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A continuum description of nonlinear elasticity,
slip and twinning, with application to sapphire

BY J. D. CLAYTON*

Impact Physics, U.S. Army Research Laboratory, Aberdeen Proving Ground,
MD 21005-5066, USA

A model is developed for elasticity, plasticity and twinning in anisotropic single crystals
subjected to large deformations. Dislocation glide and deformation twinning are
dissipative, while energy storage mechanisms associated with dislocation lines and
twin boundaries are described via scalar internal state variables. Concepts from
continuum crystal plasticity are invoked, with shearing rates on discrete glide and
twinning systems modelled explicitly. The model describes aspects of thermomechanical
behaviour of single crystals of alumina over a range of loading conditions. Resolved shear
stresses necessary for glide or twin nucleation at low to moderate temperatures are
estimated from nonlinear elastic calculations, theoretical considerations of Peierls
barriers and stacking fault energies and observations from shock physics experiments.
These estimates are combined with the existing data from high-temperature experiments
to provide initial yield conditions spanning a wide range of temperatures. The model
reflects hardening of glide and twin systems from dislocations accumulated during basal
slip. Residual elastic volume changes, predicted from nonlinear elastic considerations and
approximated dislocation line energies, are positive and proportional to the dislocation
line density. While the model suggests that generation of very large dislocation densities
could influence the pressure–volume response, volume increases from defects are
predicted to be small in crystals deformed via basal glide on a single system.

Keywords: crystal plasticity; twinning; alumina
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1. Introduction

When subjected to large deformations or mechanical stresses, crystalline solids
may deform by a number of mechanisms. In ductile crystals, where the
dislocation mobility is sufficiently high in an adequate number of directions,
dislocation glide is often the predominant accommodation mode for deviatoric
deformations at stresses above the elastic limit. However, under different
circumstances, inelastic strains may be accommodated by other mechanisms
such as deformation twinning or fracture.
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J. D. Clayton308
Deformation twinning is thought to be preferred over slip in cases where
resistances to dislocation glide are very large in certain directions (Hirth & Lothe
1982), often in crystals of non-cubic symmetry. Furthermore, twinning may be
preferable to slip at low temperatures in cubic crystals, especially those with low
stacking fault energy (Bernstein & Tadmor 2004). As reviewed by Christian &
Mahajan (1995), a number of theories exist that describe twin nucleation and
propagation. Here, deformation twinning is associated with irreversible shape
deformation often attributed to the motion of partial dislocations and
corresponding formation of stacking faults (Bilby & Crocker 1965; Christian &
Mahajan 1995), although twinning in a more general sense may encompass a
variety of energy invariant transformations of the lattice (Bhattacharya 1991).
Although the general theory developed in this paper applies to any crystalline
solid deformable via some combination of elasticity, slip and twinning, the
present application of the theory focuses on ceramic crystals. As defined here, a
ceramic crystal is an inorganic, non-metallic and ordered solid. Electronic
structures of ceramics feature ionic and/or covalent bonds as opposed to metallic
bonds found in ductile metals. The nature of interatomic forces in ionic and
covalently bonded solids tends to correlate with a high Peierls barrier that
inhibits dislocation motion at low temperatures (Friedel 1964).

Single crystals of the ceramic alumina (Al2O3) are known as corundum. The
stable phase at room temperature and pressure is a-corundum, and although
other phases exist (Holm et al. 1999), the term corundum hereafter refers to the
a-phase. The crystallography of corundum can be described via either
rhombohedral or hexagonal notation (Kronberg 1957). Corundum is centro-
symmetric and hence does not exhibit the piezoelectric effect. Corundum that is
red in colour, from elemental traces of chromium, is known as ruby, with the
chromium content providing an increase in the tensile yield stress at high
temperatures (Klassen-Neklyudova et al. 1970). Corundum of all other colours is
called sapphire. Sapphire is very hard, with a value of 9 on Mohr’s scale, and
exhibits an extremely high Hugoniot elastic limit (HEL), with values in excess of
20 GPa for single crystals of certain orientations (Graham & Brooks 1971).
Alumina’s high hardness, high compressive strength and low mass density
relative to steels render the ceramic a useful material for many engineering
devices and systems. Single crystals of adequate purity are transparent, with
widespread uses in optics and electronics. Experimental data quantifying the
mechanical response of sapphire single crystals of various orientations and
spanning a wide range of temperatures and strain rates are available (Graham &
Brooks 1971; Tymiak & Gerberich 2007). While various kinetic relationships for
slip (Lagerlof et al. 1994; Rodriguez et al. 2008) and twinning (Scott & Orr 1983)
have been postulated to describe individual experiments, a more general model is
needed to collectively explain the material’s behaviour over a broad range of
loading conditions encountered in practical applications.

The remainder of this paper is organized as follows. In §2, physical
descriptions of elasticity, plasticity and twinning in crystalline solids are given,
in order to clarify distinctions among the three mechanisms and provide
sufficient basis for the theoretical framework of §3. This framework is general
enough to apply to any crystalline solid that undergoes large deformations via
elasticity, plasticity and/or mechanical twinning. In §4, the model is specialized
to describe the behaviour of sapphire. Crystal structure, physical properties,
Proc. R. Soc. A (2009)



309Elasticity, slip and twinning in sapphire
yield mechanisms, strain hardening, defect accumulation and irreversible volume
changes associated with lattice defects are considered in turn.

The following notational scheme is used. Scalars and individual components of
vectors and tensors are written in italic font, while vectors and tensors are
written in bold-italic font. Einstein’s summation convention applies for repeated
indices. The $ symbol denotes the scalar product ða$bZaabaZa1b1Ca2b2C
a3b3Þ, while 5 indicates the outer product ðða5bÞabZaabbÞ. Juxtaposition
of second-rank tensors implies summation over one set of adjacent indices
(ABZAabBbc). Summation over two sets of adjacent indices is denoted by :
(A : BZAabBab). Indices in parentheses are symmetric (2A(ab)ZAabCAba);
indices in braces are antisymmetric (2A[ab]ZAabKAba). Superposed $, T and K1
denote a material time derivative, transposition and matrix inversion.
Subscripted commas denote partial coordinate differentiation.
2. Background: deformation mechanisms

(a ) Elasticity

A crystal is said to deform elastically in the absence of generation or motion of
defects. At the atomic scale, elastic deformation alters relative distances and/or
orientations among neighbouring atoms within each crystallographic unit cell
(Born & Huang 1954). Any resulting changes in interatomic forces produce
mechanical stresses when the crystal is viewed as a continuous solid. Removal of
mechanical stresses restores the original lattice without dissipation of energy;
hence, elastic deformation is said to be thermodynamically reversible. Here, elastic
deformation also includes changes in interatomic bond vectors induced by changes
in temperature. Increases in thermal energy, i.e. local atomic vibrations, may
correlate with the expansion of the lattice in the absence of mechanical stresses.

(b ) Plasticity

Plastic deformation as defined here occurs via glide of dislocations of edge,
screw and/or mixed character, including loops, and encompassing cross-slip but
not climb. As dislocations travel through a region of the lattice, the shape of the
material will change, but the interatomic bond vectors remain the same, so long
as no defects are left behind within the region. Mechanical stresses are
conventionally required to enact the net glide of dislocations (apart from
random thermal fluctuations), for example resolved shear stresses must exceed
the Peierls barrier in the context of lattice statics or Schmid’s law in the context
of continuum slip (Hirth & Lothe 1982). Plasticity is thermomechanically
irreversible, since the reference shape of the material is not recovered upon
removal of mechanical stresses, and heat is dissipated by moving dislocations as a
result of lattice friction, phonon drag and other mechanisms (Kocks et al. 1975;
Gilman 1979).

(c ) Twinning

Deformation twinning results in two connected regions in the lattice separated
by a twin boundary whose shape deformations differ by a simple shear. The
original lattice is termed as the ‘parent’, while the sheared lattice is termed as the
Proc. R. Soc. A (2009)



J. D. Clayton310
‘twin’. The atomic positions, and hence the corresponding lattice vectors
between these atoms, within each region differ by a finite rotation, typically
either a reflection or 1808 rotation (Christian & Mahajan 1995), although more
general relationships are possible. Nucleation and propagation of twins are
thought to take place by one or more mechanisms, often involving the formation
and motion of partial dislocations and atomic shuffles needed to maintain the
orientation relationships between the twin and parent (Bilby & Crocker 1965).
Deformation twinning is distinguished from plastic slip in that the former occurs
by collective motion of defects, resulting in a quantized amount of shear that
preserves the particular orientation relationship between the twin and parent.
Another difference is that twinning is polar (i.e. unidirectional) while usually slip
is not. Lattice geometry precludes twinning shears of equal magnitude and
opposite directions on the same plane, while typically slip may occur in opposite
directions on the same plane. The mechanical work of deformation twinning is
dissipative, resulting from the defect motion associated with shearing. Possible
energy storage is associated only with defects left behind in the lattice, for
example those comprising the twin boundary. From continuum thermomecha-
nics considerations, the driving force for twin propagation is the resolved shear
stress in the direction of twinning shear. Detwinning, i.e. restoration of the
twinned lattice to its original orientation, is possible, although is more applicable
to phase transformations (Bhattacharya 1991) and less applicable to mechanical
twinning of the kind considered here.

Twins are usually classified as type I, type II or compound. In centro-
symmetric crystals, the lattice vectors in the twin and parent for a type I twin
are related by either a reflection in the habit plane or rotation of 1808 about the
direction normal to this plane. For a type II twin, the lattice vectors are related
by either a rotation of 1808 about the shear direction or a reflection in the plane
normal to the shear direction. The orthogonal transformation
�QZ
2m 05m0K1 ðtype IÞ;
2s05s0K1 ðtype IIÞ

(
ð2:1Þ
relates a lattice vector a0 in the parent to a lattice vector a in the twin via
aZ �Qa 0. The unit normal to the habit plane is m0 and the direction of shear is
s0. The rank-two unit tensor is denoted by 1. For a compound twin, both
definitions in (2.1) are equivalent.
3. Continuum theory: nonlinear elasticity, slip and twinning

A constitutive framework for crystals undergoing large thermoelastic, plastic and
twinning deformations is developed. The model is based upon principles of
continuum mechanics and thermodynamics of single crystal behaviour, as
described for example in Clayton (2005). Plastic deformation is limited to that
resulting from dislocation glide, and twinning deformation is limited to
mechanical twinning.
Proc. R. Soc. A (2009)



311Elasticity, slip and twinning in sapphire
(a ) Kinematics

A local volume element of crystalline material is identified by its reference
coordinates X. Let xZ4(X,t) denote spatial coordinates of the element, with 4
the motion. The deformation gradient F for the element is the tangent mapping

F ZT4X Z vx=vX; ð3:1Þ

decomposed multiplicatively into three terms

F ZFE �F
I
FP ZFE �F ; ð3:2Þ

where FE accounts for recoverable thermoelastic deformation and rigid body

rotation; �F
IZ �J

1=3
FI accounts for defect kinematics that alter the lattice; and

FP accounts for lattice-preserving plastic slip. Twinning is modelled via the
isochoric term FI, and residual volume changes associated with defects are
captured by the Jacobian determinant �J . The total irreversible deformation is
�F Z �F

I
FP.

Introduced next are sets of contravariant and covariant vectors denoting
directions and planes, respectively, for slip and twinning. When referred to the
reference lattice prior to any reorientation by twinning, these are denoted by
fs i

0;m
i
0g for each slip system i and fs j

0;m
j
0g for each twin system j. The total

number of slip and twin systems is denoted by n and w, respectively. Reference
shearing directions and plane normals are all of unit length, and each pair of
contravariant shear direction and covariant plane normal is orthogonal

s i
0$m

i
0 Z 0; js i

0jZ jm i
0jZ 1 ðc i Z 1;.;nÞ;

s j
0$m

j
0 Z 0; js j

0jZ jm j
0jZ 1 ðc j Z 1;.;wÞ:

ð3:3Þ

During the course of twinning deformation, one or more parts (i.e. twins) of the
volume element of crystal undergo a rotation relative to the parent. In a volume
fraction of the crystal undergoing twinning via mode j, the slip directions and slip
plane normals transform according to the usual rules for contravariant and
covariant vectors, i.e.

s i
0 j Z �Q

j
s i
0; m i

0j Zm i
0
�Q
jT

ðc i Z 1;.; n slip systems; c j Z 1;.;w twin volumesÞ; ð3:4Þ

where �Q
j
is the rotation found from (2.1) corresponding to particular twin

system j. For example, if j is a type I twin, �Q
jZ2m j

05m j
0K1, while if j is a type

II twin, �Q
jZ2s j

05s j
0K1. Note from (3.4) that, within each twinned volume, the

updated slip directions s i
0j and slip plane normals m i

0j remain orthogonal and of

unit length for each i. For simplicity, successive twinning is not considered,
which means that secondary twins do not form within already twinned regions
and reorientation of the twinning systems fs j

0;m
j
0g is not considered. The

rotation in (3.4) does not apply to the volume fraction of the grain comprising
the parent. The thermoelastic deformation affects the lattice in the usual manner
Proc. R. Soc. A (2009)



Figure 1. Deformations and slip system geometry for crystal deforming by elasticity, slip
and twinning.
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of crystal plasticity theory (Asaro 1983)

si ZFEs i
0; mi Zm i

0F
EK1 ðc i Z 1;.;n2 parentÞ;

sij ZFEs i
0j ; m i

j Zm i
0jF

EK1 ðc i Z 1;.; n2 twins j Z 1;.;wÞ;

s j ZFEs j
0; m j Zm j

0F
EK1 ðc j Z 1;.;w 2 parentÞ:

ð3:5Þ

Figure 1 depicts (3.1)–(3.5) for a crystal with a single slip system and a single
twin. The multiplicative decomposition (3.2) implies a series of configurations
of the material element. The reference configuration is labelled as B0 with
coordinates X, the spatial configuration is labelled as B with coordinates x and
the elastically unloaded intermediate configuration is labelled as �B . Since FEK1

and �F are in general not integrable, continuous coordinates spanning �B do not
exist (Clayton et al. 2005). However, elastic and inelastic deformations act as
tangent maps between configurations via FE : T �B/TB and �F : TB0/T �B .
In this illustration, the mappings �F

I
and FP comprising �F cannot be separately

resolved owing to the effect of twinning on the orientation of the reference lattice.
The spatial velocity gradient following from (3.1) and (3.2) is

LZ _FFK1 Z _F
E
FEK1 CFE _F

I
FIK1FEK1

CFEFI _F
P
FPK1FIK1FEK1Cð1=3Þ _�J�JK1

1: ð3:6Þ

The inelastic velocity gradient referred to configuration �B is

_�F �F
K1 ZLI C �L

P
Cð1=3Þ _�J �JK1

1; ð3:7Þ

where

LI Z _F
I
FIK1 Z

Xw
jZ1

_f
j
gjs j

05m j
0; ð3:8Þ

results from twinning shears, and

�L
P Z ð1KfrÞ

Xn
iZ1

_gis i
05m i

0C
Xw
jZ1

f j
Xn
iZ1

_gi
js

i
0j5m i

0j

 !
; ð3:9Þ
Proc. R. Soc. A (2009)



313Elasticity, slip and twinning in sapphire
results from slip in both the parent and twinned regions of the crystal. In (3.8), g j

is the predefined shear deformation associated with twin system j. In (3.9), _gi is
the slip rate on system i in the parent and _gi

j is the slip rate on system i within
reoriented twin fraction j. The volume fraction of crystal occupied by twin j,

measured per unit volume in configuration �B , is labelled by the scalar f jR0, with

rate _f
j
(Chin et al. 1969; Van Houtte 1978). The total volume fraction of twinned

crystal is fTZ
P

f j , subject to the restriction 0%fT%1. Detwinning is not

considered; hence, _f
j
R0. In the interior summation within the rightmost term

of (3.9), the slip directors and slip plane normals in the twinned regions are found
according to (3.4), where the particular form of �Q

j
corresponds to the twin with

an associated value of f j in the outer summation. Note that since for each slip or
twin system, the shear directions and plane normals are orthogonal,

JI trLI Z 00JI Z 1; JIJPtrðLI C �L
PÞZ 00JP Z 1; ð3:10Þ

upon assuming that at tZ0, FIZFPZ1 and where trAZAa
a for rank-two matrix

A. Thus, (3.8)–(3.10) reflect the isochoric nature of slip and twinning, and
together with (3.2) and (3.6) require that all volume changes be accommodated
thermoelastically via JE and/or by defect generation via �J , such that

J Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det g=det G

p
det F Z JE �J ; ð3:11Þ

where g and G are metric tensors associated with coordinate systems in
configurations B and B0, with respective components gabZvax$vbxZga$gb and
GABZvAX$vBXZGA$GB. The residual volume change �J arising from
distributed defects such as dislocation lines follows from the notion that in
nonlinear elasticity, the average strain of a body containing residual stress fields
arising from internal displacement discontinuities need not vanish even if the
traction on its external surfaces vanishes (Toupin & Rivlin 1960; Wright 1982).
Here, only volume changes are considered, e.g. corresponding to random defect
distributions imparting no preferred directions in residual strains, although more
general treatments allowing for shape changes arising from the local elastic stress
fields of crystal defects have been posited (Clayton et al. 2005). In §4e, a
relationship between �J and the dislocation density is given.

Two non-dimensional internal state variables are introduced to represent
energetic changes associated with lattice defects. The first is a measure of the
total line density of dislocations that accumulate with slip, xZb

ffiffiffiffiffiffi
rT

p
, where b is a

scalar Burgers vector—or a constant in the order of a lattice parameter for
crystals containing dislocation families with different Burgers vectors—and rT is
the total length of such dislocations per unit volume in �B . The second is a
measure of the total area density of twin boundaries, zZ

ffiffiffiffiffiffiffiffi
bhT

p
, where hT is the

total area of twin boundaries per unit volume in �B .
(b ) Constitutive assumptions

Let r and r0 denote the mass density of the solid in current and reference
configurations, respectively, related by r0ZrJ. Let �rZrJEZr0 �J

K1
denote the

mass density in configuration �B . The Helmholtz free energy per unit volume in �B
is �JZ �rj, where j is the free energy per unit mass. The free energy exhibits
the dependencies

�JZ �JðEE ; q; x; z; ff jgÞ; ð3:12Þ
Proc. R. Soc. A (2009)



J. D. Clayton314
where q is the absolute temperature; x and z are respectively, related to the
densities of dislocations and twin boundaries as discussed in §3a; the set {f j}
includes each of the twin fractions, and

EE
ab Z

1

2
CE

abK dab
� �

Z
1

2
FEa
$a gabF

Eb
$b K dab

� �
ð3:13Þ

is a finite elastic strain tensor associated with the covariant elastic deformation
tensor CE, with Cartesian metric dab used in configuration �B .
(c ) Thermodynamics

Local forms of the balance of energy and dissipation inequality referred to the
reference configuration are written respectively, as

r0 _eZS : _E KV0$QCr0r ; S : _E K r0ð _jCh _qÞK 1

q
V0q$QR0: ð3:14Þ

Here, eZjCqh is the internal energy per unit mass, with h the entropy per unit
mass. The symmetric second Piola–Kirchhoff stress S is related to the first Piola–
Kirchhoff stress P and the Cauchy stress s by

SAB ZFK1A
$a PaB Z JFK1A

$a sabFK1B
$b : ð3:15Þ

Also, EZ(1/2)FTFKG is the right Cauchy–Green strain; V0 denotes a
covariant derivative on B0; Q is the heat flux vector; and r denotes other heat
sources. The stress power per unit intermediate volume can be written as

�J
K1

SAB _EAB Z JEFEK1b
:b sabgcaF

Ec
:a

� �
FEK1a
:e Le

:dF
Ed
:b

� �
Z �M

:b
a
�L
a
:b; ð3:16Þ

where �MZCE �S, �SZJEFEK1sFEKT , and

�LZFEK1LFE ZFEK1 _F
E
CLI C �L

P
Cð1=3Þ _�J�JK1

1: ð3:17Þ
The rate of free energy per unit intermediate volume is

_�JZ
d

dt
ð�rjÞZ �J

K1
r0 _jK _�F

a

:A
�F
K1A
:a j

� �
ð3:18Þ

and following from (3.17) and the symmetry properties of �S and _E
E
,

�M
$b
a
�L
a
$b Z �S

bd _E
E
dbC �M

$b
a LIa

$b C �M
$b
a
�L
Pa
$b Cð1=3Þ _�J �J

K1 �M
$b
b : ð3:19Þ

Using the chain rule to expand the rate of �J of (3.12),

_�JZ
v �J

vEE
: _E

E
C

v �J

vq
_qC

v �J

vx
_xC

v �J

vz
_zC

v �J

vf j
_f
j
; ð3:20Þ

with summation implied over w twin fractions j, the entropy inequality in (3.14)
can be written as

�SK
v �J

vEE

� �
: _E

E
K �N C

v �J

vq

� �
_qC �P : LI C �L

P
C

_�J

3 �J
1

 !

K
v �J

vx
_xK

v �J

vz
_zK

v �J

vf j
_f
j
K

1

q
�Vq$ �qR0; ð3:21Þ
Proc. R. Soc. A (2009)



315Elasticity, slip and twinning in sapphire
where �N Z �rh is the entropy per unit intermediate volume; �VqZV0q �F
K1

is
the intermediate temperature gradient; �qZ �J

K1 �F Q is the intermediate heat
flux; and

�PZ �MK �J1 ð3:22Þ
is a version of Eshelby’s energy–momentum tensor (Eshelby 1975) mapped to
configuration �B . Following standard arguments (Coleman & Noll 1963), stress–
elastic strain and entropy–temperature relationships are deduced from (3.21) as

�SZ
v �J

vEE
; �N ZK

v �J

vq
; sZ JEK1FE v �J

vEE
FET ; hZK�rK1 v

�J

vq
: ð3:23Þ

The final term on the left-hand side of (3.21) can be made non-negative upon
prescription of the conduction law

�q ZK �K �Vq; K�Vq$ �q Z �Vq$ �K �VqR0; ð3:24Þ
where �K is a symmetric and positive definite matrix of thermal conductivity.
Applying (3.23) and (3.24),

�P : LI C �P : �L
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_�J

3 �J
tr �PR
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v �J

vz
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v �J

vf j
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j
K
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q
�Vq$ �K �Vq; ð3:25Þ

is the reduced dissipation inequality. In the absence of temperature gradients,
(3.25) requires that the energy dissipated by twinning, slip and residual volume
changes must exceed the rate of energy storage associated with defects,
specifically dislocations and twin boundaries. From (3.8)–(3.10), the energies
dissipated from twinning and slip, respectively, can be written as

�P : LI Z
Xw
jZ1

�tj _f
j
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P Z ð1K fTÞ
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�tij _g
i
j

 !
; ð3:26Þ

where the driving forces are resolved stresses on each slip or habit plane, acting
in the direction of shear

�t j Z JEsjas$ba m
j
b; �ti Z JEsias†ba mi

b; �tij Z JEsiaj s
†b
a mi

jb: ð3:27Þ

The specific heat capacity at constant elastic strain, measured per unit volume in
�B , is introduced as

�c Z v �E =vqZKqv2 �J=vq2; ð3:28Þ
where (3.23) has been used and �E Z �re is the internal energy per intermediate
volume.Multiplying the first of (3.14) by �J

K1
, and using (3.15)–(3.20), (3.22)–(3.24)

and (3.28), the energy balance can be written as
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; ð3:29Þ

where non-mechanical sources r in (3.14) are assumed absent in (3.29) and hereafter.
The stress–temperature coefficients are

�bZKv2 �J=vqvEE; ð3:30Þ
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and thenotation for theheat conduction term in (3.29) is �VaZ �VaC �J
K1 ð �J �F

K1A
:a Þ;A,

with �VaZV0A
�F
K1A
:a .Note that �VaZ �Vawhen the compatibility conditions �F

a
:½A;B�Z0

apply, in which case ðv �J =v �F
a
:AÞ;AZ0.
(d ) Representative free energy potential

A more specific form of (3.12) is now specified for anisotropic crystals that may
undergo large elastic deformations. The free energy is decomposed additively as

�JZ �J
EðEE ; q; ff jgÞC �Y ðqÞC �J

Rðx; z; qÞ; ð3:31Þ
where �J

E
accounts for the thermoelastic response; �Y accounts for the purely

thermal energy; and �J
R

accounts for residual energy of lattice defects. The
thermoelastic energy consists of three terms
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with the first term of (3.32) accounting for materially linear, but geometrically
nonlinear, mechanical effects; the second accounting for nonlinear elastic effects
important at high pressures (Brugger 1964; Graham & Brooks 1971); and the
third accounting for thermoelastic coupling. Here, q0 is a constant temperature at
which the lattice parameters exhibit their reference lengths, and the remaining
coefficients in (3.32) consist of partial derivatives of the free energy at null
elastic strain
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ð3:33Þ
Coefficients in (3.33) may depend on temperature; when measured at a particular
temperature, these are referred to as isothermal elastic constants. In anisotropic
solids, the coefficients in (3.33) depend upon the orientation of the lattice in
configuration �B . When twinning is involved, the orientations of the original
reference lattice (parent) and each twinned region differ. It is assumed that the
elastic deformation FE and strain EE act uniformly over the parent and twins
comprising each volume element. The energy (3.32) is thus partitioned into
contributions from the parent and each twin

�J
E Z

1

2
ð1K fTÞEE

ab
�C
abcd
0 EE

cdC
1

6
ð1K fTÞEE

ab
�C
abcd3f
0 EE

cdE
E
3f

Kð1K fTÞ �b
ab
0 EE

abðqK q0ÞC
Xw
jZ1

f j
1

2
EE

ab
�C
abcd
jT EE

cd

�

C
1

6
EE

ab
�C
abcd3f
jT EE

cdE
E
3fK �b

ab
jTE

E
abðqK q0Þ

�
; ð3:34Þ

where �C
abcd
0 , �C

abcd3f
0 and �b

ab
0 refer to coefficients for the parent lattice, and where

for each twin j (Kalidindi 1998),
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The stress–strain–temperature relationships followed from (3.23) and (3.31)–
(3.34) are
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2
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cdE

E
3fK �b

abðqK q0Þ; ð3:36Þ

where the effective coefficients
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From (3.37), the rationale for inclusion of twin fractions in free energy functions
(3.12) and (3.31) is now clear: the effective thermoelastic moduli depend on
the evolving twin fractions. The associated rate of thermoelastic free energy
change is
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with summation applied over j. Consider a situation in which strains EE
abZ

�aabðqK q0Þ arise from temperature change. The following relationship emerges
between the thermal stress, thermal expansion ð�aabÞ and elasticity coefficients
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�acd�a3fðqK q0Þ: ð3:39Þ

Note that �C
abcdZ �C

ðabÞðcdÞ
, �C

abcd3fZ �C
ðabÞðcdÞð3fÞ

and �b
abZ �b

ðabÞ
follow auto-

matically from (3.33). The Voigt notation (Brugger 1964) exploits the symmetry
of the elastic stress �S, elastic strain EE and these coefficients, with pairs of indices
11/1, 22/2, 33/3, 23/4, 13/5 and 12/6 and �S

ab/ �SA, 2E
E
ab/EE

Að1CdabÞ,
withGreek indices (a, bZ1, 2, 3) and capital indices (AZ1, 2,., 6).Relation (3.36)
then can be expressed compactly as

�SA ZCABE
E
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2
CABCE

E
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E
CK �bAðqK q0Þ; ð3:40Þ

where CAB and CABC are the second- and third-order elastic coefficients and
summationproceeds over duplicate covariant indices.The thermal energy in (3.31) is
prescribed as (Clayton 2005)

�Y ZK�cq lnðq=q0Þ: ð3:41Þ
Finally, the residual energy of (3.31) is specified as

�J
R Z

1

2
m k1x

2Ck2z
2 Ck3x

2z2
� �

; ð3:42Þ

wherem is an elastic shearmodulus thatmaydepend on temperature and k1, k2 and k3
are dimensionless constants that scale the energies associated with each internal
variable. Recalling from §3a that xZb

ffiffiffiffiffiffi
rT

p
, the first term on the right-hand side of
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(3.42) provides a linear dependence of residual energy on the line density of
dislocations, followingClayton (2005) and references therein. Simple arguments then
show that 2WDZk1mb

2, where WD is the total energy per unit line length of
dislocations, including self- and interaction energies, core energy and stacking fault
energy if the dislocations are partial. Recalling that zZ

ffiffiffiffiffiffiffiffi
bhT

p
, the second term

provides a linear dependence of residual energy on the area per unit volume of twin
boundarieshT.Similarly, 2WTZk2mb,whereWT is the twinboundaryenergyperunit
area. Often, 2WTwWSF, whereWSF is the intrinsic or extrinsic stacking fault energy
(Hirth & Lothe 1982; Bernstein & Tadmor 2004). The third term accounts for
interaction energies between twin boundaries and dislocations. Alternative forms of
(3.42) are of course possible and can be introduced as needed for particularmaterials.
The rate of temperature increase (3.29) can now be written as
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is often called the Taylor–Quinney parameter (Taylor & Quinney 1934), such that

1Kb0 is the ratio of inelastic stress power WPZ �P : ðLIC �L
P
Cð1=3Þ _�J �J

K1
1Þ

converted to residual elastic energy in the lattice.
(e ) Kinetics

Here, rate-dependent, i.e. viscoplastic, relationships describe shearing associ-
ated with slip (Hutchinson 1976; Asaro 1983) and twinning (Kalidindi 1998).
These kinetic equations read as
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�gj

����
����
p

: ð3:45Þ

In (3.45), _gS and _gT are material parameters with dimensions of 1/t; m and p are
dimensionless parameters; and �gi and �g j are evolving resistances—positive
scalars with dimensions of stress—to deformation in the parent by slip on system
i and twinning on system j, respectively. In the second of (3.45), �gij denote
resistances on slip system i within reoriented twin j. In the third of (3.45),
2 �tj
� �

Z �tjC j�tj j. From (3.26) and (3.45), these rates are always dissipative since

for each slip system, �ti _giR0 and �tij _g
i
jR0 and for each twin, _f

j
�tj
� �

gjR0.

Because _f
j
Z0 for �tj%0, the unidirectional nature of twinning is respected. In

the limit m/N or p/N, rate-independent behaviour is attained. In a general
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sense, slip and twin resistances evolve as

_�g
i Z _�g

iðEE ; q; x; z; ff jg; f�ggÞ; _�g
i
j Z _�g

i
jðEE; q; x; z; ff jg; f�ggÞ;

_�g
j Z _�g

jðEE; q; x; z; ff jg; f�ggÞ; ð3:46Þ

where the rates depend not only on the set of state variables that explicitly enter

the free energy (3.12), but also on the set of hidden variables f�ggZf�g i; �g j ; �gijg
with iZ1,., n and jZ1,., w. Evolution equations for x and z, reflecting
densities of dislocations and twin boundaries, complete the model. Analogous to
hardening in (3.46), generic evolution equations are written as

_xZ _xðEE; q; x; z; ff jg; f�ggÞ; _zZ _zðEE; q; x; z; ff jg; f�ggÞ: ð3:47Þ
Possible impedances of slip or twinning via slip–slip interactions, slip–twin
interactions and twin–twin interactions entering (3.46) may depend in a complex
manner on a number of factors, including geometric relationships between
interacting systems, temperature, crystal structure and defect content (Christian &
Mahajan1995;Kalidindi 1998; Castaing et al. 2002; Wu et al. 2007). The theory is
applicable over a potentially wide temperature range via dependence of initial
values of resistances to slip and twinning (i.e. initial values of f�gg in kinetic
equations (3.45)) on temperature; in addition, these variables evolve with the
history of deformation and temperature according to (3.46).
4. Application: sapphire single crystals

The framework of §3 is specialized to describe sapphire. Crystal structure,
physical properties, initial yield mechanisms, strain hardening, defect accumu-
lation and residual volume changes are considered. Whenever possible,
experimental datamotivate aspects of themodel and provide associated parameters.
(a ) Crystal structure and properties

The atomic structure of sapphire is depicted in terms of the Al nuclei in
figure 2, following Kronberg (1957). The fundamental unit cell is rhombohedral
(lattice parameter a0Z0.512 nm, bond angle 55.38). The hexagonal unit cell,
while consisting of more atoms, is convenient for describing mechanical
behaviour. Two types of hexagonal cells are encountered in the literature. One
is the morphological cell shown in figure 2a, consisting of three layers of Al
cations each two-third full, with a close-packed full layer of O anions in
between each layer of Al cations. The Al nuclei occupy octahedral interstitial
sites between each hexagonal layer of O atoms (Kronberg 1957). The
morphological hexagonal lattice parameters are AZ0.475 nm and CMZ
0.649 nm. Figure 2b is of the structural cell, consisting of a second stack of
each of the three layers of Al cations and O anions, differing from the morpho-
logical unit cell by a rotation of 1808 about the c-axis [0001]. The lattice
parameters of the structural hexagonal cell are A0Z0.475 nm and CSZ2CMZ
1.297 nm, as shown in figure 2. Elastic constants are listed in table 1 (in the
electronic supplementary material); because sapphire has trigonal symmetry,
Proc. R. Soc. A (2009)
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321Elasticity, slip and twinning in sapphire
rotations of 1808 about the c-axis do not fall within the point group of
symmetry operations for the crystal. Hence, the signs of C14 and several of the
third-order constants depend upon the choice of unit cell (Winey et al. 2001).
In table 1 and henceforth, all properties are referred to the structural unit cell.
The full matrices of anisotropic elastic coefficients in (3.40) are populated from
the six independent second-order coefficients and 14 independent third-order
coefficients using the scheme of Teodosiu (1982), for example. Relevant bulk
physical properties with supporting references are listed in table 2 (in the
electronic supplementary material).

Prominent slip and twin systems are listed in tables 3 and 4 (in the electronic
supplementary material), respectively, and are illustrated in figure 2. While a
number of different families of pyramidal systems are crystallographically
conceivable (Snow & Heuer 1973), quantitative yield data seem scarce except for
the!�1101Of10�11g systems, with available data limited to tensile deformation of
whiskers at temperatures in excess of 2000 K (Tressler & Barber 1974). While
basal and prism slip can occur in either direction for a given system, pyramidal
slip is thought unidirectional (Heuer et al. 1998) and only occurs when the
resolved shear stress acts in a positive sense with respect to the c-axis, e.g. tensile
loading along [0001]. Twinning is also unidirectional; for example, rhombohedral
twinning occurs only when the resolved shear stress acts in a negative sense with
respect to the c-axis, e.g. compressive loading along [0001]. Thus, pure tensile
deformation along [0001] can only be accommodated by pyramidal slip, elasticity
or fracture, while pure compression along [0001] can only be accommodated by
rhombohedral twinning, elasticity or fracture. The slip directions for uni-
directional mechanisms are tabulated here such that the resolved shear stress
for a given slip or twin system must be positive to enact shear on that system.
Atomistic simulations of hypervelocity impact of sapphire have predicted basal
and pyramidal slip and basal and rhombohedral twinning (Zhang et al. 2007).
Bourne et al. (2007) observed prism and basal dislocations, twins, cleavage
fracture and grain boundary fracture in specimens recovered from impact
experiments on polycrystalline alumina, with activity or inactivity of certain
mechanisms dependent on the impact stress.

Quantification of resistances for slip, twinning and fracture in sapphire
remains an area of active research (Tymiak & Gerberich 2007). Fundamental
arguments based on elasticity theory and lattice periodicity provide
order-of-magnitude estimates for critical shear stresses that will be refined
upon examination of experimental data. The isotropic Peierls stress (Peierls
1940) has been deemed useful for describing basal and prism slip in sapphire
(Farber et al. 1993)

tC Z
2m

K
exp

K2pd

Kb

� �
; K Z

1Kn ðedge dislocationÞ
1 ðscrew dislocationÞ

ðslipÞ;
(

ð4:1Þ

where d is the spacing between slip planes and n is Poisson’s ratio. Eshelby (1949)
derived expressions for anisotropic crystals; however, owing to their complexity,
the need for consideration of the orientation of the dislocation line with respect to
the lattice vectors and limitations of the sinusoidal interatomic potential used
in the derivations, the anisotropic solutions are usually not considered, and are
not pursued here. Table 5 (in the electronic supplementary material) lists the
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Peierls stresses for sapphire; note that partial Burgers vectors are involved for
prism slip, leading to a lower Peierls stress and a preference over basal slip at low
temperatures (Lagerlof et al. 1994), although the original treatment of Peierls
(1940) did not consider partials. For these computations, the rhombohedral shear
modulus at room temperature is used as an estimate (table 2), along with the
effective Poisson’s ratio for alumina, nZ0.24 (Holm et al. 1999). The expression
below has been postulated for twin nucleation (Hirth & Lothe 1982; Lagerlof
et al. 1994)

tC ZWSF=b ðtwin nucleationÞ; ð4:2Þ
recalling that WSF is the stacking fault energy associated with partial
dislocations of Burgers vector b responsible for twinning on the system of
interest. Table 6 (in the electronic supplementary material) lists corresponding
values for nucleation of basal and rhombohedral twins. A theoretical first-order
estimate for shear fracture is (Frenkel 1926)

tC Zmb=ð2pdÞ ðshear fractureÞ; ð4:3Þ
with values listed in table 7 (in the electronic supplementary material) for
possible fracture planes in sapphire. Experiments indicate that the preferred
cleavage planes are f10�10g prism planes and f�1012g rhombohedral planes
(Wiederhorn 1969; Azhdari & Nemat-Nasser 1998). The prism planes listed in
table 7 are of the type f10�10g, and hence comprise a different family than the
f11�20g prism planes considered for slip in tables 3 and 5 and figure 2.
Approximation (4.3) does not account for electrostatic forces in ionic crystals
apart from their influence on the shear modulus, and hence neglects the strong
Coulomb forces contributing to the high fracture energy of the {0001} planes,
relative to the prism and rhombohedral planes, in sapphire (Wiederhorn 1969).
Experimental measurements of cohesive energy or cleavage strength of f10�11g
pyramidal planes are not available. Owing to sapphire’s brittle nature at low
temperatures, measurements of the yield mechanisms corresponding to (4.1)–
(4.3) must occur at high pressures that suppress tensile fracture, e.g. indentation
(Tymiak & Gerberich 2007) or confined compression (Graham & Brooks 1971;
Castaing et al. 1981; Scott & Orr 1983; Lankford et al. 1998). Graham & Brooks
(1971) suggested that shear failure via attainment of the theoretical strength
(4.3) could occur in shock-loaded sapphire.

(b ) Thermoelasticity and critical shear stresses in uniaxial strain

An analysis of the thermoelastic response of sapphire under adiabatic uniaxial
strain boundary conditions enables consideration of the behaviour of oriented
crystals up to the yield point or HEL. Driving forces for slip, twinning and
fracture can be computed and compared with (4.1)–(4.3) and observations from
shock physics experiments (Barker & Hollenbach 1970; Graham & Brooks 1971;
Chen & Howitt 1998; Reinhart et al. 2006) to provide more suitable estimates for
yield and failure criteria. This analysis also provides insight into which inelastic
deformation mechanisms are most likely responsible for macroscopic yielding in
shock physics experiments. In conventional plate impact experiments, the
sequence of activity of yield and fracture mechanisms can usually only
be inferred indirectly (Bourne et al. 2007), since visual characterization of
defects (e.g. microscopy of dislocations, twins and micro-cracks) is generally not
Proc. R. Soc. A (2009)
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Figure 3. Axial Cauchy stress for single crystals: elasticity predictions and shock physics
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possible in situ, but rather is conducted on recovered specimens that fracture on
tensile release, if not during the impact process. Stress-induced phase
transformations are thought to occur only at very high pressures (approx.
79 GPa; Reinhart et al. 2006) and are not considered.

For uniaxial straining along the Cartesian three-axis, the deformation gradient
(3.1) is FZ1CðDV=V0Þg35G3, where DVZVKV0 is the volume change and
V0 is the reference volume of the crystal. Thermoelastic responses are computed
for crystals oriented with respect to the loading axis at 08 (along [0001]), 608
(along ½11�23�) and 908 (along ½�12�10�), and with the loading axis normal to a

rhombohedral plane (along ½�1012�). Shown in figure 3 is the axial stress
component sZs33 computed for each orientation, accounting for anisotropic
nonlinear elasticity and thermal expansion. Also shown is the response for a
08-oriented crystal computed using only the second-order elastic constants, i.e.
CABCZ0 in (3.40), and labelled ‘linear elasticity’. Experimental data points are
provided from the aforementioned sources, and dotted horizontal lines indicate
maximum observed HEL values quoted by Graham & Brooks (1971). Among the
nonlinear elastic predictions, minute differences in stress arise between crystals of
different orientations below the HEL. Among corresponding experiments,
differences among crystals of different orientations are not discernable in the
elastic regime (Graham & Brooks 1971). From figure 3, nonlinear elasticity
provides an adequate match to the experimental results for V/V0R0.95, while
linear elasticity is inadequate for volume changes V/V0!0.98. For each
orientation, temperature rises predicted by the nonlinear theory from an initial
temperature of q0Z300 K were of the order of 20 K at V/V0Z0.95. In the
experiments, significant stress drops occur for V/V0!0.95; comparison with
the hydrostat of sapphire indicates a significant loss of shear strength above the
HEL, pointing to possible fracture processes. Values of the post-HEL shear
strength have been reported in the range of 4.0–6.0 GPa (Graham & Brooks
1971; Munson & Lawrence 1979; Reinhart et al. 2006).
Proc. R. Soc. A (2009)
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Figure 4. Ratio of maximum shear stress computed from nonlinear elasticity to theoretical
estimates of Peierls stress, shear fracture strength or twin nucleation stress: (a,b) 608 orientation;
dotted lines, HEL (Graham & Brooks 1971) (c,d ) rhombohedral orientation; dotted lines, HEL
(Hare et al. 2002). (a,c) solid line, basal edge Peierls; dotted line, basal screw Peierls; dashed line,
prism edge Peierls; dot-dashed line, prism screw Peierls; (b,d ) solid line, basal theoretical strength;
dotted line, prism theoretical strength; small-dashed line, pyramidal theoretical strength; double
dot-dashed line, rhombohedral theoretical strength; long dashed line, basal twinning; single
dot-dashed line, rhombohedral twinning.

J. D. Clayton324
For each orientation, during the uniaxial loading process, resolved shear
stresses t for various inelastic deformation modes were computed. For slip,
tZmaxj�tij, where i2all basal or prism slip systems; for twinning, tZmax�tj ,
where j2 all basal or rhombohedral twin systems. For fracture, t is computed as
the maximum resolved Kirchhoff stress in any in-plane direction among each of
the basal, prism, pyramidal or rhombohedral planes. Pyramidal slip is not
considered in this analysis, since experiments are inconclusive regarding its
occurrence in the room temperature regime. Pyramidal slip has been observed in
c-axis sapphire filaments stretched at temperatures in excess of 2000 K, and is
thought to be controlled by point defect diffusion and dislocation climb (Tressler &
Barber 1974). Selected results are shown in figure 4, with the shear stresses t
normalized by the theoretical estimates tC for slip, twinning and fracture of (4.1)–
(4.3) and tables 5–7. Volumetric strains corresponding to the HEL (Graham &
Brooks 1971; Hare et al. 2002) are shown with vertical dotted lines. In the
608-oriented crystal, as shown in figure 4a, prism slip could be activated well before
attainment of the HEL, if the Peierls approximation (4.1) is accurate. This agrees
with experimental observations of 1=3!1�100O partial dislocations in shock-
loaded crystals of the same orientation (Chen & Howitt 1998). Stresses that would
Proc. R. Soc. A (2009)
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cause twinning or shear fracture are depicted in figure 4b for a 608-oriented crystal.
Among the mechanisms shown in figure 4b, basal twinning is predicted as most
probable, in agreement with the experiments (Chen & Howitt 1998). Regarding
fracture, failure on rhombohedral or prism planes is most likely, but theoretical
fracture stresses from (4.3) are not attained. Shown in figure 4c are shear stresses
for glide normalized by the corresponding Peierls barriers (4.1) for a crystal in the
rhombohedral (R) orientation. Prism slip seems feasible here at or below the HEL.
Stresses for twinning or fracture are shown in figure 4d. Basal twinning appears
most likely among these mechanisms, and normalized driving forces for shear
fracture on pyramidal, prism and basal planes are also significant. Similar analysis
of results for the 908 orientation (not shown in figure 4) predicts that for a 908-
oriented crystal, prism slip below the HEL is possible according to the Peierls
barrier, twinning is unlikely and pyramidal fracture is the most likely shear failure
mechanism. In the 08-oriented crystal (not shown in figure 4), slip is impossible for
the present set of loading conditions. Rhombohedral twinning is most likely,
and could occur prior to attainment of the HEL if theoretical estimate (4.2) is
accurate. Among potential fracture sites, failure on rhombohedral planes is most
likely, but the theoretical limit from (4.3) is never attained. It thus appears likely
that nucleated defects such as intersecting twins or dislocation pile-ups could
produce stress concentrations enabling fractures in the experiments (Graham &
Brooks 1971).

Collectively, the results for different orientations provide the bounds listed in
table 8 (in the electronic supplementary material). These bounds are constructed
from the assertion that at least one slip or twinning mechanism occurs in a crystal
of each considered orientation upon attainment of the volumetric strain
corresponding to the experimental HEL for that orientation. The lower bounds
suggested in table 8 for fracture on prism, pyramidal and rhombohedral planes
ensure that shear fracture would not occur prior to attainment of the experimental
HEL in any of the considered crystals. Bounds for fracture on the basal plane are
not estimated here. Owing to its relatively high theoretical and cohesive strength
(table 7), cleavage fracture on the basal plane seems unlikely. Also shown are
bounds relevant for indentation experiments at room temperature (Tymiak &
Gerberich 2007). The critical stress for pyramidal slip quoted from Tymiak &
Gerberich (2007) is subject to large uncertainty, since it was obtained by
extrapolation, and is treated here as a lower bound. The bounds found via
consideration of shock physics experiments and nonlinear elasticity are similar to
those from indentation (Tymiak & Gerberich 2007), apart from the much higher
upper bound listed for basal slip by the latter authors. Confining pressures in
indentation were reported of the order of 100 GPa (Tymiak & Gerberich 2007),
much higher than those of the order of 10 GPa considered here. Also, plastic strain
rates lie in the quasi-static regime in indentation, in contrast to rates in excess of
105 sK1 attained in shock-loading experiments (Munson & Lawrence 1979). The
similarity in bounds for slip and twinning thus points to rate and pressure
independence of initial yield at low to room temperatures. The pressure
independence of yield at confining pressures of the order of 1.5 GPa has been
confirmed experimentally for prism slip (Castaing et al. 1981). However, in shock
experiments, plastic strain rates are not constant, but ramp up from small values
at the onset of yielding at the front of the plastic wave to values estimated in excess
of 105 sK1 in the wake of the plastic wavefront (Munson & Lawrence 1979), with
Proc. R. Soc. A (2009)
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the maximum rate depending on the material and the severity of the impact
loading. While significant rate dependence of twinning has not been observed
(Scott&Orr 1983),minor rate sensitivities of pyramidal slipwithmw10 (Tressler&
Barber 1974) and prism slipwith mw16 (Castaing et al. 1981) have been observed
at low loading rates and very high temperatures. Because strain rates are very
large in impact experiments, viscous drag acting on dislocations behind shock
fronts (Gilman 1979) could probably elevate the flow stress for slip or twinning
such that fracture stresses on prism, pyramidal and rhombohedral planes would
be exceeded soon after initial yield, in the wake of the plastic wavefront.
(c ) Yield

The flow stresses f�gg entering (3.45)–(3.47) are expressed as sums of contribu-
tions of various mechanisms, e.g. following Kocks et al. (1975) or Clayton (2005)

�gi Z giS CgiL; �gij Z gijS CgijL; �g j Z g j
S Cg j

L: ð4:4Þ
Here, giSZ �gitZ0 reflects the initial yield stress for slip in the parent crystal on
system i, and giL reflects long-range barriers associated with defects that
accumulate during the deformation history. Analogous definitions apply for
resistance to slip within the twins and resistance to twinning in the second and
third of (4.4), respectively. Both terms in each sum in (4.4) depend on
temperature; the first, i.e. initial yield, is addressed here for sapphire, and the
second term is addressed in §4d. The initial yield stress depends on short-range
interactions such as strong Peierls barriers in crystals with low initial defect
densities and non-metallic bonds (Friedel 1964; Farber et al. 1993), and at high
rates also accounts for viscous, phonon and electron drag (Kocks et al. 1975;
Gilman 1979). Short-range barriers exhibit a strong temperature dependence
for both slip and twinning in sapphire (Lagerlof et al. 1994), reflected
appropriately by

giS Z gi0 expðKliq=qM Þ; g j
S Z g j

0expðKljq=qM Þ; ð4:5Þ
where gi0 is an athermal yield stress; qM is the melting temperature; and li is a
dimensionless parameter. In the second of (4.5), analogous definitions apply for
quantities associated with twin system j. Appropriate forms for the temperature
dependence of the second of (4.4), i.e. for slip systems within twinned regions,
have not been verified experimentally, but it may be reasonable to assume that
the short-range barriers for a slip system in the parent are transferred to its
rotated counterpart in a twin. Relation (4.5) does not conform to the usual
Arrhenius form for thermally activated kinetics (Kocks et al. 1975), but can be
rationalized in terms of activation volumes for cross-slip in sapphire (Lagerlof
et al. 1994). Values of g0 and l are listed in table 9 (in the electronic
supplementary material) for basal, prism and pyramidal slip and basal and
rhombohedral twinning. Comparisons with experimental data are given in
figure 5. Room temperature experimental values are taken from the first column
of results in table 8, except for pyramidal slip whose strength is taken from the
rightmost column in table 8 (Tymiak & Gerberich 2007). Pressure and rate
dependence are neglected following the discussion in §4b, but could be included
in a more refined analysis if supporting data become available for all slip and
twin system families. High-temperature data for basal and prism slip are
Proc. R. Soc. A (2009)
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obtained from Lagerlof et al. (1994). Data for pyramidal slip are obtained from
Tressler & Barber (1974). For basal twinning, data are obtained from Castaing
et al. (2004), and for rhombohedral twinning, from Scott & Orr (1983). For
twinning, the fits are most appropriate for 300%q%1600 K, while for slip the
model validly spans the range 300%q%2100 K. Trend lines extended down to
0 K are extrapolations. Predictions at 300 K follow

gpyramidal slip
S Ogbasal twinS zgbasal slipS Ogprism slip

S Ogrhombohedral twin
S ; ð4:6Þ

in general agreement with the trends of table 8. A kink pair-based model
(Rodriguez et al. 2008) may offer more accuracy for basal and prism slip at high
temperatures, albeit with more parameters.
(d ) Hardening and lattice defects

Potentially, the long-range barriers in each of (4.4) could depend in a complex
manner upon activity of the slip or twin system under consideration (i.e. self-
hardening) as well as the activity of all other slip and twin systems (Christian &
Mahajan 1995; Wu et al. 2007). Considered here are phenomena for which
supporting data are available: hardening of slip and hardening of twinning by
dislocation accumulation. To address the former, let

_giL Z 1KgiL=g
i
M

� �
hi
Xn
kZ1

j _gkj; giLjtZ0 Z 0; ð4:7Þ

where giM is a saturation stress (Wu et al. 2007) and hi is a hardening modulus.
These vary with the thermodynamic state of the crystal as

giM Z gimexpðKuiq=qM Þ; hi Zm hi
0Khi

1q=qM
� �

; ð4:8Þ
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where gim, u
i, hi

0 and hi
1 are constants that may differ among families of slip

systems. Relations (4.7) and (4.8) provide a reasonable fit to the basal slip data
of Pletka et al. (1977), with model parameters listed in table 9. Dislocation
accumulation takes place in conjunction with slip system hardening via

giL Zaimb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rTK rT0

p
; ai Zai

0Kai
1q=qM ; ð4:9Þ

where rT0 is the initial dislocation density and ai
0 and ai

1 are dimensionless
constants that may vary among slip systems. Following Pletka et al. (1977), (4.9)
extends the theory of Taylor (1934) of slip impedance from dislocation
interactions on parallel planes. Parameters are listed in table 9 following calibra-
tion to data from experiments at a rate of _gPz _gSZ1:33!10K4 sK1 (Pletka
et al. 1977), with gP the cumulative plastic shear. Relation (4.9) can be inverted
and used with (4.7) to provide an evolution equation for the accumulated
dislocation line density (Clayton 2005). Note that hi and giL are scaled
consistently by the rhombohedral shear modulus m that depends on temperature
(table 2). Experiments also provide quantitative evidence for the hardening of
rhombohedral twin propagation by accumulation of forest dislocations (Castaing
et al. 2002). Hardening of twinning by slip is captured, in general, by

_g j
L Z

Xn
iZ1

hj
i _g

i
L; g j

L tZ0 Z 0;j ð4:10Þ

where hj
i is an interaction matrix relating the hardening rate of slip system i to

that of twin fraction j. Parameter hj
iZhrd

j
i found from a fit to data of Castaing

et al. (2002) is given in table 9, applicable only for the hardening of rhombohedral
twinning by basal slip. Hardening of prism and pyramidal slip systems and basal
twin systems by dislocation accumulation has not yet been addressed. Twin–twin
interactions, hardening of slip systems within twins and hardening of slip by
twinning also remain to be quantified.

Stored elastic energies of dislocation lines (energy per unit length) and twin
boundaries (energy per unit area) are written as

WD Z ðmb2=ð4pKÞÞlnðR=RC ÞCŴzk1mb
2=2;

WTzWSF=2Z k2mb=2

)
ð4:11Þ

where in the first of (4.11), K accounts for the edge or screw character of the
dislocation line as well as elastic anisotropy (Eshelby 1949); R is the radial distance
from the dislocation core; RC is the cut-off radius for the dislocation core; and Ŵ is
a correction that accounts for the core energy, line curvature, interaction energies
from other defects and boundaries, and stacking faults associated with partial slip
dislocations. As an order-of-magnitude approximation (Hull & Bacon 1984; Heuer
et al. 1998), here k1Z2.0/K is assumed. Elastic anisotropy is neglected in this
context, and K follows from (4.1). Recall from §3d and table 6 that WSF

w1K10 J mK2 is a typical stacking fault energy associated with twin systems, from
which k2 entering (3.42) can be quantified as WSF/mb.

Consider now the net energy accumulated in the crystal during single slip at
constant temperature. From (4.11), and again assuming that rate effects on flow
stress are negligible, the cumulative value b of the dissipation fraction b0 in (3.44)
Proc. R. Soc. A (2009)
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can be approximated as

bZ

ð
�gidgiKmb2rT=K

� � ð
�gidgi

� �K1

ðsingle slipÞ: ð4:12Þ

During basal slip, dislocations are predicted, by inversion of (4.9), to accumulate as
shown in figure 6a. The corresponding dissipation fraction b is shown in figure 6b,
computed via integration of (4.7) and use of (4.9), (4.12) and material parameters
obtained from fits to high-temperature data (Pletka et al. 1977). Since during the
experiments (Pletka et al. 1977) dislocations of families with various strengths and
orientations were generated, in the computations, the representative value used for
b is the rhombohedral lattice parameter and used for m is the rhombohedral shear
modulus. Shown in figure 6b are results for edge dislocations; screw dislocations
would result in a decrease in energy storage, 1Kb, by a factor ofKZ0.76. Note from
figure 6a that the dislocation densities increase with plastic shear from the initial
value rT0Z108 mK2 (Pletka et al. 1977) to saturation values in the range 1012 mK2

rT!1014 mK2 that increase with decreasing temperature. Predicted values of b
approach unity as the temperature decreases, primarily a result of the high basal slip
resistance of sapphire at low temperatures, which leads to large dissipation from
plastic work. At all temperatures, the stored energy appears small relative to the
plastic work, since bO0.975.
(e ) Residual volume changes

The residual volume change �J was introduced following relations (3.2) and
(3.11). An estimate of this quantity from nonlinear elasticity theory is (Seeger &
Haasen 1958; Teodosiu 1982)

�J K1ZDV=V0z
1

B

vB

vp
K1

� �
EVC

1

G

vG

vp
K

G

B

� �
ES; ð4:13Þ

where G and B are shear and bulk moduli; p is the Cauchy pressure; and EV and
ES are dilatational and deviatoric strain energies per unit volume, respectively.
The volume change in (4.13) is measured between reference and intermediate
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configurations: DVZ �VKV0 with �V the volume in �B . Partitioning the elastic
energies per unit dislocation line length in the first of (4.11) into dilatational and
deviatoric components and neglecting core and interaction energies, (4.13) can be
written as (Seeger & Haasen 1958; Teodosiu 1982)

DV

V0

z

1

3

1KnK2n2

ð1KnÞB
vB

vp
K1

 !
C

2K2nC2n2

ð1KnÞG
vG

vp
K

G

B

 !" #
WDrT ðedgeÞ;

1

G

vG

vp
K

G

B

 !
WDrT ðscrewÞ:

8>>>>><
>>>>>: ð4:14Þ

Expressions (4.13) and (4.14) neglect anisotropy. An exact solution for the
residual elastic volume change, and possibly shape change, in a highly
anisotropic (e.g. rhombohedral) lattice seems to require integration over local
elastic displacement gradients induced by defects within the body (Toupin &
Rivlin 1960). Closed-form expressions for residual elastic volume change exist for
anisotropic single crystals of cubic symmetry (Toupin & Rivlin 1960), and have
been applied in analysis of volume changes from stored energy of cold work in
metal polycrystals (Wright 1982). Here, following previous work (Seeger &
Haasen 1958), isotropic approximation (4.14) is investigated as an order-
of-magnitude estimate, consistent with the isotropic approximation of dislocation
energies in the first of (4.11). Table 10 (in the electronic supplementary material)
lists values of the normalized volume change DV/(Lb2), where L is the total
length of dislocation lines of pure screw or pure edge character, and b is the
Burgers vector. For alumina, effective isotropic constants (Holm et al. 1999) and
their pressure derivatives (Sarkar et al. 1996) are obtained from the literature
and are valid at room temperature. Values of the normalized volume change in
Al2O3 from dislocation lines are positive in agreement with other solids (Seeger &
Haasen 1958; Wright 1982), and fall in between those for metallic crystal Cu
(face-centred cubic) and ionic crystal NaCl (cubic rock salt structure), with
properties of the latter two solids given by Seeger & Haasen (1958) also listed in
table 10. Experimental data for inelastic volume changes and dislocation
densities are available for Cu polycrystals (Clarebrough et al. 1957); the range of
values for the volume change in the rightmost column of table 10 corresponds to
applied compressive strains ranging from 0.3–0.7. Thus, the theory under-
estimates the volume change by a factor of approximately 2–5 for Cu
polycrystals. The linear relationship between the dislocation density and volume
change in (4.14) is evident. Wright (1982) noted that the ratio of dilatational to
deviatoric stored energy may change during the course of large deformation; this
could lead to nonlinearity not captured by either of the estimates in (4.14) alone.
Volume changes predicted by (4.14) remain small as saturation levels of
dislocation density implied by figure 6a are approached. For example, a density
of edge dislocations rTZ1014 mK2 would produce a volume change DV/V0z4!
10K5, corresponding to the volume increase that would result from thermal
expansion in alumina upon a temperature rise of approximately 2.5 K. However,
according to the theory, volume increases of the order of 1 per cent would be
achieved upon generation of immense dislocation densities, e.g. rTw1016 mK2,
corresponding to a dislocation spacing of the order of 10 nm. Conceivably, very
large dislocation densities may be required to enable extremely large plastic
Proc. R. Soc. A (2009)
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strain rates in shock physics experiments if the upper bound of the dislocation
velocity is limited to that of transverse elastic waves in the crystal (Kocks et al.
1975). Generation of defect densities of this magnitude could affect the measured
pressure–volume response; for example, the pressure required to offset a 1 per
cent volume increase would be of the order of 0.01BZ2.5 GPa. One should keep
in mind the limits of the continuum elasticity approximations used in (4.11) and
(4.14). Atomistic simulations (Clayton & Chung 2006) may offer the possibility
of more accurate predictions of effects of large defect densities on volume
changes, effective moduli and stored energies.
5. Conclusions

The theory developed here focuses on anisotropic mechanisms of elasticity,
plastic slip and deformation twinning. Large deformation theory is required to
address finite shears arising from slip and twinning, lattice reorientations arising
from twinning and nonlinear elastic effects. A constitutive framework
incorporating internal state variables provides thermodynamic relationships
among state variables and driving forces for inelastic deformations. The
application represents the first, to the author’s knowledge, fully nonlinear
anisotropic, crystal plasticity-based model for the ensemble of observed
thermoelastic and inelastic behaviours of sapphire. Inelastic behaviours include
basal, prism and pyramidal slip and basal and rhombohedral twinning. Estimates
of room temperature resistances to slip or twin initiation follow from nonlinear
thermoelastic analysis and results of prior shock physics experiments (Barker &
Hollenbach 1970; Graham & Brooks 1971; Chen & Howitt 1998; Hare et al. 2002;
Reinhart et al. 2006). These estimates are combined with other existing data to
provide yield criteria over a range of temperatures. Hardening from dislocation
accumulation during basal slip is quantified, and residual elastic energies
associated with defects are estimated. The cumulative ratio of stored energy from
dislocations to dissipated energy in basal slip is predicted at less than 3 per cent
for plastic shears of less than 0.25. Residual volume expansion from nucleation of
dislocation lines is estimated using nonlinear elasticity theory (Seeger & Haasen
1958; Teodosiu 1982). Such expansion is predicted to be nearly negligible in
sapphire for dislocation line densities observed in high-temperature experiments
(Pletka et al. 1977).
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Table 1 Room temperature elastic moduli  
Parameter Value [GPa] (1) Parameter Value [GPa] (1) Parameter Value [GPa] (1) 

C11 498 C111 -3780 C134 131 
C12 163 C112 -1090 C144 -302 
C13 117 C113 -963 C155 -1160 
C14 23 C114 -55 C222 -4520 
C33 502 C123 -289 C333 -3340 
C44 147 C124 39 C344 -1090 
  C133 -922 C444 19 
(1)Winey et al. [2001] 
 
Table 2 Bulk physical properties (atmospheric pressure) 
Parameter Value Remarks 
 3980 kg/m3 room temperature mass density (1) 

c 780+0.3(-300) J/kgK specific heat per unit mass (2) 

11  5.010-6 /K thermal expansion coefficient (1) 

33  5.710-6 /K thermal expansion coefficient (1) 

M 2325 K melting temperature (2) 
 156-70M GPa rhombohedral shear modulus (3) 
(1)Burghartz & Schultz [1994] (2)Castanet [1984]  (3)Zouboulis & Grimsditch [1991] 
   
Table 3 Slip systems 
Type Direction Plane Remarks Type Direction Plane Remarks 
basal [1120]  (0001)  bidirectional (1) pyramidal [1101]  (1011)  unidirectional (2) 

 [1210]  (0001)    [0111]  (1011)   

 [2110]  (0001)    [1011]  (0 111)   

prism [1 100]  (1120)  bidirectional (1)  [1101]  (0 111)   

 [1010]  (1210)    [0111]  (1101)   

 [01 10]  (2110)    [1011]  (1101)   
(1)Kronberg [1957]; Snow & Heuer [1973]; Heuer et al. [1998]  (2)Tressler & Barber [1974] 
 
Table 4 Twin systems 
Type Direction Plane Shear Remarks 
basal [1010]  (0001)  0.635 type II (1) 

 [1 100]  (0001)    

 [01 10]  (0001)    

rhombohedral [1011]  (1012)  0.202 type I (2) 

 [0111]  (0112)    

 [1101]  (1102)    
(1)Veit [1921]; Kronberg [1957] (2)Heuer [1966] 
 
Table 5 Slip dislocations and Peierls stresses 
Plane Burgers vector (1) b [nm] Peierls, edge [GPa] Peierls, screw [GPa] 

basal 1/ 3[1120]  0.475 9.0 16.9 

prism 1/ 3[1100]  0.274 0.3 1.3 

pyramidal 1/ 3[1101]  0.512 0.7 2.4 
(1)Kronberg [1957]; Tressler & Barber [1974]; Lagerlof et al. [1994]  



 

 

 

ii

Table 6 Twinning partials, energies, and theoretical nucleation stresses 
Plane Burgers vector (1) b [nm] Stacking fault 

energy [J/m2] (2) 
Nucleation 
stress [GPa] 

basal 1/ 3[1010]  0.274 9.0 7.3 

rhombohedral 1/ 21.9[1 101]  0.071 0.7 3.6 
(1)Kronberg [1957]; Geipel et al. [1994]; Heuer et al. [1998] (2)Lagerlof et al. [1984]; Kenway [1993] 
 

Table 7 Planar properties 
Plane Full Burgers 

vector [nm] (1) 
Spacing [nm] (2) Theoretical shear 

strength [GPa] 
Cohesive energy 
[J/m2] (3) 

basal {0001}  0.475 0.216 51.5 >40 

prism {1010}  0.475 0.274 40.5 7.3 

pyramidal {10 11}  0.512 0.392 30.6 -- 

rhombohedral {1012}  0.512 0.348 34.4 6.0 
(1)Snow & Heuer [1973] (2)Geipel et al. [1994]; Lagerlof et al. [1994]  (3)Wiederhorn [1969] 
 
Table 8 Estimated bounds on shear strengths for slip, twinning, and fracture 
Mechanism c [GPa] present work c [GPa] indentation (1) 

basal slip 2.7 < c < 5.0 4.8 < c < 23.7 
prism slip 2.3 < c < 5.7 2.5 < c < 4.1 
pyramidal slip -- c  > 7.0 
basal twin c > 4.0 4.8 < c < 7.3 
rhombohedral twin 1.0 < c < 8.1 1.0 < c < 7.3 
prism fracture c > 5.9 -- 

pyramidal fracture c > 6.7 -- 

rhombohedral fracture c > 7.9 -- 
(1)Tymiak & Gerberich [2007] 
 
Table 9 Slip and twinning parameters  
Parameter Value Remarks Parameter Value Remarks 
g0 [GPa] 12.7 basal slip gm [GPa] 53.6 basal slip 
 6.6 prism slip  10.7 basal slip 
 10.0 pyramidal slip h0  8.010-3 basal slip  
 11.5 basal twin h1 9.310-3 basal slip 
 3.4 rhombohedral twin 0 0.65 basal slip  
 8.4 basal slip 1 0.70 basal slip  
 5.6 prism slip hr 0.42 rhombohedral twin 
 3.7 pyramidal slip    
 7.7 basal twin    
 10.2 rhombohedral twin    
 
Table 10 Effective isotropic elastic properties and volume changes associated with dislocations  
Crystal G [GPa]  B [GPa]    G/p B/p V/(Lb2)  

edge 
V/(Lb2) 
screw

V/(Lb2) 

experiment (3)

Al2O3 
(1) 157 250 0.24 1.7 4.2 1.7 1.0 -- 

NaCl  (2) 15 23 0.24 2.0 5.8 2.5 1.4 -- 
Cu (2) 47 152 0.36 0.8 4.4 1.0 0.5 1.9-2.6 (edge) 
(1)Sarkar et al. [1996]; Holm et al. [1999] (2)Seeger & Haasen [1958]   (3)Clarebrough et al. [1957] 
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