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Certain types of structures and materials, such as engineered multi-scale systems and comminuted zones
in failed ceramics, may be modeled using continuum theories incorporating additional kinematic degrees
of freedom beyond the scope of classical continuum theories. If such material systems are to be subjected
to high strain rate loads, such as those resulting from ballistic impact or blast, it will be necessary to
develop models capable of describing transient stress wave propagation through these media. Such a
model is formulated, solved, and applied to the impact between two bodies and to a two-layer bar or strip
subjected to an instantaneously applied stress. Results from these examples suggest that the model
parameters, and therefore constitutive properties and geometries, may be tuned to reduce and control
the transmission of stress through these bodies.

Published by Elsevier Ltd.
1. Introduction

There is significant research interest in developing new materi-
als and structures with improved survivability when subjected to
high strain rate loadings associated with ballistic impact and/or
blast. These new material systems may be created with sub-struc-
tures and components of different length scales, the combined
effect of which is to better dissipate the energy of the blast or
impact. Such multi-scale systems require more advanced models
of the kind discussed in this work, which are often referred to as
micropolar or Cosserat models, e.g. Mindlin (1964) and Eringen
(1999). Models of this type possess additional kinematic degrees
of freedom, e.g., a point in such a continuum may be capable of
both translation and rotation. With additional degrees of freedom
come additional constitutive properties and stress terms.

Improving our understanding of failure mechanisms and mak-
ing use of this knowledge in developing improved predictive mod-
els is another aspect of ongoing research. For example, regions of
armor-grade ceramics are often pulverized as a result of impact.
The modeling of these post-failure comminution zones may be
improved by viewing such zones as regions of granular media,
another field of study where micropolar models allowing rotations
of individual particles are often employed. Just as a cohesive zone
has been used to model damage in an elastic strip by Gazonas and
Allen (2003), so also a micropolar layer could be used to describe
the failed region in a ceramic subjected to secondary impacts.

Various experiments have been developed to characterize
material properties by subjecting test specimens to impact loads
and measuring resulting deformations and propagating stress
Ltd.

: +1 410 306 0806.
Randow).
waves, such as the split Hopkinson pressure bar and the plate
impact test. The plate impact test, for example, effects a state of
uniaxial strain well suited to a one-dimensional analysis. The
analytical solutions to simplified, one-dimensional models may
give insight into the behavior of materials subjected to such tests,
suggest desirable constitutive properties or design parameters, and
allow for the determination of constitutive properties from exper-
imental results.

Although this work uses a one-dimensional, linear, anisotropic
micropolar model to analyze the effect of instantaneously applied
loads or impacts leading to transient wave propagation, there are
many other works available in the literature that consider related
problems. The governing equations developed in Section 2 are sim-
ilar to those encountered in the study of helical springs by Jiang
et al. (1991) and twisted ropes or cables by Samras et al. (1974),
Ostoja-Starzewski (2002), and Shahsavari and Ostoja-Starzewski
(2005), namely a system of two coupled partial differential equa-
tions (PDEs). Raoof et al. (1994) modeled an impact by applying
a step load to a spiral strand. In much of the literature, harmonic
solutions are considered in the study of wave propagation in
micropolar media. For example, harmonic solutions were obtained
for wave propagation along a composite wire rope using coupled
PDEs by Martin and Berger (2002) similar to those used in the pres-
ent work. Krishnaswamy and Batra (1998) examined wave propa-
gation in a linear, infinite Cosserat rod with two directors and
examined the effects of dispersion while considering harmonic
motion. Finally, although the majority of the literature considers
the linear problem, there has been some recent work studying
wave propagation in non-linear systems by Porubov and Pastrone
(2004) and Pastrone (2005).

A more general consequence of the coupled PDEs used in the
present work is the existence of multiple waves. Applying a stress

mailto:charles.randow@arl.army.mil
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


1 For the one-dimensional case, there is no distinction in the governing equations
for different orientations of rotational motion, since jlk ¼ 0 for l–k and jll–0 for only a
single value of l. There will always be two governing differential equations of the form
of Eq. (2.4) based on two constitutive relations of the form of Eq. (2.3), although the
subscripts may differ.
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pulse at one end of a one-dimensional micropolar bar will lead to
two axial stress waves with different wave speeds traveling down
the bar. Some other examples from physics of this phenomenon in-
clude birefringence (the decomposition of a single ray of light into
two waves) and wave propagation in poroelastic columns, see
Schanz and Cheng (2000, 2001). This latter example results in a
system of two coupled PDEs for the one-dimensional case in terms
of displacement and pore pressure based on Biot’s theory of poro-
elasticity. Two compressional waves were then observed in the
resulting one-dimensional model of a poroelastic column. Plona
(1980) also makes reference to Biot’s theory when he discusses
his experimental observations of a second compressional wave in
a porous medium. It is hoped that the work presented in this paper
may benefit applications with similarly coupled systems of govern-
ing differential equations.

In Section 2 of this paper, the mixed initial-boundary value
problem for two different micropolar systems is formulated. The
first system is a two-layer bar rigidly fixed at one end with a stress
applied at the other end. The second system consists of two differ-
ent micropolar bodies, a flyer and a target, impacting one another.
An equivalent discrete model of a rigidly fixed bar is included to
provide additional physical insight by relating the model parame-
ters from the continuum model to the discrete model. The solution
methods used for these problems are described in Section 3 and in-
clude both a Laplace transform approach and a D’Alembert ap-
proach to solving the boundary value problems. Section 4
contains five different examples including: an analysis of a discrete
system, a comparison between the discrete and the continuous
systems, a number of impact examples, and a study on reflection
and transmission coefficients due to impedance mismatch be-
tween different materials. Finally, Section 5 summarizes the results
of this work and suggests some ways these results may be used
and expanded upon in future studies.

2. Formulation of the governing equations

The general form of the mixed boundary-initial value problem
describing the behavior of a linear, one-dimensional, anisotropic,
micropolar body is presented in Section 2.1. Two particular config-
urations, a two-layer bar and an impact problem, are formulated in
Sections 2.2 and 2.3. Finally, details of an equivalent discrete model
are presented in Section 2.4. Although the main emphasis is the
analysis of continuous problems, the discrete problem is included
to provide additional physical insight into the nature of micropolar
media.

2.1. Micropolar continuum model

The balance of linear momentum and the balance of angular
momentum equations for a micropolar body are given by Eringen
(1999) as follows:

fTgkl;k ¼ q
o2

ot2 fugl; fMgkl;k þ �lkmfTgkm ¼ qjlk
o2

ot2 fugk; ð2:1Þ

where the second-order tensors T and M and the vectors u and u are
defined over x 2V, t 2 Tþ. The micropolar body occupies the region
V in Euclidean space; time Tþ is defined over the range ½0;1Þ. For a
micropolar body, there are two stress tensors: the (force) stress ten-
sorTand the couple stress tensorM. In addition, there are two vectors
describing the deformations of a micropolar body: the displacement
vector u and the microdisplacement vector u. The mass density q and
the microinertia jlk also appear in Eq. (2.1). Standard indicial notation
is used, i.e., fugl denotes the lth component of the vector u, the
notation;k denotes the partial derivative with respect to position,
and �lkm is the permutation symbol. Note that there are no body force
or body couple terms included in Eq. (2.1).
For the one-dimensional model under consideration, the posi-
tion along the body’s length is parameterized by x. The strain mea-
sures for the normal strain, e, and the micropolar strain, c, are

e ¼ ou
ox
; c ¼ ou

ox
: ð2:2Þ

As is often done in micropolar models, u is considered to be a rota-
tion and u is an axial deformation1 as shown in Fig. 1. The constitu-
tive relations for the one-dimensional, elastic, anisotropic,
micropolar system considered in this work are given by

fTg11 ¼ T ¼ eAeþ eCc; fMg11 ¼ M ¼ eCeþ eBc: ð2:3Þ

The constitutive parameters eA, eB, and eC describe the elastic behav-
ior of the model and control the coupling, or interaction, between
the two kinematic modes: extension and rotation, see the terms
C1–C4 in Shahsavari and Ostoja-Starzewski (2005). (The tilde over
the model parameters indicates that these are dimensional quanti-
ties; non-dimensional parameters will be introduced shortly.)
Applying Eqs. (2.2) and (2.3) to Eq. (2.1) leads to the following sys-
tem of PDEs:

eA o2u
ox2 þ eC o2u

ox2 ¼ q
o2u
ot2 ;

eC o2u
ox2 þ eB o2u

ox2 ¼ qj
o2u
ot2 ; ð2:4Þ

where for a one-dimensional system the microinertia term jlk from
Eq. (2.1) becomes the scalar j. Eq. (2.4) are second-order, linear PDEs
that require two initial conditions and two boundary conditions for
each kinematic quantity, u and u. Eq. (2.4) may be written in the
following non-dimensional form:

Ar2uþ Cr2u ¼ €u; Cr2uþ Br2u ¼ D €u; ð2:5Þ

where

A ¼
eAs2

qd2 ; B ¼
eBs2

qd4 ; C ¼
eCs2

qd3 ; D ¼ j

d2 : ð2:6Þ

The terms A, B, C, and D are non-dimensional; s is unit time and d is
unit length. In addition, the derivatives indicated by r and the dots
are now derivatives with respect to position normalized by d and
time normalized by s, respectively; x and t will now be taken as
non-dimensional quantities normalized by d and s.

One form of the strain energy density that yields the desired
system of governing equations following Hamilton’s principle is gi-
ven by

W ¼ qd2

s2

1
2
½AðruÞ2 þ 2Cruruþ BðruÞ2�; ð2:7Þ

such that the (force) stress and the couple stress are equivalent to
Eq. (2.3) and are given by

T ¼ oW
oe
¼ qd2

s2 ðAruþ CruÞ;

M ¼ oW
oc
¼ qd3

s2 ðCruþ BruÞ: ð2:8Þ

To ensure stability of the thermodynamic state of the system, it is
necessary for W P 0 for all possible applied normalized strains
ru and ru, see Eringen (1999). The following inequalities are con-
sequences of this requirement:

A > 0; B > 0; AB� C2 > 0: ð2:9Þ

The boundary conditions to be applied to Eq. (2.5) may include both



Fig. 1. Owing kinematic quantities u and u by tracking a point from its reference
configuration to a deformed configuration.
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essential and natural conditions. For example, if û and û represent
the normalized deformation and rotation at a boundary and if bT andbM represent the normalized (force) stress and couple stress at a
boundary, then the essential boundary conditions consist of

ujx¼0;1 ¼ û; ujx¼0;1 ¼ û; t 2 ½0;1Þ; ð2:10Þ

while the natural boundary conditions consist of

Arujx¼0;1þCrujx¼0;1¼ bT; Crujx¼0;1þBrujx¼0;1¼ bM; t2 ½0;1Þ;
ð2:11Þ

recalling Eq. (2.8). The non-dimensional stress terms bT and bM are
obtained by normalizing by qd2s�2 and qd3s�2, respectively. Initial
conditions specify the initial velocities in terms of both kinematic
quantities, _u and _u. In other words

_ujt¼0 ¼ v̂ ; _ujt¼0 ¼ x̂; x 2 ½0;1�; ð2:12Þ

where v̂ is the normalized initial axial velocity and x̂ is the normal-
ized initial rotational velocity. In addition, it is assumed that at time
t ¼ 0 the body is stress-free, recall Eq. (2.8), i.e.

Arujt¼0 þ Crujt¼0 ¼ 0; Crujt¼0 þ Brujt¼0 ¼ 0; x 2 ½0;1�:
ð2:13Þ

It is apparent that C controls the coupling between the translation
and rotation; it will be shown that A is related to the elastic modu-
lus for the classical, non-polar case.

2.2. Boundary and initial conditions for the two-layer problem

Consider the bar consisting of two different micropolar layers,
layer 1 and layer 2, rigidly fixed at x ¼ 1 as shown in Fig. 2. The
properties for layer 1 are given by A1, B1, C1, and D1; for layer 2,
these properties are given by A2, B2, C2, and D2. If the first body
is of length l, where 0 < l < 1, and the second body is of length
1� l, it follows from Eq. (2.5) that the governing equations for
the two bodies are

A1r2u1 þ C1r2u1 ¼ €u1; C1r2u1 þ B1r2u1 ¼ D1 €u1; ð2:14Þ
A2r2u2 þ C2r2u2 ¼ €u2; C2r2u2 þ B2r2u2 ¼ D2 €u2; ð2:15Þ

where u1 and u1 are defined over the range x 2 ½0; l� and u2 and u2

are defined over the range x 2 ½l;1�. Recalling Eqs. (2.12) and (2.13),
the initial conditions for a stationary body with zero stress state are
given by
Fig. 2. A body consisting of two different micropolar layers is subjected to a known
normalized (force) stress and couple stress at x ¼ 0 and is rigidly fixed at x ¼ 1.
_u1jt¼0 ¼ _u2jt¼0 ¼ 0; _u1jt¼0 ¼ _u2jt¼0 ¼ 0; ð2:16Þ

and

A1ru1jt¼0 þ C1ru1jt¼0 ¼ 0; C1ru1jt¼0 þ B1ru1jt¼0 ¼ 0; ð2:17Þ
A2ru2jt¼0 þ C2ru2jt¼0 ¼ 0; C2ru2jt¼0 þ B2ru2jt¼0 ¼ 0: ð2:18Þ

Instead of using Eqs. (2.17) and (2.18), but consistent with those
equations, we will assume that the bodies are initially undeformed,
i.e.

u1jt¼0 ¼ u2jt¼0 ¼ 0; u1jt¼0 ¼ u2jt¼0 ¼ 0: ð2:19Þ

The essential boundary conditions at x ¼ 1 are given by

u2jx¼1 ¼ 0; u2jx¼1 ¼ 0; ð2:20Þ

while the natural boundary conditions at x ¼ 0 are given by

A1ru1jx¼0 þ C1ru1jx¼0 ¼ bT; C1ru1jx¼0 þ B1ru1jx¼0 ¼ bM;

ð2:21Þ

recalling Eqs. (2.10) and (2.11). Finally, the matching boundary con-
ditions at the interface x ¼ l are given by

u1jx¼l ¼ u2jx¼l; ð2:22Þ
u1jx¼l ¼ u2jx¼l; ð2:23Þ
A1ru1jx¼l þ C1ru1jx¼l ¼ A2ru2jx¼l þ C2ru2jx¼l; ð2:24Þ
C1ru1jx¼l þ B1ru1jx¼l ¼ C2ru2jx¼l þ B2ru2jx¼l; ð2:25Þ

for t 2 ½0;1Þ. The complete mixed boundary-initial value problem
is given by Eqs. (2.14)–(2.16), (2.20)–(2.25).

2.3. Boundary and initial conditions for the impact problem

Consider now the impact between two micropolar bodies, as
shown in Fig. 3. This problem is similar to that presented in Section
2.2 in that there are two different bodies with two sets of material
properties given by the constants A1, B1, C1, and D1 for the initially
moving body (the flyer) and A2, B2, C2, and D2 for the initially sta-
tionary body (the target). The governing equations are given by
Eqs. (2.14) and (2.15).

The first body is traveling at an initial normalized velocity v̂
and, at t ¼ 0, it impacts the target. Therefore, the initial conditions
must specify both the initial velocities as in YuFeng and DeChao
(1998) and Goldsmith (1999):

_u1jt¼0 ¼ v̂1 ¼ v̂ ; _u1jt¼0 ¼ x̂1 ¼ 0; ð2:26Þ
_u2jt¼0 ¼ v̂2 ¼ 0; _u2jt¼0 ¼ x̂2 ¼ 0; ð2:27Þ

as well as the initial undeformed state, which is described by Eq.
(2.19). As shown in Fig. 3, the free ends of both bodies (x ¼ 0 and
x ¼ 1) are stress-free leading to the boundary conditions

A1ru1jx¼0 þ C1ru1jx¼0 ¼ 0; C1ru1jx¼0 þ B1ru1jx¼0 ¼ 0; ð2:28Þ
A2ru2jx¼1 þ C2ru2jx¼1 ¼ 0; C2ru2jx¼1 þ B2ru2jx¼1 ¼ 0: ð2:29Þ

The matching conditions at x ¼ l are identical to those given by Eqs.
(2.22)–(2.24) and (2.25). The mixed boundary-initial value problem
Fig. 3. Two micropolar bodies are shown before impact (t < 0) and at the moment
of impact (t ¼ 0). The first body of length l (the flyer) is traveling with a normalized
velocity v̂; the second body of length 1� l (the target) is initially at rest.
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is thus given by Eqs. (2.14), (2.15), (2.19), (and), (2.23)–(2.27) 2.28
(and 2.29).

2.4. The discrete model

Although the primary goal of the present work is to study con-
tinuous problems, a brief outline of an equivalent discrete system
may be helpful to provide some physical interpretation of the re-
sults. A discrete system consisting of a series of masses and con-
necting springs is shown in Fig. 4. This model is similar to that
introduced in the study of dynamic behavior of granular media
by Lisina et al. (2001) and Pavlov et al. (2006). Each mass is con-
nected to each neighbor with two springs: one spring with spring
constant k0 connects the centers of each mass and one spring with
spring constant k1 connects the corners of each mass. A given mass
i is allowed to translate horizontally (ui) and rotate in the plane of
the page about its center (ui). In future work, it may be interesting
to consider non-linear springs, e.g., non-monotone springs as in
Balk et al. (2001) or bi-stable springs as in Puglisi and Truskinovsky
(2000) or Slepyan et al. (2005).

For a system with n masses, the total energy of the system is
found by summing the energy associated with the deformation
of each spring:

U ¼
Xn�1

i¼1

1
2

k0ðuiþ1 � uiÞ2 þ
1
2

k1½uiþ1 � ui þ aðui �uiþ1Þ�
2
; ð2:30Þ

where only linear terms are retained from the development of the
equations based on Fig. 4. The 2n Lagrange’s equations are obtained
by taking derivatives of U with respect to the n discrete axial dis-
placements and the n discrete rotations corresponding to each of
the n masses.

In addition to obtaining a system of Lagrange’s equations, by
applying a Taylor series expansion of the displacement terms we
may also obtain the continuum version of the discrete model in
the following form:

½l2ðk0 þ k1Þ�
o2u
ox2 þ ð�al2k1Þ

o2u
ox2 ¼ m

o2u
ot2 ; ð2:31Þ

ð�al2k1Þ
o2u
ox2 þ ða

2l2k1Þ
o2u
ox2 ¼ I

o2u
ot2 ; ð2:32Þ

where m and I refer to the mass and the mass moment of inertia of
each mass in the system. Comparing Eqs. (2.31) and (2.32) with
(2.4), it follows that the constitutive parameters from the contin-
uum case may be related to the discrete parameters as follows:eA ¼ l2ðk0 þ k1Þ=V ; eB ¼ a2l2k1=V ; eC ¼ �al2k1=V ;q ¼ m=V ; j ¼ I=m;

ð2:33Þ

where V is the volume of the continuum system obtained from the
discrete system. Since k0; k1; a; l;V > 0, the inequalities from Eq.
(2.9) are identically satisfied by Eq. (2.33).
Fig. 4. Three discrete masses, i� 1, i, and iþ 1, each allowed to translate axially and
rotate about the mass center, are shown. One spring (k0) connects the centers of
adjacent masses together and another spring (k1) connects opposing corners of
adjacent masses.
3. Solving the boundary value problems and the discrete
problem

In this section, three different solution techniques are described
for the different problems presented in Section 2. In Section 3.1, the
D’Alembert method is used to solve the bar problem described in
Section 2.2. This approach is particularly useful in obtaining ratios
of incident, reflected, and transmitted stress waves (reflection and
transmission coefficients) across interfaces separating materials
with different impedance values. A Laplace transform solution is
described for the impact problem in Section 3.2 and a brief descrip-
tion of the solution method for the discrete problem of Section 2.4
is included in Section 3.3.

3.1. Solving the two-layer problem via the method of D’Alembert

One approach that may be used to solve the boundary value
problem from Section 2.2 is to use a D’Alembert formulation.
Recalling Fig. 2, solutions for Eqs. (2.14) and (2.15) for the case
where both layers in a bar begin at rest are assumed to be of the
form

u1ðx; tÞ ¼ l1½F1ðt=k�1 þ xÞ þ F2ðt=k�1 � xÞ� þ l2½F3ðt=kþ1 þ xÞ
þ F4ðt=kþ1 � xÞ�; ð3:1Þ

u1ðx; tÞ ¼ F1ðt=k�1 þ xÞ þ F2ðt=k�1 � xÞ þ F3ðt=kþ1 þ xÞ
þ F4ðt=kþ1 � xÞ; ð3:2Þ

u2ðx; tÞ ¼ l3½F5ðt=k�2 þ xÞ þ F6ðt=k�2 � xÞ� þ l4½F7ðt=kþ2 þ xÞ
þ F8ðt=kþ2 � xÞ�; ð3:3Þ

u2ðx; tÞ ¼ F5ðt=k�2 þ xÞ þ F6ðt=k�2 � xÞ þ F7ðt=kþ2 þ xÞ
þ F8ðt=kþ2 � xÞ: ð3:4Þ

The following constants are used in writing Eqs. (3.1)–(3.4):

l1 ¼
ðk�1 Þ

2 � d4

d3
;l2 ¼

ðkþ1 Þ
2 � d4

d3
;l3 ¼

ðk�2 Þ
2 � d8

d7
;l4 ¼

ðk�2 Þ
2 � d8

d7
;

ð3:5Þ

where

k�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1 þ d4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ 4d2d3 � 2d1d4 þ d2
4

qr
=
ffiffiffi
2
p

; ð3:6Þ

k�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d5 þ d8 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

5 þ 4d6d7 � 2d5d8 þ d2
8

qr
=
ffiffiffi
2
p

; ð3:7Þ

and the constants d1;d2; . . . ;d8 are functions of the model parame-
ters as follows:

d1 ¼
B1

A1B1 � C2
1

; d2 ¼
�C1D1

A1B1 � C2
1

; d3 ¼
�C1

A1B1 � C2
1

; ð3:8Þ

d4 ¼
A1D1

A1B1 � C2
1

; d5 ¼
B2

A2B2 � C2
2

; d6 ¼
�C2D2

A2B2 � C2
2

; ð3:9Þ

d7 ¼
�C2

A2B2 � C2
2

; d8 ¼
A2D2

A2B2 � C2
2

: ð3:10Þ

Based on the forms of Eqs. (3.6) and (3.7), it follows that kþ1 > k�1 and
kþ2 > k�2 . All eigenvalues are real as a consequence of the inequalities
given by Eq. (2.9). The normalized velocities of the fast waves are
1=k�1 and 1=k�2 and the normalized velocities of the slow waves
are 1=kþ1 and 1=kþ2 . The ratios of the fast wave speeds to the slow
wave speeds are thus kþ1 =k

�
1 and kþ2 =k

�
2 . This ratio will be designated

C in the appendix, see Eq. (A.1).
For a non-polar material, there is infinite rotational stiffness so

that there can be no rotation, i.e., B!1. In this situation,
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1=k� ! 0 and 1=kþ !
ffiffiffi
A
p

. To write the wave speed in dimensional
form, it is necessary to multiply by d=s, which is unit length per
unit time. Recalling the first of Eq. (2.6), we see that

ffiffiffi
A
p d

s

� �
¼

ffiffiffiffiffiffiffiffiffieAs2

qd2

s
d
s

� �
¼

ffiffiffiffieA
q

s
)

ffiffiffiffi
E
q

s
; ð3:11Þ

where E is the elastic modulus, q is the mass density, and
ffiffiffiffiffiffiffiffiffi
E=q

p
is

the classical wave speed for a one-dimensional elastic body. This
shows that in the non-polar case, eA corresponds to E.

We will now consider a simpler case with identical materials,
i.e., the bar is homogeneous and there is no need for model param-
eter subscripts. It is then only necessary to solve for uðx; tÞ and
uðx; tÞ with stress applied at x ¼ 0 and the bar rigidly fixed at
x ¼ 1. The next step is to use the definition of (force) stress and
couple stress, Eq. (2.8), with the D’Alembert form of the displace-
ment functions and the boundary conditions Eqs. (2.21) and
(2.20) to obtain

ðC þ l1AÞrF1ðt=k�Þ � ðC þ l1AÞrF2ðt=k�Þ þ ðC þ l2AÞrF3ðt=kþÞ
� ðC þ l2AÞrF4ðt=kþÞ ¼ bT; ð3:12Þ

ðBþ l1CÞrF1ðt=k�Þ � ðBþ l1CÞrF2ðt=k�Þ þ ðBþ l2CÞrF3ðt=kþÞ
� ðBþ l2CÞrF4ðt=kþÞ ¼ bM; ð3:13Þ

l1F1ðt=k� þ1Þþl1F2ðt=k��1Þþl2F3ðt=kþ þ1Þþl2F4ðt=kþ �1Þ¼0;

ð3:14Þ

F1ðt=k� þ 1Þ þ F2ðt=k� � 1Þ þ F3ðt=kþ þ 1Þ þ F4ðt=kþ � 1Þ ¼ 0:

ð3:15Þ

After taking the Laplace transform of Eqs. 3.12, 3.13 3.14, and 3.15,
we may solve for the functions F1–F4 to obtain

F1 ¼ j1

X1
n¼0

fð2þ 4n� x� t=k�ÞH½�2� 4nþ xþ t=k��

þ ð�4� 4nþ xþ t=k�ÞH½�4� 4nþ xþ t=k��g; ð3:16Þ

F2 ¼ j1

X1
n¼0

fð2þ 4nþ x� t=k�ÞH½�2� 4n� xþ t=k��

þ ð�4n� xþ t=k�ÞH½�4n� xþ t=k��g; ð3:17Þ

F3 ¼ j2

X1
n¼0

fð2þ 4n� x� t=kþÞH½�2� 4nþ xþ t=kþ�

þ ð�4� 4nþ xþ t=kþÞH½�4� 4nþ xþ t=kþ�g; ð3:18Þ

F4 ¼ j2

X1
n¼0

fð2þ 4nþ x� t=kþÞH½�2� 4n� xþ t=kþ�

þ ð�4n� xþ t=kþÞH½�4n� xþ t=kþ�g; ð3:19Þ

where

j1 ¼
A1l2

bM � B1
bT þ C1ð bM � l2

bTÞ
ðl1 � l2ÞðA1B1 � C2

1Þ
; ð3:20Þ

j2 ¼ �
A1l1

bM � B1
bT þ C1ð bM � l1

bTÞ
ðl1 � l2ÞðA1B1 � C2

1Þ
; ð3:21Þ

and H½�� designates the Heaviside unit step function. The D’Alembert
form of the solution will be used in Section 4.5 to obtain ratios of inci-
dent, reflected, and transmitted stress through an interface between
materials with an impedance mismatch. Although the summations in
Eqs. (3.16)–(3.18) and (3.19) are infinite, when a finite time t is con-
sidered, it is only necessary to include a finite number of terms in
the summation due to the presence of the Heaviside functions.
3.2. Solving the impact problem via the Laplace transform

Laplace transforms will be used to solve the mixed boundary-
initial value problems from Sections 2.2 and 2.3, although the
impact example from Section 2.3 will be used to demonstrate the
method. After taking the transforms of Eqs. (2.14) and (2.15) and
applying the initial conditions as given by Eqs. 2.19, 2.26, and
2.27, we obtain the following ordinary differential equations:

A1r2�u1 þ C1r2 �u1 ¼ s2�u1 � v̂; C1r2�u1 þ B1r2 �u1 ¼ D1s2 �u1; ð3:22Þ
A2r2�u2 þ C2r2 �u2 ¼ s2�u2;C2r2�u2 þ B2r2 �u2 ¼ D2s2 �u2; ð3:23Þ

where the bar indicates transformed functions and s is the variable
in the Laplace domain. The general forms of the solutions to Eqs.
(3.22) and (3.23) are

�u1 ¼ c1l1e�sk�1 x þ c2l1esk�1 x þ c3l2e�skþ1 x þ c4l2eskþ1 x þ v̂=s2; ð3:24Þ
�u1 ¼ c1e�sk�1 x þ c2esk�1 x þ c3e�skþ1 x þ c4eskþ1 x; ð3:25Þ
�u2 ¼ c5l3e�sk�2 x þ c6l3esk�2 x þ c7l4e�skþ2 x þ c8l4eskþ2 x; ð3:26Þ
�u2 ¼ c5e�sk�2 x þ c6esk�2 x þ c7e�skþ2 x þ c8eskþ2 x; ð3:27Þ

where the eigenvalues and constants shown are defined by Eqs.
(3.5)–(3.9) and (3.10). The eight constants c1; . . . ; c8 are found by
applying the general solutions given by Eqs. (3.24)–(3.26) and
(3.27) to the eight boundary conditions given by Eqs. (2.22)–
(2.24), (2.28), (and) (2.29). One consequence of applying these
boundary conditions is that

c1 ¼ c2; c3 ¼ c4; c5 ¼ e2sk�2 c6; c7 ¼ e2skþ2 c8: ð3:28Þ

At this point it is necessary to numerically invert the solutions from
the Laplace domain to obtain the final solution in the time domain.
The approach used in this work is the Dubner–Abate–Crump (DAC)
algorithm described by Crump (1976); the effects of Gibbs phenom-
ena in the solution will be reduced through the use of Lanczos’s r-
factors, see Laverty and Gazonas (2006). Results from the Laplace
transform solution are used in Sections 4.2, 4.3 and 4.4.

3.3. Solving the discrete problem

Using the commercial software package Mathematica, an expli-
cit formulation is employed to solve the discrete problem. First,
displacements ui and ui are calculated by multiplying the longitu-
dinal velocity v i and rotational velocity xi by the time step Dt for
each mass i. Accelerations are found by determining the net force
and moment acting on each mass and dividing these terms by
the mass m and mass moment of inertia I, respectively. The forces
and moments acting on each mass are obtained from Eq. (2.30).
The updated velocities v i and xi are obtained by multiplying each
acceleration by Dt. The process of finding displacements, accelera-
tions, and velocities is repeated for each time step to obtain the
dynamic response of the system. Results from the discrete model
are used in Sections 4.1 and 4.2.

4. Results

In this section, five different examples will be considered that
are based on the formulations and solutions discussed thus far.
The first example in Section 4.1 shows a discrete model and it is
used to illustrate the presence of two longitudinal waves. In Sec-
tion 4.2, the discrete model is compared with an equivalent contin-
uum model. An example of impact between two micropolar bodies
with specially chosen model parameters is presented in Section
4.3. In Section 4.4, some additional impact examples are presented,
including one that demonstrates the effect of impedance mismatch
between target and flyer. Finally, the consequences of impedance
mismatch are analyzed further in Section 4.5. In all plots shown,



Fig. 6. Normalized stress at the midpoint of a discrete rod and a continuous rod is
shown as a function of normalized time. Since stress at the midpoint is shown, the
slow stress wave arrives at a normalized time of 0.5.
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time (the horizontal axis) has been normalized such that when
normalized time equals one, the slow stress wave has travelled
the length of the specimen. With the exception of Fig. 8, the verti-
cal axes are normalized such that the overall length, the maximum
velocity, or the maximum stress are set equal to one, depending on
the results being plotted.

4.1. A discrete model

This example is the discrete equivalent to that described in Sec-
tion 2.2. A discrete rod made up of 80 discrete masses (n ¼ 80, see
Fig. 4 and Eq. (2.30)) with one end rigidly fixed will be considered,
i.e., u80 ¼ 0 and u80 ¼ 0. At the free end, a constant compressive
force of 0.1 N is instantaneously applied at time t ¼ 0 s. In addition,
the following model parameters have been chosen: a ¼ 19:5 mm,
b ¼ 3:5 mm, l ¼ 20 mm, k0 ¼ 20 N/m, k1 ¼ 10 N/m, m ¼ 0:01 kg,
and I ¼ 10�6 kg m2. The entire structure is then 1.58 m long. (The
numbers were chosen to represent those of a physical system that
could be actually constructed.) The positions of each of the 80
masses as a function of time are shown in Fig. 5. It is possible to
observe two distinct waves emanating from the origin in Fig. 5;
the faster wave reaches the fixed mass at a normalized time of
approximately 0.55, while the slower wave reaches the fixed mass
at 1.0 (the time scale has been normalized by the time it takes for
the slow wave to travel the bar length). A similar type of plot is
presented in the work of Balk et al. (2001).

4.2. Comparison between a discrete and a continuous model

In this section, a discrete example described in Section 2.4 is
compared with a continuous example from Section 2.2. The prob-
lem to be considered is the rigidly supported bar shown in Fig. 2. In
the present example, the bar is homogeneous and there is no need
to distinguish parameters with subscripts. From Appendix, the fol-
lowing constants for the continuous case are used:

A ¼ 10:8; B ¼ 1; C ¼ �1; D ¼ 0:02743: ð4:1Þ

Using Eqs. (2.6) and (2.33), the following equivalent discrete case
constants are used: a ¼ 1 m, l ¼ 1 m, k0 ¼ 9:8 N/m, k1 ¼ 1 N/m,
m ¼ 1 kg, and I ¼ 0:02743 kg m2. To obtain the linear version of
the discrete model that corresponds to the linear continuous model,
it is necessary for b! 0. A plot showing the normalized stress at the
midpoint of each rod is given in Fig. 6. The two distinct waves are
visible, noting that the faster wave is twice as fast as the slower
wave since C ¼ 2, see Eq. (A.1). With the exception of the oscillatory
behavior of the underdamped discrete model, the two solutions cor-
Fig. 5. The normalized axial positions for each of 80 discrete masses, connected as
described by Fig. 4, are shown as functions of normalized time after a constant load
is applied to the end i ¼ 1. The end i ¼ 80 is fixed for both axial deformation and
rotation.
respond relatively well through the first three reflections of the
stress waves, e.g., after a normalized time of two for the fast wave.
After this point, the solutions begin to diverge. This is due to the fact
that the boundary conditions between the two systems are funda-
mentally different. For the discrete model, a boundary is simply a
mass at an end that is connected to only a single neighbor, while
an interior mass is connected to two neighbors. In moving to the
continuum, the interior structure of Fig. 4 is treated as a representa-
tive volume element and it is used to describe the behavior of the
entire body. Hence, in Fig. 6, each time a wave reflects from a
boundary, the results of the two models increasingly differ.

4.3. An impact problem with tuned micropolar bodies

The case to be considered here is an impact between two iden-
tical micropolar bodies — the flyer is of length l ¼ 1=3 and the tar-
get is of length 1� l ¼ 2=3, recalling Fig. 3. The model parameters
have been chosen, or tuned, to ensure that the first occurrence of a
net tensile stress appears at the interface between the bodies at
x ¼ 1=3. (In a non-polar material system, the initial net tensile
stress will appear at x ¼ 2=3, which is the middle of the target.)
The following constants from Appendix are used:

A1;A2 ¼ 10:8; B1;B2 ¼ 1; C1;C2 ¼ �1; D1;D2 ¼ 0:02743: ð4:2Þ

Fig. 7 is a shock wave position-versus-time, or x–t, diagram that
shows the propagation of the stress waves (the faster wave as a
Fig. 7. The x–t diagram for the impact example with tuned parameters such that
the initial net tensile stress occurs at point (e), the interface between flyer and
target.
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solid line and the slower wave as a dashed line) through both the
flyer and target immediately after impact. The points in the figure
are labeled to correspond with the points to be shown in Fig. 8.
Point (e) denotes the time when a tensile stress state initiates at
the interface between the flyer and the target. Only by assuming
that the flyer and target remain attached can the stress waves con-
tinue to travel through the interface as they are shown to do in
Fig. 7.

In a plate impact experiment, e.g., Antoun et al. (2003), the
velocity of the free end of a target plate (at x ¼ 1 for the example
presented here) is measured as a function of time. The results of
such an experiment are used to characterize the spall strength of
the target material. Fig. 8 shows such an example for a micropolar
target and flyer, characterized by Eq. (4.2). If the target and flyer
were to separate when a tensile stress first appears at the interface
(at point (e) in Fig. 7), Fig. 8 would only be valid up to the velocity
jump at point (c). The results of Fig. 8 suggest that a micropolar
body of the type described in Section 2.1 should posses two dis-
tinct jumps in velocity, at points (a) and (b), that are associated
Fig. 8. The normalized velocity at the point x ¼ 1 as a function of normalized time,
assuming that the two bodies remain permanently attached from the moment of
impact. The points (a)–(e) are the same as those shown in Fig. 7.

Fig. 9. The normalized stress state within the system at four different times, beginning w
of normalized position.
with the distinct waves discussed in Section 4.1. The maximum
velocity does not reach the initial velocity since the impact also
produces rotational motion, in other words, the initial purely axial
motion generates both axial deformation as shown in Fig. 8 as well
as rotational motion. If there were no rotational motion, as in the
case of a non-polar body, then _u2=v̂ ¼ 1 at its maximum.

In order to see the stress wave propagation for this example in
greater detail, Fig. 9 shows four snapshots in time of the stress
state in the flyer and the target. The arrival of the first stress wave
at x ¼ 1 (at point (a) in Figs. 7 and 8) is shown in the second of
these figures. The initiation of a tensile stress state at the interface
is seen to occur at the same time as the arrival of an initial com-
pressive wave (the larger wave) and a reflected tensile wave (the
smaller wave) at the free end, x ¼ 1 (at Points (b) and (e) in Figs.
7 and 8). The fact that the stress waves begin as compressive waves
and are reflected from the free surfaces x ¼ 0 and x ¼ 1 as tensile
waves is apparent from Fig. 9 as well.

Although analytical solutions involving a finite number of unit
step functions have been used thus far, it will be necessary to re-
sort to numerical inversions of the Laplace transforms in Section
4.4. Therefore, one final example is shown in Fig. 10 comparing
the numerical solution to the exact solution that was presented
in Fig. 8. The numerical solution is found using the DAC algorithm
with Lanczos’ r-factors with 512 terms and a tolerance equal to
10�4, see Laverty and Gazonas (2006). As can be seen, the effect
of the Gibbs phenomenon is minimal and so we can be confident
in the results presented in the following section that make use of
this numerical tool.

4.4. Impact with different materials

Since the plate impact test mentioned in the previous section is
a common approach in the study of impact, results of the type pre-
sented in Fig. 8 will be considered in the examples to follow. The
normalized velocities at the free end (x ¼ 1) of a target impacted
by a flyer for three different cases are shown in Fig. 11. The three
cases include the following: a non-polar flyer and non-polar target
(np–np), a micropolar flyer and micropolar target (mp–mp), and a
non-polar flyer and micropolar target (np–mp). The micropolar
material is described by Eq. (4.2), while the non-polar material is
modeled with the following parameters:
ith the top left figure and ending with the bottom right figure, is shown as a function



Fig. 10. To illustrate the effect of Gibbs phenomenon, the exact solution and the
numerical solution from the DAC algorithm are plotted for the case shown in Fig. 8.

Fig. 11. Normalized velocity at the point x ¼ 1 as a function of time as was shown
in Fig. 8. In this figure, three examples are shown: non-polar flyer—non-polar target,
micropolar flyer—micropolar target, and non-polar flyer—micropolar target.
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A1 ¼ 10:8; B1 ¼ 106; C1 ¼ �10�6; D1 ¼ 0:02743� 106: ð4:3Þ

Compared with the micropolar case, the coupling constant C1 is re-
duced by six orders of magnitude to reduce the coupling between
axial deformation and rotation. In addition, the inertia and stiffness
associated with rotation are increased by six order of magnitude. In
terms of its ability to rotate, the body becomes extremely stiff (due
to the increase in B1) and insensitive to applied rotation deforma-
tions (due to the large microinertia that increases D1).

According to Fig. 11, the initial response to impact for both micro-
polar targets is similar, exhibiting two distinct velocity jumps and
identical wave speeds. This is due to the fact that the target materials
are identical. The mismatch in material properties between flyer and
target for the ‘‘np–mp” case leads to a more complex response, as
waves are partially reflected and partially transmitted at the inter-
Fig. 12. Fig. 12(a) shows an incident fast plane wave traveling towards the right in layer 1
for a slow incident wave.
face between dissimilar materials. A detailed analysis of the reflec-
tion and transmission of waves across an interface with a
mismatch in impedance is presented in Section 4.5.

4.5. Transmitted and reflected stress at the interface of a Two-Layer
micropolar body

In addition to simply using the D’Alembert approach to solve
the given boundary value problem, this approach also gives insight
into the relationships between incident, transmitted, and reflected
stress waves resulting from an impedance mismatch at the inter-
face of two different materials described by different constitutive
parameters. The interface is perpendicular to the direction of travel
of the plane stress waves. Eringen (1999) considered harmonic
plane waves traveling through micropolar bodies that reflect off
of a free surface, while Ghosh et al. (2001) examined such waves
transmitted across a boundary between two micropolar bodies.

For example, consider the case of two semi-infinite one-dimen-
sional micropolar bars with an interface at x ¼ 0, see Fig. 12(a) or
(b). If the eight functions F1–F8 are known, the behavior of each
layer is completely described using Eqs. (3.1)–(3.3) and (3.4). If
we only wish to solve for the reflection and transmission coeffi-
cients, it is not necessary to obtain all eight functions F1–F8. For
example, since both bodies are semi-infinite, there is no need to
consider boundaries at �1. Only the matching boundary condi-
tions at x ¼ 0 given by Eqs. (2.22)–(2.24) and (2.25) are used.

Based on the discussion in Section 4.1, there is a fast wave and a
slow wave and each is capable of traveling towards the left and the
right. Therefore, for each layer, there are four waves and four F-terms,
F1–F4 for Layer 1 and F5–F8 for layer 2. For example, if the fast wave in
layer 1 traveling to the right is the incident wave, then we are also only
concerned with the reflected fast and slow waves and the transmitted
fast and slow waves. In this particular case, F2 corresponds to the inci-
dent fast wave, F1 corresponds to the reflected fast wave, F3 corre-
sponds to the reflected slow wave, F6 corresponds to the
transmitted fast wave, and F8 corresponds to the transmitted slow
wave, see Fig. 12(a). The terms containing F4, F5, and F7 may be ne-
glected and we are left with four equations for five unknowns. Similar
relationships hold for a slow incident stress wave, as shown see
Fig. 12(b), and for incident waves traveling towards the left in layer 2.

For the case shown in Fig. 12(a) and recalling Eqs. (2.22)–(2.24)
and (2.25), the four equations to be solved to find F1, F3, F6, and F8

as functions of F2 are

l1

k�1
½rF1 þrF2� þ

l2

kþ1
r3 ¼

l3

k�2
rF6 þ

l4

kþ2
rF8; ð4:4Þ

1
k�1
½rF1 þrF2� þ

1
kþ1
r3 ¼

1
k�2
rF6 þ

1
kþ2
rF8; ð4:5Þ

A1fl1½rF1 �rF2� þ l2rF3g þ C1½rF1 �rF2 þrF3�
¼ A2½�l3rF6 � l4rF8� þ C2½�rF6 �rF8�; ð4:6Þ

C1fl1½rF1 �rF2� þ l2rF3g þ B1½rF1 �rF2 þrF3�
¼ C2½�l3rF6 � l4rF8� þ B2½�rF6 �rF8�; ð4:7Þ
and the resulting transmitted and reflected plane waves. Fig. 12(b) shows the same
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where rF1 � rF1ðt=k�1 Þ, rF2 � rF2ðt=k�1 Þ, rF3 � rF3ðt=kþ1 Þ,
rF6 � rF6ðt=k�2 Þ, and rF8 � rF8ðt=kþ2 Þ since the interface is taken
to be at x ¼ 0. Eqs. (4.4) and (4.5) are taken from Eqs. (2.22) and
(2.23), where the gradient appears after taking the derivative with
respect to time from Eqs. (2.22) and (2.23) and substituting Eqs.
(3.1)–(3.3) and (3.4). Eqs. (4.6) and (4.7) come directly from Eqs.
(2.24) and (2.25).

Eqs. (4.4)–(4.6) and (4.7) are used to solve for rF1, rF3, rF6,
and rF8 in terms of rF2, k�1 , k�2 , l1–l4, A1;2, B1;2, and C1;2. The ratio
of the fast reflected (force) stress wave to the fast incident (force)
stress wave is

rF1

rF2

� �
A1l1 þ C1

A1l1 þ C1
!rF1

rF2
; ð4:8Þ

according to Eq. (2.8). The ratios for the slow reflected wave to the
incident wave, the fast transmitted wave to the incident wave, and
the slow transmitted wave to the incident wave are

rF3

rF2

� �
A1l2 þ C1

A1l1 þ C1
;

rF6

rF2

� �
A2l3 þ C2

A1l1 þ C1
;

rF8

rF2

� �
A2l4 þ C2

A1l1 þ C1
;

ð4:9Þ

respectively. For the case of the same four ratios, but now with re-
spect to the incident slow wave, one would make use of the follow-
ing four quantities:

rF1

rF4

� �
A1l1 þ C1

A1l2 þ C1
;
rF3

rF4
;
rF6

rF4

� �
A2l3 þ C2

A1l2 þ C1
;
rF8

rF4

� �
A2l4 þ C2

A1l2 þ C1
;

ð4:10Þ

since F4 corresponds to the incident slow wave.
As an example, consider two bars with a normalized (force)

stress applied at bT at x ¼ 0 and rigidly fixed at x ¼ 1, see Fig. 2.
One bar is non-polar, described by the material properties of Eq.
(4.3), and the other bar consists of two layers. The bar is non-polar
between 0 6 x 6 1=2 and micropolar between 1=2 6 x 6 1. For the
two-layer bar, the slow stress wave is the incident wave transmit-
ted through the non-polar body that reaches the interface between
the layers. By considering the third and fourth quantities in Eq.
(4.10), it is possible to find material parameters that will reduce
the stress transmitted across the interface. By equating the stress
corresponding to the fast and slow transmitted waves, it is possible
to obtain the following parameters:

A2 ¼ 10:8;B2 ¼ 102; C2 ¼ �27:57;D2 ¼ 0:02743� 102: ð4:11Þ

By examining the transmission and reflection coefficients obtained
via the D’Alembert method, it is discovered that the ratio of the
transmitted fast and slow waves to the incident wave is 0.442;
the ratio of the reflected slow wave to the incident wave is 0.116.
These results are shown in Fig. 13 for a homogeneous bar and a
two-layer bar at the positions indicated to the left of the center
Fig. 13. Normalized stress waves at x ¼ 0:4 and x ¼ 0:6 are shown for a uniform, non-
micropolar). The solid lines indicate the stress state at x ¼ 0:4, while the dashed lines in
traveling.
(a) and to the right of the center (b) of each bar. The results shown
in Fig. 13 are obtained by solving the mixed boundary-initial value
problem via the Laplace transform approach and using the DAC
algorithm. By observation, the results of both approaches are the
same, thus confirming the solution techniques employed. That is,
the reflected (dashed) stress shown in Fig. 13(a) has a magnitude
of 0.116; both transmitted (dashed) waves in Fig. 13(b) have mag-
nitudes of 0.442.

5. Summary

A one-dimensional model of a linear, anisotropic, micropolar
body subjected to transient loading associated with impact has
been presented. In particular, this model has been solved for the
case of a two-layer bar subjected to a known stress at one end
and rigidly fixed at the other end. Either one or both layers may
be considered as micropolar bodies, each of which is described
by four model parameters. The model has also been solved for an
impact problem consisting of a micropolar projectile and a micro-
polar target. These results may be used to model high strain rate
experiments, such as Kolsky bar tests and plate impact tests, or
to give insight into how such materials would behave as armors
subjected to blast and/or ballistic impact. A discrete model has also
been solved and the model parameters used in the micropolar con-
tinuum model have been related to the properties of the discrete
model, which are physically more understandable.

By analyzing the solutions to the governing PDEs, we have been
able to choose model parameters to control the reflection and
transmission coefficients resulting from an impedance mismatch
at the interface of two different materials. This allows us to control
the transmission of stress that results from blast or impact. For the
case of impact, we have also been able to control where the tensile
stress wave first appears. This is helpful since materials often fail in
tension as a result of the combination of reflected, initially com-
pressive, stress waves caused by impact. These preliminary results
suggest the possibility of designing an optimal system that will
best withstand the high strain rate loads it will be subjected to
in service. This sort of optimization has been done for the case of
multi-layered elastic strips by Velo and Gazonas (2003).

The analysis presented herein has been limited to linear behav-
ior, i.e., requiring small displacements and assuming linear rela-
tions between stress and strain. In addition, it has been
necessary to assume a periodic microstructure, an assumption that
may be valid in the case of an engineered structure but less realis-
tic for the case of a pulverized ceramic. By adding heterogeneity to
the discrete model presented in Section 2.4, a homogenization
analysis approach may be used to examine the effects of a less reg-
ular structure, although a fully random structure necessitates a dif-
ferent approach, see Ostoja-Starzewski and Tre�bicki (1999),
Ostoja-Starzewski and Tre�bicki (2003). Even with these approxi-
polar bar and a two-layer bar (the first layer is non-polar and the second layer is
dicate the stress state at x ¼ 0:6. The arrows indicate the directions the waves are



C.L. Randow, G.A. Gazonas / International Journal of Solids and Structures 46 (2009) 1218–1228 1227
mations, the current work serves as a benchmark for moving to
higher dimensions and more complex constitutive relations, where
it becomes more difficult to relate micropolar constitutive param-
eters to physical systems. In this way, the results presented here
will guide the development of more advanced models better capa-
ble of describing the response of multi-scale materials to impact
and blast conditions.
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Appendix. Choosing constants for the micropolar model

In this appendix, the parameters given in Eqs. (4.1) and (4.2)
will be calculated. The goal here is to determine model parameters
that ensure the following:

� The faster wave speed will be twice the magnitude of the slower
wave speed (C ¼ 2, see the following justification for this
requirement), and

� the stress corresponding to the slower wave speed will be larger
than the stress corresponding to the faster wave speed for the
case with no applied couple stress.

In a traditional plate impact test involving non-polar materials, the
target material will fail under a tensile load generated at the mid-
dle of the target specimen, assuming that the target is twice the
thickness of the flyer and both materials are identical. As a demon-
stration of the nature of the micropolar material as described
herein, we have decided to present an example where the initial
tensile stress appears at the target–flyer interface, rather than
within the target. Since the typical target-length-to-flyer-length
ratio equals two, it will be necessary to require C ¼ 2. There are
no additional limitations imposed on the solution under these
requirements. Since the two bodies are identical, there is no need
to specify different properties through the use of subscripts. The
ratio of the fast wave speed to the slow wave speed, C, mentioned
in the first of the two requirements is defined as

C ¼ Fast Wave Speed
Slow Wave Speed

¼ 1=k�

1=kþ
> 1; ðA:1Þ

since kþ > k�, see Section 3.1. Based on Eqs. (3.6)–(3.9) and (3.10)
and the requirement on C in Eq. (A.1), it follows that the model
parameter C equals

C ¼ � 1
1þ C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABð1þ C4Þ � B2D�1C2 � A2DC2

q
: ðA:2Þ

Based on the first of Eq. (2.8) and the solutions to Eqs. (2.14) and
(2.15) for identical flyer and target materials, the ratios of the stres-
ses corresponding to the fast and slow waves are given by

D ¼ Tfast

Tslow
¼ � l1Aþ C

l2Aþ C

� �
l2C þ B
l1C þ B

� �
¼ �l1

l2
;

Mfast

Mslow
¼ 1; ðA:3Þ

for the case with no applied couple stress. Next, the ratios of the par-
ticle speeds of the two axial waves with no applied couple stress are

Fast-Wave Translational Particle Speed
Slow-Wave Translational Particle Speed

¼ �l1

l2

kþ

k�

� �
¼ DC;

ðA:4Þ

and
Fast-Wave Rotational Particle Speed
Slow-Wave Rotational Particle Speed

¼ kþ

k�
¼ C: ðA:5Þ

If there is only a single wave present, as in the classical, non-polar
case, then D! 0 or D!1. By applying Eqs. (3.5) and (A.2) to Eq.
(A.3) and solving for D, it follows that

D ¼ B
A

1þ C2D

C2 þ D

 !
: ðA:6Þ

Based on the inequalities in Eqs. (2.9) and (A.1), it follows that C
equals zero only when D! 0 or D!1, i.e., the condition of a single
wave. In the limit, if C!1, C equals �

ffiffiffiffiffiffi
AB
p

based on applying Eq.
(A.4) to (A.2); this is a violation of the last inequality in Eq. (2.9).
Therefore, C must be finite and greater than one. Since
A;B;C;D P 0, C must be real. In conclusion then, to ensure that
C–0, it is necessary for 0 < D <1 and 1 < C <1. Now we may
consider actual numbers for our model. In addition to requiring
C ¼ 2, we will choose D ¼ 0:1 so that Tslow > Tfast. Making use of
Eqs. (A.2) and (A.6), it follows that

C ¼ �
ffiffiffiffiffiffi
30
p

18

 ! ffiffiffiffiffiffi
AB
p

¼ �0:3043
ffiffiffiffiffiffi
AB
p

; D ¼ 8
27

� �
B
A
¼ ð0:2963Þ B

A
:

ðA:7Þ

The values of A and B were chosen to make C equal �1, i.e.,ffiffiffiffiffiffi
AB
p

¼ 18=
ffiffiffiffiffiffi
30
p

, such that

A ¼ 182=30 ¼ 10:8; B ¼ 1; C ¼ �1; D ¼ 20=729 ¼ 0:02743:

ðA:8Þ

These model parameters are rewritten as Eqs. (4.1) and (4.2); there
are no units associated with these parameters due to the non-
dimensional formulation of Section 2.1.
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