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FINITE DEFORMATION BY ELASTICITY, SLIP, AND TWINNING: 
ATOMISTIC CONSIDERATIONS, CONTINUUM MODELING, AND 

APPLICATION TO CERAMIC CRYSTALS 
 

John D. Clayton 
 

Impact Physics, U.S. Army Research Laboratory 
Aberdeen Proving Ground, MD, USA 21005-5066 

jclayton@arl.army.mil  
 
ABSTRACT: A continuum theory is developed for modeling elasticity, plasticity, and 
twinning in single crystals of arbitrary anisotropy, subjected to arbitrarily large 
deformations. Concepts from discrete lattice models are considered for estimating resistances 
to inelastic shear.  Nonlinear thermoelastic calculations are used in conjunction with 
experimental shock physics observations to provide estimates for resistances to slip, 
twinning, and shear fracture on preferred planes in alumina single crystals (i.e., 
rhomobohedral corundum or sapphire). 
 
INTRODUCTION:  Large deformation theory is needed for an accurate description of 
finite shear strains associated with slip and deformation twinning and improper lattice 
rotations across twin boundaries.  Nonlinear anisotropic elasticity is also necessary for 
accurately describing the response of ceramic single crystals to high pressure loading, for 
example plate impact or explosively driven shock (Graham & Brooks [1971]). 
 
PROCEDURES, RESULTS, AND DISCUSSION:  The deformation gradient F is 
decomposed multiplicatively as 
                                                  . . . . . .

a E a I P E a
A A AF F F F F F  

    ,                                 (1) 

where EF  accounts for thermoelasticity, IF  for twinning shears, and PF  for dislocation 
glide.  Skew components of the covariant derivative of PF  can be used to construct a density 
of geometrically necessary dislocations associated with slip.  In fact, Nye’s [1953] theory 
followed from observations of slip traces in transparent corundum. A density of partial 
dislocations associated with incompatibility of twins follows from the gradient of IF .  A net 
Burgers vector b  is, from integration over circuit C encircling reference area A with normal 
N: 
               .

A A
A AC A

b F dX N dA      ,      . . , . , .

slip gradients twin partials

( )A ABC I P I P
B C C BF F F F    

    
.      (2) 

Contributions of slip gradients to the Burgers vector have been described elsewhere (Nye 
[1953], Clayton et al. [2005]).  The final term on the right in the second of (2) results from 
gradients in twin fractions, e.g. interface dislocations at tapered twin boundaries.  
Disclination models of twins (Clayton et al. [2005]) could complement such a description.  
The Helmholtz free energy per unit relaxed volume of crystal is prescribed as 
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.    (3) 

In (3), EE  is the Green elastic strain,   are elastic coefficients, β  are thermal stress 
coefficients, and c  is the specific heat.  Kinetic relations for slip and twinning are written  
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where i  and i
j  are slip rates for slip system i in the parent crystal and for slip system i in 

twin fraction j, jf  is the rate of evolving volume fraction of twin j with characteristic shear 
js ,   is the resolved Eshelby or Kirchhoff stress, g  are resistances that evolve with the 

thermodynamic state, and remaining terms are constants.  The crystal structure and relevant 
systems for slip and twinning in sapphire are shown in Fig. 1.  A full close-packed layer of O 
atoms lies in between each partially filled (0001) plane of Al atoms in the hexagonal cell. 
 

        
Fig. 1 Unit cells of sapphire, after Kronberg [1957], and slip and twin systems. 

 
Because of sapphire’s brittle nature, values of g must be inferred from experiments where 
confining pressures are high, such as shock loading (Graham & Brooks [1971]), indentation 
(Tymiak & Gerberich [2007]), or must be extrapolated from high temperature data.  Previous 
research indicates that the Peierls stress concept may provide insight into to the low 
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temperature slip resistance (Farber et al. [1993]); the ratio of stacking fault energy to Burgers 
vector may approximate the twin nucleation stress; and the theoretical shear fracture strength 
of the crystal may be approached in shock physics experiments (Graham & Brooks [1971]).  
Values of these theoretical quantities are found as 

        2 / exp 2 /Peierls
C K d Kb    ,   /twin

C SFW b  ,        / 2fracture
C b d   ,    (5) 

where   is the rhombohedral shear modulus, K accounts for dislocation line geometry and 
anisotropy, b is the magnitude of the local Burgers vector, d is the interplanar spacing, and 

SFW  is the appropriate stacking fault energy.  Anisotropic nonlinear elasticity is used here to 

compute more accurate estimates for C , and hence g  in the limit of rate independent 

inelasticity.  Resolved shear stresses for basal and prismatic slip, basal and rhombohedral 
twinning, and fracture on pyramidal and rhombohedral planes are calculated during uniaxial 
straining of single crystals of various orientations.  Stress values computed at the Hugoniot 
elastic limit (Graham & Brooks [1971]) provide the bounds in the first data column of Table 
1.  These bounds compare favorably with those from indentation (Tymiak & Gerberich 
[2007]), but differ substantially from order-of-magnitude estimates computed via (5). 
 

Table 1: Bounds on low temperature shear strengths for slip, twinning, and fracture. 

Mechanism c [GPa] present work c [GPa]  theory (1)  c [GPa] indentation (2) 

basal slip 2.7 < c < 5.0 9.0 4.8 < c < 23.7 
prism slip 2.3 < c < 5.7 0.3 2.5 < c < 4.1 
pyramidal slip -- 0.7 7.0 
basal twin c > 4.0 7.3 4.8 < c < 7.3 
rhombohedral twin 1.0 < c < 8.1 3.6 1.0 < c < 7.3 
prism fracture c > 5.9 40.5 -- 

pyramidal fracture c > 6.7 30.6 -- 

rhombohedral fracture c > 7.9 34.4 -- 
   (1)Equation (5) (2)Tymiak & Gerberich [2007] 
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