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Closed-Loop Adaptive Refinement of Dynamical Models
for Complex Chemical Reactions:

Application of RS-HDMR to Molecular Dynamics Simulations

Herschel Rabitz, Princeton University
Frick Laboratory, Princeton, NJ 08540, hrabitz@princeton.edu

(Final report 2005 – 2008)

1 Research Objectives

This research is concerned with the development of a systematic method for efficiently
performing molecular dynamics (MD) simulations of complex chemical reactions and opti-
mizing the underlying potential energy surfaces (PESs), ultimately using suitable laboratory
data in a closed loop fashion. Two main objectives of the research are to (a) identify key
parameters of each PES based on the global non-linear input-output Random Sampling-
High Dimensional Model Representation (RS-HDMR) mapping technique [1-7] and (b) use
the RS-HDMR maps to efficiently capture the PES → observable relationships [8-10]. The
RS-HDMR analysis in turn provides essential information for subsequent full implemen-
tation of PES optimization within the proposed adaptive closed-loop learning algorithm
in conjunction with laboratory feedback. In this project we have (1) formulated a fully
equivalent operational model (FEOM) based on RS-HDMR, in place of the time-consuming
Newton equations of motion for performing multi-dimensional MD simulations, and (2)
performed detailed studies on intermolecular energy transfer for the model systems Cl +
CH3Br [11-19], Ar +H2O [20-22], and Ar + CH4 [20-25]. They are summarized below,
along with a plan for future research. As HDMR is of broad applicability in chemistry,
we have also carried out a parallel application of the same principle in an electrochemical
study. In the latter case the parameters are rate constants, charge transfer coefficients and
reference potentials, and the HDMR maps were for cyclic voltammograms. The test shows
how the HDMR maps could be used in an adaptive fashion to refine the model parameters
in analogy with the chemical dynamics goal.

2 Formulation of full equivalent operational models (FEOM)
for MD simulations

MD simulations necessitate solving Newton’s equations for all atomic positions and veloci-
ties, thus entailing a large number of trajectories calculated with different initial conditions.
Averaging the results of all the trajectories over the initial conditions produces the desired
MD simulations. The computational effort of MD simulations is often formidable. Instead
of integrating a large number of Newton equations of motion, the RS-HDMR input-output
mappings make possible simple algebraic evaluations from a modest sample of molecular
dynamics simulation data (outputs) given the underlying PES parameters (inputs). To this
end, we have found that by treating both the PES parameters and initial conditions as
inputs in the classical trajectory calculations, effective RS-HDMR input-output maps may
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be constructed using only PES parameters, while neglecting the differences in the initial
conditions. The general machinery of HDMR consists of a set of quantitative model assess-
ment and analysis tools for capturing high dimensional input-output system behavior. In
particular, the RS-HDMR serves as a powerful and practical technique of the HDMR meth-
ods incorporating efficient random sampling procedures [4-7]. In general, the HDMR of any
n-variate function f(x) is construed as a finite hierarchical correlated function expansion of
the input variables x = (x1, x2, . . . , xn) [1,2]:

f(x) = f0 +
n
∑

i=1

fi(xi) +
n
∑

i<j=1

fij(xi, xj) + . . .

+ . . .+ f12...n(x1, x2, . . . , xn), (1)

where the component functions f0, fi(xi), fij(xi, xj),. . . can be systematically optimized.

During the MD simulations, for a given set of inputs x = (x1, x2, . . . , xn), such as the
PES parameters and initial condition parameters of the reactants, and any output function
f(x), such as the internal energy Eint, vibrational energy Evib, rotational energy Erot, bond
length, or bond angle of the products, the corresponding RS-HDMR component functions,
cf. eq. (??), can be constructed from a set (often a few thousand) solutions of Newton
equations of motion, with randomly sampled initial conditions. The resultant RS-HDMR
formula can in turn be used to interpolate f(x) for any given initial condition without further
solving Newton equations. Accordingly, a set of random data with simultaneous variation of
the PES and initial condition parameters can be generated. Finally, the relevant RS-HDMR
formulas are constructed only for the PES parameters. We have proved mathematically that
freezing the initial conditions to construct partial RS-HDMR maps effectively averages over
the random initial conditions in the limit that the sample size is sufficiently large. As a
result, given a set of PES parameters within their bounds of variation, the resultant input-
output RS-HDMR maps can accurately predict the MD simulation outputs in accordance
with (i.e., the typical RS-HDMR prediction errors were∼ 1%) realistic laboratory situations.
The expected computational savings can be crucial to the subsequent implementation with
laboratory feedback.

The resultant RS-HDMR formula can be used not only as a FEOM to reduce the compu-
tational effort, but also as a tool to perform sensitivity analysis and identify the important
PES parameters, i.e., the important region of the potential energy surface. Eq. (??) may
be written in an abbreviated form

f(x) = f0 +

np
∑

l=1

gl, (2)

where gl denotes any component function in eq. (??) and np is the total number of signif-
icant component functions used for approximation. The individual RS-HDMR component
functions have a direct statistical correlation interpretation. This relation permits the to-
tal variance σ2 of the output f(x) to be decomposed into the independent and correlated
contributions of the inputs [7]:

σ2
≈

np
∑

l=1

Cov(f(x), gl(x)), (3)
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where Cov(·, ·) denotes the covariance. The covariance Cov(f(x), gl(x)) is composed of two
terms

Cov(f(x), gl(x)) = (gl(x), gl(x)) + (

np
∑

k=1

k 6=l

gk(x), gl(x)), (4)

where (gk(x), gl(x)) denotes the inner product of gk(x) and gl(x)). The first term in eq. (??)
measures the deterministic contributions of gl, and the second term in eq. (??) measures
the stochastic contribution of gl with other component functions caused by a correlated
probability density function (pdf). Both provide useful information of inputs and their
sampling relationship.

The sensitivity indexes Sl, S
a
l , S

b
l (l = 1, 2, . . . , np) are defined as

Sl = Cov(gl(x), f(x))/σ
2, (5)

Sal = (gl(x), gl(x))/σ
2, (6)

Sbl = Sl − Sal . (7)

If eq. (??) includes all significant component functions gl, we have

np
∑

l=1

Sl =

np
∑

l=1

Cov(gl(x), f(x))/σ
2
≈ 1. (8)

The magnitudes of Sl, S
a
l , S

b
l can be used to quantitatively determine the importance order

of inputs, pairs of inputs, etc. For systems with independent input sampling, Sbl = 0 and
we may simply use Sl. For systems with a correlated pdf S

a
l may be used to identify their

importance, and Sbl is used to identify input sampling correlations. The sum of all Sl may be
used as a measure of the analysis quality. If

∑

l Sl ≈ 1, the sensitivity analysis is complete
and reliable.

3 RS-HDMR MD Simulation Results

The RS-HDMR component functions have been constructed for intermolecular energy trans-
fer in Cl + CH3Br [11-19], Ar + H2O [20-22], and Ar + CH4 [20-25] collisions, each using a
large set classical trajectory calculations with randomly chosen initial conditions. The re-
sultant RS-HDMR maps (i.e., serving as FEOM’s) were used to interpolate the output data
as functions of the PES parameters for given initial conditions without explicitly executing
further solutions of the underlying Newton equations. Similar results were obtained for Ar
+ H2O and Ar + CH4. The results for Cl

− + CH3Br, Ar + H2O are given below.

3.1 Cl− + CH3Br Reaction

A global RS-HDMR input/output map for the SN2 reaction

Cl− +CH3Br→ ClCH3 +Br
− (9)
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was constructed. Here the input is the φ-angle bending potential function V MC
φ for CH3Cl

molecule [11],

V MC
φ = fMC

φ

3
∑

i=1

(φi − φMC)
2/2 + aMC

φ

3
∑

i=1

(φi − φMC)
3, (10)

where φMC = 108.4528
◦, and the output is the molecular bond lengths for CCl, CBr, CH

and bound angles for ClCBr, ClCH, HCH. Specifically, the force constants fMC
φ and aMC

φ

were variated about 10% around the nominal values 0.8424 and -0.230506. One thousand
data for these two parameters were randomly generated and their reaction trajectories were
calculated using the code VENUS. The output data were recorded after the reaction has
taken place. A global RS-HDMR map was constructed using fMC

φ , aMC
φ and V MC

φ chosen as
three inputs represented as x1, x2, x3. The CCl, CBr, CH bond lengths and ClCBr, ClCH,
HCH bond angles were chosen as the outputs.

3.1.1 Prediction accuracy of RS-HDMR

The 3rd order RS-HDMRs, whose component functions were approximated by the 3rd order
optimal orthonormal polynomials, were constructed for 11 outputs (CCl, CBr, three CH
bond lengths, ClCBr, three ClCH, two HCH bond angles) at different fixed reaction time.
The comparison between the model values and different order RS-HDMR approximations
at t = 270 × 10−14 second (fs) is given in Table 1. The comparison between the model
values and the 3rd order RS-HDMR approximations for CCl bond length at t = 270 fs is
given in Fig. 1.

Since only three input variables were used, the input - output relation is quite simple,
and the accuracy of different order RS-HDMR is satisfactory. The largest relative error is
only 0.612%.

Table 1. The average and maximum relative errors of the 1st through 3rd order RS-HDMR
for CCl, CBr bond lengths and ClCBr bond angle constructed from the 1000 random
data at t = 270 fs

Output 1st order 2nd order 3rd order
Average Maximum Average Maximum Average Maximum

CCl 0.00015 0.00053 0.00005 0.00020 0.00004 0.00021
CBr 0.00170 0.00092 0.00559 0.00559 0.00072 0.00484
ClCBr 0.00250 0.00612 0.00093 0.00375 0.00083 0.00354

3.1.2 Global Sensitivity Analysis

The global sensitivity analysis given by the 2nd order RS-HDMR was performed for the
same data set. The results for Si are given in Table 2, which shows that the input x1 (f

MC
φ )

is dominant. Since
∑

Si > 0.95 for three outputs, all significant input contributions have
been counted. It also shows that the Sij ’s are small.
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Figure 1: The truth plot of the 3rd order RS-HDMR approximation for CCl bond length.

Table 2. The resultant Si

CCl CBr ClCBr

S1 0.9913 0.9409 0.9930
S2 0.0019 0.0086 0.0008
S3 0.0013 0.0048 0.0013
∑

Si 0.9945 0.9543 0.9951

3.2 Ar + H2O System

The potential energy surface of Ar + H2O contains two parts: an intermolecular interaction
Vinter (between Ar and H2O) and an intramolecular interaction Vintra (for H2O). For illus-
tration, the intermolecular interaction is a combination of Lennard-Jones (12,6) diatomic
potential functions describing both short- and long-range van der Waals interactions be-
tween Ar and constituent atoms of H2O, while the intramolecular interaction is a sum of
stretches (Morse oscillators) of bond-lengths and bending (Harmonic oscillators) of bond-
angles. As a result, Ar + H2O potential energy surface can be considered as a function of
nine potential parameters, four for the intermolecular part Vinter and five for the intramolec-
ular part Vintra. In our simulations, the potential energy function (PES) of the Ar + H2O
is modeled as [20]

V = Vinter + Vintra, (11)

where the intermolecular interaction Vinter between Ar and H2O is a sum of the generalized
two-body Lennard-Jones terms

Vinter =
2
∑

i=1

VAr−Hi + VAr−O,
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VAr−Xi =
ai
R12
i

+
bi
R6
i

,

Xi = Hi, i = 1, 2, X3 = O,

Ri = R(Ar−Hi), i = 1, 2, R3 = R(Ar−O), (12)

and the intramolecular interaction Vintra of H2O is a sum of stretches (Morse oscillators)
and bends (Harmonic oscillators)

Vintra = Dr ×

2
∑

i=1

[

1− exp
(

− βr × (ri − r0)
)]2

+
1

2
× fθ × (θ − θ0)

2,

ri = r(O−Hi), i = 1, 2

θ = θ(∠H1OH2). (13)

Here the nine nominal values of the PES parameters are a1 = a2 = 178047.57 kcalÅ
12/mol,

a3 = 368860.80 kcalÅ
12/mol, b1 = b2 = −203.98076 kcalÅ

6/mol, b3 = −453.03085 kcalÅ
6/mol,

Dr = 125.6 kcal/mol, βr = 2.19367 Å−1 , r0 = 0.9572 Å, fθ = 0.688 mdyn-Å/rad2, and
θ0 = 104.52

o

For simplicity, initially the molecules H2O are assumed to be in an excited vibrational
state, say Evib = 25.0 kcal/mol for H2O and possibly with a rotational energy. Classical
trajectories are calculated for an initial relative translational energy, say Erel = 100 kcal/mol
(in general, Erel can also be considered as a RS-HDMR input, thus subject to random
samples) at arbitrarily sampled impact parameters b and orientations (of H2O with respect
to the impact direction). The output data of interest from the trajectory calculations
are changes in (1) the relative translational energy ∆Erel, (2) the H2O rotational energy
∆Erot, and (3) the H2O vibrational energy ∆Evib. The usually strong Coriolis coupling, for
example, between H2O rotational and vibrational modes will make the resulting rotational
and vibrational energy fluctuate in time. As a result, a time-averaged rotational energy
(thus a time-averaged vibrational energy) is usually considered after the collision. On the
other hand, the corresponding internal energy Eint = Evib+Erot will remain constant after
the collision.

3.2.1 Prediction accuracy of RS-HDMR

Seven (due to a1 = a2 and b1 = b2) potential parameters given above and four initial
condition parameters were used as inputs. The potential parameters vary within 10% of their
nominal values. Eint, Evib and Erot are used as outputs. 25000 random points of all inputs
were generated and their corresponding outputs were calculated by Newton’s equations
of motion. The 3rd order RS-HDMR approximations with only potential parameters as
inputs were constructed from the data. Ten sets of testing data were generated. Each set
corresponds to a fixed potential with 10000 different initial conditions. The 1st to 3rd order
RS-HDMR expansions were used to test the averaged values of Eint obtained from the ten
sets of data. The results are given in Table 3.
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Table 3. The relative error of prediction for the averaged value of Eint

Data RS-HDMR approximation
set 1st order 2nd order 3rd order

1 0.0038 0.0087 0.0086
2 0.0061 0.0030 0.0006
3 -0.0003 0.0008 -0.0027
4 0.0052 0.0042 0.0060
5 0.0044 0.0024 0.0034
6 0.0024 0.0010 0.0016
7 0.0023 0.0034 0.0066
8 -0.0002 0.0001 0.0006
9 0.0048 0.0048 0.0040
10 0.0009 0.0040 0.0047

The prediction error for averaged values of Eint is less than 1%, which is satisfactory.
Similar results were obtained for Evib. The error for Erot is larger, but considering that the
magnitude of Erot is less than 1, the prediction accuracy for Erot is acceptable.

3.2.2 Global Sensitivity Analysis

In our research, the sensitivity indexes can be used to identify the important regions of
potential energy surface. For this purpose only the seven potential parameters for Ar + H2O
system were used as inputs. Eint, Evib and Erot were used as outputs. 25000 random points
were generated. Different sample sizes (denoted as “used data”) were used to construct the
RS-HDMR component functions. The remained data (denoted as “test data”) were used
for testing. The results for Eint are given below. Figures 2 and 3 give the truth plot of
the 3rd order RS-HDMR approximation, and Table 4 gives the averaged relative error of
different order RS-HDMR approximations for the used and test data. Both are only a few
percent.

Table 4. The average relative error of different order RS-HDMR constructed from 3000
points for Eint

Sample Used data Test data
size 1st order 2nd order 3rd order 1st order 2nd order 3rd order

3000 0.0681 0.0545 0.0438 0.0676 0.0589 0.0552

The sensitivity indexes were calculated from the resultant RS-HDMR approximation.
The sensitivity indexes are given in Tables 5-7.
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Table 5. The 1st order sensitivity indexes for Eint

Potential Import. Sensitivity index
parameter Order Sai Sbi Si

Dr 1 0.7036 0.0010 0.7046
a3 2 0.0042 0.0009 0.0051
b1 3 0.0011 0.0001 0.0012

∑

Si 0.7108
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Table 6. The 2nd order sensitivity indexes for Eint

Potential Import. Sensitivity index
parameter Order Saij Sbij Sij
(a3, Dr) 1 0.0551 -0.0019 0.0532
(a3, b1) 2 0.0255 -0.0013 0.0242
(b1, Dr) 3 0.0118 0.0007 0.0124

∑

Si +
∑

Sij 0.8006

Table 7. The 3rd order sensitivity indexes for Eint

Potential Sensitivity index
parameter Saijk Sbijk Sijk
(a3, b1, Dr) 0.0591 0.0036 0.0628

∑

Si +
∑

Sij + S235 0.8634

The sensitivity indexes in Tables 5-7 show that the most important potential parameters
are Dr, then a3, b1(b2). The magnitudes of the sensitivity indexes quantitatively identify
the importance of different potential regions. As the potential parameters are sampled
independently, Sbi , S

b
ij , S

b
ijk should be zero. Their small values indicate reliable RS-HDMR

mapping. Therefore, there is no significant difference for using Sai , S
a
ij , S

a
ijk or Si, Sij , Sijk.

The total sum of sensitivity indexes is close to unity at 0.8635, which implies that the
sensitivity analysis is meaningful. However, the contribution of other inputs (∼ 14%) could
not be identified. The reason is that the large contribution of Dr, a3 and b1 covered their
small contribution. This circumstance needs further analysis.

4 RS-HDMR-based Inversion of cyclic voltammogram data

The molecular dynamics studies have the goal of creating highly accurate and efficient
HDMR maps to facilitate laboratory data inversions for refinement of dynamical models.
This task is generic with parallel applications arising in many areas of chemistry. While
the particular aspects of the dynamical RS-HDMR were being developed (see Sections
I and II above), we took the opportunity to test the basic RS-HDMR algorithm data
inversion capabilities in an analogous application in complex electrochemistry. In this case
the potential parameters of dynamics now become kinetic rate constants, charge transfer
coefficients and reference potentials. The dynamical outputs now become the observed
current over time. The resultant HDMR’s were of very high accuracy and a full simulation
was performed for inverting voltammographic data, including a statistical analysis of the
identified parameters [26]. We expect that analogous behavior will occur in the case of
molecular dynamics data inversions.

5 Conclusion and Future Work

For the current research work, the RS-HDMR component functions were approximated by
a third-order polynomial expansion to reduce the computational cost. However, the present
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study shows that the distinctions in the averaged output values for sampled PES parame-
ters are often too small to fully resolve these differences using the third-order RS-HDMR
approximation. The shortcoming of any polynomial expansion scheme is that using high-
order polynomials may produce undesired highly oscillatory behavior, particularly on the
sampling boundaries. The oscillatory behavior and the large swings in the value of the
high-order polynomials are detrimental for the resulting input-output maps. But simply
adding more input variables in general does not necessarily improve the accuracy of the
corresponding RS-HDMR input-output map, because the map function is usually too com-
plicated to be fitted accurately by low degree polynomials. Moreover, we found that some
PES parameters, which weigh heavily in the RS-HDMR input-output maps, can obscure
the roles played by other parameters. To overcome these technical difficulties, we plan to
adopt a non-parametric RS-HDMR scheme such that the underlying component functions
can be represented accurately by numerical data tables at chosen grid points. From the tab-
ulated data, the component function values can then be calculated using the Interpolating
Moving Least-Squares (IMLS) method. Other new HDMR tools also need to be formulated
to address the difficulties with the existing procedures. The new tools should enable future
studies using larger sampling ranges of PES parameters for MD. As a final step, we would
then be able to fully implement the closed-loop adaptive procedure for the refinement of
various chemical reaction dynamical models [27].
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