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1. Introduction 

There are many models of ballistics trajectories.  The high-resolution 6-degree-of-freedom  
(6-DOF) models require many computations and a small time increment.  The modified point 
mass models ignore the spinning of the round to reduce the computational requirements.  
Selecting a model to use for ballistics estimation or tracking requires tradeoffs between system 
accuracy and computation expense.  For example, using a 6-DOF model for a tactical (real-time) 
system is not currently possible; however, for experimental work, it is possible to interpret the 
data using a 6-DOF model.  The most basic type of polynomial filter is a straight-line predictor.  
These are accurate over short distances, but they will ignore any curvilinear behavior (typically 
needed for intercept prediction), and their performance can suffer when the prediction time is 
increased.  In a similar fashion, higher-order polynomial predictors will diverge as prediction 
time increases.  Reducing the fidelity of the model saves time and expense associated with 
computational requirements, but does so by sacrificing accuracy.  The purpose of this report is to 
present ballistics models (simpler than the 6-DOF model) that can be used to model the 
dynamics in an extended Kalman filter (EKF).  The EKF linearizes the dynamics at the system 
operating point and then proceeds as a Kalman filter (KF). 

Intercept systems require the tracking of the ballistics threat and the interceptor.  When there is a 
limited amount of control authority available, estimation must be very accurate.  As control 
authority increases and terminal guidance sensors improve, it is possible to use models of lower 
fidelity to estimate the trajectory of a round (target or interceptor).  Other situations also make 
reduced-order modeling possible.  For the nonlinear effects that are small, it may be possible to 
remove them from the dynamic model.  This includes estimation with a high sampling rate where 
the time between observations is small and trajectories where the drag coefficient does not 
change too much. 

A trajectory can be adequately modeled by a differential equation.  Using the initial conditions, 
an expected projectile path can be generated.  Range, velocity, position, and direction 
measurements can be used to improve the estimate of the projectile’s path.  The differential 
equation and measurement process are combined to form a KF.  The differential equation models 
the physics of the trajectory, while the measurement is used to update the parameters of the 
equation through least-squares estimation.   
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2. One-Dimensional (1-D) Case  

First it is helpful to consider the 1-D case.  The 1-D case is useful because it forms the basis of 
understanding three-dimensional (3-D) trajectories; for some direct-fire situations, it provides an 
excellent model for projectile analysis.  In situations where time until impact is of interest for 
high-velocity rounds, this model can provide timing information. 

2.1 Basic Equations 

If a force, F, is acting on a body and the resistance to the force is proportional to the velocity 
squared, we have the following straightforward differential equation from Newton’s law:   

 2bvF
dt

dv
m  . (1) 

If 
b

F
k2  , then the equation can be written as follows: 

 )( 22 kv
m

b

dt

dv
 . (2) 

Solving this equation involves a separation of variables, as shown in the following: 
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m

b
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1
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Using a partial fractions expansion, 
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Watching your p’s and q’s leads to the following differential equation: 
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Integrating this results in the following: 
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Taking the exponential of each side and using properties of exponents results in the following: 
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From this, the velocity can be found as a function of time, as shown in the following: 
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0 , where 0v  is the initial velocity, the velocity will asymptotically 

approach k.  This equation can be used to find the terminal velocity of a dropped object by letting 
F be the force due to gravity.  A large value of F could be used to simulate the launch of the 
projectile.  After launch, the value of F would be 0 unless a rocket or missile is being modeled.   

In the case of flat trajectory over a short time, the only force acting on the object is drag.  Solving 
this same equation for F = 0 yields the following result: 

 . 
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This expression asymptotically approaches 0.  Assuming v(t) has been measured, it is possible to 
use the previous equation to find the initial velocity using the following:  
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Given knowledge of two velocities, )( 1tv and )( 2tv , it is also possible to calculate the value of 

drag (b).  In the following, note that b includes the effects of air pressure (everything but speed) 
and t  is the difference between the two times: 
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Position can be found by adding distance traveled to the original position.  The distance traveled 
is found by integration of velocity and is described by the following expression: 
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The distance traveled is the natural logarithm of a linear function.  Using this expression, an 
upper bound for the lateral distance traveled can be established.  It is also possible to 
approximate the initial velocity needed to attain a specified distance.  This equation provides 
another constraint the analyst can use in fitting data.  The major problems with this formulation 
are the 1-D restriction and the assumption of constant drag.  Typically, drag is a function of 
Mach number.  Modeling of drag has resulted in universal drag curves.  These curves give the 
overall shape of drag as a function of Mach number.  For individual rounds, these curves are 
multiplied by a number, typically called a form factor, to adjust the universal curve to adequately 
fit the particular round.  Drag changes dramatically in the region of Mach 1; thus, nonlinear
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behavior can be a concern in this region.  The form factor also allows the use of drag curves of 
the same projectiles to be moved up or down for the round of interest.  This adjustment accounts 
for slight perturbations of the projectile’s shape and mass.  The drag curves for similar shells are 
assumed to be similar; the form factor allows this to be incorporated into the model of motion.  
While the incorporation of a more complex drag model would increase the fidelity of the model, 
it would preclude a closed-form solution.  Incorporation of more complicated drag models will 
require the equations to be solved numerically.  The closed-form model allows a computation of 
time until impact and other useful quantities associated with time or distance along the trajectory.  
The selection and design of a 1-D model will depend on the application. 

2.2 Measurements 

An EKF can be designed for the 1-D case.  For information on Kalman filtering, see Gelb (1) or 
Maybeck (2).  The equations for an EKF using the notation given by Gelb follow. 

System nonlinear dynamics plus plant noise q~N(0,Q): 

 )()),(ˆ(ˆ tqttxfx  . (13) 

The observation equation v~N(0,R): 

 kkkk vtxhz  ))(( . (14) 

Initial conditions, normal distribution: 

 ))0(),0((~)0( PxNx . (15) 

The covariance propagation: 

 )()),(ˆ()),(ˆ( 11 tQttxFPPttxFP kkk  
 . (16) 

The gain due to an observation: 

   1'' )ˆ()ˆ()ˆ(


 kkkkkkkkkk RxHPxHxHPK . (17) 

Change in the state due to observation: 

 ))ˆ((ˆˆ kkkkkk xhzKxx   (18) 

Updated state covariance via observation: 

   kkkkk PxHKIP )ˆ( . (19) 

Linearized time step: 

 kxtx
tx
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)(ˆ
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


 . (20) 
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Relinearized observation: 

 k
k
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k xtx

tx

txh
xH ˆ)(

)(

))((
)ˆ( 




 . (21) 

The state is a set of parameters that allows the differential equation to be solved.  First, define the 
state vector, ,x  as the position ( x 1), the speed ( x 2), and the drag coefficient ( x 3).  Given this 

set of parameters, it is possible to propagate the trajectory using the following: 

 2
1 1 2 32

21
( ) ( 1) ( 1) ( 1)  ,

2
k k k dt k dtxx x x x       (22) 

 
2 2 32

2( ) ( 1) ( 1)  ,k k k dtxx x x     (23) 

and 

 , )1()(
33

 kk xx  (24) 

where k indicates the time step.  Assuming dt is small, 2dt  will be close to 0.  These equations 
can be written as follows: 

 
1

2

2 2

3

0 1 0

(k)= (k  – 1)+ 0 0 (k  – 1) dt.

0 0 0

x
x  x x x

x

  
  
  
  

  

 (25) 

The 3 × 3 matrix is referred to as F and captures the change as a function of time.  Assume  
P(k–1) is the state covariance and using E to represent expectation, the new state covariance is as 
follows: 

 
,)1()1()1(

)))(1()1(()())()(( '//

FkPkFPkP

FIkkEFIkkE xxxx



 (26) 

since the expectation of )1()1(
/  kk xx  is the state covariance P(k–1).  This formula allows a 

closed-form means of predicting the variation of a future state from the current conditions.  By 
using equations 22–26, is possible to predict the striking velocity and also have statistical bounds 
on the variation of the striking velocity.  Covariance propagation is an alternative to Monte Carlo 
simulation of the system.  The change of the system and the covariance of the system in time are 
referred to as state propagation and state covariance propagation.  When an observation of a state 
variable or combination of state variables occurs, the state can be updated in a least-squares 
manner. 
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Observations will change the perception of the state.  The current example will be developed to 
include the effect of location or distance measurement and velocity or, in this case, speed 
measurement, on both the state and the state covariance.  The measurement error of the location 
and speed are assumed to be known to a reasonable degree of accuracy.   

Typically, the time between observations is fixed and dt is constant; however, this need not be 
the case.  For asynchronous measurements, the value of dt can be adjusted to meet the situation.  
If the interval between measurements becomes large, it is prudent to update the covariance 
matrix between observations.  When a single measurement is made, the state is updated via 
recursive least squares.  The measurement is expressed in terms of the state variables and will be 
signified with the symbol, ))h( (tx ; the observation matrix will be the partial of this with respect 

to the state and represented by H.  In terms of the state, a position observation is  
(1 0 0) ;x  thus, the H matrix is (1 0 0).  For a velocity measurement, the observation 

corresponds to (0 1 0) .x   In both these cases, the measurement is a linear function of the state; 
when the measurement is a nonlinear function, the partial of measurement is used to define H at 
each time step.  First, the gain matrix, k, will be defined based on elements of the state 
covariance matrix, P, and the measurement error, as shown in the following: 
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2

3

2

1
.




 
 
 
 
 
 

i

i

ii

i

m

k

p

p
p

p


 (27) 

In this situation, i = 1 for a position measurement, and i = 2 for a velocity measurement,  
represents the standard deviation of the measurement, and the subscript will indicate a position 
or velocity measurement.  The distance variance will differ from the velocity variance and may 
change from measurement to measurement.  The state update due to the observation is as 
follows: 

 ).()()( ixzkxx   (28) 

In this equation, z is the measurement, and the – sign indicates before the observation update.  
Notice that the terms of the k matrix are directly proportional to the corresponding terms of the 
covariance matrix.  The observational update always reduces the state covariance, as shown in 
the following: 

 
2

1
)()(

iiiP
DPP


 , (29) 

and 

 ikPijPjkD  . (30) 
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Together, propagation and observation updates form a KF.  Since a KF is recursive, it needs to 
be initialized.  Typically, the experimenter initializes the filter; it is important to have a good 
initial estimate of the state and the state covariance. 

The drag coefficient is more realistically represented as a function of Mach number.  As the 
projectile changes speed, its drag coefficient changes.  It is usually infeasible to generate drag 
curves for every projectile; a characteristic curve is found for a particular projectile.  Given a 
similar projectile, the curve is moved up or down by incorporating a form factor into the 
equation.  In equation 25, 3x  would become the form factor.  The drag coefficient would be 

included in the F matrix as a factor of the square of the speed.  Note that state propagation is a 
numeric solution of the differential equation.  In the case of an extended filter, the dynamics are 
linearized at each time step.  The 1-D model can be used when the projectile’s motion stays on a 
line or possibly when timing is the important information.  This model can also be used to find 
the distance along a known trajectory.  Note also that the 1-D model can be enhanced by 
including the effects of gravity to form a simple two-dimensional (2-D) model. 

3. Two-Dimensional Case 

The 2-D case is more complex because the velocity term is an interaction of both the height and 
range terms (cross range is ignored).  In a sense, this interaction steals velocity from the range 
dimension as gravity causes the vertical velocity to asymptotically approach its terminal velocity.  
In time, the direction of motion will align itself with gravity.  Only drag and gravity are 
considered; the equations are as follows: 

 2cos( )  ,
b

x v
m

   (31) 

 2 sin( ) ,
b

y g v
m

   (32) 

 2 2 2 ,v x y    (33) 

and 

 .  )/tan( xya   (34) 

To solve this system, the initial conditions must be stated.  The previous model (equations 31–
34) has been used to model submunitions being released from a cargo round.  Assume the 
submunitions are expelled in the range dimension so that 0 y  and 0vx  .  Choosing the 

expulsion velocity allows these equations to be solved numerically.   The previous equation was 
realized in SIMULINK and solved numerically therein.  For horizontally launched submunitions, 
the lateral speed approaches 0 as the terminal velocity is attained.  The value b is based on the 
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drag coefficient; a discussion of this can be found in U.S. Army Special Text 9-153 (3) or 
Sabersky et al. (4).   

The value of drag at velocities less than Mach 1 is fairly constant.  If the velocity crosses Mach 
1, a more complicated model for drag should be devised.  A 2-D model for prediction can be 
useful for endgame guidance applications where the time to hit is low and the relative position 
information from the sensor is good.  The previous model (equations 31–34) has been used to 
model the dispersion of submunitions (5).  Equations 31–34 can be used, but it would be more 
accurate to reduce the order of the equations discussed in the next section. 

4. Three-Dimensional Case  

Flight dynamics are most accurately represented by 6-DOF models.  These models are nonlinear 
and must be solved numerically.  There are no closed-form solutions, and the numerical solutions 
require many computations at each iteration; it is difficult to develop a real-time filter based on a 
6-DOF model.  Many estimators for flight dynamics use simpler models focused on the 
parameters of interest.  For example, if position is of interest, then it is possible to ignore some of 
the computations associated with attitude and reduce the complexity of the model.   

Point mass models and modified point mass models offer a simplification of the 6-DOF models 
that provide excellent position accuracy.  In three dimensions, a drift term must be added to the 
model; this term captures a projectile’s motion orthogonal to range and altitude.  Drift is caused 
by the interaction of spin and yawing motion.  Spin can also be modeled, and its decrease is in 
proportion to the current spin rate and the speed of the round.  Obtaining precise knowledge of 
aerodynamic coefficients can be difficult, and even with this knowledge, there can be round-to- 
round variation.  It is prudent to include a form factor to capture the variation of aerodynamic 
coefficients.   

For a linear model, the concept of state is used to find a Markov representation of the system.   
The state is a vector that incorporates the information needed to propagate forward to the next 
time of interest.  Nonlinear dynamics are often modeled by linearization of the model followed 
by choosing a time step that does not result in nonlinearities of a problematic magnitude.  A 14- 
dimensional state model will be discussed (this follows the presentation from excerpts from a 
portion of an unidentified report).  The state is shown in appendix A.  It is possible to reduce this 
state model to eight (position, velocity, drag, and lift) or seven (position, velocity, and drag) 
dimensions.  Also, universal curves will be used to model aerodynamics associated with drag, 
lift, and spin.  It is assumed that a user with more knowledge of a particular round can replace 
the modeled dynamics with higher fidelity models, but these will represent the default models.  
The 14 dimensions include three for position, three for velocity, two for wind speed, and one 
each for muzzle velocity, azimuth bearing, elevation bearing, drag constant, lift (or drift) 
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constant, and speed of sound at sea level.  A seven-dimensional (7-D) model can be formed by 
using position, velocity, and drag.  An eight-dimensional model would add lift or perhaps muzzle 
velocity to the previous state.  The number of elements in the state can be chosen based on the 
purpose of the model. 

The dynamics can be thought of in terms of the acceleration of the round.  Additive components 
are grouped as drag, drift, gravity, Magnus effect, and Coriolis terms.  A description of modified 
point mass models can be found in STANAG 4355 (6).  As a frame of reference, the North-Up-
East system attached to the projectile launch point on the surface of the earth will be used.   

The drag term is a function of air pressure, velocity, round diameter, and aerodynamic 
coefficients.  For the calculation of drag, velocity is squared; thus, velocity is the most important 
term in the drag equation.  The drag coefficient is calculated from a fourth-degree polynomial of 
Mach number, with coefficients based on universal drag values.  There are other methods that 
can be used to model the drag coefficient.  The dynamics associated with drag expressed in terms 
of the state variables are as follows: 

 
4 4 7

5 12 d 5

6 6 8

 

 

x x – x

x = –x AC V x  .

x x – x
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 (35) 

In this case, dC  is found using the universal drag curve.  V represents the speed of the projectile 

relative to the ground.  The symbol 12x  is the form factor or the factor that allows the universal 

drag value to be moved up or down.  The variable A represents the air pressure.  Air pressure 
changes with height, so )( 2xfA  .  The standard atmosphere model is typically used to find air 

pressure, although meteorological data can be used if available.  Additional factors relating to the 
physical characteristics of the round can also be included. 

The lift term in modified point mass models is most accurately described using the yaw of 
repose.  The yaw of repose represents the projectile’s average yaw.  For this example, the yaw of 
repose will not be modeled, and the lift term will be orthogonal to the projectile velocity and the 
gravity vector.  (See STANAG 4355 for a method to estimate yaw of repose.)  The term 
associated with the lift will be as follows: 

 
4 6 8
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 (36) 

In this formula, lC  is the lift term.  In the present situation, it will be calculated from the 

universal lift curve.  The form factor 13x  is used to adjust the lift curve for the current 

application.  V is the speed of the projectile.  The universal lift curve was developed using rounds 
with high spin rates; other methods for rounds with a low spin rate perhaps can be ignored.
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The Magnus force will be ignored in the dynamics used.  This force is important for predicting 
impact time.  With regular observations of projectile’s position, this term will not have a large 
impact between observations.  The omission of the Magnus force term will increase the model 
uncertainty.  This term was ignored in the modified point mass model discussed by Bradley (7). 

Gravity needs to be included in the model dynamics.  The force of gravity is directed to the 
center of the earth.  The magnitude of gravity changes over the earth as a function of latitude.  
The following formula is an approximation: 

 0 1(1 cos(2 )),g g g L   (37) 

 0 9.80665,g   (38) 

and 

 1 .0026,g   (39)  

where L is the latitude at the point of launch.  In terms of the state variable, the gravity vector is 
as follows: 
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where R is the radius of the earth. 

Coriolis force is a factor when using an earth-fixed coordinate system.  The rotation of the earth 
is 7.2921 × 510 .  Let  cos( )x Latitude   and   sin ( ),  y Latitude  then the Coriolis 

effect can be written as follows: 
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The dynamics discussed are summarized in appendix B.  These can be used as the basis of an 
EKF.  If a 7-D state is being used, the dynamics associated with lift can be omitted.   

In situations where guidance is required, a model of the spin is necessary.  STANAG 4355 
proposes the following differential equation: 

  s

x

4πρd vc
p=  .

8I
 (42) 
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where p is spin,   represents the air pressure, d is the diameter of the round, sc  is the spin drag 

coefficient, and xI  is the moment about the spin axis.  sC  is a function of Mach number.  This 

equation could be used as the dynamics of a separate EKF to estimate spin, assuming there are 
some measurements of spin available.  In conjunction with the previous position model, the 
combination of the two models for position and spin could estimate much of the information 
desired about a projectile’s flight.  The combination of these two models would not capture 
yawing motion.  This may not be an issue if the yaw is small, thus allowing the system to be 
modeled using a simplified or reduced state estimation. 

The dynamics can be used to develop a state estimator.  The theory is discussed in Gelb (1).  The 
development of a KF varies based on the dynamics being modeled; thus, it is possible to have 
many different KF estimating the same quantities.  Differences in KF are due to the state 
propagation equations used.  For nonlinear problems, an EKF is a good first choice.  An EKF is 
based on the same theory as a KF but uses a linearized version of the nonlinear dynamics at each 
time step.  If the time step is made too large, the EKF may not be appropriate, and the model 
may need to include more terms related to the nonlinear dynamics.  Another alternative is using 
particle filters.  Particle filters do not require the propagation of the state uncertainty; this benefit 
is offset by the need to propagate a number of candidate states forward in time and then calculate 
uncertainty based on the distribution of candidate states.  In addition to nonlinear dynamics 
associated with the state transition, there can be nonlinearities associated with the observations.  
An observation needs to be expressed in terms of the state variables.  If position is part of the 
state and the distance from an object to the projectile is observed, then the observation is a 
nonlinear function of the state.  Nonlinearities in the state dynamics and nonlinearities in a 
measurement expressed in terms of the state variables are mitigated through using an EKF by 
linearization around the current value of the state. 

To develop an EKF, proceed with the following steps.  First, decide on the dynamics to capture 
by the EKF.  Next, the dynamics need to be put in the form ,x Fx Gu  where x is the state of 

the system and F represents the change in x over a time step.  The variable u represents inputs to 
the system, and the matrix G describes how these inputs affect the system.  Another use for the 
Gu term is to introduce uncertainty associated with unmodeled dynamics.  After these tasks have 
been completed, the process must be initialized.  Then, as observations become available, these 
are incorporated into the filter through least-squares estimation.  As time progresses, the state 
and its covariance will propagate forward in time.  The state propagation equations have been 
discussed.  Only position and velocity change.  The equations for an EKF using the notation 
given by Gelb can be found in section 2.2. 

Using the previously discussed dynamics and the EKF equations, an estimator for the trajectory 
of a projectile can be designed.  Note that the matrix to be inverted has the size of the 
observation covariance; typically, this is smaller than the state covariance.  The one issue not 
discussed is the observation equation.  A GPS sensor gives position so the observation matrix
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consists of a 3 × N matrix of zeros, with ones in the positions corresponding to location, so that 

kxHˆ  gives the position in terms of the state at the kth observation.   

Many observations are nonlinear; radar typically gives the range to the target.  Assuming the 
radar is located at (0,0,0) and the first three values of the state correspond to position, the radar 
observation in terms of the state is 5.2

3
2
2

2 )( xxxr x  .  If range was the only available 

observation, the linearized observation matrix would contain one row, the first three columns 

would be , 
ˆˆˆ

)ˆ( 321 









r

x

r

x

r

x
xH  and the other entries would be zeros.  If azimuth and elevation 

angles are given, they can be expressed in terms of the position, and then the proper partial 
derivatives can be found and included as extra rows of H.   

Typically, most of the effort associated with an EKF goes into finding the matrix, )),(ˆ( ttxF , the 

partial of the system dynamics with respect to the state.  This matrix can be complex and is 
typically recomputed each time step or observation.  If the F matrix does not change too quickly, 
it is possible to process several time steps before recomputing the matrix.  Also, if some of the 
partials are numerically small, it is reasonable to drop these terms from the matrix.  It is possible 
to have many different formulations of an EKF for the same problem.  The interplay between 
desired accuracy and computational speed determines the final form of the EKF. 

5. Example for the 3-D Case 

In this section, an EKF with a 7-D state using GPS measurements will be discussed.   The state 
variables will consist of position, velocity, and ballistics coefficient.  The dynamics for lift and 
Magnus effect will be ignored.  The state variables used from appendix A will be 1–6 (position 
and velocity) and 12 (ballistics coefficient).  Also, wind effects will be assumed to be zero to 
simplify the simulation.  A GPS measurement gives position; and since position is part of the 
state, this results in an H matrix with a 3-D identity matrix followed by zeros in positions 
corresponding to the fourth through seventh state variables.  The f equation represents the 
dynamics as follows: 

 1 4f = x , (43) 

 2 5f x  , (44) 

 3 6 ,f x  (45) 

 , 2 6
1

474 x
R

gx
VxAkxf y

e
d   (46) 
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 6

5.2
3

2
1

575 2)
2

)(
1( x

R

xx
gVxAkxf x

e
d 


 , (47) 

 45
3

676 22 xx
R

gx
VxAkxf yx

e
d  , (48) 

and 

 07 f . (49) 

Using equations 43–49, the F matrix is found by taking the partials with respect to each state 
variable (see equation 20).  Recall that both dk  and V are functions of x4, x5, and x6.  In equations 

43–49, V is the speed of the projectile and the drag coefficient, dk , is a function of Mach 

number, which is a function of speed.  Also note that air pressure, A, is a function of altitude, 2x .  

Assume the F matrix starts out as a 7 × 7 matrix filled with zeros.  The following identifies the 
nonzero elements: 

 114 F , (50) 

 125 F , (51) 

 136 F , (52) 

 , 41
eR

g
F


  (53) 

 , 
2

4742 x

A
VxkxF d 


  (54) 

 , 
4

4
4

4744 
















 Vk
x

V
xk

x

k
VxAxF dd

d  (55) 

 , 
55

4745 















x

V
k

x

k
VAxxF d

d  (56) 

 d
46 7 4 d y

6 6

k V
F = –x Ax V +k –2Ω  ,

x x

  
   

 (57) 

 , 447 VxAkF d  (58) 

 
5.2

3
2

1
51

)(2 xx

x

R

g
F

xe 
 , (59) 

 
2

5752 x

A
VxkxF d 


 , (60) 
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3
2

3
53

)(2 xx

x

R

g
F

xe 
 , (61) 

 















44

5754 x

V
k

x

k
VAxxF d

d , (62) 

 
















 Vk
x

V
xk

x

k
VxAxF dd

d

5
5

5
5755 , (63) 

 xd
d

x

V
k

x

k
VAxxF 















 2
66

5756 , (64) 

 557 VxAkF d , (65) 

 
2

6762 x

A
VxkxF d 


 , (66) 

 
eR

g
F


63 , (67) 

 , 2
44

6764 yd
d

x

V
k

x

k
VAxxF 















  (68) 

 , 2
55

6765 xd
d

x

V
k

x

k
VAxxF 















  (69) 

 , 
6

6
6

6766 
















 Vk
x

V
xk

x

k
VxAxF dd

d  (70) 

and 

 67 6 .dF Ak Vx   (71) 

The following information is also needed to obtain numerical values for the F matrix: 

 , )( 5.2
6

2
5

2
4 xxxV   (72) 

 , }6,5,4{
)( 5.2

6
2
5

2
4








i
xxx

x

x

V i

i

 (73) 

 , 223.10 a  (74) 

 , 4071.11  ea  (75) 

 , 21
0

xaeaA   (76) 
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 , 21
10

2

xaeaa
x

A 



 (77) 

 , ))2cos(0026.1(80665.9 Latg   (78) 

and 

 .6356766eR  (79) 

The drag coefficient is calculated using a fourth-degree polynomial of Mach number.  Mach 
number is the speed divided by the speed of sound.  Notice that in this formulation, the partial of 
the speed of sound with respect to height is not included in the F matrix. 

 340.3 590s = temperature = F , (80) 

 )slx =height(launchabovesealevel , (81) 

 526.2  ecv , (82) 

 5.
20 ))(1( xxcss slv  , (83) 

 i

i
id mck 




4

0

, (84) 

 
sV

x
mic

x

k ii

i
i

i

d











 


 1

4

1

, (85) 

 52921.7  e , (86) 

 ),cos(latx   (87) 

and 

 . )sin(laty   (88) 

In this example, the measurements to be used are assumed to be estimates of position from a 
GPS receiver, so the observation matrix H is expressed as follows: 

 

















0000100

0000010

0000001

H . (89) 

When multiplied by the state vector, this matrix will select the three elements associated with 
position as the three observations.  For these observations, there are no issues with nonlinearities.  
The next step is to use the preceding equations to track a projectile.   The number of observations 
per second can be varied as a design parameter.  A 6-DOF model will be used to define a 
trajectory.   
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The initialization of the estimator will be discussed.  The initial value of the state can be set 
using the launch position, launch speed, azimuth, and elevation of the launch.  The  
R matrix is the covariance of the observation.  For the present case, this can be found from the  
specifications of a GPS receiver.  In other situations, this could involve building a model of the 
sensors and then performing a sensitivity analysis to get an accurate estimate of the R matrix.  In 
many cases, the R matrix will change due to changes in the target sensor geometry.  One  
R matrix will be used for this EKF.  The Q matrix will be used to model the shortcomings of the 
dynamic model used in the EKF.  Typically, a guess is made for the Q matrix.  This guess is then 
adjusted through the information gained by repeated adjustments.  The process of tuning an EKF 
or KF is finding a reasonable Q matrix.   

The EKF can be used to approximate system performance measures based on state covariance.  
The state covariance matrix P is available at each time step and can be used to derive measures 
of effectiveness.  This type of analysis can be used to determine the observation rate and sensor 
quality needed to meet performance specifications.  This covariance analysis does not require the 
extensive use of replications required by Monte Carlo simulations and is closer to a closed-form 
solution.  As an example, consider an observation rate of 10/s.  Assume the observation 
covariance is a diagonal matrix, with 4, 9, 4 on the diagonal; also, let the Q matrix be diagonal, 
with ones in positions one through six and .0001 in position seven.  For a mortar round shot 
north at 49° elevation, an aggregate measure of the state uncertainty is the trace.  Figure 1 shows 
the trace of the state covariance matrix as a function of time in units of 0.01 s. 

 

Figure 1.  State covariance trace vs. time. 

0 500 1000 1500 2000 2500 3000 3500
6

6.5

7

7.5

8

8.5

9

9.5



17 
 

From this graph, it is seen that at ~5 s the steady state behavior is achieved.  The band is the 
result of covariance stochastically expanding due to both the Q matrix and the F matrix until an 
observation is made and then instantly diminishing as a result of the new information.  This can 
be seen in the blowup of figure 1 presented as figure 2. 

 

Figure 2.  Expansion of figure 1. 

To determine how well this filter works, data from a 6-DOF model was obtained, and the 
previously described 7-D EKF was used to track the data.  In figure 3, the blue is the 6-DOF 
track, and the red is the output of the EKF.  It is difficult to distinguish the two curves. 

The reduced dynamic model, coupled with the observations, tracks the 6-DOF data with limited 
error. 

6. Conclusions 

It is realistic to simplify the model when the nonlinearities being ignored do not adversely affect 
the estimation or result in errors that are within tolerances.  Also, when observations are 
available, these observations, due to their accuracy, may correct the estimator to the extent that 
including some of the dynamics is not worth the computational expense; that is, with a high data 
rate, it is often possible to use a simple model and achieve acceptable results.  In linear systems 
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Figure 3.  True vs. estimated trajectory. 

theory, the effects of unmodeled dynamics are referred to as model mismatch error.  There are 
uncertainty terms that can account for the unmodeled dynamics; this leads to an increase in the 
covariance associated with the state variables.  It is not possible to present all possible reduced 
state models; the intent was to show how it can be done and discuss some of the issues associated 
with designing an EKF. 

It is possible to break the problem into a position, velocity model, and spin model.  In many 
cases, using these two separate models will provide an acceptable alternative to using 6-DOF 
models for target tracking. 

The accuracy of a ballistics estimator needs to be considered in system design.  There is a 
tradeoff between accuracy and computation requirements.  For a kinetic energy round, a 1-D 
model that incorporates gravity may suffice.  The observations available to the system will 
influence the choice of dynamics.  If there are many high-quality observations, a simple linear 
predictor may suffice.  In this situation, the nonlinear effects may be small between observations.  
The matrix F representing the partials of the state dynamics with respect to the state variables is 
computationally the most difficult term.  Terms in the F matrix with relatively small magnitudes 
are to be considered as candidates for omission.   For target interceptor systems, the overall 
system performance is determined by the accuracy of each estimator (target and interceptor) in 
conjunction with the control authority.     
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Appendix A.  The State for a Three-Dimensional System 

Location 

1x  Position north  

2x   Position up 

3x  Position east 

 

Velocity 

4x  Speed north 

5x  Speed up 

6x  Speed east 

 

Wind Velocity 

7x  Speed north 

8x  Speed east 

9x  Muzzle speed 

10x  Azimuth angle to target 

11x  Elevation angle to target 

12x  Drag constant 

13x  Lift constant 

14x  Speed of sound at sea level 
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Appendix B.  Change in the State Variables 
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  NSWC 
  G34 M TILL 
  17320 DAHLGREN RD 
  DAHLGREN VA 22448-5100 
 
 1 COMMANDER 
  OFC OF NAVAL RSCH 
  CODE 333 
  P MORRISSON 
  800 N QUINCY ST RM 507 
  ARLINGTON VA  22217-5660 
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 1 DIRECTOR 
  NAVAL AIR SYSTEMS CMD  
  TEST ARTICLE PREP DEP 
  CODE 5 4  
  R FAULSTICH 
  BLDG 1492 UNIT 1 
  47758 RANCH RD 
  PATUXENT RIVER MD  20670-1456 
 
 1 COMMANDER 
  NAWC WPNS DIV 
  CODE 543200E 
  G BORGEN 
  BLDG 311 
  POINT MUGU CA  93042-5000 
 
 2 PROGRAM MANAGER ITTS 
  PEO-STRI 
  AMSTI EL 
  D SCHNEIDER 
  C GOODWIN 
  12350 RESEARCH PKWY 
  ORLANDO FL  32826-3276 
 
 1 COMMANDER 
  US ARMY RDEC 
  AMSRD AMR SG SD 
  P JENKINS 
  BLDG 5400 
  REDSTONE ARSENAL  AL 35898-5247 
 
 1 COMMANDER 
  US ARMY AVN & MIS CMND 
  AMSAM RD MG 
  P RUFFIN 
  REDSTONE ARSENAL  AL 35898-5247 
 
 1 DIRECTOR 
  US ARMY RTTC 
  ATTN STERT TE F TD 
  R EPPS 
  REDSTONE ARSENAL AL 35898-8052 
 
 1 ARROW TECH ASSOC 
  W HATHAWAY 
  1233 SHELBURNE RD STE 8 
  SOUTH BURLINGTON VT  05403 

 5 ALLIANT TECHSYSTEMS 
  A GAUZENS 
  J MILLS 
  B LINDBLOOM 
  E KOSCO 
  D JACKSON  
  PO BOX 4648 
  CLEARWATER FL 33758-4648 
 
 3 ALLIANT TECHSYSTEMS 
  G PICKUS 
  F HARRISON 
  M WILSON 
  4700 NATHAN LANE N 
  PLYMOUTH MN 55442-2512 
 
 8 ALLIANT TECHSYSTEMS 
  ALLEGANY BALLISTICS LAB 
  S OWENS 
  C FRITZ 
  J CONDON 
  B NYGA 
  J PARRILL 
  M WHITE 
  S MCCLINTOCK 
  K NYGA  
  MS WV01-08 BLDG 300 RM 180 
  210 STATE RTE 956 
  ROCKET CTR  WV 26726-3548 
 
 3 SAIC 
  J GLISH 
  J NORTHRUP  
  G WILLENBRING 
  8500 NORMANDALE LAKE BLVD 
  STE 1610 
  BLOOMINGTON MN 55437-3828 
 
 1 SAIC 
  D HALL 
  1150 FIRST AVE STE 400 
  KING OF PRUSSIA PA 19406 
 
 1 AAI CORPORATION 
  MS 113 141 
 C BEVARD   
  124 INDUSTRY LNE 
  HUNT VALLEY MD 21030 
 
 1 DREXEL UNIV 
  DEPT OF MECHANICAL ENGRG 
  B C CHANG 
  3141 CHESTNUT ST 
  PHILADELPHIA PA 19104 



 
 
NO. OF NO. OF 
COPIES ORGANIZATION COPIES ORGANIZATION 
 

28 
 

 1 JOHNS HOPKINS UNIV 
  APPLIED PHYSICS LAB 
  W D’AMICO 
  1110 JOHNS HOPKINS RD 
  LAUREL MD 20723-6099 
 
 4 CHLS STARK DRAPER LAB 
  J CONNELLY 
  J SITOMER 
  T EASTERLY 
  A KOUREPENIS   
  555 TECHNOLOGY SQ 
  CAMBRIDGE MA  02139-3563 
 
 2 ECIII LLC 
  R GIVEN 
  J SWAIN 
  BLDG 2023E 
  YUMA PROVING GROUND  AZ 85365 
 
 1 GD OTS 
  E KASSHEIMER 
  PO BOX 127 
  RED LION PA 17356 
 
 1 ALION SCIENCE 
  P KISATSKY 
  12 PEACE RD 
  RANDOLPH NJ 07861 
 
 1 GEORGIA TECH RESEARCH INST 
  GTRI ATAS 
  A LOVAS 
  SMYRNA GA 30080 
 

ABERDEEN PROVING GROUND 
 
 2 COMMANDER 
  US ARMY TACOM ARDEC 
  R LIESKE BLDG 305 
  J MATTS BLDG 305 
  APG MD 21005-5059 
 
 1 COMMANDER 
  CSTE DTC AT TD B 
  K MCMULLEN 
  BLDG 359 
  APG MD 21005-5059 

 1 COMMANDER 
  CSTE DTC AT SL B 
  D DAWSON 
  BLDG 359 
  APG MD 21005-5059 
 
 2 COMMANDER 
  CSTE DTC AT FC L 
  R SCHNELL BLDG 526 
  J DAMIANO BLDG 381 
  APG MD 21005-5059 
 
 1 COMMANDER 
  CSTE DTC AT TD 
  S WALTON 
  BLDG 359 
  APG MD 21005-5059 
 
 1 COMMANDER 
  CSTE AEC SVE B 
  D SCOTT 
  BLDG 4118 
  APG MD 21005-5059 
 
 3 COMMANDER 
  USAATC 
  TEDT AT ADR 
  A THOMPSON 
  S CLARK 
  B GILLICH 
  BLDG 400 COLLERAN RD 
  TRAILER TI 
  APG MD 21005-5059 
 
 40 DIR USARL 
  AMSRD ARL CI IC 
   B BODT 
  AMSRD ARL CI NT 
   R PRESSLEY 
  AMSRD ARL SL 
   R COATES 
  AMSRD ARL SL BD 
   J COLLINS 
   L MOSS 
  AMSRD ARL WM SG 
   T ROSENBERGER 
  AMSRD ARL WM BA 
   T BROWN 
   E BUKOWSKI 
   J CONDON 
   B DAVIS 
   R HALL 
   T HARKINS 
   D HEPNER
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   M ILG 
   G KATULKA 
   T KOGLER 
   D LYON 
   D MCGEE 
   P MULLER 
   B PATTON 
   P PEREGINO 
  AMSRD ARL WM BC 
   F FRESCONI 
   B GUIDOS 
   P WEINACHT 
  AMSRD ARL WM BD 
   J COLBURN 
   M NUSCA 
  AMSRD ARL WM BF 
   M ARTHUR 
   B FLANDERS 
   W OBERLE 
   R PEARSON 
   A THOMPSON (4 CPS) 
   D WEBB 
   P WYANT 
   R YAGER 
  AMSRD ARL WM MB 
   J BENDER 
   W DRYSDALE 
  AMSRD ARL WM T 
   B BURNS 



 

30 
 

INTENTIONALLY LEFT BLANK. 


