

in RFC 1323[8] a Y is printed on the respective field. If the option was not

requested, an N is printed. For example, an N/Y in this field means that the

window-scaling option was not specified, while the Time-stamp option was

specified in the SYN segment. (client (a) to server (b))

66 req 1323 ts a b . . .

67 req 1323 ws b a If the endpoint requested Window Scaling/Time Stamp options as specified

in RFC 1323[8] a Y is printed on the respective field. If the option was not

requested, an N is printed. For example, an N/Y in this field means that the

window-scaling option was not specified, while the Time-stamp option was

specified in the SYN segment. (client (a) to server (b))

68 req 1323 ts b a . . .

69 adv wind scale a b The window scaling factor used. Again, this field is valid only if the connection

was captured fully to include the SYN packets. Since the connection would

use window scaling if and only if both sides requested window scaling [8], this

field is reset to 0 (even if a window scale was requested in the SYN packet for

this direction), if the SYN packet in the reverse direction did not carry the

window scale option. (client (a) to server (b))

B-3

Number Short Long

70 adv wind scale b a (server (b) to client (a))

71 req sack a b If the end-point sent a SACK permitted option in the SYN packet opening

the connection, a Y is printed; otherwise N is printed. (client (a) to server

(b))

72 req sack b a (server (b) to client (a))

73 sacks sent a b The total number of ACK packets seen carrying SACK information. (client

(a) to server (b))

74 sacks sent b a (server (b) to client (a))

75 urgent data pkts a b The total number of packets with the URG bit turned on in the TCP header.

(client (a) to server (b))

76 urgent data pkts b a (server (b) to client (a))

77 urgent data bytes a b The total bytes of urgent data sent. This field is calculated by summing the

urgent pointer offset values found in packets having the URG bit set in the

TCP header. (client (a) to server (b))

78 urgent data bytes b a (server (b) to client (a))

79 mss requested a b The Maximum Segment Size (MSS) requested as a TCP option in the SYN

packet opening the connection. (client (a) to server (b))

80 mss requested b a (server (b) to client (a))

81 max segm size a b The maximum segment size observed during the lifetime of the connection.

(client (a) to server (b))

82 max segm size b a (server (b) to client (a))

83 min segm size a b The minimum segment size observed during the lifetime of the connection.

(client (a) to server (b))

84 min segm size b a (server (b) to client (a))

85 avg segm size a b The average segment size observed during the lifetime of the connection cal-

culated as the value reported in the actual data bytes field divided by the

actual data pkts reported. (client (a) to server (b))

86 avg segm size b a (server (b) to client (a))

87 max win adv a b The maximum window advertisement seen. If the connection is using win-

dow scaling (both sides negotiated window scaling during the opening of the

connection), this is the maximum window-scaled advertisement seen in the

connection. For a connection using window scaling, both the SYN segments

opening the connection have to be captured in the dumpfile for this and the

following window statistics to be accurate. (client (a) to server (b))

B-4

Number Short Long

88 max win adv b a (server (b) to client (a))

89 min win adv a b The minimum window advertisement seen. This is the minimum window-

scaled advertisement seen if both sides negotiated window scaling. (client (a)

to server (b))

90 min win adv b a (server (b) to client (a))

91 zero win adv a b The number of times a zero receive window was advertised. (client (a) to

server (b))

92 zero win adv b a (server (b) to client (a))

93 avg win adv a b The average window advertisement seen, calculated as the sum of all window

advertisements divided by the total number of packets seen. If the connection

endpoints negotiated window scaling, this average is calculated as the sum

of all window-scaled advertisements divided by the number of window-scaled

packets seen. Note that in the window-scaled case, the window advertisements

in the SYN packets are excluded since the SYN packets themselves cannot

have their window advertisements scaled, as per RFC 1323 [8]. (client (a) to

server (b))

94 avg win adv b a (server (b) to client (a))

95 initial window-bytes a b The total number of bytes sent in the initial window i.e., the number of bytes

seen in the initial flight of data before receiving the first ack packet from the

other endpoint. Note that the ack packet from the other endpoint is the first

ack acknowledging some data (the ACKs part of the 3-way handshake do not

count), and any retransmitted packets in this stage are excluded. (client (a)

to server (b))

96 initial window-bytes b a (server (b) to client (a))

97 initial window-packets a

b

The total number of segments (packets) sent in the initial window as explained

above. (client (a) to server (b))

98 initial window-packets b

a

(server (b) to client (a))

99 ttl stream length a b The Theoretical Stream Length. This is calculated as the difference between

the sequence numbers of the SYN and FIN packets, giving the length of the

data stream seen. Note that this calculation is aware of sequence space wrap-

arounds, and is printed only if the connection was complete (both the SYN

and FIN packets were seen). (client (a) to server (b))

100 ttl stream length b a (server (b) to client (a))

101 missed data a b The missed data, calculated as the difference between the ttl stream length

and unique bytes sent. If the connection was not complete, this calculation

is invalid and an NA (Not Available) is printed. (client (a) to server (b))

B-5

Number Short Long

102 missed data b a (server (b) to client (a))

103 truncated data a b The truncated data, calculated as the total bytes of data truncated during

packet capture. For example, with tcpdump, the snaplen option can be set

to 64 (with NAME? option) so that just the headers of the packet (assuming

there are no options) are captured, truncating most of the packet data. In an

Ethernet with maximum segment size of 1500 bytes, this would amount to

truncated data of 1500 64 = 1436bytes for a packet. (client (a) to server (b))

104 truncated data b a (server (b) to client (a))

105 truncated packets a b The total number of packets truncated as explained above. (client (a) to

server (b))

106 truncated packets b a (server (b) to client (a))

107 data xmit time a b Total data transmit time, calculated as the difference between the times of

capture of the first and last packets carrying non-zero TCP data payload.

(client (a) to server (b))

108 data xmit time b a (server (b) to client (a))

109 idletime max a b Maximum idle time, calculated as the maximum time between consecutive

packets seen in the direction. (client (a) to server (b))

110 idletime max b a (server (b) to client (a))

111 throughput a b The average throughput calculated as the unique bytes sent divided by the

elapsed time i.e., the value reported in the unique bytes sent field divided by

the elapsed time (the time difference between the capture of the first and last

packets in the direction). (client (a) to server (b))

112 throughput b a (server (b) to client (a))

113 RTT samples a b The total number of Round-Trip Time (RTT) samples found. tcptrace is

pretty smart about choosing only valid RTT samples. An RTT sample is

found only if an ack packet is received from the other endpoint for a previously

transmitted packet such that the acknowledgment value is 1 greater than

the last sequence number of the packet. Further, it is required that the

packet being acknowledged was not retransmitted, and that no packets that

came before it in the sequence space were retransmitted after the packet was

transmitted. Note : The former condition invalidates RTT samples due to the

retransmission ambiguity problem, and the latter condition invalidates RTT

samples since it could be the case that the ack packet could be cumulatively

acknowledging the retransmitted packet, and not necessarily acking the packet

in question. (client (a) to server (b))

B-6

Number Short Long

114 RTT samples b a (server (b) to client (a))

115 RTT min a b The minimum RTT sample seen. (client (a) to server (b))

116 RTT min b a (server (b) to client (a))

117 RTT max a b The maximum RTT sample seen. (client (a) to server (b))

118 RTT max b a (server (b) to client (a))

119 RTT avg a b The average value of RTT found, calculated straightforwardly as the sum of

all the RTT values found divided by the total number of RTT samples. (client

(a) to server (b))

120 RTT avg b a (server (b) to client (a))

121 RTT stdv a b The standard deviation of the RTT samples. (client (a) to server (b))

122 RTT stdv b a (server (b) to client (a))

123 RTT from 3WHS a b The RTT value calculated from the TCP 3-Way Hand-Shake (connection

opening) [9], assuming that the SYN packets of the connection were captured.

(client (a) to server (b))

124 RTT from 3WHS b a (server (b) to client (a))

125 RTT full sz smpls a b The total number of full-size RTT samples, calculated from the RTT samples

of full-size segments. Full-size segments are defined to be the segments of the

largest size seen in the connection. (client (a) to server (b))

126 RTT full sz smpls b a (server (b) to client (a))

127 RTT full sz min a b The minimum full-size RTT sample. (client (a) to server (b))

128 RTT full sz min b a (server (b) to client (a))

129 RTT full sz max a b The maximum full-size RTT sample. (client (a) to server (b))

130 RTT full sz max b a (server (b) to client (a))

131 RTT full sz avg a b The average full-size RTT sample. (client (a) to server (b))

132 RTT full sz avg b a (server (b) to client (a))

133 RTT full sz stdev a b The standard deviation of full-size RTT samples. (client (a) to server (b))

134 RTT full sz stdev b a (server (b) to client (a))

135 post-loss acks a b The total number of ack packets received after losses were detected and a

retransmission occurred. More precisely, a post-loss ack is found to occur

when an ack packet acknowledges a packet sent (acknowledgment value in

the ack pkt is 1 greater than the packets last sequence number), and at least

one packet occurring before the packet acknowledged, was retransmitted later.

In other words, the ack packet is received after we observed a (perceived) loss

event and are recovering from it. (client (a) to server (b))

B-7

Number Short Long

136 post-loss acks b a (server (b) to client (a))

137 segs cum acked a b The count of the number of segments that were cumulatively acknowledged

and not directly acknowledged. (client (a) to server (b))

138 segs cum acked b a (server (b) to client (a))

139 duplicate acks a b The total number of duplicate acknowledgments received. (client (a) to server

(b))

140 duplicate acks b a (server (b) to client (a))

141 triple dupacks a b The total number of triple duplicate acknowledgments received (three dupli-

cate acknowledgments acknowledging the same segment), a condition com-

monly used to trigger the fast-retransmit/fast-recovery phase of TCP. (client

(a) to server (b))

142 triple dupacks b a (server (b) to client (a))

143 max # retrans a b The maximum number of retransmissions seen for any segment during the

lifetime of the connection. (client (a) to server (b))

144 max # retrans b a (server (b) to client (a))

145 min retr time a b The minimum time seen between any two (re)transmissions of a segment

amongst all the retransmissions seen. (client (a) to server (b))

146 min retr time b a (server (b) to client (a))

147 max retr time a b The maximum time seen between any two (re)transmissions of a segment.

(client (a) to server (b))

148 max retr time b a (server (b) to client (a))

149 avg retr time a b The average time seen between any two (re)transmissions of a segment cal-

culated from all the retransmissions. (client (a) to server (b))

150 avg retr time b a (server (b) to client (a))

151 sdv retr time a b The standard deviation of the retransmission-time samples obtained from all

the retransmissions. (client (a) to server (b))

152 sdv retr time b a (server (b) to client (a))

153 min data wire a b Minimum number of bytes in (Ethernet) packet (client (a) to server (b))

154 q1 data wire a b First quartile of bytes in (Ethernet) packet

155 med data wire a b Median of bytes in (Ethernet) packet

156 mean data wire a b Mean of bytes in (Ethernet) packet

157 q3 data wire a b Third quartile of bytes in (Ethernet) packet

158 max data wire a b Maximum of bytes in (Ethernet) packet

159 var data wire a b Variance of bytes in (Ethernet) packet

160 min data ip a b Minimum number of total bytes in IP packet

161 q1 data ip a b First quartile of total bytes in IP packet

162 med data ip a b Median of total bytes in IP packet

163 mean data ip a b Mean of total bytes in IP packet

B-8

Number Short Long

164 q3 data ip a b Third quartile of total bytes in IP packet

165 max data ip a b Maximum of total bytes in IP packet

166 var data ip a b Variance of total bytes in IP packet

167 min data control a b Minimum of control bytes in packet

168 q1 data control a b First quartile of control bytes in packet

169 med data control a b Median of control bytes in packet

170 mean data control a b Mean of control bytes in packet

171 q3 data control a b Third quartile of control bytes in packet

172 max data control a b Maximum of control bytes in packet

173 var data control a b Variance of control bytes packet

174 min data wire b a Minimum number of bytes in (Ethernet) packet (server (b) to client (a))

175 q1 data wire b a First quartile of bytes in (Ethernet) packet

176 med data wire b a Median of bytes in (Ethernet) packet

177 mean data wire b a Mean of bytes in (Ethernet) packet

178 q3 data wire b a Third quartile of bytes in (Ethernet) packet

179 max data wire b a Maximum of bytes in (Ethernet) packet

180 var data wire b a Variance of bytes in (Ethernet) packet

181 min data ip b a Minimum number of total bytes in IP packet

182 q1 data ip b a First quartile of total bytes in IP packet

183 med data ip b a Median of total bytes in IP packet

184 mean data ip b a Mean of total bytes in IP packet

185 q3 data ip b a Third quartile of total bytes in IP packet

186 max data ip b a Maximum of total bytes in IP packet

187 var data ip b a Variance of total bytes in IP packet

188 min data control b a Minimum of control bytes in packet

189 q1 data control b a First quartile of control bytes in packet

190 med data control b a Median of control bytes in packet

191 mean data control b a Mean of control bytes in packet

192 q3 data control b a Third quartile of control bytes in packet

193 max data control b a Maximum of control bytes in packet

194 var data control b a Variance of control bytes packet

195 min IAT a b Minimum of packet inter-arrival time (client (a) to server (b))

196 q1 IAT a b First quartile of packet inter-arrival time

197 med IAT a b Median of packet inter-arrival time

198 mean IAT a b Mean of packet inter-arrival time

B-9

Number Short Long

199 q3 IAT a b Third quartile of packet inter-arrival time

200 max IAT a b Maximum of packet inter-arrival time

201 var IAT a b Variance of packet inter-arrival time

202 min IAT b a Minimum of packet inter-arrival time (server (b) to client (a))

203 q1 IAT b a First quartile of packet inter-arrival time

204 med IAT b a Median of packet inter-arrival time

205 mean IAT b a Mean of packet inter-arrival time

206 q3 IAT b a Third quartile of packet inter-arrival time

207 max IAT b a Maximum of packet inter-arrival time

208 var IAT b a Variance of packet inter-arrival time

209 Time since last connec-

tion

Time since the last connection between these hosts

210 No. transitions bulk/-

trans

The number of transitions between transaction mode and bulk transfer mode,

where bulk transfer mode is defined as the time when there are more than

three successive packets in the same direction without any packets carrying

data in the other direction

211 Time spent in bulk Amount of time spent in bulk transfer mode

212 Duration Connection duration

213 % bulk Percent of time spent in bulk transfer

214 Time spent idle The time spent idle (where idle time is the accumulation of all periods of 2

seconds or greater when no packet was seen in either direction)

215 % idle Percent of time spent idle

216 Effective Bandwidth Effective Bandwidth based upon entropy [10] (both directions)

217 Effective Bandwidth a b (client (a) to server (b))

218 Effective Bandwidth b a (server (b) to client (a))

219 FFT all FFT of packet IAT (arctan of the top-ten frequencies ranked by the magnitude

of their contribution) (all traffic) (Frequency #1)

220 FFT all (Frequency #2)

221 FFT all . . .

222 FFT all . . .

223 FFT all . . .

224 FFT all . . .

225 FFT all . . .

226 FFT all . . .

227 FFT all . . .

228 FFT all (Frequency #10)

229 FFT a b FFT of packet IAT (arctan of the top-ten frequencies ranked by the magnitude

of their contribution) (client (a) to server (b)) (Frequency #1)

B-10

Number Short Long

230 FFT a b (Frequency #2)

231 FFT a b . . .

232 FFT a b . . .

233 FFT a b . . .

234 FFT a b . . .

235 FFT a b . . .

236 FFT a b . . .

237 FFT a b . . .

238 FFT b a (Frequency #10)

239 FFT b a FFT of packet IAT (arctan of the top-ten frequencies ranked by the magnitude

of their contribution) (server (b) to client (a)) (Frequency #1)

240 FFT b a (Frequency #2)

241 FFT b a . . .

242 FFT b a . . .

243 FFT b a . . .

244 FFT b a . . .

245 FFT b a . . .

246 FFT b a . . .

247 FFT b a . . .

248 FFT b a (Frequency # 10)

249 Classes Application class, as assigned in [1]

B-11

Bibliography

1. Agosta, John M., Carlos Diuk-Wasser, Jaideep Chandrashekar, and Carl Livadas.
“An Adaptive Anomaly Detector for Worm Detection”. Proceedings of Second
Workshop on Tackling Computer Systems Problems with Machine Learning Tech-
niques (SysML07). 2007.

2. Auld, Tom, Andrew W. Moore, and Stephen F. Gull. “Bayesian Neural Net-
works for Internet Traffic Classification”. IEEE Transactions on Neural Networks,
18(1):223–239, 2007.

3. Axelson, Stefan. Intrusion Detection Systems: A Survey and Taxonomy. Tech-
nical Report 99-15, Chalmers University of Technology Department of Computer
Engineering, Göteborg, Sweden, March 2000.

4. Benediktsson, Jon A., Philip H. Swain, and Okan K. Ersoy. “Neural Net-
work Approaches Versus Statistical Methods In Classification Of Multisource Re-
mote Sensing Data”. Geoscience and Remote Sensing, IEEE Transactions on,
28(4):540–552, Jul 1990. ISSN 0196-2892.

5. Bernaille, Laurent, Renata Teixeira, and Kavé Salamatian. “Early application
identification”. Christophe Diot and Mostafa H. Ammar (editors), Proceedings of
the ACM Conference on Emerging Network Experiment and Technology (NEXT),
6. ACM, 2006. ISBN 1-59593-456-1.

6. Bishop, Christopher M. Pattern Recignition and Machine Learning. Springer,
2006.

7. Blum, Avrim L. and Pat Langley. “Selection of relevant features and examples
in machine learning”. Artificial Intelligence, 97(1-2):245–271, 1997.

8. Boz, Olcay. “Feature Subset Selection by Using Sorted Feature Relevance”.
M. Arif Wani, Hamid R. Arabnia, Krzysztof J. Cios, Khalid Hafeez, and Gra-
ham Kendall (editors), Proceedings of the International Conference on Machine
Learning and Applications (ICMLA), 147–153. CSREA Press, 2002. ISBN 1-
892512-29-7.

9. Buja, Andreas and Yung-Seop Lee. “Data Mining Criteria for Tree-Based Regres-
sion and Classification”. Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 27–36. ACM, San Fran-
cisco, CA, 2001.

10. University of California, Irvine (UCI) Knowledge Discovery in Data
(KDD) Archive. “KDD Cup 1999 Data”. [Online], 1999. URL
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

BIB-1

11. Cannady, James. “Artificial Neural Networks for Misuse Detection”. Proceedings
of the National Information Systens Security Conference (NISSC’98). Arlington,
VA, 1998.

12. Cardie, Claire. “Using Decision Trees to Improve Case-Based Learning”. Proceed-
ings of the Tenth International Conference on Machine Learning, 25–32. Morgan
Kaufmann, 1993.

13. Chebrolu, Srilatha, Ajith Abraham, and Johnson P. Thomas. “Feature deduction
and ensemble design of intrusion detection systems”. Computers & Security,
24(4):295–307, 2005.

14. Chen, Yuehui, Ajith Abraham, and Ju Yang. “Feature Selection and Intrusion
Detection Using Hybrid Flexible Neural Tree”. Jun Wang, Xiaofeng Liao, and
Zhang Yi (editors), Proceedings of the Second International Symposium on Neural
Networks (ISNN), volume 3498 of Lecture Notes in Computer Science, 439–444.
Springer, 2005. ISBN 3-540-25914-7.

15. Claffy, Kimberly C., Hans-Werner Braun, and George C. Polyzos. “A Parameteri-
zable Methodology for Internet Traffic Flow Profiling”. IEEE Journal on Selected
Areas in Communications, 13(8):1481–1494, 1995.

16. D’Agostino, Ralph B. and Michael A. Stephens (editors). Goodness-of-Fit Tech-
niques, volume 68 of STATISTICS: Textbooks and Monographs. Marcel Dekker,
New York, NY, 1986.

17. Dash, Manoranjan and Huan Liu. “Feature Selection for Classification”. Intelli-
gent Data Analysis 1, volume 2, 131–156. 1997.

18. Debar, Hervé, Monique Becker, and Didier Siboni. “A Neural Network Com-
ponent for an Intrusion Detection System”. Proceedings of the IEEE Computer
Society Symposium on Research in Security and Privacy, 240–250. Oakland, CA,
May 1992.

19. DeSieno, Duane. “Adding a Conscience to Competitive Learning”. Proceedings
of the IEEE International Conference on Neural Networks, volume 1, 117–124.
IEEE, New York, 1988.

20. Erman, Jeffrey, Martin F. Arlitt, and Anirban Mahanti. “Traffic classification
using clustering algorithms”. Proceedings of the ACM Special Interest Group on
Data Communications (SIGCOMM) Conference on Mining Network Data Work-
shop (MineNet), 281–286. ACM, 2006. ISBN 1-59593-569-X.

21. Gharibian, Farnaz and Ali A. Ghorbani. “Comparative Study of Supervised Ma-
chine Learning Techniques for Intrusion Detection”. Communication Networks
and Services Research, 2007. CNSR ’07. Fifth Annual Conference on, 350–358,
May 2007.

22. Ghosh, Anup K., Aaron Schwartzbard, and Michael Schatz. “Learning Program
Behavior Profiles for Intrusion Detection”. Proceedings of the Workshop on Intru-

BIB-2

sion Detection and Network Monitoring, 51–62. USENIX Association, Berkeley,
CA, April 9-12 1999.

23. Giacinto, Giorgio and Fabio Roli. “Intrusion detection in computer networks
by multiple classifier systems”. Proceedings of 16th International Conference on
Pattern Recognition, volume 2, 390–393 vol.2. 2002. ISSN 1051-4651.

24. Gibbons, Jean Dickinson and Subhabrata Chakraborti. Nonparametric Statisti-
cal Inference, volume 168 of STATISTICS: Textbooks and Monographs. Marcel
Dekker, New York, NY, 2003.

25. Golovko, Vladimir and Pavel Kochurko. “Intrusion Recognition Using Neural
Networks”. Intelligent Data Acquisition and Advanced Computing Systems: Tech-
nology and Applications (IDAACS), 108–111, Sept. 2005.

26. Guyon, Isabelle and André Elisseeff. “An Introduction to Variable and Feature
Selection”. Journal of Machine Learning Research, 3:1157–1182, 2003.

27. Haines, Joshua W., Richard P. Lippmann, David J. Fried, Eushiuan Tran, Steve
Boswell, and Marc A. Zissman. 1999 DARPA Intrusion Detection System Evalua-
tion: Design and Procedures. Technical Report TR-1062, Massachusetts Institute
of Technology Lincoln Laboratory, August 2001.

28. Hall, Mark A. “Correlation-based feature selection for discrete and numeric class
machine learning”. Proceedings of the Seventeenth International Conference on
Machine Learning, 359–366. 2000.

29. Hammer, Barbara, Marc Strickert, and Thomas Villmann. “Learning vector quan-
tization for multimodal data”. Proceedings of the International Conference on
Artificial Neural Networks (ICANN), 370–376. 2002.

30. Hammer, Barbara and Thomas Villmann. “Generalized relevance learning vector
quantization”. Neural Networks, 15(8-9):1059–1068, 2002.

31. Haykin, Simon. Neural Networks: A Comprehensive Foundation. IEEE Press,
Macmillan College, New York, 1994.

32. Holmstrom, Lasse, Petri Koistinen, Jorma Laaksonen, and Erkki Oja. “Neu-
ral and Statistical Classifiers: Taxonomy and Two Case-Studies”. IEEE Trans.
Neural Networks, 8(1):5–17, January 1997.

33. John, George H. and Pat Langley. “Estimating continuous distributions in
Bayesian classifiers”. Proceedings of the 11th Conference on Uncertainty in Arti-
ficial Intelligence, 338–345. Morgan Kaufmann, 1995.

34. Karagiannis, Thomas, Andre Broido, Nevil Brownlee, Kimberly Claffy, and
Michalis Faloutsos. File-sharing in the Internet: A characterization of P2P traffic
in the backbone. Technical Report Technical Report, Queen Mary, University of
London, 2003.

BIB-3

35. Kira, Kenji and Larry A. Rendell. “The Feature Selection Problem: Traditional
Methods and a New Algorithm”. Proceedings of the Tenth National Conference
on Artificial Intelligence AAAI, 129–134. 1992.

36. Kira, Kenji and Larry A. Rendell. “A Practical Approach to Feature Selection”.
Assorted Conferences and Workshops, 249–256, 1992.

37. Kohonen, Teuvo. Self-Organizing Maps. Springer, 2001.

38. Kononenko, Igor. “Estimating Attributes: Analysis and Extensions of Relief”.
Proceedings of the European Conference on Machine Learning, 171–182. 1994.

39. Kou, Yufeng, Chang-Tien Lu, Sirirat Sirwongwattana, and Yo-Ping Huang. “Sur-
vey of Fraud Detection Techniques”. Proceedings of the International Conference
on Networking, Sensing, and Control, 749–754. 2004.

40. Kumar, Vipin, Jaideep Srivastava, and Aleksandar Lazarevic. Managing Cyber
Threats. Springer, 2005.

41. Lakhina, Anukool, Mark Crovella, and Christophe Diot. “Characterization of
network-wide anomalies in traffic flows”. Alfio Lombardo and James F. Kurose
(editors), Proceedings of the 4th ACM Special Interest Group on Data Communi-
cations (SIGCOMM) Conference on Internet Measurement, 201–206. ACM, 2004.
ISBN 1-58113-821-0.

42. Laskov, Pavel, Patrick Dussel, Christin Schafer, , and Konrad Rieck. “Learning
intrusion detection: Supervised or unsupervised?” Lecture Notes in Computer
Science, 3617:50–57, 2005.

43. Lee, Joong-Hee, Jong-Hyouk Lee, Seon-Gyoung Sohn, Jong-Ho Ryu, and Tai-
Myoung Chung. “Effective Value of Decision Tree with KDD 99 Intrusion Detec-
tion Datasets for Intrusion Detection System”. Advanced Communication Tech-
nology, 2008. ICACT 2008. 10th International Conference on, 2:1170–1175, Feb.
2008. ISSN 1738-9445.

44. Li, Jian, Guo-Yin Zhang, and Guo-Chang Gu. “The research and implementation
of intelligent intrusion detection system based on artificial neural network”. Pro-
ceedings of the International Conference on Machine Learning and Cybernetics,
3178–3182 vol.5. 2004.

45. Lippmann, Richard P., David J. Fried, Isaac Graf, Joshua W. Haines, Kristo-
pher R. Kendall, David McClung, Dan Weber, Seth E. Webster, Dan Wyschogrod,
Robert K. Cunningham, and Marc A. Zissman. “Evaluating Intrusion Detection
Systems: the 1998 DARPA Off-Line Intrusion Detection Evaluation”. Proceed-
ings of the 2000 DARPA Information Survivability Conference and Exposition,
volume 2. 2000.

46. Liu, Huan and Hiroshi Motoda. Feature Selection for Knowledge Discovery and
Data Mining. Kluwer Academic Publishers, 1998.

BIB-4

47. Liu, Huan and Lei Yu. “Toward Integrating Feature Selection Algorithms for
Classification and Clustering”. IEEE Trans. Knowl. Data Eng, 17(4):491–502,
2005.

48. Lunt, Teresa. “IDES: An intelligent System for Detecting Intruders”. Proceedings
of the Symposium: Computer Security, Threat and Countermeasures. November
1990.

49. Bonifacio, Jr., Jose M., Adriano M. Cansian, Andre C. P. L. F. De Carvalho, and
Edson dos S. Moreira. “Neural networks applied in intrusion detection systems”.
volume 1, 205–210 vol.1. May 1998.

50. Dr. Seuss. One Fish, Two Fish, Red Fish, Blue Fish. Random House, Inc., 1960.

51. Internet Assigned Numbers Authority (IANA). “Port Numbers”. [Online], 2009.
URL http://www.iana.org/assignments/port-numbers.

52. United States Department of Defense. “The Implementation of Network-Centric
Warfare”, January 2005.

53. United States Government. “The National Strategy to Secure Cyberspace”,
February 2003.

54. McHugh, John. “Testing Intrusion detection systems: a critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by Lincoln
Laboratory”. ACM Trans. Inf. Syst. Secur, 3(4):262–294, 2000.

55. Mendenhall, Michael J. “personal communication (verbal)”, December 2008.
AFIT/ENG.

56. Mendenhall, Michael J. and Erzsbet Mernyi. “Relevance-Based Feature Extrac-
tion for Hyperspectral Images”. IEEE Transactions on Neural Networks, 19, April
2008.

57. Milton, J. Susan and Jesse C. Arnold. Introduction to Probability and Statistics.
McGraw Hill, 2003.

58. Moore, Andrew W., James Hall, Euan Harris, Christian Kreibech, and Ian Pratt.
“Architecture of a Network Monitor”. Proceedings of the Fourth Passive and
Active Measurement Workshop (PAM 2003). April 2003.

59. Moore, Andrew W. and Konstantina Papagiannaki. “Toward the Accurate Iden-
tification of Network Applications”. Constantinos Dovrolis (editor), Proceedings
of the Sixth Passive and Active Network Measurement Workshop, (PAM 2005),
volume 3431 of Lecture Notes in Computer Science, 41–54. Springer, 2005. ISBN
3-540-25520-6.

60. Moore, Andrew W. and Denis Zuev. “Internet traffic classification using bayesian
analysis techniques”. Derek L. Eager, Carey L. Williamson, Sem C. Borst, and
John C. S. Lui (editors), Proceedings of the International Conference on Measure-
ments and Modeling of Computer Systems, SIGMETRICS, 50–60. ACM, 2005.
ISBN 1-59593-022-1.

BIB-5

61. Moore, Andrew W., Denis Zuev, and Michael Crogan. Discriminators for Use in
Flow-based Classification. Technical Report RR-05-13, Queen Mary, University
of London, August 2005.

62. Moradi, Mehdi and Mohammad Zulkernine. “A Neural Network Based System
for Intrusion Detection and Classification of Attacks”. Proceedings of the IEEE
International Conference on Advances in Intelligent Systems. 2004.

63. Mucciardi, Anthony N. and Earl E. Gose. “A Comparison of Seven Techniques
for Choosing Subsets of Pattern Recognition Properties”. IEEE Transactions on
Computers, c-20(9):1023–1031, 1971.

64. Mukkamala, Srinivas, Guadalupe Janoski, and Andrew Sung. “Intrusion Detec-
tion using Neural Networks and Support Vector Machines”. Proceedings of the
2002 International Joint Conference on Neural Networks (IJCNN). Honolulu, HI,
2002.

65. Nazario, Jose. “DDoS attack evolution”. Network Security, 7:7–10, July 2008.

66. Nguyen, Thuy T. T. and Grenville Armitage. “Training on multiple sub-flows
to optimise the use of machine learning classifiers in real-world ip networks”.
Proceedings of the 31st IEEE Conference on Local Computer Networks. November
2006.

67. Paxson, Vern. Empirically-Derived Analytic Models of Wide-Area TCP Connec-
tions: Extended Report. Technical Report TR LBL-34986, Lawrence Berkeley
Labs, June 15, 1993.

68. Quinlan, J. Ross. “Induction of Decision Trees”. Machine Learning, 1:81–106,
1986.

69. Quinlan, J. Ross. “Simplifying Decision Trees,”, December 1986.

70. Quinlan, J. Ross. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

71. Ramsey, Fred L. and Daniel W. Schafer. The Statistical Sleuth: A Course in
Methods of Data Analysis. Duxbury, 2002.

72. Ren, Pin, Yan Gao, Zhichun Li, Yan Chen, and Benjamin Watson. “IDGraphs:
Intrusion Detection and Analysis Using Histographs”. Kwan-Liu Ma, Stephen C.
North, and William Yurcik (editors), Proceedings of the IEEE Workshop on Vi-
sualization for Computer Security (VizSEC), 5. IEEE Computer Society, 2005.
ISBN 0-7803-9477-1.

73. Rosenblatt, Frank. Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Spartan Books, Washington DC, 1961.

74. Rossey, Lee M., Robert K. Cunningham, David J. Fried, Jesse C. Rabek,
Richard P. Lippmann, Joshua W. Haines, and Marc A. Zissman. “LARIAT:

BIB-6

Lincoln Adaptable Real-Time Information Assurance Testbed”. IEEE Aerospace
Conference. Big Sky, Montana, USA, March 9-16 2002.

75. Rumelhart, David E., Geoffrey E. Hinton, and R. J. Williams. “Learning In-
ternal Representations by Error Propagation”. David E. Rumelhart, James L.
McClelland, and the PDP research group. (editors), Parallel distributed process-
ing: Explorations in the microstructure of cognition, Volume 1: Foundations. MIT
Press, 1986.

76. Russel, Stuart and Peter Novig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2003.

77. Sabhnani, Maheshkumar and Gürsel Serpen. “Why machine learning algorithms
fail in misuse detection on KDD intrusion detection data set”. Intelligent Data
Analysis, 8(4):403–415, 2004.

78. Snedecor, George W. and William G. Cochran. Statistical Methods. Blackwell
Publishing, eighth edition edition, 1991.

79. Somayaji, Anil. “How to Win and Evolutionary Arms Race”. IEEE Security &
Privacy, 2(6):70–72, 2004.

80. Sung, Andrew H. and Srinivas Mukkamala. “Identifying Important Features for
Intrusion Detection Using Support Vector Machines and Neural Networks”. Pro-
ceedings of the Symposium on Applications and the Internet (SAINT), 209–217.
IEEE Computer Society, 2003. ISBN 0-7695-1872-9.

81. Tan, Kymie M. C. and Blair R. Collie. “Detection and Classification of TCP/IP
Network Services”. Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 99–107. IEEE Computer Society, 1997. ISBN 0-8186-8274-
4.

82. Thacker, Neil A., Frank J. Aherne, and Peter I. Rockett. “The Bhattacharyya
Metric as an Absolute Similarity Measure for Frequency Coded Data”. Kyber-
netika, 34(4):363–368, 1998.

83. Thode, Henry C. Testing for Normality. CRC Press, 2002.

84. Utschick, Wolfgang, P. Nachbar, C. Knobloch, A. Schuler, and Josef A. Nossek.
“The evaluation of feature extraction criteria applied to neural network classi-
fiers”. Proceedings of the International Conference on Document Analysis and
Recognition (ICDAR), 315–318. 1995.

85. Williams, Nigel, Sebastian Zander, and Grenville Armitage. Evaluating Machine
Learning Algorithms for Automated Network Application Identification. Technical
Report Technical Report 060410B, Centre for Advanced Internet Architectures
(CAIA), April 2006.

86. Wilson, Edwin B. “Probable inference, the law of succession, and statistical
inference”. Journal of the American Statistical Association, 22:209–212, 1927.

BIB-7

87. Witten, Ian H. and Eibe Frank. Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann, San Francisco, 2005.

88. Yegneswaran, Vinod, Paul Barford, and Johannes Ullrich. “Internet intrusions:
global characteristics and prevalence”. Proceedings of the ACM Special Interest
Group on Measurement and Evaluation (SIGMETRICS), 138–147. ACM, 2003.

89. Zainal, Anazida, Mohd A. Maarof, and Siti M. Shamsuddin. “Feature Selection
Using Rough Set in Intrusion Detection”. Proceedings of the IEEE Region 10
Conference (TENCON), 1–4. 2006. ISBN 1-4244-0548-3.

90. Zander, Sebastian, Thuy Nguyen, and Grenville Armitage. “Automated Traffic
Classification and Application Identification using Machine Learning”. Proceed-
ings of the 30th IEEE Conference on Local Computer Networks (LCN), 250–257.
IEEE Computer Society, 2005. ISBN 0-7695-2421-4.

BIB-8

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2009 Master’s Thesis Sept 2007 — Mar 2009

Numerical Analysis for Relevant Features
in Intrusion Detection

(NARFid)

José Andrés González, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCE/ENG/09-02

Nicholas Fraser
Air Force Information Operations Center (AFIOC)
Information Operations Technology Division
102 Hall Blvd, Suite 345, San Antonio, TX 78243-7038
210-977-6445; nicholas.fraser@lackland.af.mil

AFIOC

Approval for public release; distribution is unlimited.

This thesis evaluates the usefulness of good feature subsets for the general classification task of identifying cyber attacks
and network services. The generality of the selected features elucidates the relevance or irrelevance for the classification
task of intrusion detection. Additionally, the work provides an extension to assessing features by inter-class separability
(Bhattacharyya Coefficient) for multiple class problems, which intends to select the best-performing features for all of the
classes.

Artificial intelligence; machine learning; feature selection; intrusion detection; classification; Bhattacharyya.

U U U UU 126

Maj Michael J. Mendenhall

(937) 255–3636, ext 4614 Michael.Mendenhall@afit.edu

