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Foreword

As the Navy's leading laboratory for research and development
in mapping, charting. and gccx1esy (MC&G), the Naval Oceano­
graphic and Annospheric Research Laboratory is actively involved
in applying digital MC&G data to the support of naval weapons
systems and in conducting research to improve these data.

This report provides details of significant research on digital
image segmentation, a valuable technique for improving underwater
mine and submarine detection, for better target recognition, and
for improving the quality of automated computer vision output
used in autonomous digital mapping.
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Executive Summary

Computer vision is a rapidly expanding field that depends on the capability
to automatically segment and. thus. to classify and interpret images. In
this report, the primary computer vision subarea-segmentation-is
investigated. Many of the latest publicatiolt'i on the subject of segmentation
are detailed in a survey format. Special attention is given to a few specialized
techniques for segmenting digital images.

Powerful segmentation techniques are available; however. each technique
is ad hoc. The creation of hybrid techniques seems to be a promising
future research area with respect to current Navy digital mapping
applications.
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A Survey of Digital Image Segmentation Algorithms

2.0 Amplitude Thresholding
Amplitude thresholding, or window slicing, is

useful whenever an object is sufficiently character­
ized by the amplitude features. Thresholding
techniques arc also useful in segmenting such binary
images as printed documents, line drawings, and
multispectral and x-ray images. A commonly used
approach to thresholding follows:

• Examine the histogram of the image to identify
peaks and valleys. If the image is multimodal. then
the valleys can be used for selecting thresholds.

• Perform thresholding so that a predetennined
fraction of the total number of samples is below
the threshold.

• AdaptiveJy lhrcshold by examining local (neigh­
borhood) histograms.

• Selectively threshold by examining histograms
of only Lhose points that satisfy a chosen criterion.
For example. in low-contrast images, the histogram
of pixels whose Laplacian magnitude is above a
predefmed value will exhibit clearer bimodal features
than that of the original image:.

• Determine the threshold to minimize the
probability of error or some other quantity, for
instance, Bayes' risk.' if a probabilistic model of
the different segmentation classes is known.

Multilevel thresholding is generally less reliable
than its single-threshold coumerpan because
establishing multiple thresholds that effectively
isolate regions of interest, especially when the
number of corresponding histogram modes is large.
is difficulL Problems of this nature, if handled by
thresholding, are best addressed by a single,
variable threshold.

Mathematically, thresholding can be viewed as
an operation that involves teslS against a function
T of the form

1.0 Introduction
Computer vision is a rapidly expanding area that is

dependent on the capability to automatically segment.
cla.'isify. and interpret images. Segmentation is central
to the successful extraction of image features and
their subsequent classification. Image segmentation
techniques can be grouped into six categories:
amplitude thresholding. component labeling,
boundary-based segmentation. region-based segmen­
tation. template matching. and texture segmentation.

During segmentation, an image is preprocessed,
which can involve restoration, enhancement, or
simply representation of the data. Certain features
are extracted to segment the image into its key
components. The segmented image is routed to a
classifier or an image-understanding system. The
image classification process maps different regions
or segments. into one of several objects. Each object
is identified by a label. The image·understanding
system then detennines the relationships between
different objects in a seene to provide a complete
scene description.

Powerful segmentation techniques are currently
available; however. each technique is ad hoc. The
creation of hybrid techniques seems to be a futufC
research area that is promising with respect to current
Navy digital mapping applications. For example.
improved digital map classification techniques could
be developed for automated feature extraction of
the digitally scanned map data used in various Navy
aircraft and for future shipboard electronic chart
systems.

TItis report discusses the six imagc segmentation
algorithms by describing the technique and com·
paring different algorithms. Thc latest publications
that describe each technique are given in a survey·
type format. The Summary and Conclusions section
examines the potential applications if several of the
techniques are intcgrated for developing segmentation
methods that will specifically address naval
applications.
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3.1 Pixel Labeling
Suppose a binary image is raster-scanned from

right to left and from top to bottom. The current

where f(x. y) is the gray level of point (x. y). and
p (x.y) denotes some local property of this point:
for example. the average gray levcl of a neighoor~

hood centered at (x, y). It follows that a thresholded
image g(x, y) is created by defining

3.0 Component Labeling Segmentation
Component labeling is a simple and effective

method of segmenting binary images by examining
the connectivity of pixels with their neighbors and
then labeling the connected sets. Two practical
algorithms, pixel labeling and run-length connectivity
analysis, arc discussed in the following sections.

Therefore, in exammmg g(x, y), pixels that are
labeled 1 (or any other convenient intensity level)
correspond to objccts, and pixels that are labeled
ocorrespond to the background. When T depends
only on f(x, y), the threshold is called global.

A simple approach that is often useful for
segmenting an image consists of dividing the gray
scale into bands and using thresholds to determine
regions or to obtain boundary points.1 Smoothing
is also a key component related to thresholding.
The gray-level subpopulations that correspond to
different types of regions in a picture will often
overlap. Under these circumstances, segmenting the
picture into regions by thresholding becomes
difficult: wherever the threshold is placed, the over­
lapping subpopulations cannot be cleanly separated.
This problem can usually be alleviated by smoothing
the picture before thresholding it. For example, the
picture could be locally averaged by replacing
the gray level at each point with an average of the
neighboring pixels' gray levels. Within a given type
of region, averaging dampens local gray-level
fluctuations and, hence, reduces the gray-level vari­
ability while preserving the mean gray level.
However, averaging also blurs the borders of the
regions; thresholding will still extract the regions
more or less correctly, although it will smooth out
irregularities in their borders.3

4.0 Boundary·Based Segmentation and
the Hough Transform·

Boundary extraction techniques segment objects
on the basis of their profiles. Therefore, such

pixel, say x, is labeled as belonging to either an
object (with the pixel value set to 1) or a hole (0)
by examining its connectivity to its neighbors. If
two or more qualified Objects are present. then those
objects are declared to be equivalent and are merged.
A new object label is assigned when a transition
from a set of Os to an isolated I is detected. Once
the pixel is labeled. the features of that object are
updated. At the end of the scan, such features as
the centroid, area, and perimeter are saved for each
region of connectcd Is.

3,2 RunaLength Connectivity Analysis
An alternate method of segmenting binary images

is to analyze the connectivity of run lengths from
successive scan lines. Consider black and white runs
denoted A, B, C, etc. A segmentation table is created
and run A of the first scan line is entered into the
first column. The object· of run A is named A'.
The first run of the next scan line, B. has the same
color as A and overlaps A. Hence, B also belongs
to object A' and is placed underncath A in the first
column. Run C has a different color, so it is placed
in a new column for an object labeled B'. Run D
has the same color as A and overlaps A. Since both
Band D overlap A, divergence is said to have
occurred, and a new column of object A' is created,
in which D is placed. A divergence flag, ID1, is
set in this column to indicate that object B' has
caused this divergence. Another flag, 102 of B'
(column 2), may be set to A' to indicate that object
B has caused divergence in overlap with another
run, U. which sets the convergence flags leI to C'
in column 4 and le2 to B' in column 6. Similarly,
W sets the convergence flag Ie2 to A' in column 2,
and column 5 is labeled as belonging to object A".

In this manner, all the objects with different elosed
boundaries are segmented in a single pass. The
segmentation table lists the data relevant to each
object. The convergence and divergence flags also
give the hierarchy structurc of the object. Since B'
causes divergence as wen as convergence in A',
and since C' has a similar relationship with B', the
objects A', B', and C' are assigned levels 1, 2, and
3, respectively.l

(2)
[

1 if!(x,y»T
g(x,y)= ,

o if!I.x,y)<=T
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techniques as contour following, connectivity, edge
linking, graph searching, curve fitting, Hough
transform, and others arc applicablc to image
segmematio~. Difficulties with boundary-based
methods occur when objects are touching or over­
lapping. or if a break occurs in the boundary due to
noise or artifacts in the image. I

It has long been recognized that the Hough
Transform (HT) represents near-cxclusivc technique
for shape and motion analysis in images that contain
noisy, missing, and extraneous data. But its adoption
has been slow because of computational complexity
and storage problems, as well as lbe lack of a detailed
understanding of its properties. Howevcr, in recent
years much progress has been made in these areas.
An efficient implementation of the HT and results
on analytic and empirical performance of various
methods are discussed in this section.

The HT was first introduced to detect complex
patterns of points in binary image data by deter­
mining specific values of parameters that characleri7..C:
these patterns. Spatially extended patterns are
transfonned to produce spatially compact features
in a space of possible parameter values. The HT
eonvcrts a difficult global detection problem in image
spacc into a more easily solved. local peak-detection
problem in a parameter space.

When the HT is calculated on a digital computer,
the continuous parameter space is usually considered
to be· composed of the union of a number of finite­
sized regions. In standard implementations the space
is panitioned into suitably sized, multidimensional
rectangles. Each rectangle is associated with
an element of a multidimensional array called an
accumulator array. The elements of the accumulator
array act as counters and are incremented when a
hypersurface from the back-projection of an image
point passes through the region of parameter space
associated with the element When several image
points back 4 project to the same parameter
combinations. ie., their hypcrsurfaces either intersect
or pass close to one another, then the corresponding
array element accumulates a large value.

The HT can be viewed as an evidence-gathering
procedure. Each image point "votcs" for all parameter
combinations that could have produced it, if it were
part of the sought-after shape. The votes arc counted
in the accumulator array, and the final totals indicate
the relative likelihood of shapes described by
parameters within the corresponding parameter celL

The HT is closely related to template-matching
techniques described later in this repon. One obvious

3

difference is that template-matching is carried out
entirely in the image domain. For this reason, the
HT was included here instead of in the template­
matching section. Unlike template-matching
techniques, the HT always assumes a match between
a given basic template point and a selected image
point. and then calculates the transformation
parameters that connect them. Thus. although the
HT and template-matching calculate the same
quantity, the HT is more efficient because it does
not generate unessential data.

HT methods offer many desirable features. First,
each image point is treated independently; there­
fore, the method can be implemented using more
than one processing unit: Le., parallel processing
of all points is possible. This makes the HT well
suited to real·time applications and to be a possible
module for shape detection in biological systems.
Second, the HTs independcnt combination of
evidence means that it can recognize partial or
slightly deformed shapes.

Occlusion is a severe problem for most other
shape detection techniques, but the HT degrades
gracefully because. to first-order approximation. the
size of a parameter peak is directly proportional to
the number of matching boundary and template
points. The size and spatial localization of the peak
provides a measure of similarity in shape and mode.
Third, the HT method is robust when random data
are introduced by poor image segmentation. Random
image points arc unlikely to contribute coherently
to a single bin of the accumulator and thus produce
only a low-level background of counts in the array.

A more serious problem than random data is data
from the boundaries of shapes other than those being
searched for. These boundaries can produce struc­
tured backgrounds, and some care must be taken to
either eliminate or identify such situations. Finally,
the HT can simultaneously accumulate evidence for
several examples of a particular shape class that
occurs in the same image. In general, each instance
of the shape simply produces a distinct peak or
cluster in the accumulator array.

The principal disadvantage of the standard imple­
mentation of the HT is its large storage and
computational requirements. The determination of
q parameters, each resolved into z imervals, requires
an accumulator of z' elements, which can be
prohibitively large if either z or q is large. The
major computational cost of the algorithm is the
calculation of parameter-cell-parameter surface
intersections. In the simplest case, the parameter



surface spans (q - 1) of the q parameter dimensions.
so the number of calculations is massive and
increases exponentially with the dimensionality of
the problem. The efficiency of the HT can be
increased by devising methods that use small-sized
accumulators or that use extra data to restrict the
range of parameters to be addressed.

Early analytical work on the properties and
performance of the HT concentrated on the effect
of statistical measurement error on the position and
the localization of parameter peaks. Shapiro',S·6
researched the variance of parameter estimates as a
function of measurement error for transfonns in
which each image or feature point produced a single
vote in parameter space. Sklansky' suggested a
geometric construction for straight-line detection
that could be used to investigate the precision of
curves derived from estimated parameters. This
graphical technique was extended by Shapiro and
lannino" to address the case of noisy image mea­
surements. and was used to derive results relating
quantization errors to the accuracy of parameter
estimation. These guides proved useful in
determining accumulator quantization.

Maitre's' work is the most recent concerning the
effects of random image noise on the density of
counts in parameter space.

The HT has proven valuable for solving many
machine vision problems. since straight lines and
simple polygons occur in most natural and man­
made scenes. For example. a remotely scnsed image
of an inhabited area will contain an abundance of
linear features (e.g.• roads and railroads) and simple
polygonal features (e.g., buildings. parks, and farm
fields). Even complex objects can often be identified
by their distinctive combination of these basic
features.

One of the main characteristics of the HT is that
it consists of a series of fairly simple calculations
carried out independently on every feature in an
image. The following text discusses recent
developmcots in the implementation of the AT with
real-time hardware. as well as efforts to capture the
AT's inherent parallelism on specialized parallel
architectures. Most of these effons consider only
the implementation of the (p. 8) line-rmding HT.

Hanahara et aI. ID implemented a (p. 8) line­
finding HT that pipelines the p intersection
calculation and the accumulator increments. Tbey
implemented their system in standard TIT.. (tran­
sistor-transistor logic) medium- and small-scale
integration circuits using a Motorola MC68000 as
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the main processor. The process, which includes
edge detection. HT calculation. accumulation. and
peak detection, was found to take 0.79 seconds for
1024 feature points. Baringer1l proposed an archi­
tecture called PPPE (parallel pipeline projection
engine). which uses the ideas of the Radon transform
as a projection operation to produce a real-rime
hardware implementation of the HT. A set of VLSI
(very large scale integration) chips is currently being
designed. and achievement of real-time implemen­
tation of the Radon transform using only ooe or
twO ICs is expected.

The Radon transfonD. of a function is defined as
its line integral along a line inclined at an angle e
from the y-axis and at a distance from the origin.
Basically. the Radon transform maps the sp3tial
domain to the distance/angle domain. sometimes
referred to as me sIS space.

Several authors have investigated the implemen­
tation of the HT on currently available SIMD (single
instruction multiple data) architectures. a type of
digital computer. These architectures usually consist
of square arrays of simple processing elements (PEs)
connected so that each can communicate with its
four or eight neighbors. All processors concurrently
execute the same instructions on different items of
data.

Lil2 considered two schemes for running his fast
HT (FHT) on SIMn architecturc. In the first scheme.
each PE is assigned an image feature, and the
coordinates of a parameter cell are broadcast
simultaneously to every PE by a central controller.
Each PE decides whether the hypcrsurface generated
by its image feature intersects the cell; if so. the
PE sends a vote back to the controller. The votes
from each PE can be summed by the central
controller and stored for later analysis. In the second
scheme, each PE is assigned a volume of parameter
space and the image features are broadcast. The
choice of method depends 00 the number of available
PEs. the number of image features, and the number
of parameter cells. For the standard HT the number of
parameter cells increases exponentially with
dimensionality of the problem; therefore. the first
alternative is likely to be the most feasible.

Little et al,u describe a possible implement.ation
of the HT on an architecture called the connection
machine. 1b.is architecture is similar to the SlMD.
but in addition to PEs communicating with ncar
neighbors. a hardware router implements rapid
communication between any pair of processors. The
architecture is based on a 12-dimensional hypercube



such that every processor can be reached from any
other processor by traversing, at the most, 12 edges
of the cube. Their paper concentrates on aspects of
programming and addressing but gives no data on
the efficiency gained by using this parallel
implementation.

Guerra and Hambruschl4 presented two efficient
algorithms for HT line·finding on an n x n mesh
using the massively parallel processor (MPP). Their
first method, the block algorithm. involves
partitioning the mesh into submeshes. performing
projections in these submeshes, and then combining
partial results. Their second method is similar in
that it projects by tracing lines through the image
in a pipeline fashion. Although this tracing algorithm
is asymptotically optimal in terms of complexity.
Guerra and Hambrusch expect the block algorithm
to outperform it in actual implementation.

The HT has attracted attention from researchers
interested in human vision, since the HT is a prime
example of the ideas of the connectionist school of
artificial intelligence. IS The unifying principle of this
approach to intelligence is that low· and medium·
level vision tasks are done by massively parallel,
cooperative computations on large networks of simple
neuron-like units. Low-level, pixel-based properties,
such as edge or gray-level estimates, can be
represented by nodes in a separate parameter
network. Each node records a measure of confidence
for the occurrence of its feature or parameter value;
direct connections between the two networks defme
ways in which nodes can influence these confidence
values. Different connection patterns can be used
to impose different image-space to parametcr~space

mappings; i.e., connections can be established so
that if many low~lcvel units that lie on a straight
line have high confidence, then the higher level
unit describing the parameters of this line will acquire
a large confidence value. The major characteristic
of this implementation is the tremendous number of
feature and parameter units needed and the very
large number of connections required between them.

Blanford's16 adaptation of the dynamically
quantized pyramid method can be naturally mapped
to a parallel pyramid machine. However, one possible
problem with this algorithm is thaI it requires some
multiplication and division operations, which are
inefficient on the simplest bit serial processors.

Fischler and Firschcin11 showed the HT to be an
algorithm that can be implemented on a blackboard
or database architecture. They invoke a maxim, which
they call parallel guessing, that says that it is often
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computationally beneficial to try to guess a solution
rather than to exhaustively compute a solution. They
suggest computing the HT incrementally and then
terminating computation when a sufficiently
significant parameter peak has been identified. II

An approach using statistical signal detection
theory is effective for curve detection in digital
images corrupted by random noise. 19 This approach
is a refinement of the HT and results in improved
perfonnance, both in deciding the presence or
absence of a curve in the image and in dctcnnining
the location of an existing curve in the image.
Location estimation pcrfonnance is measured by
deriving equations for both the HT and the signal
detection theory for the probability of correctly
estimating the location of a curve in noise. The
perfonnance of these two approaches are compared
for various signal·to-noise ratios (SNR) and found
to be significantly different for some SNR values.

5.0 Region-Based SegmentBtion
Region-based segmentation techniques are

primarily used to identify various regions with similar
features in onc image. Region·based approaches are
generally less sensitive to noisc than the boundary­
based methods. However, they can be considerably
more complex to implement. I

Many region-based segmentation techniques are
presented in this section, including region-growing
and merging, relaxation labeling, symmetric near­
est neighbor, hierarchical segmentation, and shadow
boundary segmentation, Several well-known image
processing techniques are described in the context
of region-based segmentation, such as clustering,
pattern recognition, edge-detection, noise reduction,
and three-dimensional object recognition. An inter­
esting application of region-based segmentation is
discussed last segmentation of handwritten numerical
strings.

5.1 A Note on Color
The analysis of color images has received

relatively little attention in computer vision research,
even though color plays an important role in human
vision and provides useful information for many
image analysis applications. One simple, powerful
method for region-based segmentation of color
images uses edge-preserving fiJters.20 The method
uses a new measure of color edge infonnation based
on histograms of absolute color differences. This



measufC can be used for smoothing, segmentation.
and edge detection. Methods for multi-edge­
preserving smoothing and region-based segmemation
were also dcveloped.20 A global histogram of absolute
color (or gray scale) differences provides a good
measure of edge information in an image, because
the likelihood that an absolute color difference occurs
in the interior of a region decreases monotonically
with increasing magnitude of the difference.

5.2 Region-Growing and Merging
One class of region-based techniques involves

region-growing. The image is divided into
atomic regions of constant gray levels. Similar
adjacent regions are merged sequentially until
the adjacent regions become sufficiently different.
The crux of this procedure is the selection of the
merging criterion. Some merging heuristics follow:

• Merge two regions, Ri and Rj, if w/Pm > 8t
where Pm = min (Pi. Pj); Pi and Pj arc the pcrim~

eters of Ri and Rj; and w is the number of weak
boundary locations (pixels on either side have a
magnitude difference less than some threshold y).
The parameter 81 controls the size of the region to
be merged. For example, 81 = 1 implies that two
regions will be merged only if one of the regions
almost surrounds the other. Typically, 81 = 0.5.

• Merge Ri and Rj if wll > 92. where I is the
length of the common boundary between the two
regions. Typically 92 = 0.75. The two regions are
merged if the boundary is sufficiently weak. This
step is often applied after the first beuristic has
been used to reduce the number of regions.

• Merge Ri and Rj only if there are no strong
edge points between them. Note that the run-length
connectivity method for binary images can be
interpreted as an example of this heuristic.

• Merge Ri and Rj if their similarity distance is
less [han a threshold. Insread of merging regions,
the segmentation problem can be approached by
splitting a given region. For example, the image
could be split by a quad-tree approach and then
similar regions could be merged.

5.3 Hierarchical Segmentation
Gambotto's21 hierarchical segmentation algorithm

can process all regions (in a region~growing manner)
in a parallel and recursive fashion. This algorithm
simultaneously compmcs the statistical propcnies
of homogeneous regions, as well as a gradient
estimate over the boundaries of the regions to detect
the contouTS.
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The algorithm was applied to a synthetic image
that contained. four regions; each region was obtained
by adding a pseudorandom Gaussian noise to a
constant value; the variance of the Gaussian noise
was equal to 16. and its dynamic was 190. The
algorithm produced excellent results, considering
the noise in the image. The results of Gambatto's
report are given in two phases: the noisy image is
first passed through an initial segmentation and then
through a final segmentation phase.

S.J.t Segmenting Contour Line Images
The Gorman and Weillll segmentation algorithm

groups contour lines into regions. Their melhod is
based in part on a parallel-adjacency criterion, which
is defmed in their paper. The algorithm was applied
to several contour line images, and the resultant
regions were given. The apparent key to this
algorithm is the way in which it combines image
properties to recognize line regions. The main steps
in segmenting contour line images with this algorithm
follow:

• Split lines at all junctions (bifurcations and line
crossings).

• Perform piecewise straight-line fitting SO that
each line is comprised of straight-line segments.

• Construct an adjacency list of the straight-line
segments. This segment adjacency list (SAL)
contains, for each segment, all other segments that
meet the criteria for proximity, approximate
parallelism, and nonzero overlap with respect to
that segment.

• Merge the segments of the SAL into groups on
the basis of pairwise similarity of line segments
due to the parallel-adjacency criterion. The result
is the segment group list (SOL).

• Consider each line in its entirety (made up of
the straight line segments) and group the lines, again
in pairwise fashion, based on line adjacency and
similar composition of line segments from the SOL.
The result is the line region list that contains line
composition of each contour line region.

The performance of this algorithm is dependent
on six parameters: maximum distance tolerance
between adjacent segments, minimum overlap
tolerance between adjacent segments. maximum
angular tolerance between adjacent segments.
minimum number of segments per group and lines
pcr region, and average line spacing. The
experimental results show that the regions detennined
by the algorithm, when applied to both synthetic
and real images, arc consistent.



5.3.2 Double Hierarchy of Fusion
Gagalowicz and Monga23 report a method of

region-growing that defines a double hierarchy
of fusion of adjacent region pairs. The first level of
the hierarchy is defined by the increasing values
of a merge criterion and the second one by the
order of the fusion criteria used successively.

This double hierarchy allows the algorithm to
create sequentially more and more global segmen·
tations. They showed that it was easy to introduce
semantic fusion criteria due to the richness of the
infonnation available at each iteration. The algorithm
did not derive its strength from the classical criteria
used, but from the merge strategy, the order, and
the succession of the various criteria.

5.4 Global-Local Edge Coincidence
Hall24 notes that segmentation may be either edge­

based or region-based. The edge-based method works
wcl1 but is sensitive to local noise. A so-called global
method is more stable, since it considers the over­
all characteristics of the image; however, false
regions may often be detected. For perfect region
segmentation. the global region boundaries should
coincide with the local edges. The global-local edge
coincidence (GLEe) segmentation method detects
the coincidence of the region boundaries (or global
edges) and local edges. Since the global edges arc
obtained from the global characteristics of the image
(for instance, the histogram of the intensity of the
image). the local noise edges will not be detected
in the global edge map; however, perfect region
segmentation is barely obtained by using only the
intensity information. Basically, GLEe is a merge­
oriemed region segmentation method. Two regions
arc merged if the common boundary between these
regions does not match the local edges.

5.S Implementing Data Structures in
Pixel-Based Segmentation

Region-based segmentation methods require the
use of other data structures in addition to the original
pixel array. For merging, we can represent the regions
(at a given stage of the merging process) as nodes
on a graph. with pairs of nodes joined by arcs if
the corresponding regions are adjacent The statistics
associated with each region can be stored at its
node; if it is possible to compute the statistics for
a (tentatively) merged pair of regions directly from
those for the individual regions. the merging process
can be done directly on the graph, without
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reaeccssing the original image. For splitting. the
quadrants, subquadrants. etc., can be represented
at a given stage of the process as nodes of a quadtree,
where the root is the whole image and the
quadtree nodes correspond to its quadrants. Here,
it is necessary to refer to the original image to
compute the statistics of the subregions each time
a region is splir.

The fact that region-based segmentation methods
may require access to the image data in an arbitrary
order is a potential disadvantage when the image
must be accessed from peripheral storage. Thus.
such methods are best applied to small images.
However. region-based methods do have a potential
advantage: in principle, they can be designed to
incorporate information about the types of regions
(si7.es. shapes, colors, textures. etc.) that are expected
to occur in images of a given class; thus. merging
or splitting can be inhibited if eil.her would violate
restrictions on the expected types of regions. As a
classic example, a region-based approach can be
used to "grow" or "track" global edges (or curves)
in an image. starting from pixels that have high
edge magnitudes and accepting new pixels (Le.,
merging thcm with the edge fragments already
constructed) if they continue along these edges.

Another advantage of these so-called pixel-based
segmentation methods over normal region­
based segmentation is that pixel-based schemes can
be greatly accelerated if parallel hardware is
available. TIlis rapidity is accomplished by dividing
the image into parts and assigning a separate
processor to segment each pan; the processors can
share global infonnation about segmentation criteria,
if desired, and they may also share neighbor
information along the common borders of the pans.
In principle, parallelism could also be used in region­
based schemes by assigning processors to regions
or to sets of regions, but this method would require
an extremely flexible interprocessor communication
scheme to allow processors that contain infonnation
about adjacent regions to communicate. In pixel­
based schemes. however, the image can be divided
into square blocks, for instance. so that the processor
responsible for a given block needs only to
communicate with a limited number of processors
that are responsible for neighboring blocks.2S

5.6 Clustering
Clustering refers to a class of algorithms used

extensively for image segmentation. Clustering
assembles unlabeled data by sets. or clusters. of



data points with strong internal similarity. Data point
values represent characteristic features of interest
such as grayscale. color brightness. contrast. etc.
During the cluster operation. the clusters are assigned
labels that arc mapped back into the: image. so that
the original pixel values arc replaced. These labels
can be thought of as "class membership" indicators.
Similarity is most commonly measured by a distance
function in feature space. It is generally desirable
to make this function independent of any relevant
image transformations being performed (e.g .•
rotation. translation. or scaling). A criterion function
is also used to measure the clustering quality of
any given partition of the image function values.

TIle basic clustering operation examines each pixel
individually and assigns it to the cluster that best
represents the value of its characteristic vector. This
assignment is done according to the selected measure
of similarity between the data point and the criterion
function that measures clustering quality. The process
is repeated. if necessary. until some condition is
satisfied by the current grouping of data points.
For example. if similarity between pixels is measured
in terms of the distance between the value of initial
cluster centers. then the cluster centers are assigned
the initial values M I = M - Sand M2 = M + S.
where M is the mean feature vector as measured
over the entire image and S is the slandard deviation.
Clustering. then, would be achieved in the following
steps:

• Assign feature vectors to closest cluster ccnters.
• Compute new cluster centers.
• Compare new and old cluster centers: jf they

arc close enough. then tenninate the algorithm; if
not, !hen iterate the procedure from the second step.

The following issucs must be considered during
clustering:

• The choice of a similarity measure.
• The choice of a criterion function.
·Detennination of the appropriate number of

clusters.
• Establishing properties of solutions.

5.6.1 Relaxation Labeling
Relaxation labeling provides an improvement to

the traditional clustering tcchnique. Instead of
mapping a single cluster label back: to each image
point. the probability that an image point belongs
to each of the clusters is mapped back to the imagc.
A relaxation process is applied where similar labels
will support each other. whereas different labels will
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compete over neighborhoods. The probabilities arc
iteratively updated until convergence is reached.

Relaxation was first introduced by Rosenfeld and
Kak.3 who defme it as an iterative approach to
segmentation. The approach makes fuzzy or proba­
bilistic classification "decisions" at every point in
parallel and at each iteration. It then adjusts
these decisions at successive iterations based on the
decisions made at the preceding iteration for
neighboring points. The technique is called relaxation
because it resembles a class of iterative numerical
methods. The approach is order-independent and
can be greatly accelerated by parallcl processing.
Since each iteration is parallel. only a few iterations
arc usually necessary. Relaxation is more powerful
than one-shot parallel methods. since its initial
classifications are refined at each iteration. based
on the local context. This approaCh makes tentative
classifications at each stage and repeatedly
reconsiders them. unlike other methods that usually
make decisions only once at each point (except in
cases where sequcntial methods allow backtracking).

Relaxation labeling estimates the relative
likelihoods of nodes in a graph and then reduces
the labeling ambiguities in an image. The problem
can be fonnula.ted by defining the following: a set
of nodes. a set of labels for each node, an initial
assignment of probabilities for the labels of each
node, a sct of arcs between nodes to indicate
neighboring relations. a constraint relation between
node labels. and an updating rule to refine the
probabilistic assignment of labels.

Some problems associated with relaxation labeling
include the choice of an appropriate updating formula
for the probabilities. difficulty in assening
convergence. and difficulty in cstablishing properties
of the solution.26

Kittler and l11ingworth27 reviewed various
relaxation labeling algorithms [hat detailed the need
to incorporate contextual information into the
interpretation of objects. Their literature review
highlighted the following technique. Ullmann (Trans.
IRE(IT) 8(5):74-81. 1962) exploited constraints
imposed by triplets of pattern primitives to
substantially reduce the errors that occur with a
pattern recognition system after a learning sequence
of fixed length. Clowes (Artijiciallnte.lligence 2:79­
116. 1971) and Huffman (Machine Intelligence
6:295-323. 1971) used constraints between straight­
line segments to eliminate nonsensical interpretations
of an ideal line drawing representing a set of
polyhedra.



The pioneering work in relaxation labeling is
normally credited to Waltz (The Psycholog)' of
Compuur Vision, McGraw-Hill, 1957), who
considered the problem of line-drawing interpretation
studied earlier by Oowes and Huffman. His
fonnulation of the consistent labeling problem
allowed only unambiguous interpretation of line
segmcnts, achieved by sequcntially filtering out
inconsistent label pairs of connected segments. This
approach was then popularized by Rosenfeld et al.
(IEEE T,.nsacrions SMC 6(6):420-433. 1976), who
showed that Waltz's filtering can be carried out in
parallel and could therefore be implcmented as a
network of processors. each associated with one
object in the image.

However. the problem considered by Waltz is
somewhat unrealistic. since no information as to
the identity of each line segment is assumed to be
available. In practice. when analyzing real imagery,
it is reasonable to assume that some useful infor­
mation could be extracted from the raw image data.
Conversely, the edge representation of a scene is
unlikely to look like an ideal line drawing. Rosenfeld
et al. argued that the line-drawing interpretation is
bener formulated in the continuous domain than as
a discrete relaxation, even thoogh the latter enforces
unambiguous labeling. Fuzzy set and probabilistic
frameworks were considered in litis respect. but the
latter seems to have attracted the most attention to
date.

Relaxation has been applied to general cases of
improving multi-label classification of multispec­
tral data, especially remotely sensed data and color
images. Most of these applications have been
approached in the same way. Model clusters arc
defined in the measurement hyperspace either by
automatic clustering or by hand segmentation of
ground truth data. The initial label probabilities are
calculated as a simple function of distance betwccn
the models and the pixel data. The interrelation­
ships among labels are derived empirically from
ground truth data by measuring and globally
averaging tranSitional probabilities, correlations, or
the mutual infonnation of local pixels. Upon applying
these methods. most investigaton; reponed a sharp
initial decrease of severa.l percent in classification
error rates. followed by a smaller increase as the
process converges to a stable solution.

Relaxation labeling has been well used in matching
problems. such as two-dimensional (2-D) shape
matching or stereo cotTCspondence. Representative
feature points, such as corners. arc extracted from

9

a template shape and a corresponding real·world
image. Initial probabilities can be assigned on the
basis of the degree of match between these chosen
features, and then these probabilities can be itera­
tively reinforced on the basis of the occurrence of
matches between other features on the template and
their respective real-world features.

The stereo correspondence problem is similar.
Features are extracted in two images; the features
of one image can be regarded as nodes of a graph,
and the features in the second image are possible
labels for the nodes. The initial probabilities of labels
is a simple function of the distance between node
and label points in the two images. Node and label
assignments are then compatible if similar neigh­
borhood States exist in both images. Although these
relaxation schemes might not have great
computalional advantages relative to other standard
matching methods, they are more tolerant of image
distortion. In addition. the reinforcing processes are
local. so missing matches can be tolerated; therefore.
occluded objects can be recognized.20

5.7 Symmetric Nearest Neighbor
A powerful symmetric nearest neighbor (SNN)

filter can be used for edge-preserving smoothing of
gray-scale images. It uses both spatial and nearest­
neighbor consuaints on image pixels to smooth an
image. To compute the gray value for the center
pixel in a neighborhood. it selects half the number
of pixels in the neighborhood: from each pair of
pixels located symmetrically on opposite sides of the
center pixel, the one that is closer in gray value to
the center pixel is selected. In case of tied pairs. the
mean of the pair is used. Then the mean value of
those selected is substituted for the original value,

To find SSNs for a multiband image, the following
procedure was proposed:

• Compute the multidimensional cumulative
histogram of absolute color differences.

• Compute the absolute color differences between
the two pixels in the pair and the central pixel. for
each symmetric pair of neighbors in a neighbor·
hood.

The pixel with the higher frequency in the
cumulative histogram (smaller color difference) is
selected. [n case of ties. the mean of ~e symmetric
pair is used. The mean of the values of the set of
pixels selected is assigned to the center pixel on
each band.

The color·SNN filter can be iterated. and it
converges without producing anifacts; normally only



minute changes occur in the image after two to
three iterations. The hardware implementation of
the color·SNN using a 3 x 3 neighborhood should
be almost as straightforward as in case of the basic
SNN filter.

process many parameters. and they give good results
for many different types of images even when using
the same set of parameter values for these different
images.

where Sp represents a peak area between two valleys,
V) and V2 (the lower and upper bounds.
respectively). and FWHM is the full width of the
peak at half·maximum. Ta denotes the overall area
of the histogram. that is, the total number of pixels
in the specified image region.

3. Thresholding of a color image is executed using
two threshold values derived from the lower bound
VI and the upper bound V2 for the most signifi·
cant peak in the set of three histograms. This
thresholding operation partitions an image region
into two sets of subregions. One set consists of
subregions corresponding to the color attributes
within the threshold limits; the other is a set of

5.9 Munsell Color Coordinate System
Tominaga21 presents a method for segmenting a

color image into meaningful regions using three
different perceptual anributes of color: hue, light·
ness. and saturation. 11lis segmentation technique
is based on a recursive thresholding method using
three histograms, one to depict the range of each
attribute. The Munsell color coordinate system (hue.
value and chroma) is the color space used to best
represent human color perception. This color
specification method predicts the color perception
of a measured image. A practical segmentation
procedure is then presented. A set of subregions
with uniform color is extracted from the recursive
thresholding on the peak of the histogram set. This
operation is repeated to generate a sequence of
uniform color regions in the image.

Tominaga describes the segmentation procedure
in six key steps:

I. Histograms are computed for each attribute of
hue, value, and chroma, using either the entire image
as one region or using specified TCgions within the
image. The histograms are smoothed by a moving
average to eliminate small peaks.

2. The most significant peak is found in the set
of histograms. Peak selection is based on a shape
analysis performed on each peak in the histograms.
First, some clear peaks are isolated as candidates.
Next, the following criterion function (f) is calculated
for each candidate peak:

5.8 Connected Components Algorithm
Color segmentation combines edge-preserving

smoothing with a simple connected components (CC)
algorithm. Using the CC, adjacent pixels are said
to be connected if the likelihood or frequency of
the color difference is large (so the magnitude of the
difference is small). The algorithms make use of
the combined information in a twcrband image.

First. the image is smoothed by the color-SNN
filter. Normally, about three iterations of 3 x 3
filtering are needed to sharpen edges and smooth
homogeneous areas. To make edges even sharper
and to avoid mismerging of regions at some critical
points. bands are edge.enhanced with a gray-scale
filter known as a MINRANGE filter. The
MINRANGE replaces the center value of a 3 x 3
ncighborhood with the mean of the 4-pixel comer
subgroup that has the smallest range. Because sharp­
ening is applied to almost completely smoothed
bands. no anifacts are generated.

After the color image is smoothed. it is segmented
by a two·pass CC algorithm. Here, adjacent pix.els
are said to be connected if the likclihoo::! or frequency
of their absolute color differences are sufficiently
large. The only parameter is a threshold, which is
expresscd as a percentile of frequencies supplied
by the user.

The two-band histogram of absolute color
differences is then compuled. It is first convened
to a two-band histogram of cumulative frequencies
and then to percentiles of their distribution.

The two passes of the CC algorithm are the same
as those of the standard algorithm for binary images.
Row by row, pixels are assigned labels by compar­
ing each pixel with the four adjacent pixels above
or to the left, which have already been labeled as
the image is scanned from top to bottom and from
Jeft 10 right Then. in the second pass. the pixels
with componcnt·equivalent labels are relabeled
uniquely.

Therefore, the CC algorithm provides a new
measure of edge infonnation for color images based
on cumulative histograms of absolute color
differences. CC·based methods may be used for edge­
preserving smoothing and segmentation. Such
methods are relatively simple: they do not have to
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f= SpiT. (IOOIFWHM). (3)



subregions with the remaining attribute values. Only
the former set is extracted.

4. The thresholding process is repeated for the
extracted subregions. The area of subregions
decreases with each succeeding threshold.. This
process leads to the detection of the most significant
cluster. If all the histograms become monomodal,
then the cluster detection is finished. One-step
segmentation is thus completed, and a suitable label
is assigned to the latest extracted subregions.

5. The image labeled by the above segmentation
is smoothed on the basis of pixel connectedness.
This refinement is intended to smooth oUt noisy
boundaries and eliminate small regions and short
lines. The 8-connection property is used in this
smoothing algorithm. The operation uses multilevel,
rather than binary, smoothing.

6. Steps 1 through 5 arc repeated for the remaining
regions. 1be segmentation process is terminated when
one area is sufficiently small in comparison to the
original image size. or when no histogram has
sufficient peaks. The remaining unlabeled pixels
are regarded as noisy fluctuations a.'ld are merged
into neighboring labeled regions of similar colors.
Thc mean values of the color specifications are
computed, and a color difference formula is used
to choose the nearest color region.

This method has been developed for segmenting
a color image into regions with perceptually uniform
colors by means of the three Munsell color attributes.
The color specification process was first presented
Co predict color perception of measured images.
Experimental results presented by Tominaga
demonstrate the feasibility of this method.

5.10 Pattern Recognition Using the
Commission Internalionale de L' Eclairage
Color S)'stem

A new computational pil1tern recognition technique
is being used by Celenk and Smith29 to segment
color images of natural seenes. This technique is
an unsupervised operation that detects imagc clusters
using one-dimcnsional (I-D) histograms of the color
or feature coordinares in the selected uniform
color system or constructed feature space. The
detected clusters are then extracted by projecting
and separating the classes two at a time. TIlls method
tends to integrate the statistical data analysis concept
of panern recognition theory with the fundamental
premises of human color perception. It does not
operate blindly: an image segment is accepted only
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after alI of its spectral neighbors in the uniform
color space are considered. Although this algorithm
was developed as an unsupervised operation, it can
be implemented in a supervised mode by introducing
external knowledge or training prototypes to the
system.

The authors' recumve: procedure tends to integrate
the fwxlamemal methods of human color perception
with the statistical data analysis concept of math­
ematical pattern recognition. It detects image clusters
efficiently and dctennines their boundaries correctly
in the CIE unifonn color systcm (L·, a·, b·), which
is selected as the feature space. With each iteration,
thc algorithm detects the most prominent cluster or
mode and all of its spectral neighbors in the unifonn
color space. To makc thc detection process compu­
tationally efficient, the procedure first approximates
the underlying clusters with circular-cylindrical
volume elements. This approximation provides the
best estimates of the 3-D color distributions for
these clusters in accordance with the color perception
mechanism of the human eye. The boundaries of
each volume element arc composed of two constant
luminance planes, two constant circular chroma
cylinders (or loci), and two constant angular hue
planes (or loci). Each is derived from the sequentially
constructed 1-0 zero-, first·, and second-order
parametric histograms of the cylindrical coordinates
(i.e., L· =lighmess, H· =hue, e- = chroma) of the
unifonn color space. To extract the image region
that correctly corresponds to the most prominem
cluster (Le., without significantly dcfonning its
spatial configuration in the image domain), the color
vectors lying within the range of the 3-0 color
distributions of this mode and one of its spectral
neighbors are projectcd omo a line so that the
projected color points are well separatcd and
clustered for 1·0 thresholding. This projecting
and thresholding process is repeated until the selected
modc is isolated from all of its ncighbors in the
unifonn color space. The orientation of the line
used for every projection is determined according
to the Fisher criterion postulated as the measure of
effectiveness of a linear discriminate function.

Ce1enk's and Smith's tcchnique minimizes the
error rate associated with region isolation in
the feature space. The computational cost involved
in region (scgment) extraction and cluster detection
is significantly reduced by using only 1-0 image
histograms.

The 1976 CIE (L*, a·, b*) uniform color system
used in Cclenk's and Smith's procedure was chosen



as the feature space to best approximate human vision
perception. This system implicitly satisfies the
condition that numerical differences in the feature
space should be directly proportional to perceptual
differences in the human visual system.

5.11 MotionaBased Segmentation
Bouthemy and Rivero30 present a new approach

to the motion-based segmentation problem. The
designed formalism includes 2-D motion models
and relies on explicit partial motion infonnation
through a stochastic approach. which allows the
computation of a likelihood ratio test embedded in
a split-and-mcrge procedure. Therefore, regions are
structured according to motion homogeneity criteria
considered in a hierarchical way: segmentation starts
with as simple a motion model as possible, and
after a complete iteration cycle. a more elaborate
motion model can be taken into account (e.g., a
linear one).

The authors developed a new region-based
segmentation method that relies on motion
infonnation and follows a stochastic approach. The
criterion for a spatio-temporal homogeneity decision
is the computation of a proper likelihood ratio test
based on some motion model. They present a constant
motion model and a linear model in a hierarchical
manner within a split-and-merge procedure.

S.U Edge Detection and Noise Reduction
5.12.1 Statistical Theories of Edge Detection

Edge detection is critieal to segmentation and,
thus, to computer vision, since edges are essential
to the segmenting of regions. Results of Huang's
and Tseng's3l research on edge detection are noted
here. They use a statistical theory of hypothesis
testing to apply filtering and edge detection
simultaneously to a noisy image. A simple decision
rule is derived, and the application of this result to
more complicated situations is discussed in detail.
The decision rule can decide whether there is an
edge, a line, a point, a comer edge. or just a smooth
region in a given small neighborhood. Computa­
tional by-products of the decision rule are the mean
and the variance of the neighborhood. which can
be used for split and merge analysis. Utilization of
the mean can essentially filter the neighborhood
pixels. Huang's and Tseng's new technique was
implemented to run on a VAX-l1n80, and their
experimental results indicate a high feasibility for
the method. The generalization to more generic cases
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is also discussed: HaraIick's sloped-facet model
seems to be the most suitable case. The decision
rules used by Huang and Tseng are computationally
intensive. but besides simply detecting edges they
also yield line and point detection. as well as good
estimates of the region's mean and variance for
funher analysis.

5.12.2 Markov Random Fields
Goutsias and Mendel32 also address the issue of

noisy images. They use a doubly stochastic image
model and assume that the image is the sum of
the realizations of two independent random fields: the
uncorrupted imagc and the noise field, both of which
consist of independent. identically distributed,
Gaussian random variables. Their image
segmentation tcchnique represents the image with
a semi-Markov random field that has been corrupted
by additive white noise. Markov random fields
(MRFs) are 2-D. noncausal. Markovian stochastic
processes. 33 Goutsias and Mendel develop an
adaptive Bayesian parameter estimation/image
dctection algorithm to estimate the unknown
image and its underlying parameters in an optimal
manner. Their proposed algorithm is demonstrated
during the smoothing and segmenting of two
4-gray-levcl real images. The scmi-MRF is defined
in tenns of two. not necessarily independent. random
fields: an MRF that describes the statistical behavior
of the boundary pixels (pixels that are located al
the boundary between adjacent regions of the image),
and a random field that describes the statistical
behavior of the regional pixels (pixels that arc located
inside a region) of the image.

Another use of MRFs is documented by Murray
and Buxton,34 who present results of computer
experiments with an algorithm to perfonn scene
decomposition and motion segmentation from visual
motion or optic flow. The maximum a posteriori
(MAP) criterion is used to formulate the best
segmentation or interpretation of the scene. where
the scene is assumed to be made up of some fixed
number of moving planar surface patches. Their
Bayesian approach has two prerequisites:
specification of prior expectations for the optic flow
field. which Murray and Buxton model as spatial
and temporal MRFs, and a way of measuring how
well the segmentation predicts the measured field.
The MRFs incorporate the physical constraints that
objects and their images are probably spatially
continuous, and that their images are likely to move
quite smoothly across the image plane. To compute



the flow predicted by the segmentation. a method
for reconstructing the motion and orientation of
planar surface facets is used. Then the search for
the globally optimal segmentation is perfonned using
simulated annealing. Their most important result
was the formulation of scene segmentation from
visual motion as an optimization problem that is
weakly constrained, or guided. by prior physical
expectations.

Two serious problems were noted in Murray's
and Buxton's experiment. First. lhe current
implementation of the segmentation process~
the specification of the number of objects likely to
be found. The more serious problem is that the
algorithm is computationally inefficient.

5.12.3 Hierarchical Edge Detection
McLean and JemiganlS discuss the design of

efficient edgc-dctection operators. The need for such
operators is reviewed and a set of design and
pcrfonnance criteria is developed. 1bcse criteria
are then used to evaluate existing edge·detection
teChniques, as well as to suggest some new
approaches to this important problem.

The following requirements for an edge detector
arc considered:

• capable of working in a purely local context.
• efficient when applied in any order (it cannot

derive efficiency by exploiting redundancies when
applied in a particular fashion),

• insensitive to the orientation or to the magnitude
of the edge.

• work well in the presence of noise.
• relatively insensitive to threshold specifications.
Mclean and Jernigan describe a method of hier-

archical edge detection (HED), which is based on
nonlinear edge detectors. HED is a two-step process
consisting of a coarse-oriented gradient measure­
ment followed by the application of a particular
orientation of one of the efficient l-D edge detectorS.
The gradient preprocessing step serves as an initial
mter. so that only those pixels which exceed the
gradient threshold become candidates for the more
expensive. oriented, edge-detection scheme. In this
manner. the HED scheme becomes very efficient:
the time required is related to the amount of edge
and noise activity that exists within the image.

The burden of edge detection, then, falls heavily
on the gradient preprocessing scheme used. since it
must not remove true edges and must block as many
nonedged pixels as possible. Also. it must be
directionally sensitive. so that the correctly oriented
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edge detector wilt be applied. Simple logic tests
were used to determine edge orientation after the
two gradients were thresholded.

McLean's and Jernigan's HED-based method is
shown to perform well. An encouraging result of
their work: is that effective edge detection can be
perfonned while maintaining a highly structured.
highly localized approach to this aspect of image
processing. 1be HED scheme is well suited for
inclusion in systems that encompass multiple levels
of processing. A future research task.. and follow
on to this effort. could investigate the possibility of
adapting the edge extraction process to follow
COntours, thus eliminating wasted processing.

5.13 Splitting and Merging
5.13.1 Attributed String Matching
and Merging

Tsai and Yu" give a new structural approach to
shape recognition that utilizes string matching with
merging. They first present disadvantages of
conventional symbolic string matching. which uses
changes, deletions. and insertions. Attributed strings
are suggested for matching, where each attributed
string is an ordered sequence of shape boundary
primitives that represents a basic boundary structural
unit (a line segment) with two types of numerical
attributes (a length and a direction). A new type or
primitive edit operation, called a merge. is then
introduced. The merge can be used to combine and
then match any number of consecutive boundary
primitives in one shape with those in another. The
resultant attributed string matching with merging
approach is then shown to be useful for recognizing
distorted shapes. Experimental results are also given
to prove the feasibility of this approach.

There were occasional erroneous classifications
for the following reasons:

• The number of boundary primitives for each
shape was limited to 10 to increase processing speed.

• The image resolution was low (128 x 128) for
the relatively high shape complexity.

• The three images selected for this test (pliers)
were similar in shape.

• The selection of thresholds and constants used
in the algorithms was not optimal.

• Poor computational accuracy resulted from the
exclusive use of integer calculations (to avoid
the relatively low-speed real-number computations
on the available microcomputer).

1be authors also test attributed string matching
with merging on images with no occlusion. They



suggest that some extensions to this approach are
possible. e.g.• the improvement of operation cost
functions. the inclusion of primitive splitting into
the malChing algorithm. more intelligent solutions
to the shape orientation problem. applications of
the proposed approach to recognizing occluded
shapes. etc.

5.13.2 Segmenting Range Imagery into
Planar Regions

A fast technique for segmenting range imagery
into planar regions is discussed by Taylor et al.31

Range images provide direct measurements of the
3·D surface coordinates of a scene. The technique
rapidly divides range imagery surfaces into regions
that satisfy a common homogeneity criterion. Key
features that enhance the algorithm's speed include
the development of appropriate region descriptors
and the use of fast region comparison techniques
for segmentation decisions. Their split·and-merge
algorithm bases its homogeneity criterion on a three­
parameter. planar surface description. in which
the three parameters are two angles (to describe the
orientation of the nonnallO the local best fit plane)
and [he original range value. Speed is achieved
because both the region splitting and the rejection
of merge possibilities can often be based on simple
comparisons of these two orientation parameters.

A fast. but more complex. region-to-region range
continuity tcst is also developed for use when the
orientation homogeneity tests are inconclusive.
The importance of merge ordering is discussed: one
particularly effective ordering technique. which is
based on dynamic criteria relaxation, is demonstrated
within their paper. Sample segmentations of simple
and complex range data images are also shown. and
the effects of noise and preprocessing are examined.

The authors state that splitting and merging are
done conservatively in their algorithm and produce
oversegmented images. Extra region boundaries arc
detected. but no major boundaries arc broken; thus,
the oversegmentation is due to fragmentation of true
regions. Additional merge phases with relaxed
homogeneity criteria are used to reduce this
fragmentation. No general procedure was offered
for selecting these values, but it was noted that the
values are not very sensitive for planar data, as
long as the general relaxation trends described by
the authors arc followed.

Overall. the authors' algorithm can rapidly
segment an object in a range image into a surface

14

composed of planar regions. The results from this
algorithm show that it could be an initial step to a
more complex merging technique.

5.13.3 Segmenting Aerial Photographs
A method of segmenting aerial photographs.

described by Laprade,3' approximates the image
intensity surface with planar facets. The
approximation is accomplished by using a split­
and-merge approach that is somewhat different than
those previously mentioned. A combination of an
F·tesl and a mean predicate is used to test the
uniformity of regions. When t,*"O regions are merged
into a new region. nine variables are needed to
compute the least·squares plane (the components
of the 3 x 3 matrix in the normal equations) for the
new region. These variables can be computed by
adding the corresponding variables for the individual
regions. This process leads to an efficient algorithm.

Features that differ from the standard split­
and-merge algorithm are described in Laprade's
paper. One such feature is the use of multiple
predicates. specifically the mean predicate and
F-test. at cenain stages of the algorithm. Regions
are allowed to merge with other regions during the
region-growing process. as opposed to the usual
practice of allowing a growing region to absorb
only quads that have not been assigned to another
region. Multiple predicates were used because the
F·test is not sensitive to the magnitude of differences
between regio • only to their uniformity.

in other words, two regions may differ only
slightly in their means or slopes, but if the residuals
of these two regions from their facet fits are much
smaller than these differences. then the F-test will
classify these regions as being distinct. ]0 addition
to the F·test, two regions were compared by look­
ing at the maximum difference between their facet
representations at points where the regions were
adjacent.

In general, the results of this technique offer an
improvement over the flat facet results. However.
there is one problem associated with this technique:
the splitting procedure finds very few uniform. areas
from which to grow regions. Such oversegmentation
is necessary to ensure that quads, which include
edges of regions. are split. If one region contributes
only a small pan of a quad's area. then the threshold
that controls splitting must be very tight to ensure
that splitting occurs. If the OUlput of an edge detector
is used to ensure that quads containing edge pixels
are split.. this key problem may be greatly reduced.



5.13.4 Other SpUt·and-Merge Approaches
Taylor et al.ll' developed a technique to rapidly

divide surfaces in range imagery into regions that
satisfy 3 common homogeneity criterion. The result
is a segmentation of the range infonnation into
approximately planar surface regions. Key features
that enhance the algorithm's speed include the
development of appropriate region descriptors and
the use of fast region comparison techniques for
segmentation decisions. Their algorithm takes a split­
and-merge approach, where the homogeneity criteria
is based on three planar surface description
parameters: two angles (to describe the orientation
of the nonnal to the local best-fit plane) and the
original range value. Speed is achieved because both
region-splitting and the rejection of merge
possibilities can often be based on simple
comparisons of only the two orientation parameters.
Another fast, but more complex. region-to-region
range continuity tcst is developed for inconclusive
orientation tesIS.

In Taylor et al.. the concept of the split­
and-merge technique is extended from gray-level
imagery to range imagery. The algorithm segments
range images into a set of planar surface regions
by using efficient planar region comparison and
multiple merge phases. Splilting and merging are
done conservatively, yielding overscgmented images.
Extra region boundaries are detected, but no major
boundaries are broken; thus. the oversegmenlation
is due to the fragmentation of true regions. Additional
merge phases with relaxed homogeneity criteria are
then used to reduce this fragmentation. No general
procedure for selecting these values is offered;
however, it is suggested that the values are not very
sensitive for data that are actually planar, as long
as the general, indicated, relaxation trends are
followed as instructed by the authors.

The algorithm is effective in the presence of a
large amount of noise; for this situation, image
filtering becomes imponant. Two central filtering
techniques are discussed: mean filtering is used first,
followed by median fJ.1tering. Also, varying window
sizes are used when the noisy image data are filtered
Other fIltering possibilities are suggested, including
filtering in parameter space and a hierarchical,
multiple·window, planar estimation scheme.

Merging options available for the split·and-merge
algorithm have varying effects on the results:

• Forcing single-pixel regions to merge with their
best-match neighbors improves the quality of the
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segmentation, particularly at the boundaries of true
regions.

• Allowing the algorithm to merge regions as they
are encountered. rather than in descending order of
size. work best.

• Considering the neighbors of a region by angle
value closeness for merging slightly degrades the
algorithm's perfonnance.

• Perfonning multiple mergings with successive
relaxed homogeneity criteria dramatically improves
the segmentation results.

The results from Taylor's algorithm suggest that
it is a potential "front-end" stage for a more complex
merging technique,

5.14 Object Recognition in 3-D Space
Hoffman and Jain.cl describe the recognition of

objects in 3-D space for use in computer vision
systems. Range images, which directly measure
3-D surface coordinates of a scene, are well suited
for this task. The authors present a procedure to
detect connected planar, convex, and concave
surfaces of 3·0 objects. Their algorithm is
implemented in three stages. The first stage segments
the range image into "surface patches" by a square­
error, criterion-clustering algorithm that uses surface
points and associated surface normals. The second
stage classifies these patches as planar, convex., or
concave; the classification is based on a nonpara·
metric statistical test for trend. curvature values,
and eigenvalue analysis. In the final stage, boundaries
between adjacent surface patches are classified as
crease or noncrcase edges, and this infonnation is
then used to merge compatible patches and produce
reasonable faces of the objcct(s).

The authors demonstrate that a square·error,
criterion-clustering algorithm performs well for
segmenting a variety of range images into patches.
Infonnation is provided about the geometric structure
of objects by producing surface patches that do not
cross over natural jump or crease edges. They chose
clustering to implement their segmentation phase
of the algorithm because clustering was found to
perform better than any edge-based technique.
Among all possible clustering algorithms, the authors
chose one, appropriately named CLUSTER. which
was developed by Dubcs and Jain.41

Hoffman's and Jain's procedure is useful forobjcct
representation and recognition based on surface
primitives. The authors used the method specifically
[0 find natural object faces in a range image. The
procedure segments and classifies range images and



merges the resultant surface patches. Thc clustering
algorithm chosen was shown to be effective over a
variety of range images for partitioning an image
into surface patches that do not cross over crease
or jump edges. A classification of these surface
patches as planar. convex, or concave is strongly
based on a nonparametric statistical tcst. Although
the tcst is simple in concept. it proves to be a
powerful tool for this application. A disadvantage
of the nonparametric test, however. is the need for
moderate sample sizes. which. in this technique.
translates into moderate patch sizes. The decision
tree for patch classification is designed to fall back
on curvatures and eigenvalues if a patch is too small
to make a meaningful decision by the trend test. A
crease edge-detcction technique is used to guide
the reconstruction of the natural object faces, which
were oversegmentcd by the cluster technique. It was
noted thal the eigenvalue threshold may have to be
increased for those images in which only a small
portion of the available dcpth values are used.

5.15 Shadow Boundary Segmentation
Hambrick et a1. 42 have documented a new

technique to interpret arbitrarily shaped surfaces
by segmenting and labeling thc shadow boundary.
The tcchnique is called the Entry-Exit Method of
Shadow Boundary Segmentation, and its distin­
guishing attributes can be summarizcd as fonows:

• Extracts shape·relatcd information from the
shadow cast by arbitrarily shaped objccts on known
surfaces.

• Works independently of a priori knowledge of the
scene, requiring only the shadow boundary and
the il1umination vector.

• Provides a general structure for shadow bound­
aries by identify-identifying the basic segments and
establishing the relationships among [hem.

• Defines the minimum set of segment types
required to describe and intcrpret a shadow.

• Delineates the possible identities of isolated
boundary segments.

• Automatically recognizes ambiguities caused by
occlusions. coincidences. and intermediate errors.

The shadow-handling technique is based on the
key principle that each point on a shadow boundary
is either an entry or an cxit point. That is, a light
ray projectcd across the boundary would either cnter
or cxit the shadow at that point. Segmcnts consisting
of entry points are callcd entry segments; thcy face
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toward the light source. Segments of exit points
are called exit segments; they face away from the
light source. A pair of cntry and exit segments whose
end points are aligned along light rays compare a
shadow-making line and its corresponding shadow
linc. An exit segment connected to the shadow­
making line is an occluding line. An entry segment
connected to the shadow line is the shadow of a
hidden shadow-making line.

A thresholding technique was developed by
Percz43 for segmenting digital images with bimodal
reflectance distributions under nonuniform
illumination. The algorithm works in a raster formal,
thus making it an attractive segmentation 1001 in
situations requiring fast data throughput. Thc
theoretical base for this algorithm is a recursive
Taylor expansion of a continuously varying threshold
tracking function.

5.16 Segmentation of Handwritten
Numerical Strings

Shridhar and Badreldin44 give a context-directed
segmentation algorithm for handwritten numerical
strings, in which connected numcrical strings are
split into their key components. The algorithm is
hierarchical in that it tests various hypotheses ranging
from the case in which the numerals are completely
isolated to that in which the numerals may be
connected, touching. or existing in overlapping fields.

Test results for this technique revealed that on
200 numerals. an accuracy of 92% was obtained.
The recognition errors were mainly due to the
pseudofeaturcs generated by the connecting tail that
was still present after segmentation. The authors
felt that these errors could be reduced by modifying
the recognition algorithm to account for the
pseudofeatures. Errors could also be reduced by
providing information to the recognition stage
segmenter that would indicate where the numerals
were disconnected, thus allowing the algorithm to
predict where the features of each numeral might
be computed.

Many assumptions were made in this test. The
algorithm assumes that the numeral strings wcre
written in a "nonnal" way, Le., each numeral in the
string had roughly the same height It was also
assumed that1be numerals were written on a specified
line with orientations limited to 20 degrecs from
the vertical. Finally, the number of numerals in the
string muSt have been specified prior to processing.



6.0 Thmplate·Matching Segmentation
One direct method of segmenting an image is to

match it against templates from a given list. The
detected objects can then be segmented om, and
the remaining image can be analyzed by other
techniques. This method can be used to segment
busy images, such as journal pages that contain
text and graphics. The text can be segmented by
template·matching techniques and graphics can be
analyzed by boundary·Coliowing algorithms.'

In 1980. Tsuji et a1.45 documented a dynamic
scene analyzer that separated moving objects (such
as animated films) from the background and anatp..cd
their motion patterns in dynamic line images. Since
the objects move and rotate in a 3-D world, occlusion
often occurs. and the shapes, sizes, and structures
of the moving object images change from frame to
frame. The background and stalionary objects may
also move in the images due to movements of the
camera while tracking interesting objects. The task
of the analyzer is to segment the scene into
meaningful constituents and to obtain a structural
description of each object that contains properties,
spatial relations, and motion patterns.

This flexible tcmplate·matching method finds
correspondence between regions and their respective
segments in a sequence of input frames. Also, the
analyzer tracks the moving regions and segments
within the dynamic images. A similarity test of
segment movements then detects the background
movement and classifies the regions into stationary
and noostationary. Each region in the laIler group
is further labeled as panty occluded, false, or moving
by examining both the motion patterns of its
segments and the temporal change of its structure.
Finally, the analyzer merges the segments of each
moving object into groups with similar motion
patterns to obtain a meaningful partition that
corresponds to its components. such as hands or
legs.

The authors conclude by stating that the system
is primitive because a simple scene model is used.
They list important problems for future related
research. such as analysis of the rotations in the
3·D world. analysis of the structural change of
the line image, semantic interpretation of moving
and stationary regions, and understanding the
meaning of the movements.

7.0 Texture Segmentation
Texture segmentation becomes important when

objects in a scene have a textured background. Since
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texture often contains a high density of edges.
boundary-based techniques may become ineffective
unless the texture is filtered out. Clustering and
region-based approaches applied to textured features
can be used to segment textured regions. In general,
texture segmentation and classification is a
complicated problem. Use of a priori knowledge
about the existence and kinds of textures that may
be present in a scene can be beneficial when applied
to practical problems. I

Raafat and Wong46 present a new method for
image segmentation and region classification based
on the texture content of different regions in an
image. This technique uses a new measure of texture
information to initiate texturally homogeneous core
regions. Next, the information measure, together
with a new texture distance measure (known as the
event set distance) is used to direct the growth of
various homogeneous regions. Since the texture
information measure reflects both the local and global
properties of an image. the segmentation process is
highly adaptable to various images. The event set
distance is defined over a set of gray·level and
gradient vector histograms derived from the texture
content within image blocks. The method is data­
directed, computationally efficient. and operationally
flexible to accommodate various textural properties
and distances. Their algorithm for segmenting and
classifying textured images is based on the low­
level vision approach. where no a priori knowledge
is available about the number and types of textures
present in the image. This technique is a rcgion­
growing method directed by the texture information
inherent in various regions of the image (Le .• it is
based solely upon the relative visual characteristics
of lhe image). The authors note that from experimentS
with this technique. the algorithm proved effective
and efficient.

7.1 Shift·Match Method
An approach to the segmentation of dynamic

scenes that contain textured objects moving against
a textured background is presented by
Jayaramamurthy and Jaio. 47 Their multistage
approach first uses a diffcrencing operation to obtain
active regions in the frames that contain moving
objects. In the next stage, an HT technique is used
to determine the motion parameters associated with
each active region. Finally, the intensity changes
and motion parameters are combined to obtain masks
of the moving objects.



The approach to recovering masks of moving
objects is referred to as the "shift-match melhod."
which does not require prior segmentation of frames.
This technique depends solely on motion to obtain
segmentation. It seems to have perfonned well in a
textured environment, even in the prcsence of
occlusion.

7.2 Segmentation Using Temporal Textures
Samy et a1.4S give an image sequence segmenta­

tion algorithm for the analysis of dynamic textured
scenes. A measure of time-varying textures. based
on classical spatial texture measures. and temporal
filters to enhance moving regions are also given.
Thcir segmentation algorithm is a straightforward
extension of real-time target-tracking algorithms
based on adaptive statistical clustering.

Hyde et al. 49 give a means of producing a
multiresolution. multipredicate representation of
image data. They demonstrated tbat object
segmentation and classification can be represented
in the context of image interpretation. In the same
computational process. they also showed that
multiresolution data can be provided at successively
decreasing resolutions to provide region segmenta­
tions or, equivalently, edge segmentations as
required. This method has also been used for color
segmentation and extended to tbe temporal domain
to provide optical flow infonnation.

7.3 Markov Random Fields in
Texture Segmentation

Cohen and Cooper] suggest simple. parallel,
hierarchical and relaxation algorithms to segment
noncausal MRFs. Two conceptually new algorithms
are presented for segmenting textured images into
individual regions. The data from the regions are then
modeled as an MRF. The algorithms are designed
to operate in realtime when implemented on parallel
computer architectures.

A doubly stochastic representation is used in
thc image modeling process. Cohen and Cooper use
a Gaussian MRF to model textures in visible light
and infrared images, and an autobinary (or
autotemary) MRF to model a priori information
about tbe local geometry of tbe textured image
regions. For image segmentation, thc true texture
class regions arc treated a beforehand either as
completely unknown or as a rea1i7..ation of a binary
(or ternary) MRF. In the former case. image seg­
mentation is realized as true maximum, likelihood
segmentation. In the latter case. the segmentation
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is realized as true maximum. a posteriori likelihood
segmentation.

7.4 Texture Segmentation Using
Fractal Geometry

Keller and Chenso give a new method for
estimating the fractal dimension from image surfaces
and show that the method describes and segments
generated fractal sets well. Since the fractal
dimension alone is not sufficient to characterize
natural textures, a new class of texture measures
based on the concept of lacunarity is defined and
used in conjunction with the fractal dimension to
describe and segment natural texture images. They
also developed new methods for computing the
fractal dimension and lacunarity. Finally. they state
that equivalent performance could be obtained by
using a supervised segmentation algorithm and
perhaps including other texture features.

8.0 Discussion
Several digital image segmentation experiments

were recently completed at the Naval Oceangraphic
and Atmospheric Rescarch Laboratory using
acoustical imagery. These experiments confirmed
the hypothesis that combinations of digital image
segmentation techniques must be used to adequately
differentiate common geoacoustic regions.S1 The
findings are briefly summarized:

• Texture-based segmentation can be applied to
acoustical imagery to yield additional segmenta­
tions as compared to simply using the intensity values
alone.

• Texture measures can be applied to an acoustical
image to yield texture bands that can be combined
to form a multiband image. which then can be used
as input to these conventional digital image
segmentation techniques.

• Clustering techniques are effective segmenters
for acoustical imagery and yield complementary
segmentations when combined with the multitexture
band image. This type of hybrid segmentation
was effective because it combined the texture of
spatial statistical information gained from texture­
based segmentation, as well as using a region-based
clustering segmentation algorithm.

9.0 Summary and Conclusions
Six principal categories of digital image segmen­

tation have been surveyed, with emphasis on the



techniques appearing in the technical literature that
relate to Navy seafloor segmcnlation/classification.
Many of the papers provided new algorithms for
addressing particular segmentation tasks.

Specific conclusions from this study are as
follows:

• Hybrid techniques (a combination of two or more
of the discussed segmentation techniques) should
prove effective on some scafloor segmentation!
classification problems-for example. the com­
bination of region-based segmentation advantages
(being adaptive dependcnt on the region) with
the benefits of the texture-based techniques.
which normally require a priori knowledge for full
utilization.

• Current NOARL research programs can build
on the texture-based approaches outlined, as well
as the material on region-based segmentation and
Hough Transfonn utilization for improved edge
detection.

• Real-time implementation of the region-based
techniques will require special emphasis on the
merging rules. since this task is computationally
intensive.

• Amplitude thresholding alone will not provide
the discrimination necessary for gcoacoustic province
selection gi....en sidescan sonar imagery, since more
information than the histogram alone must be
examined.

• The most useful boundary-based segmentation
lcehnique for current seafloor acoustic imagery
exploitation is the Hough Transfonn (lhe fonnularion
which handles venical lines also).

• Threc-dimensional object recognition techniques
described by Hoffman and Jain40 should prove useful
for 3-D geoacoustie province selection for sidescan
sonar imagery.

• Template-matching segmentation techniques
could be useful for very simple and well-defined
regions but not for the rapidly changing ocean bottom
and water column.

• Fractal geometry (e.g.. fractal dimension) can
be used to augment other segmenting descriptors
for seafloor acoustic imagery. As noted in this paper,
fractal dimension will not sufficiently characterize
natural textures.
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