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imaging of unknown targets hidden in cluttered heterogeneous backgrounds. The goal of this project is the development of globally 

convergent numerical methods for a wide class of CIPs. These methods are tested on mathematical models of the interest to the Army such 

as imaging of antipersonnel land mines and targets on battlefields covered by smogs and flames. In our definition ``global convergence'' 

entails: (1) a rigorous convergence analysis that does not depend on the quality of the initial guess, and (2) numerical simulations that 

confirm the advertised convergence property.

A conventional way to solve a CIP is via the minimization of a least squares objective functional. This functional characterizes misfit 

between the data and the solution of that PDE with a ``guess'' for the unknown coefficient. However, it is well known to researchers 

working on computations of inverse problems that the phenomenon of multiple local minima of these functionals represents the major 
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numerical methods for multidimensional CIPs are locally convergent ones. However, in many important applications the first good guess is 

unavailable. In particular, locally convergent algorithms are \QTR{bf}{fundamentally unsatisfactory} for the needs of the Army, because an 

accurate a priori knowledge of the properties of a medium is rarely available in military applications. This is because military environments 

are cluttered and, therefore, heterogeneous.

The main focus of this project was the so-called convexification method. This is the globally convergent algorithm of the first generation. 

This method was fully investigated. The first breakthrough result on the convexification was reported in the Annual report of 2006 and was 

published in 2007. This publication got quite a warm reception of the scientific community. Because the convexification is a new method, it 

is natural that a number of its different aspects was studied, which was done in this project. Three versions of the numerical realization of 

the convexification were implemented and tested. Applications to imaging of both antipersonnel land mines and targets on battlefields 

covered by smogs and flames were addressed. In late 2007 the second breakthrough result was obtained. This is a globally convergent 

numerical method of the second generation. This technique deserves to be investigated further, because it is very promising. This method is 

radically different from the convexification.
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improve} the performance of many imaging modalities of the interest to the Army. Along with numerical results, a number of analytical 

results were also obtained in this project. Nineteen (19) papers in refereed journals with the acknowledgment of this grant support were 
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ABSTRACT

Coefficient Inverse Problems (CIPs) for Partial Differential Equations (PDEs) represent
a very important tool for such needs of the Army as imaging of unknown targets hidden
in cluttered heterogeneous backgrounds. The goal of this project is the development of
globally convergent numerical methods for a wide class of CIPs. These methods are tested
on mathematical models of the interest to the Army such as imaging of antipersonnel land
mines and targets on battlefields covered by smogs and flames. In our definition “global
convergence” entails: (1) a rigorous convergence analysis that does not depend on the quality
of the initial guess, and (2) numerical simulations that confirm the advertised convergence
property.

A conventional way to solve a CIP is via the minimization of a least squares objective
functional. This functional characterizes misfit between the data and the solution of that PDE
with a “guess” for the unknown coefficient. However, it is well known to researchers working
on computations of inverse problems that the phenomenon of multiple local minima of these
functionals represents the major obstacle for the development of reliable numerical methods
for multidimensional CIPs. This phenomenon in turn is caused by the above mentioned non-
linearity and ill-posedness. Because of local minima, one should somehow guess in advance
about a good approximation for the solution. Without the availability of a first good guess,
however, there is no guarantee that the calculated coefficient is indeed close to the correct
one. In our terminology these are locally convergent numerical methods. In other words, their
convergence to the correct solution can be guaranteed only if the starting point is located
in a small neighborhood of this solution. Because of local minima, conventional numerical
methods for multidimensional CIPs are locally convergent ones. However, in many important
applications the first good guess is unavailable. In particular, locally convergent algorithms
are fundamentally unsatisfactory for the needs of the Army, because an accurate a priori
knowledge of the properties of a medium is rarely available in military applications. This is
because military environments are cluttered and, therefore, heterogeneous.

The main focus of this project was the so-called convexification method. This is the
globally convergent algorithm of the first generation. This method was fully investigated.
The first breakthrough result on the convexification was reported in the Annual report of
2006 and was published in 2007. This publication got quite a warm reception of the scientific
community (section 1). Because the convexification is a new method, it is natural that a
number of its different aspects was studied, which was done in this project. Three versions of
the numerical realization of the convexification were implemented and tested. Applications
to imaging of both antipersonnel land mines and targets on battlefields covered by smogs

1



and flames were addressed. In late 2007 the second breakthrough result was obtained.
This is a globally convergent numerical method of the second generation. This technique
deserves to be investigated further, because it is very promising. This method is radically
different from the convexification.

The PI believes that globally convergent algorithms for CIPs, which are developed in this
project, have a serious potential to radically improve the performance of many imaging
modalities of the interest to the Army. Along with numerical results, a number of analytical
results were also obtained in this project. Nineteen (19) papers in refereed journals with the
acknowledgment of this grant support were published/accepted/submitted. Results of this
effort were presented at eighteen (18) international professional meetings. One Ph.D. thesis
was defended based on some results of this project.
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1 Introduction

In this final report only most interesting results of the project are presented. Other results
can be found in 2006 and 2007 annual reports as well as in publications of the PI, which are
cited in section named “Publications”.

1.1 State of the art of numerical methods for CIPs and crucial
role of globally convergent numerical methods

CIPs play a rapidly growing role in military applications. Indeed, one of the needs of the
Army is to detect and image unknown targets. Examples of those targets include land
mines, underground bunkers, tanks on battlefields covered by smogs and flames, etc.. In all
these scenarios targets are incorporated in cluttered, heterogenous and, therefore, unknown
backgrounds. Probing radiations are usually thought as electric and acoustic waves for
the first two applications and light originated by lasers in the third. Output radiations
are measured by sensors. Interestingly, the diffuse (because of smogs and flames) light
propagation in the third application is even helpful. This is because even if the direct light
would miss the target, diffuse photons would not, and, therefore, detectors would still sense
the presence of that target. Propagations of those signals are covered by Partial Differential
Equations (PDEs), which are derived from the fundamental laws of physics. Electric, acoustic
or light scattering properties of both unknown targets and the backgrounds are described
by coefficients of those PDEs. Since such properties of targets usually differ sharply from
the properties of the surroundings, the presence of targets of interest is revealed by the
differences in the output signals measured by sensors.

Therefore, the goal of a CIP is to calculate a good approximation to the unknown co-
efficient(s) of that PDE from the measured data. However, the latter is an enormously
challenging mathematical problem. Two main factors causing a substantial difficulty of
construction of stable globally convergent algorithms for CIPs are their non-linearity and
ill-posedness. The nonlinearity is because solutions of PDEs depend nonlinearly on their
coefficients. The ill-posedness is a well known feature of inverse problems. This means that
small fluctuations in the input data can cause large fluctuations of solutions. This feature
led to the development of regularization algorithms, see, e.g., [50].

A conventional way to solve a CIP is via the minimization of a least squares objective
functional. This functional characterizes misfit between the data and the solution of that PDE
with a “guess” for the unknown coefficient. However, it is well known to researchers working
on computations of inverse problems that the phenomenon of multiple local minima of these
functionals represents the major obstacle for the development of reliable numerical methods
for multidimensional CIPs. This phenomenon in turn is caused by the above mentioned non-
linearity and ill-posedness. Because of local minima, one should somehow guess in advance
about a good approximation for the solution. Without the availability of a first good guess,
however, there is no guarantee that the calculated coefficient is indeed close to the correct
one. In our terminology these are locally convergent numerical methods. In other words, their
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convergence to the correct solution can be guaranteed only if the starting point is located
in a small neighborhood of this solution. Because of local minima, conventional numerical
methods for multidimensional CIPs are locally convergent ones. However, in many important
applications the first good guess is unavailable. In particular, locally convergent algorithms
are fundamentally unsatisfactory for the needs of the Army, because an accurate a priori
knowledge of the properties of a medium is rarely available in military applications. This is
because military environments are cluttered and, therefore, heterogeneous.

In our definition “global convergence” entails: (1) a rigorous convergence analysis that
does not depend on the quality of the initial guess, and (2) numerical simulations that confirm
the advertised convergence property. Two new globally convergent algorithms for a broad
class of CIPs were developed in this project: the convexification [1-7] and an algorithm which
is based on a layer stripping procedure with respect to the so-called pseudo frequency [12],
which is the positive parameter s of the Laplace transform of either hyperbolic or parabolic
PDE. We call s pseudo frequency. These algorithms represent respectively the first and the
second generation of globally convergent numerical methods. While the convexification was
fully investigated in this project, the second one is only in an infant age and requires a
detailed further investigation.

Since the convexification is a new method, it is natural to investigate its main features
from a number of different perspectives, which was the main goal of this project and was
reflected in publications [1-7]. However, during the work on this project a new main goal
occurred in 2007 [12]. This one was the development of a new globally convergent algorithm
for CIPs, which is based on the layer stripping procedure with respect to the pseudo frequency
rather than the layer stripping with respect to a spatial variable (convexification). Since the
differential operator with respect to the pseudo frequency is not a part of a corresponding
PDE, it is anticipated that this new method will have a good stability property. Thus, the
recent work [12] has started the second generation of globally convergent numerical methods
for CIPs. In addition to computational results, a number of analytical results concerning
with the important issues of uniqueness and stability of inverse problems were obtained
during the work on this grant [14-19].

1.2 Warm reception by the scientific community

Two publications with the acknowledgment of the support of this grant were publicly warmly
accepted by the scientific community. First, this was the result of [1], where the first nu-
merical result of the convexification in the 2-d case was published. As a clear manifestation
of a warm reception of the publication [1], the PI was requested for an interview by The
Institute of Physics Publishing, www.iop.org, The Publisher, which publishes the journal
named “Inverse Problems”, which is the most popular journal in the field. PI’s interview
can be found at http://www.iop.org/ej/authors edition/. It is stated at that site that “60
Seconds With showcases interviews with IOP authors who have published papers that were
key to the advancement of physics research in their particular subject area.” In addition, a
theoretical result of the PI [18], which is reported in subsection 11.2, was highlighted by the

6



Editorial Board of Inverse Problems among best publications of 2006.

2 An Outline of the Convexification

The convexification works with a single location of the source (equivalently, a single direction
of the incident plane wave) and with the data collected at a piece of the boundary rather
than on the whole boundary. This means the minimal requirement on the data collection
scheme. The so-called “transformation procedure” of the convexification has deep roots in
the method of Carleman estimates for CIPs, which was originally introduced in 1981 in
the work of Bukhgeim and Klibanov [29] (also, see, e.g., [38], [39], [41] for some follow up
works) and became since then one of very few classic tools in the field of Inverse Problems.
Initially Carleman estimates were introduced in the field of Inverse Problems only for the
proofs of uniqueness and stability results. Hence, prior to the convexification, Carleman
estimates were not applied to numerical developments. The sequence of Carleman Weight
Functions (CWFs) exp [−λ (z − zi−1)] , i = 1, · · · , n for the operator d2/dz2 is involved in
the numerical scheme of the convexification. It was explained in [1] that this sequence of
weights ensures the strict convexity of the sequence of residual least squares functionals, as
well as the stabilization of the resulting layer stripping procedure, also see subsection 2.6.
Here n is the number of layers {z : z ∈ (zi−1, zi]}.

First, the original CIP is approximated with the Cauchy problem for a coupled system of
ordinary nonlinear integral-differential equations for the vector-valued function p(z, s). An
important feature of this system is that the unknown coefficient is not present in it. From
the computational standpoint the major complicating factor of this system is the presence
of nonlinearities with Volterra-like integrals with respect to the pseudo frequency s, whereas
derivatives are taken with respect to the spatial variable z. To solve this Cauchy problem,
a stable layer stripping procedure is applied. On each thin z-layer one approximates the
vector-valued function p(z, s) as a quadratic polynomial with the unknown quadratic term
and two other terms being known from the data at the interface. Next, one constructs
a residual least squares functional Jλ,i with the CWF in it. The CWF for any differential
operator ensures that in the weighted L2 norm of this operator the principal part dominates
the rest. Hence, due to the presence of the CWF in the functional Jλ,i, the principal linear
part p′′ of the differential operator for the vector-valued function p in Jλ,i dominates all other
terms, including nonlinear ones. Because of this domination, the functional Jλ,i is strictly
convex on a certain a priori given bounded set (this is not a small set!). Furthermore, the
unique minimizer of Jλ,i belongs to the interior of this set. In addition, this minimizer is
close to the one which corresponds to the exact solution of the CIP (Theorem 2.1).

2.1 Forward problems

Below in section 2 x = (x1, x2, z) . First, consider the Cauchy problem for a hyperbolic
equation

c (x) utt = ∆u− a(x)u in R3 × (0,∞) , (2.1)
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u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2.2)

In addition we consider the Cauchy problem for a parabolic equation

c (x) ũt = ∆ũ− a(x)ũ in R3 × (0,∞) , (2.3)

ũ (x, 0) = δ (x− x0) . (2.4)

Consider the Laplace transform of both functions u and ũ,

w(x, s) =

∞∫

0

u(x, t)e−stdt =

∞∫

0

ũ(x, t)e−s2tdt (2.5)

for positive s > s0 > 0. Since both integrals of (2.5) lead to the same elliptic equation (2.9a)
for the function w, it is more convenient to us to consider the theory for the function w.

We use the Laplace transform with the positive parameter s only because we need to
make sure that the function w(x, s) > 0 by the maximum principle, see (2.10). As to the
coefficients of equations (2.1) and (2.3), we assume that

c (x) ∈ [d1, 2d2] , where d1, d2 = const. > 0. (2.6)

c (x) ∈ C2
(
R3

)
, c (x) = 2d1 for x ∈ R3�Ω, (2.7)

a(x) ∈ C2
(
R3

)
, a(x) ≥ 0 and a(x) = 0 for x ∈ R3�Ω, (2.8)

where Ω ⊂ R3 is a convex bounded domain. Note that in the field of CIPs a certain over-
smoothness of coefficients is usually assumed.

The equation for the function w is

∆w − [
s2c−2 (x) + a(x)

]
w = −δ (x− x0) , ∀s > s0 = const. > 0. (2.9a)

with the condition at the infinity

lim
|~x|→∞

w(x, s) = 0, ∀s > s0 = const. > 0. (2.9b)

The maximum principle and conditions (2.6)-(2.8) imply that for all s > s0 there exists
unique solution w(, s) ∈ C3 (R3� {|x− x0| < ε}) , ∀ε > 0 of the problem (2.9a,b). Further-
more,

w(x, s) > 0, ∀s > s0. (2.10)

Under certain conditions imposed on coefficients c(x) and a(x) the following asymptotic
behavior holds [41], [44]

Dα
xDβ

s w(x, s) = Dα
xDβ

s

{
exp [−sl (x, x0)]

4πl (x, x0)

[
1 + O

(
1

s

)]}
, s →∞, |α| ≤ 2, β = 0, 1.

(2.11)
This asymptotic behavior was derived in [41], [44] on the basis of Theorem 4.1 in [47].
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2.2 The inverse problem

We formulate the inverse problem for the elliptic equation (2.9a) with the condition (2.9b),
because formulations of this problem for above hyperbolic and parabolic equations are similar
due to (2.5). In the case when the data either for the inverse parabolic or for the inverse
hyperbolic problem are given on a large but finite time interval t ∈ (0, T ) one should assume
that in (2.5)

∞∫

0

ũ(x, t)e−s2tdt ≈
T∫

0

ũ(x, t)e−s2tdt,

∞∫

0

u(x, t)e−stdt ≈
T∫

0

u(x, t)e−stdt, s > s0 = const. > 0.

Inverse Problem. Let Ω be a rectangular prism,

Ω = {−A < x1, x2 < A, z ∈ (0, L)} ,

where A and L are positive numbers. Suppose that one of coefficients of the equation (2.9a)
is unknown in Ω and known in R3�Ω and all other coefficients are known everywhere.
Determine that unknown coefficient for ∈ Ω, assuming that the following two functions
ϕ (x1, x2, s) and ψ (x1, x2, s) are known for a single source position ~x0 /∈ Ω

w (x1, x2, 0, s) = ϕ (x1, x2, s) , wz (x1, x2, 0, s) = ψ (x1, x2, s) , (2.12)

for (x1, x2, s) ∈ (−A,A)2 × [s0, s] ,

where s0 and s are certain positive numbers.
In the case when only one of functions ϕ or ψ is given for all (x1, x2, s) ∈ R2 × (s0,∞),

another one can be determined uniquely via solution of the corresponding boundary value
problem for the equation (2.9a) in the lower half space {z < 0} .

2.3 Transformation

Since we present numerical examples for the case a(x) = 0, we consider this case only below
for brevity. The numerical scheme for the case of the unknown function a (x) was considered
in [41] and [44]. We first transform our problem to the Cauchy problem for a nonlinear elliptic
integral-differential equation, in which the unknown coefficient is not present. Because of
(2.10) we can consider the function v = ln w. Then (2.9a) and (2.12) lead to

∆v + |∇v|2 = s2c (x) in Ω, (2.13)

v (x1, x2, 0, s) = ϕ1 (x1, x2, s) , vz (x1, x2, 0, s) = ψ1 (x1, x2, s) , (2.14)

for (x1, x2, s) ∈ (−A,A)2 × (s0,∞) ,

where

ϕ1 = ln ϕ, ψ1 =
ψ

ϕ
.
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Divide both sides of (2.13) by s2 and denote

ṽ(x, s) =
v

s2
.

Then
∆ṽ + s2 |∇ṽ|2 = c (x) . (2.15)

It follows from (2.11) that

Dα
x ṽ(x, s) = O

(
1

s

)
, Dα

x∂sṽ(x, s) = O

(
1

s2

)
, for s →∞. (2.16)

We now want to eliminate the unknown coefficient c(x) from equation (2.15). To do so,
differentiate its both sides with respect to the parameter s and observe that ∂sc(x) ≡ 0.
Denote

q (x, s) = ∂sṽ (x, s) , ϕ2 (x, s) = ∂s

[
s−2ϕ1 (x, s)

]
, ψ2(x, s) = ∂s

[
s−2ψ1 (x, s)

]
. (2.17)

Then by (2.11) and (2.16)

ṽ (x, s) = −
∞∫

s

q (x, τ) dτ .

We truncate this integral as

ṽ (x, s) ≈ −
s̄∫

s

q (x, τ) dτ + V (x), (2.18)

where s̄ > s0 is a large number which should be chosen in numerical experiments. This
truncation is similar to the truncation of high frequencies, which is routinely done in science
and engineering. Here V (x) is the so-called “tail function” which complements the integral.
This function is unknown and V (x) ≈ ṽ (x, s) . Thus, we obtain the following (approximate)
nonlinear integral differential equation

∆q − 2s2∇q

s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ




2

(2.20a)

+2s2∇q∇V − 4s∇V

s∫

s

∇q (x, τ) dτ + 2s (∇V )2 = 0

In addition, the following Cauchy data are given

q (x1, x2, 0, s) = ϕ2 (x1, x2, s) , qz (x1, x2, 0, s) = ψ2 (x1, x2, s) , (2.20b)
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for (x1, x2, s) ∈ (−A,A)2 × (s0, s̄) .

Equation (2.20a) has two unknown functions in it q and V . A good point of this equation,
however is that it does not contain the unknown coefficient. Thus, these two unknown
functions are approximated differently in our algorithms. One of the key points which helps
us to approximate the tail function is that it is small for large values of s, as it follows
from (2.16). If the tail function is given, then the problem (2.20a,b) is the Cauchy problem
for a nonlinear integral differential equation with Volterra-like integrals depending on the
parameter s, which is not involved in the differential operator. If the second and third terms
in (2.20a) would be absent, then this would be a well-known Cauchy problem for the Laplace
equation, which is discussed in many publications (we are not in a position to list those).
Compared with the latter, two major difficulties of the problem (2.20a,b) are the nonlinearity
and the presence of integrals.

2.4 Approximation

Now the main question is: How to solve numerically the problem (2.20a,b)? This question

is addressed in follow up subsections of this section. Let
{
φj (x1, x2)

}N

j=1
⊂ C2

(
[−A,A]2

)
be

a set of linearly independent functions approximating the function q (~x, s) up to its second
derivatives

Dα
xq (x1, x2, z, s) ≈ Dα

x

N∑
j=1

pj (z, s) φj (x1, x2) , (x, s) ∈ Ω× [s0, s̄] , |α| ≤ 2, (2.21)

We assume that functions φj (x1, x2) are given via analytical formulas, so that their deriva-
tives can be calculated analytically. For example, one can take functions φj in the form
φj (x1, x2) = Qj1 (x1) Qj2 (x2) , where Qj1 and Qj2 are either parts of an orthogonal basis in
L2 or cubic B-splines. Denote for brevity ~y := (x1, x2) , Θ = (−A,A)× (−A,A) . Substitute
(2.21) in (2.20a). Denote p′j (z, s) := ∂zpj (z, s) . Next, multiply both sides of the resulting
equation by the function φr (~y) , r = 1, · · · , N , and integrate over the rectangle Θ. We
obtain the following coupled system of nonlinear ordinary integral-differential equations

Π (p, z, s) := Bp′′ − F


p, p′,

s̄∫

s

p (z, τ) dτ ,

s̄∫

s

p′ (z, τ) dτ , s


 = 0, (2.22)

(z, s) ∈ [0, L]× [s0, s̄] ,

where B is invertible matrix and the N -dimensional vector-valued function F ∈ C2
(
R5N+1

)
.

In addition (2.20b) and (2.21) imply that the following Cauchy data p0(s) and p1(s)

p(0, s) = p0(s), p′(0, s) = p1(s), s ∈ [s0, s̄] . (2.23)

The main question now is: How to solve the problem (2.22), (2.23) in a stable way? A
stable layer stripping procedure is described in the next two subsections.
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2.5 Numerical Method for the Problem (2.22), (2.23)

Consider a uniform partition of the interval [0, L] with the grid step size h,

0 = z0 < z1 < · · · < zn = L, h = zi − zi−1.

In each layer (zi−1, zi] we approximate the vector-valued function p(z, s) with quadratic
polynomials

p(z, s) :≈ p̃i(z, s) =
(z − zi−1)

2

2
ai(s) + (z − zi−1) bi(s) + ci(s), (2.24)

z ∈ (zi−1, zi] , s ∈ [s0, s̄] .

Hence, ci(s) = p̃i(zi−1, s) and bi(s) = p̃′i(zi−1, s). By (2.23) functions b0(s) = p̃′1(z0, s) = p1 (s)
and c0(s) = p̃1(z0, s) = p0 (s) are known from the available data for the inverse problem.
Functions bi(s) and ci(s) are assumed to be known from the previous step of the layer
stripping procedure. Hence, the only unknown function in (2.24) is the quadratic term ai(s).
As soon as this term is approximately found, one sets

p̃i(zi, s) := ci+1(s) =
h2

2
ai(s) + hbi(s) + ci(s),

p̃′i(zi, s) := bi+1(s) = hai(s) + bi(s).

We now focus on the procedure of finding an approximation for the quadratic term ai(s).
Consider the weight function Cλ,i (z) ,

Cλ,i (z) = exp [−λ (z − zi−1)] ,

where λ > 1 is a parameter which will be chosen later. It was proven in [41] that Cλ,i (z) is the
weight function involved in the Carleman estimate for the operator d2/dz2 on the interval
(zi−1, zi) . In other words, this is a CWF. Construct the weighted least squares objective
function Jλ,i,

Jλ,i (ai(s)) =

s̄∫

s0

ds

zi∫

zi−1

Π2 [p̃i(z, s), s] Cλ,i (z) dz. (2.25)

Let M be a positive number. Consider the bounded set G (M) ⊂ C [s0, s̄] ,

G (M) =
{

a(s) ∈ C [s0, s̄] : ‖a(s)‖C[s0,s̄] ≤ M
}

. (2.26)

We search for a minimizer āi(s) ∈ G (M) of the functional Jλ,i. Hence, (2.24) and (2.26)

imply that
∣∣∣p̃(k)

i (z, s)
∣∣∣ ≤ M ′, k = 0, 1, 2, where M ′ = M ′ (M) is a positive constant depending

on M . Hence, by the Archela theorem the condition (2.26) implies that the function p̃i(z, s)
belongs to a subset of a priori chosen compact set (depending on M) in C1 [zi−1, zi] ×
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C [s0, s̄] , which correspond well with the above mentioned Tikhonov theorem. Note that our
theory does not impose a “smallness” condition on the constant M . In accordance with the
Tikhonov concept the constant M should be chosen for a specific set of applied problems
under consideration. It was proven in [41]-[44] that the functional Jλ,i is strictly convex
on the set G (M) for an appropriate choice of a sufficiently large parameter λ ≥ λ0 (M) .
Furthermore, its unique minimizer can be found as the unique solution of an equation with
a contractual mapping operator. In addition, the convergence theorem of [41]-[44] implies
that this minimizer is close to the value a∗i (s) = (p∗)′′ (zi, s) , where the function p∗ (z, s)
corresponds to the exact solution. We combine these statements in Theorem 2.1 below.

We now formulate convergence theorem for our method assuming that tail functions
are small. Suppose that there exists the exact solution q∗ (x, s) ∈ C3

(
Ω̄× [s0, s̄]

)
of the

equation (2.20a) with the Cauchy data (2.20b). We assume first that these Cauchy data
are “ideal” ones, i.e., they are given without an error. If such a solution exists, then it is
unique, see Theorem 6.5.1 in [41]. Let p∗ (z, s) be the vector-valued function p (z, s) which is
obtained from q∗ (x, s) via the approximation (2.22). Since (2.22) is only an approximation,
we assume that the function p∗ (z, s) ∈ C3 ([0, L]× [s0, s̄]) satisfies the following analog of
equation (2.24) (recall that we set tails to zero in our convergence theorem)

B (p∗)′′ (z, s)− F


(p∗)′ (z, s) , p∗(z, s),

s̄∫

s

(p∗)′ (z, τ) dτ ,

s̄∫

s

p∗ (z, τ) dτ , 0, 0, s


 (2.27)

= ε (z, s) , z ∈ (0, L) , s ∈ [s0, s̄] .

And by (2.23) Cauchy data for p∗ (z, s) are

p∗ (0, s) = p0∗ (s) , (p∗)′ (0, s) = p1∗ (s) . (2.28)

We assume that the function ε (z, s) is sufficiently small (actually, this function is unknown),

‖ε (z, s)‖C([0,L]×[s0,s̄]) ≤ ε, (2.29)

where ε is a small positive number. Because in the reality the Cauchy data (2.23) are always
given with an error, we assume that

∥∥p0 (s)− p0∗ (s)
∥∥

C[s0,s̄]
+

∥∥p1 (s)− p1∗ (s)
∥∥

C[s0,s̄]
≤ ε. (2.30)

Denote

I0 (λ, h) =
1− e−λh

λ
=

h∫

0

e−λzdz. (2.31)

Let G̃ (M) be the set of functions a (s) ∈ G (M) with the L2 (s0, s̄)−norm in it. Hence, by
(2.26)

a ∈ C [s0, s̄] , ‖a‖C[s0,s̄] ≤ M, ‖a‖L2(s0,s̄) ≤ M
√

s̄− s0, ∀a ∈ G̃ (M) .
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We formulate Theorem 2.1 for the case of a general coupled system of ordinary integral
differential equations.

Theorem 2.1 [41]-[44]. Let p (z, s) ∈ C2 [0, L] × C [s0, s̄] be an N-dimensional vector-
valued function and F ∈ C2

(
R5N+1

)
also be an N-dimensional vector-valued function. Let

the vector-valued function p∗ (z, s) ∈ C3 ([0, L]× C [s0, s̄]) satisfies conditions (2.27)- (2.30)
and ‖p∗ (z, s)‖C3[0,L]×C[s0,s̄] ≤ M/2. Then there exists a positive constant C = C (M, F, s0, s̄, L, N)
and small positive numbers ε0 = ε0 (M, F, s0, s̄, L, N) , h0 = h0 (M,F, s0, s̄, L, N) depending
only on numbers s0, s̄, L, M and the vector-valued function F such that if ε ∈ (0, ε0) , h ∈
(0, h0),

λ ≥ λ0 :=
C

ε
,

and that the tail function is such that ‖∇V ‖C(Ω) ≤ ε, then functions

p̃i (zi−1, s) , p̃′i (zi−1, s) ∈ G̃ (M) , i = 1, · · · , n,

and all functionals Jλ,i are strictly convex on the set G̃ (M) with the property

1

I0 (λ, h)

[
Jλ,i (a + b)− Jλ,i (a)− J ′λ,i (a) (b)

] ≥ ρ ‖b‖2
L2(s0,s̄) , ∀a, a + b ∈ G̃ (M) , (2.32)

where J ′λ,i (a) is the Fréchet derivative of the functional Jλ,i at the point a, and the convexity

constant ρ ∈ (1/2, 1) . The unique minimizer ãλ,i ∈ G̃ (M) of the functional Jλ,i is an

interior point of the set G̃ (M) and can be found as the solution of the equation

a = Φλ,i (a) , i = 1, · · · , n (2.33)

with the contraction mapping operator Φλ,i : G̃ (M) → G̃ (M) and

‖ãλ1,i − ãλ2,i‖ ≤ C

λ0

, ∀λ1, λ2 ≥ λ0, i = 1, · · · , n. (2.34)

Furthermore, the following stability and convergence estimate holds

max
1≤i≤n

sup
z∈(zi−1,zi)

‖Dr
z [p̃i (z, s)− p∗ (z, s)]‖C([s0,s̄]) ≤ C (ε + h) , r = 0, 1, 2. (2.35)

Remark. We assume that the tail function is sufficiently small because it is indeed
small for sufficiently large truncation pseudo frequency s, see (2.16). The function I0 (λ, h)
(see (2.31)) plays the role of a calibration factor here. The estimate (2.34) means that
the minimizers are “almost” independent on the parameter λ, as long as this parameter is
sufficiently large. The estimate (2.35) implies that the difference between the exact solution
and the one obtained by the above method is small as soon as parameters ε and h are
sufficiently small. It is important that estimates (2.34), (2.35) are actually confirmed in our
numerical experiments, see section 5.
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A peculiar question of Theorem 2.1 is that the strict convexity of functionals Jλ,i is

guaranteed only on the bounded set G̃ (M) rather than on the whole space L2 (s0, s̄) . Hence,
it seems to be, at least at the first glance, that in a practical use of a gradient-like method
one should make sure that points resulting from iterations of such a method belong to the
interior of G̃ (M) , which would complicate things. However, Theorems 1.2 and 1.3 of [40]
ensure that one should not be concerned with the latter. These theorems basically state that
if the exact solution belongs to the set G̃ (M/2) and the starting point is also chosen on this
set, then the distance between the sequential points obtained by the gradient method and
the true minimizer of a strictly convex functional is decreasing, up to a certain level, as the
number of iterations of the gradient method is increasing. This level, in turn is determined
by the level ε of the error in the data. Thus, assuming that our exact solution p∗ is such
that (Theorem 2.1) ‖p∗ (z, s)‖C3([0,L]×[s0,s̄]) ≤ M/2 and starting iterations of a gradient-like

method from a point âi(s) ∈ G̃ (M/2) , one is guaranteed that consecutive iterations will not

lead outside of G̃ (M).

2.6 A crucial role of Carleman Weight Functions

It is important for the understanding of the convexification to explain the role of the Carle-
man Weight Functions. Let the vector function p (z, s) ∈ C3 [0, L]×C [s0, s] be the solution
of the Cauchy problem (2.22), (2.23). By the Taylor formula

p(z, s) = p′′ (zi−1, s)
(z − zi−1)

2

2
+ p′ (zi−1, s) (z − zi−1) + p (zi−1, s)

+
1

2

z∫

zi−1

p′′′ (ξ, s) (z − ξ)2 dξ, (z, s) ∈ (zi−1, zi]× [s0, s] .

Hence, the quadratic approximation (2.24) provides O (z − zi−1) error for the equation (2.22)
for (z, s) ∈ (zi−1, zi] × [s0, s] as (z − zi−1) → 0+. Recall that zi − zi−1 = h. Hence, if the
CWFs would not be present, then after considering n = L/h layers, one would have the total
error of at least O(nh) = O(L), which is large. Denote Ei(z, s) the error function due to the
approximation (2.24) on the layer (zi−1, zi]. Hence,

Ei(z, s) = (z − zi−1) Ẽi(z, s), where
∣∣∣Ẽi(z, s)

∣∣∣ ≤ M for (z, s) ∈ [zi−1, zi]× [s0, s] . (2.36)

Denote

Fi(s) = Q


bi (s) , ci(s),

s∫

s

bi (τ) dτ ,

s∫

s

ci (τ) dτ , zi−1, s


 :=

Q


p̃′ (zi−1, s) , p̃(zi−1, s),

s∫

s

p̃′ (zi−1, τ) dτ ,

s∫

s

p̃ (zi−1, τ) dτ , zi−1, s


 .
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Substituting (2.24) in (2.22) and using Taylor formula, one can represent the equation (2.22)
in the form

ai (s)− Fi(s)− (z − zi−1) Hi


z, s, ai (s) ,

s∫

s

ai (τ) dτ


− (z − zi−1) Ẽi(z, s) = 0, (2.37)

where Hi is a C1−function of its variables. One can easily prove that

h∫

0

z |f(z)| e−λzdz ≤ 1

λ

[
he−λh + I0(λ, h)

] ‖f‖C[0,h] ,∀f ∈ C [0, h] , (2.38)

where I0(λ, h) was introduced in (2.31).
Suppose that we choose such values of the parameter λ that λh > 1. Since h/λ = (λh) /λ2,

then

1

I0(λ, h)

h∫

0

z |f(z)| e−λzdz ≤ 2

λ
‖f‖C[0,h] ,∀f ∈ C [0, h] , (2.39)

Hence, by (2.36)

1

I0(λ, h)

zi∫

zi−1

(z − zi−1)
∣∣∣Ẽi(z, s)

∣∣∣ Cλ,i (z) dz ≤ 2M

λ
. (2.40)

Also,

1

I0(λ, h)

zi∫

zi−1

(z − zi−1)
2
∣∣∣Ẽi(z, s)

∣∣∣
2

Cλ,i (z) dz ≤ 2M2h

λ
. (2.41)

Thus, it follows from (2.39)-(2.41) that after n = L/h layers the error due to the quadratic
approximation will be of the order of

O

(
1

λh

)
.

Choosing λ = λ (h, ε) such that

λ >
1

h2
,

we obtain that, regardless on the approximation error Ei(z, s) in (2.37), the estimate (2.35)
of the convergence rate still holds.

Summary

It is shown both in this subsection and in Theorem 2.1 that the role of Carleman Weight
Functions is threefold. They ensure: (1) the stability of the layer stripping procedure, (2)
the convergence of the convexification method and (3) the strict convexity of the residual
functionals Jλ,i.
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2.7 Inversion

Suppose that functions

∂r
z p̃(z, s) := ∂r

z p̃i(z, s), (z, s) ∈ (zi−1, zi]× (s0, s̄) , i = 1, · · · , n, r = 0, 1, 2 (2.36)

are found by the above layer stripping procedure and tails are also approximated. To ap-
proximate the target coefficient c(x), we use the backwards calculation. First, we calculate
the function ṽ (x1, x2, z, s) and its corresponding derivatives by (2.21) and (2.18). Finally,
we approximate the coefficient c(x) via calculating the left hand side of (2.36) at s := s0.
In principle, one can use any value of s in (2.36). However, our computational experience
shows that the best value is the lowest one s := s0. An explanation of this is that at s := s0

the truncation at s = s̄ of the integral (2.18) causes the least error.

2.8 The first numerical result in 2-D

We now present the first 2-D numerical result, which was obtained by the convexification,
and which has impressed the scientific community (subsection 1.2), when it was published
in [1] (also, see [2]). This result was obtained by Dr. A. Timonov. Although it seems at
the first glance that this result is restricted only to a medical application, but actually since
we work with the back-reflected data here, Army applications are quite feasible. The 2-D
inverse problem of the determination of the unknown electric conductivity coefficient σ (x, y)
in the equation

uxx + uzz − iωµσ (x, z) u = 0,

was solved. Here ω is the modulated frequency and µ = 4π · 107H/m is the magnetic
permeability of the vacuum. The problem of microwave imaging of the human abdomen
was considered. The realistic case of the frequency sweep ω ∈ 2π · [0.5, 10] GHz was used.
Since the maximum sensitivity depth of the back-reflected microwave signal is 6 centimeters
(see reference [16] in the annual report [21]), the X-ray Computed Tomography image of
the abdomen was re-scaled to 6 cm thickness. In data simulations for the forward problem
a realistic range of the parameter σ (x, z) ∈ [0.4, 4.8] Siemens/meter was used. Namely,
different values of this parameter were assigned to different parts of the CT image: highest
values were assigned to the white areas and lowest to the white ones. Next, those values
were linearly interpolated for the rest. Instead of the point source the initializing plane wave
eiωz was used.

This plane wave has propagated downwards (positive direction of the z-axis) and then
was scattered when entering the heterogeneous medium. Measurements of the back-reflected
wave were modeled on the top side of the image. Additive random noise of 1%, 5% and
10% was added to the data. The inverse problem was solved for 15 realizations of the noisy
data and then averaged the resulting functions σ (x, z) . Trigonometric series were used in
(2.21) with φj (x) = sin (kαj) and also φj (x) = cos (kαj) , where the parameter α depends
on the size of the medium in the horizontal direction (to make sure that these functions
are orthogonal in L2). We have used k ∈ [0, N ] with N ∈ [10, 20] . Significant differences in
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Figure 1: The original (top left) and reconstructed images of the function σ (x, z) via the
convexification. The plane wave falls from the above and measurements of the backreflected
signal were also simulated at the top side of the square. The top right image represents the
reconstruction result at the 1% noise in the data, the bottom left and bottom right images
correspond to 5% and 10% noise respectively.

images with the change of N were not observed. As to the tail function V (z, z), we have
taken the one, which corresponds to the uniform background, i.e., the background outside
of the heterogeneous medium. This background was assumed to be known, according to the
above statement of the inverse problem. Figures 1 and 2 display the computational results.

3 The Second Numerical Implementation of the Con-

vexification

Results of this and next sections represent the joint effort of the Postdoctoral Research
Associate Dr. J. Xin and the PI [3-6]. Dr. Xin has been working on a new numerical
implementation of the convexification. Dr. Xin has been fully supported by this grant from
8/15/05 to 6/30/07. His effort has been focused on the development of new numerical
ideas of the convexification and their numerical implementation. In these publications a
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Figure 2: The cross-section of images of Figure 1 by horizontal line through the middle.
Solid line corresponds to the original image. Dotted and dashed lines correspond to images
at 1% and 5% noise respectively.

simplified mathematical model of imaging of the spatially distributed dielectric constant in
antipersonnel land mines was treated by the convexification.

Compared with previous works [1,2] on the convexification algorithm, four new ingredi-
ents of the second numerical implementation are: (I) we minimize strictly convex functionals
directly for each generic layer rather than via the solution of the equivalent equation (2.33)
with the contraction mapping operator, (II) a local basis consisting of cubic B-splines is
employed in the spatial approximation instead of the global trigonometric basis [1], [2],
hence, enabling sharper resolution of the reconstructed material property at the interface
between the inclusion and the background, (III) tails in truncated integrals (2.18) are fitted
in to compensate the missing information, and (IV) we approximate the functions which
depend on the pseudo-frequency s by Legendre polynomials, thus calculating the integrals
involving pseudo-frequency explicitly rather than numerically. An advantage of the direct
minimization of the convex functionals over solving the operator equation (2.33) is that
the time-consuming pre-programming and pre-computational effort to derive the operator
equation is avoided.

In addition to the new ingredients of the numerical implementation, a systematic, com-
parative analysis of various aspects on the convexification algorithm was performed [4]. No
such study has been performed before, and the parameters in the algorithm were taken in an
ad hoc manner. Certainly the comparative study is useful for the further development of the
convexification algorithm. Throughout this section we use notation δz for h, the thickness
of each layer in the layer stripping procedure of the convexification.
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Figure 3: Dielectric permittivity and electric conductivity constants in soil.

3.1 A simplified mathematical model of imaging of antipersonnel
land mines

We present a mathematical model for our Coefficient Inverse Problem - identification of
antipersonnel land mines. We work with a simplified 2D model and consider realistic ranges
of parameters. We neglect the irregularities of ground surface. In order to avoid difficulties
of solutions of forward and inverse problems at the air-ground interface, we assume that the
dielectric permittivity ε of the media is continuous everywhere. Further, we take no account
of the electric conductivity of the media. This can be justified in the case of dry soil, whose
electric conductivity is small, see Figure 3.

Suppose a pulse generating a polarized electric field occurs at the point x0(0,−ξ) when
the initial time is t = 0, where ξ = const. > 0. The following hyperbolic equation can be
derived from the Maxwell equations

−µε(x)utt + ∆u = 0, (x, t) ∈ R2 × R+, (3.1)
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u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (3.2)

In (3.1), (3.2) the function u(x, t) is one component of the electric field and the parameter
µ = 4π × 10−7

(
Henry

m

)
is the magnetic permeability in free space and

ε = ε0εr(x) (3.3)

is the dielectric permittivity, where ε0 ≈ 8.854× 10−12
(

Farad
m

)
is the dielectric permittivity

of free space and εr(x) is the dimensionless relative dielectric permittivity of the medium.
In both dry soil and trinitrotoluene (TNT) we have εr ≈ 2.9, see Figure 3. We are

interested in the identification of antipersonnel plastic mines, which is more difficult in a
practical scenario since the metal component in them is very small. Thus, we need to find
one parameter inside the mine which can give us sufficient contrast with the surrounding dry
soil. It is well known that a noticeable part of the volume of any mine is filled with air and
εr = 1 for the air. Since the mine does not wholly consist of air, it is reasonable to assume
that εr = 1.5 inside the mine, which is about the average value of the coefficient εr within
the mine. Therefore, for all our computation we assume

εr(x) =

{
2.9 outside mines
1.5 inside mines

(3.4)

The sizes of antipersonnel mines vary between 5 cm and 10 cm, and usually they lay at a
small depth underneath the ground, not exceeding 10 cm. Hence, we model mines as disks
of radius 5 cm which are located in the range z ∈ [0, 9] cm.

If we could identify the coefficient εr(x), then points whose values are close to 1.5 will
be those inside or close to the mine. Thus, finding an approximation for this coefficient via
solution of the inverse problem formulated below could provide one with a useful information
about the location and relative dielectric permittivity of the mine. This value, in turn, might
in the future serve as one parameter in a ‘classifier’ procedure, which would distinguish mines
from the clutter.

Consider the Laplace transform of the function u(x, t)

w(x, s) =

∞∫

0

u(x, t)e−stdt.

Since the parameters µ and ε0 are rather small, by combining the parameter s we re-scale
these two parameters and introduce a new variable κ := s

√
µε0, which we call “pseudo-

frequency”. Equation (3.1) with the initial condition (3.2) is transformed into

−∆w + κ2εr(x)w = δ (x− x0) , x ∈ R2, (3.4)

lim
|x|→∞

w(x, κ) = 0. (3.5)

We formulate our inverse problem, termed IP.
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Inverse Problem (IP). Consider a rectangle Ω ⊂ R2

Ω := {−A < x < A, z ∈ (0, L)} , A, L > 0.

Suppose the coefficient εr(x) of the equation (3.4) is unknown in Ω and is a known positive
constant in R2�Ω. Determine the relative dielectric permittivity εr(x) for x ∈ Ω, assuming
the following two functions ϕ (x, κ) and ψ (x, κ) are known for a single source position x0

w (x, 0, κ) = ϕ (x, κ) , wz (x, 0, κ) = ψ (x, κ) , ∀ (x, κ) ∈ (−A,A)× [κ0, κ̄] . (3.6)

We need to decide the lower limit κ0 and upper limit κ̄ of pseudo-frequency κ for our
inverse problem. To find an appropriate constant κ̄, we compute solutions of the forward
problem (3.4), (3.5) for different values of the parameter κ > 0 and determine such a value
κ := κ̄, beyond which the asymptotic behavior, i.e., exponential decay, of the function w(x, κ)
holds, see (2.11). Thus, we identify such large values of κ for which

ln w(x, κ) = v(x, κ) ≈ l1(x)κ + l0(x) (3.7)

for many points x ∈ Ω. The function v(x, κ) looks like a straight line with respect to κ for
κ > κ̄. We solve the forward problem on a large domain Ξ := {−6 ≤ x, z ≤ 6} using the
finite element package - COMSOL MultiphysicsTM version 3.2. Zero Dirichlet boundary is
imposed on the boundary ∂Ξ. We use triangular elements with Lagrange cubic basis. We
obtain κ̄ = 10 after rounding to integers. One is free to choose the lower bound κ0. We may
take a smaller value that is close to κ̄, e.g., κ0 = {8, 9}. The influence of the lower limit κ0

on the resolution of the reconstructed unknown coefficient εr was also studied in [4].

3.2 Tails

Recall that by (2.18)

ṽ (x, κ) = −
κ∫

κ

q (x, τ) dτ + V (x) , (3.9)

where V (x) = ṽ (x, κ) is the so-called “tail function”. This function is unknown and we now
describe the procedure of approximating it. While in [1,2] the tail function was taken from
the uniform background (subsection 2.8), we use here a different procedure to approximate
this function. First, we represent this function similarly with (2.21),

Dα
xV (x1, x2, z) ≈ Dα

x

N∑
j=1

Vj (z) φj (x1, x2) , x ∈ Ω, |α| ≤ 2. (3.10)

Below in this section we describe a procedure of approximating functions Vj (z) , V ′
j (z) , V ′′

j (z) .
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3.2.1 Piecewise constant approximation

From (2.11) and (2.15) the asymptotic behavior of the function ṽ (x, κ) = ln w (x, κ) /κ2 at
κ →∞ is

ṽ (x, κ) =
f1(x)

κ
+

g1(x)

κ2
+ O

(
1

κ3

)
, κ →∞, (3.11)

where functions f1(x) and g1(x) are unknown because the coefficient εr (x) is unknown.
Therefore, they should be found approximately. These two functions are connected with
each other by the relation g1(x) = − ln (−4πf1(x)). However, we do not use this connection
explicitly in this study. It follows from (3.11) and (2.21) that

Dα
xDβ

κ ṽ(x, κ) = Dα
xDβ

κ

(
f1(x)

κ
+

g1(x)

κ2

)
+ O

(
1

κ3

)
, κ →∞, |α| ≤ 2, β = 0, 1.

We approximate functions f1(x), g1(x) sequentially layer-by-layer ignoring the higher order
term O (1/κ3). We approximate functions f1(x), g1(x) as constants with respect to z in each
thin layer z ∈ [zi−1, zi), i.e.,

f1(x) := f1(x, y, zi−1), g1(x) := g1(x, y, zi−1), z ∈ [zi−1, zi) . (3.12)

We also set

∂β
z f1(x) := ∂β

z f1(x, y, zi−1), ∂β
z g1(x) := ∂β

z g1(x, y, zi−1), z ∈ [zi−1, zi) , β = 1, 2. (3.13)

By (3.9), (3.10) and (2.21)

ṽ (x, s) = −
N∑

j=1

φj(x, y)

κ∫

κ

pj(z, τ)dτ +
N∑

j=1

Vj(z)φj(x, y) =
N∑

j=1

ṽj (z, s) φj(x, y),

where

ṽj (z, s) = −
κ∫

κ

pj(z, τ)dτ + Vj(z). (3.14)

Furthermore, from (3.11)-(3.13) we assume that for a sufficiently large number κ̂ ∈ (κ0, κ)

ṽj (z, κ) =
kj (zi−1)

κ
+

tj (zi−1)

κ2
, z ∈ [zi−1, zi) , κ ∈ (κ̂, κ) , (3.15)

∂γ
z ṽj (z, κ) =

k
(γ)
j (zi−1)

κ
+

t
(γ)
j (zi−1)

κ2
, z ∈ [zi−1, zi) , κ ∈ (κ̂, κ) , γ = 1, 2. (3.16)

Once numbers k
(γ)
j (zi−1) are found, we set

V
(γ)
j (zi−1) :=

k
(γ)
j (zi−1)

κ
, γ = 0, 1, 2.
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Suppose we found all numbers

kj (zi−1) , tj (zi−1) , k
(γ)
j (zi−1) , t

(γ)
j (zi−1) . (3.17)

Thus, by (3.11)-(3.16) we set

Dα
(x,y)ṽ (x, κ) :=

N∑
j=1


−

κ∫

κ

pj(z, τ)dτ +
kj (zi−1)

κ
+

tj (zi−1)

κ2


 Dα

(x,y)φj (x, y) (3.18)

:=
N∑

j=1

ṽj(z, κ)Dα
(x,y)φj (x, y) , z ∈ [zi−1, zi) , κ ∈ [κ0, κ] , |α| ≤ 2,

∂γ
z ṽ (x, κ) :=

N∑
j=1


−

κ∫

κ

∂γ
z pj(z, τ)dτ +

k
(γ)
j (zi−1)

κ
+

t
(γ)
j (zi−1)

κ2


 φj (x, y) (3.19)

:=
N∑

j=1

∂γ
z ṽj(z, κ)φj (x, y) , z ∈ [zi−1, zi) , κ ∈ [κ0, κ] , γ = 1, 2.

We end up with finding the approximate values in (3.17).

3.2.2 Approximation of numbers in (3.17)

We consider a step-by-step procedure to find these numbers.
Step 1. Consider the first layer z ∈ [0, z1] , with z0 = 0, z1 = δz.
We compute functions ṽj (0, κ) , ∂γ

z ṽj (0, κ) from the expansions

ṽ (x, y, 0, κ) =
N∑

j=1

ṽj (0, κ) φj(x, y),

∂γ
z ṽ (x, y, 0, κ) =

N∑
j=1

∂γ
z ṽj (0, κ) φj(x, y), γ = 1, 2.

Since the functions ṽ (x, y, 0, κ) , ṽz (x, y, 0, κ) are known, functions ṽj (0, κ) , ∂zṽj (0, κ) can
be obtained by solving a system of linear equations. For the second derivatives ∂2

z ṽj (0, κ) ,
we assume the coefficient c(x) is known at the surface of measurements z = 0, which is often
the case in practice. So the second derivatives ∂2

z ṽj (0, κ) can be computed from equation
(2.22).

To approximate numbers in (3.17), we combine (3.15), (3.16) and apply the least squares
minimization in L2, i.e.,

min
k
(γ)
j (z0),t

(γ)
j (z0)

κ∫

κ̂

[
∂γ

z ṽj (0, κ)− k
(γ)
j (z0)

κ
− t

(γ)
j (z0)

κ2

]2

dκ, γ = 0, 1, 2, (3.20)

24



where k
(0)
j (z0) := kj (z0) , t

(0)
j (z0) := tj (z0). By imposing the critical condition, the vector(

k
(γ)
j (z0) , t

(γ)
j (z0)

)
, the minimizers of the integral (3.20) is the solution of the 2× 2 system

of linear algebraic equations

ak
(γ)
j (z0) + bt

(γ)
j (z0) =

κ∫

κ̂

∂γ
z ṽj (0, κ)

κ
dκ, (3.21)

bk
(γ)
j (z0) + ct

(γ)
j (z0) =

κ∫

κ̂

∂γ
z ṽj (0, κ)

κ2
dκ, (3.22)

where

a =

κ∫

κ̂

dκ

κ2
=

1

κ̂
− 1

κ
, b =

κ∫

κ̂

dκ

κ3
=

1

2κ̂2 −
1

2κ2 , c =

κ∫

κ̂

dκ

κ4
=

1

3κ̂3 −
1

3κ3 .

The determinant of the system (3.21), (3.22) does not vanish. With vectors V (z0) :=
(k1 (z0) , ..., kN (z0)) /κ, V ′ (z0) := (k′1 (z0) , ..., k′N (z0)) /κ computed, we can minimize the
functional J1

λ (a1(κ)) for the first layer. Functions pj (z1, κ), p′j (z1, κ) and p′′j (z1, κ) can
be evaluated once the solution is obtained.

Step 2. Consider the second layer z ∈ [z1, z2]. Denote k
(0)
j (z1) = kj (z1) , t

(0)
j (z1) =

tj (z1) . From (3.15) and (3.16)

∂γ
z ṽj (z1, κ) =

k
(γ)
j (z1)

κ
+

t
(γ)
j (z1)

κ2
, z ∈ [zi−1, zi) , κ ∈ [κ̂, κ] , γ = 0, 1, 2.

The same procedure can be applied to find the approximate values of k
(γ)
j (z1) , t

(γ)
j (z1), i.e.,

we minimize the least squares functional in L2 (κ̂, κ) ,

min
k
(γ)
j (z1),t

(γ)
j (z1)

κ∫

κ̂

[
∂γ

z ṽj (z1, κ)− k
(γ)
j (z1)

κ
− t

(γ)
j (z1)

κ2

]2

dκ

and obtain a system similar to (3.12), (3.22). Once the numbers k
(γ)
j (z1) , t

(γ)
j (z1) are found,

tails V (z1) and their derivatives V ′(z1), V
′′(z1) are calculated from (3.21), (3.22) as

V (γ)(z1) =
(k1 (z0) , ..., kN (z0))

κ
, γ = 0, 1, 2.

Other layers are treated similarly.
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4 Comparative Analysis

In order to fully investigate the numerical performance of the second implementation of the
convexification algorithm, we conduct in this section a comparative study on ten aspects
of this algorithm [4]. It is carried out with three configurations for the coefficient inverse
problem. Recall that we consider the case when mine-like inclusions are located in a dry soil
(subsection 3.1). The simplest case is with the homogeneous background medium without
mines. One realistic configuration is with a single mine, the one-mine case. The other is
with two inclusions and we consider a stone and a mine as the inclusions, the stone-mine
case. So, our result below show that we can differentiate between stones and mines on our
images. The stone and mine are of the circular shape with different radius, rstone = 4.5cm
and rmine = 5cm. Assuming that the stone is “more wet” than the dry soil, we model the
stone with the same relative dielectric permittivity as the wet soil with 5% moisture (Figure
3), thus, εstone

r = 4. For the case with a single mine, the center of the mine is located at
the point Pm(30cm, 7.5cm), whereas for the stone-mine case, the centers of the mine and the
stone are at the point Pm(40cm, 7.5cm) and the point Ps(−40cm, 7.5cm), respectively.

4.1 Efficiency

All our computation was performed on a workstation with the CPU of AMD Athlon(tm) 64
Processor 3500+, 2.2 GHz clock speed, 4 GB of RAM, 512 KB cache size, running Novell
Client for Linux v1.0. The code is written in C, optimized up to three levels, and the
compiler is gcc-3.4.6. To demonstrate the efficiency of the convexification algorithm with
our new implementation, we consider the two realistic configurations. For the case with
a single mine, we use 35 cubic B-splines for functions φj(x) with layer size δz = 0.005,
κ ∈ [9, 10] and apply Legendre polynomials of degree 5 for pseudo-frequency approximation,
and add 2% noise in the input data. The code is run up to 16 layers and the iteration stops
when the gradient of the objective function J drops below the threshold δ = 0.01. The
computational time for the run is 1 minute and 14 seconds. For the configuration with a
stone and a mine, we apply 39 cubic B-splines for functions φj(x) and all other parameters
share their corresponding values in the previous case with a single mine. It takes 1 minute
and 38 seconds for the code to run up to 16 layers. Thus, the total depth underneath the
ground is 8 cm, which is a reasonable depth for antipersonnel land mines.

On each generic Layer #i, the error of the minimizer āi from the minimization procedure
is bigger than that with a tight threshold, e.g., δ = 0.001, or δ = 0.0001. However, the
reconstructed unknown coefficient εr for each configuration is still good, which is shown
in Figure 4. We should point out that although our computations were performed on a
computer with a large memory, i.e., 4GB of RAM, the compiled code, which is rather small,
can be run on a computer with normal amount of memory, e.g., 512 Mb of RAM, or even
smaller size, e.g., 256 Mb of RAM. The memory requirement for the code to run is rather
low. The numbers of degrees of freedom for the two cases are 210 and 234, respectively. This
points towards a possibility for the convexification to work in real time to detect and image
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Figure 4: Reconstructed εr for the efficiency study at z =4.75 cm, top: the configuration
with a single mine, bottom: the configuration with a stone and a mine.

antipersonnel land mines in the field.
The solution of the forward problem has a singularity at the point x0 = (0,−10cm) ,

where the source is located. This influences the sensitivity region for the inverse problem.
Numerical experiences show that the reconstructed unknown coefficient εr is not sensitive
near the singularity, i.e., near the center of the domain. We have also investigated the
case when the central part is imaged [5]. In this case the resulting image has a small
dent in the center by the presence of the singularity near the source location. We have
explained this dent in [5]. Figure 5 represents a typical image when the central part is in.
Unless otherwise mentioned explicitly, each graph below, is the cross-sectional view of the
reconstructed unknown coefficient εr along x-axis without the central part at a specific value
in z direction.

4.2 Stopping Criterion

On each generic Layer #i, the steepest descent method is applied to find the unique minimizer
of the weighted least squares objective function J i

λ. The iterative solver has the form

a
(n+1)
i = a

(n)
i − α

(n)
i ∇J i

λ

(
a

(n)
i

)
,

where α
(n)
i > 0 is the step size at n-th iteration. The iteration is terminated when the

gradient of the function drops below a prescribed threshold, i.e.,
∣∣∣∇J i

λ

(
a

(n)
i

)∣∣∣ ≤ δ. We
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Figure 5: Reconstructed coefficient εr, the case with a stone and a mine, z=4.75 cm. The
dent in the center is clearly seen and was explained in [5].

consider three thresholds δ = {1 × 10−2, 1 × 10−3, 1 × 10−4} with the homogeneous case
and run the code up to 16 layers. The lower and upper limit of the pseudo-frequency is
κ0 = 9 and κ̄ = 10, respectively, i.e., κ ∈ [9, 10]. For this range of pseudo-frequency,
Legendre polynomials of degree 5 give the best approximation, which is used as the basis
for κ approximation in this run. Value for the parameter λ associated with the Carleman
Weight Function is λ = 200. We use 39 splines on the interval x ∈ [−A,A] = [−0.6, 0.6]
with uniform layer size δz = 0.005. Unless otherwise noted explicitly, this uniform layer size
has been used throughout the subsequent comparative studies. Figure 6 shows the result of
the reconstruction for the case εr ≡ 2.9, i.e., in the absence of the inclusion. From the graph
with normal scale, the relative dielectric permittivity εr is reconstructed successfully for all
stopping criteria though with very small deviations from the exact value. The difference with
the three stopping criteria is self-evident from the blow-up view. The stringent threshold
δ = 1 × 10−4 does not give us a better accuracy. Rather, it introduces more oscillations
compared with the relatively loose threshold δ = 1× 10−3.

This is due to the ill-posed feature of coefficient inverse problems. Accumulated round-off
error also contributes this since more iterations are involved to reach the stringent criterion.
It is a delicate issue to choose an appropriate stopping criterion. If it is too loose, i.e., δ
is relatively big, then the minimizer āi from the steepest descent method will be rather far
from its true solution a∗i . This will result in degraded accuracy of the reconstructed unknown
coefficient, which is shown in the blow-up view for the threshold δ = 1 × 10−2. One has to
take into account the error with spatial approximation, the error with pseudo-frequency κ
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Figure 6: Comparison of three different thresholds at z=8 cm, top: blow-up view, bottom:
normal scale view.

integration and layer size δz in selection of a proper stopping criterion.

4.3 Layer Size

We consider three different layer sizes δz = {2.5×10−3, 5×10−3, 1×10−2} for the configuration
with no inclusion, i.e., εr ≡ 2.9. The other parameters are the same as in the previous section
on stopping criterion with δ = 1×10−3. The codes run up to 32, 16 and 8 layers for the three
layer sizes considered, respectively. We show the cross-sectional view of the reconstructed εr

at z = 0.08 along x-axis, i.e., 8 cm underneath the ground and at the end of the last layer
for each run. The comparison is shown in Figure 7. On the graph with normal scale, the
three curves are close to each other and εr is reconstructed very accurately for each layer
size considered. From the blow-up view, one can appreciate the difference - the thinner the
layer, the less the oscillations, thus, the better accuracy. This is understandable since the
quadratic approximation of function pj(z, κ) with respect to z has more accuracy with layer
size decreased. The initial values of a0

i+1,b
0
i+1, c

0
i+1 for the next layer also have less errors

with smaller δz.

4.4 Parameter λ

We study the impact of the parameter λ associated with the Carleman Weight Function on
the accuracy of the reconstructed εr. We consider λ = {100, 200, 1000} and the stopping
criterion δ = 1×10−3. The rest of the parameters share the same values as those in the section
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Figure 7: Comparison of three different layer sizes δz at z =8 cm, top: blow-up view, bottom:
normal-scale view.

on stopping criterion. Again, we work with the homogeneous situation where εr ≡ 2.9. The
result is shown in Figure 8. The relative dielectric permittivity εr is reconstructed with
a good accuracy for all values of λ considered. The difference shows up on the blow-up
view. Smaller value of λ generates more oscillations and larger value of λ tends to create
less oscillations. This does not necessarily mean that the larger value of λ will have a better
accuracy for the reconstructed εr. The overall performance for λ = 200 seems to be better
than that for λ = 1000. The goal of the introduction of the Carleman Weight Function Ψi

λ

is to ensure the weighted least squares objective function J i
λ to be strictly convex on each

generic layer. Certainly the parameter λ has impact on the solution āi from the minimization
procedure, thus affecting the reconstructed εr.

From the results shown in Figure 8, we conclude that the objective function J i
λ has a

unique minimizer when parameter λ varies in a large range. Furthermore, the results conform
to the error estimate (2.34), which means that the algorithm is very robust. With all other
parameters fixed, there is an unique, optimal value of the parameter λ∗. Actually, we have
employed the implicit rule λ × δz = 1, i.e., taking the inverse of layer size δz as its value
for this parameter in the rest of our comparative study. Computational results for various
realistic configurations show that this choice works quite well.

4.5 Dimension of the Basis for κ Approximation

An orthonormal basis on the interval κ ∈ [κ0, κ̄] has been applied to approximate functions
p(z, κ) and pz(z, κ) with respect to pseudo-frequency κ. We choose Legendre polynomials
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Figure 8: Comparison of three different values for the parameter λ at z=8 cm, top: blow-up
view, bottom: normal-scale view.

up to degree K as the basis {li (κ)}K
i=0. One advantage of introducing such a basis is that all

the terms involving κ-integration in the weighted least squares objective function J i
λ can be

computed explicitly in contrast to the composite Simpson’s or trapezoidal rules. Functions
of the orthonormal basis are defined as

li(κ) :=

√
2i + 1

κ̄− κ0

Li

(
2κ− (κ0 + κ̄)

κ̄− κ0

)
, i = 0, 1, · · · , K,

where Li(ξ) is the classical Legendre polynomial of degree i defined on [-1,1] and has the
property

1∫

−1

L2
i (ξ)dξ =

2

2i + 1
.

The orthonormal basis share the property

κ̄∫

κ0

li(κ)lj(κ)dκ = δij,

where δij is the Kronecker delta. On the pseudo-frequency interval κ ∈ [κ0, κ̄] = [9, 10],
Legendre polynomials of degree 5 have the best approximation of functions p(0, κ) and
pz(0, κ) compared with other degrees. Indeed for degree 5 polynomial approximation,
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the maximum absolute and maximum relative errors are very small for both functions:
|δp|K=5

abs,∞(0, κ) = 9.08 × 10−10, |δp|K=5
rel,∞(0, κ) = 2.73 × 10−7; |δpz|K=5

abs,∞(0, κ) = 1.50 × 10−9,
|δpz|K=5

rel,∞(0, κ) = 2.76×10−7. This is in sharp contrast with quadratic polynomial approxima-
tion: |δp|K=2

abs,∞(0, κ) = 9.89×10−7, |δp|K=2
rel,∞(0, κ) = 4.24×10−4; |δpz|K=2

abs,∞(0, κ) = 1.72×10−6,
|δpz|K=2

rel,∞(0, κ) = 3.62 × 10−4. We want to investigate if there is any pronounced difference
in the reconstructed unknown εr with these two polynomial approximations. For the com-
parison, we consider one realistic configuration, the one-mine case. The center of the mine
is located at the point Pm(0.3m, 0.075m) = Pm(30cm, 7.5cm). We use 43 splines for spatial
approximation and the threshold δ = 0.001 for the stopping criterion.

Figure 9 shows the comparison result. The mine and the background medium have been
clearly identified for both polynomial approximations. On the graph with normal scale, the
two curves are very close to each other. From the two blow-up views, one can recognize the
difference though not too much. Degree 5 gives relatively better overall performance than
degree 2. Compared with the big, several orders’ difference in approximation of functions
p(0, κ) and pz(0, κ), the discrepancy of εr is rather small with the two different polynomial
degrees. This is due to the fact that the tail function χ(x, z) dominates the contribution
for the function ṽ(x, z, κ), and therefore we could take a very short interval κ ∈ [9, 10] for
the pseudo-frequency integration. On this interval the approximation errors with Legendre
polynomials of degree 2 and 5 are all very small. Thus, this small error propagates through
the minimization procedure and exerts a slight influence on the final reconstructed unknown
coefficient.

4.6 Noisy Data

We consider the perturbed input data by adding different noise levels to the input data
ϕ2(x, κ) and ψ2(x, κ). In principle, we should add noise to the original data ϕ and ψ in (3.6)
and then use a regularization procedure to differentiate functions ϕ1 and ψ1 in (2.14) with
respect to κ. Regularization can be done, for example similarly to subsection 6.1 of [34].
However, to avoid additional complications, instead of considering ϕ(x, κ) and ψ(x, κ), in this
study we introduce multiplicative noise in the input data ϕ2(x, κ) and ψ2(x, κ). For every
discrete value xi ∈ [−A,A] and κj ∈ [κ0, κ̄], each of the function ϕ2(xi, κj) and ψ2(xi, κj) is
a matrix. The elements in the two matrices are perturbed by

ϕ2 (xi, κj) = ϕ2 (xi, κj)
(
1 + ζ i,j

)
, ψ2 (xi, κj) = ψ2 (xi, κj)

(
1 + ηi,j

)
,

where ζ i,j and ηi,j are normally distributed pseudo-random numbers with zero means. The
standard deviations are selected to create noise levels of 2%, 5% and 10% for the input data
ϕ2(x, κ) and ψ2(x, κ). The sample number is taken to be 200 for each noise level. The
parameters for this setup are the same as those in the previous subsection with polynomials
of degree 5 for pseudo-frequency approximation. The results with the perturbed, noisy input
data are shown in Figure 10.

For the reconstructed unknown coefficient εr, higher noise level creates more oscillations
and there is small undershoots near the mine with the noise level of 10%. Nevertheless,
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Figure 9: Comparison of polynomial approximations with degree 2 and 5 at z=5.5 cm, top:
normal-scale view, middle: blow-up view of the upper portion, bottom: blow up view near
the mine.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
1.5

2

2.5

3

0.22 0.24 0.26 0.28 0.3 0.32 0.34
1.44

1.46

1.48

1.5

1.52

1.54
10.0%

5.00%

2.00%

0.00%

Exact

Figure 10: Comparison of three different noise levels at z=5.5 cm, top: normal-scale view,
bottom: blow-up view near the mine.
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Figure 11: Comparison between the case with the tail and the tail-free case at z=4.75 cm,
top: with tail, bottom: tail-free.

the overall performance with all the noise levels are still good and, both the mine and the
background medium have been clearly identified in terms of their material property εr.

4.7 Tail V (x)

As we have pointed out before, the tail function V (x) dominates the contribution in the
pseudo-frequency κ integration. We compare the reconstructed unknown coefficient εr for
the case with tails and the case without tails, the tail-free case and consider the stone-mine
realistic configuration. The center of the stone is located at the point Ps(−0.4m, 0.075m) =
Ps(−40cm, 7.5cm), i.e., the same depth 7.5 cm underneath the ground as the mine, whose
center is at the point Pm(0.4m, 0.075m) = Pm(40cm, 7.5cm). The x-interval for the inverse
problem is Ωx := [−A,A] = [−0.7, 0.7]. Each computation is performed with 51 splines with
uniform layer size δz = 0.005m = 0.5cm and δ = 1× 10−4 as the threshold for the stopping
criterion. The lower limit for κ integration is κ0 = 8 and degree 6 for Legendre polynomial
basis. The comparison is presented in Figure 11. The tail-free case essentially gives us
nothing on the reconstructed εr, i.e., it could not determine the material property (εr) of the
heterogeneous media, let alone distinguish the stone and the mine from their background
medium. Yet, the variation of εr for the tail-free case still indicates the locations of the stone
and the mine.
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Figure 12: Comparison of four different number of splines at z=5.5 cm, top: normal-scale
view, second row: blow up view near the mine, third row: blow-up view of the left portion,
bottom: blow-up view for x ∈ [0.32, 0.44] .

4.8 Dimension of the Basis for x Approximation

To approximate function q(x, z, κ) and its partial derivatives with respect to spatial variable

x, we introduce cubic B-splines:
{
φj (x)

}n+1

j=−1
. Each spline function is piecewise defined

on a subset of the entire interval [a, b], yet globally the interpolating function f̃(x) has the
property f̃(x) ∈ C2[a, b]. It is well known that it has the desirable approximation property,
i.e., if f ∈ C4[a, b], then

‖f − f̃‖∞ ≤ 5

384
‖f (4)‖∞h4,

where h is the distance between two consecutive evenly-spaced knots. We study the effect
of the dimension N of the basis on the resolution of the final reconstructed εr, i.e., whether
using more splines will give us better accuracy of εr. The parameters share the same values
as in Subsection 4.5 and for κ approximation, we choose K = 5 and κ ∈ [9, 10]. The results
are shown on Figure 12. On the graph with the normal scale, all the 4 curves are close to
each other, but from the 3 blow-up views, one can identify the difference. Near the mine,
there is small undershoot of εr for N = {43, 47}. In this local region, the best performance
seems to be the case with N = 39.

At the left portion of the graph, there are mild oscillations for N = {43, 47}, and the
oscillation for N = 35 is rather small. The performance with N = 39 is in-between the
performances for N = 35 and N = 43. The best resolution of εr in this local area is for
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the case with N = 35. From the blow-up view for x ∈ [0.32, 0.44] and near the interface of
singularity, overshoots exist for all the cases with the four different splines numbers. The
curve for N = 35 shows the maximum overshoot while the minimum overshoot exhibits
on the curve for N = 47. The best overall performance in this short interval seems to
be for N = 39. Thus, on the whole interval x ∈ [−0.6, 0.6], the highest accuracy of the
reconstructed εr is for the case with N = 39. The main reason why further more splines
does not improve the accuracy of the reconstructed εr is due to the inherent ill-posed nature
of coefficient inverse problems. Accumulated round-off error also contributes but to a less
degree. Another disadvantage with more number of spline approximation is the increased
computational load, i.e., more running time and more required memory of the machine. This
might be a problem for detecting the land mines in real time.

4.9 Lower Limit κ0

Once κ̄ is decided using the asymptotic behavior of function w(x, s) as s → ∞, there is an
arbitrariness in selecting the lower limit κ0 for pseudo-frequency integration. Theoretically,
κ0 should be as small as possible in order to have better accuracy for κ integration. The
problem with smaller value of κ0 is that the dimension of the Legendre polynomial basis will
also have to be correspondingly higher. For example, if we take κ0 = 1, Legendre polynomials
of degree 17 give the best approximation of functions p(0, κ) and pz(0, κ). This is in a sharp
contrast with the case for κ0 = 8, where the degree 6 gives the best approximation for
both functions. Here we want to study the impact of different values of κ0, i.e., κ0 = 8
and κ0 = 9 on the resolution of our reconstructed εr. We record the maximum absolute
and maximum relative errors with degree 6 polynomial approximations for both functions:
|δp|K=6

abs,∞(0, κ) = 1.43 × 10−9, |δp|K=6
rel,∞(0, κ) = 3.47 × 10−7; |δpz|K=6

abs,∞(0, κ) = 2.45 × 10−9,
|δpz|K=6

rel,∞(0, κ) = 3.29× 10−7. Each error is on the same order as its corresponding one with
degree 5 approximation for κ0 = 9, though a little larger. For this study, we consider a
realistic configuration, the stone-mine case. The rest of parameters are the same as those in
subsection 4.7. Figure 13 shows the results for the comparison.

The two curves are almost inappreciable from the graph with normal scale, and there is
no overshoot near the stone, nor undershoot near the mine. The stone, the mine and the
background medium have been correctly and sharply identified. The difference shows up on
both blow-up views. The performance of the reconstructed εr is a little better with κ0 = 8.
This is due to the extra information with κ integration for κ ∈ [8, 9], in the presence with
the case for κ0 = 8 and lost in the case for κ0 = 9.

4.10 Initial Guess a0
1

To start the layer stripping procedure, we need to have the initial guess a0
1 for the first

layer z ∈ [0, δz]. There are two ways to obtain a0
1. The first approach needs one more

datum wzz(x, 0, κ) besides the two given Cauchy data, w(x, 0, κ) and wz(x, 0, κ). This extra
datum can be obtained by solving the forward problem. In order to distinguish from the
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other method, we term this approach as “External data” for the obvious reason. The second
method is by utilizing equation (2.27). For the first layer and at z = 0, by the quadratic
approximation of p(z, κ) in (2.27), we have p(0, κ) = c1, p′(0, κ) = b1, and p′′(0, κ) = a1.
Plugging these expressions into equation (2.27) and re-arranging the second term on the left
hand side yields

Ba1 = f


c1,b1,

κ̄∫

κ

c1 (z0, τ) dτ ,

κ̄∫

κ

b1 (z0, τ) dτ , χ(z0), χ
′(z0), κ


 .

The vector-valued function f can be evaluated since all its arguments are known. As matrix
B is non-singular, we could solve the above linear equation for a1 to get the initial guess a0

1

for the first layer. We name this method “By formula”. For this run, the parameters take
the same values as their corresponding ones in subsection 4.7 for the case with tail. The
comparison results are shown in Figure 14. On the graph with normal scale, the two curves
are nearly indistinguishable.

From the blow-up view, one can tell the difference: the by-formula method is a little better
than the approach with external data in terms of resolution of the reconstructed unknown
coefficient εr. The convergence history for Layer #10 shows that the by-formula method
converges a little slower than the approach with external data. The former needs 33 iterations

compared with 29 iterations for the latter to reach the stopping criterion
∣∣∣∇J

(n)
10

∣∣∣ ≤ 1×10−4.

The iteration number between the two approaches differs only slightly. We consider this
comparison is a testimony of the fact that the convexification algorithm is indeed a globally
convergent method.

5 Summary and Conclusions of Comparative Studies

A systematic comparative study of the globally convergent convexification algorithm has
been carried out. Below is a summary of our findings.

• An appropriate stopping criterion for the iteration of gradient-like method is central
to the accuracy of the reconstructed unknown coefficient. A stringent criterion does
not necessarily guarantee better accuracy. To choose a proper threshold, one needs
to consider the errors of spatial approximation, of pseudo-frequency integration and
layer size. With a known configuration and by trial and error, one can calibrate the
threshold and apply it to other unknown realistic situations. Our numerical studies
show that for realistic configurations, the difference of the reconstructed unknown
coefficient εr between a stringent and a loose threshold is small. On the other hand,
the stringent threshold requires much more computational time. This means that with
a loose threshold, we can still generate a good image of the unknown coefficient, and
more importantly, the efficiency study shows that it is possible to run the algorithm in
real time for identification and imaging of antipersonnel land mines in the field.
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• Thinner layer size has better resolution of the reconstructed unknown coefficient εr,
which provides a numerical confirmation of the estimate (2.35).

• The weighted least squares objective function is strictly convex for the parameter λ
associated with the Carleman Weight Function varies in a large range. As long as
λ varies in this range, its influence on the accuracy of the reconstructed εr is not
pronounced, which confirms the error estimate (2.34). The inverse of the layer size can
be a good choice for the value of this parameter.

• A basis of low dimension can be applied for the pseudo-frequency approximation and
generate good accuracy on εr. This is due to the dominance of the tails in the pseudo-
frequency integration.

• A higher noise level affects more severely the quality of the reconstruction of the un-
known coefficient εr. Up to the 10% noise level, the quality of the reconstructed εr is
still good.

• For each specific problem, there is an appropriate dimension of the basis for spatial
x approximation. Due to the inherent ill-posed nature of coefficient inverse problems,
basis with even higher dimension does not further improve quality of the reconstructed
unknown coefficient.

• The lower bound of the pseudo-frequency may be selected quite close to the upper
bound due to the fact that tails dominate pseudo-frequency integration. Small change
of the lower limit has negligible impact on the reconstructed unknown coefficient.

• Fitting the correct tails is crucial for the algorithm to work properly and efficiently.

• The initial guesses obtained by the methods of “External data” and “By formula” differ
only slightly in terms of resolution of reconstructed unknown coefficient and speed of
convergence. This conforms well with the theoretically established strict convexity of
the functional J i

λ.

• Overall, the comparative study demonstrates the robustness of the convexification algo-
rithm. Efficiency with the new implementation shows the possibility for the algorithm
to be applied in real time to detect and image antipersonnel land mines in the field.

The above comparative analysis provides valuable references to further development of
the convexification algorithm for a broad class of CIPs.

6 Convexification Method for an Inverse Problem for

an Elliptic Equation

In [7] we have also considered the inverse problem for the elliptic equation (6.1) in the case
when the running pseudo frequency of the above case is replaced by the running source
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xs. The source is running along a line. This corresponds to the constant current in the
case of search of e.g., land mines and underground bunkers using the method of Electrical
Impedance Tomography (EIT). The soil is probed by the constant current then. In the case
of EIT the function u(x, xs) in (6.1) is the voltage at the point x generated by the constant
current at the source point xs. In the case of optical imaging of diffuse media this corresponds
to the so-called Constant Wave (CW) light. The optical imaging through the diffuse media
can be applied to image targets on battlefields through smogs and flames, as well as to
medical optical imaging. Interestingly, the diffuse-like propagation of light in the battlefield
application would even be helpful, because even if the direct laser beam would “miss” the
target, one might still image it because photons would still “sense” that target due to the
diffusion of light. A simplified version of the convexification for this inverse problem was
considered in [9] and was reported in the annual 2006 report on this project [21].

The reason why the above scheme of the convexification works well for the case of fre-
quency/time dependent data is that there exists a “proper” asymptotic behavior (2.11) of
the solution of the corresponding elliptic equation when the pseudo-frequency tends to the
infinity in this case. However, in the case of the source dependent data a “proper” asymp-
totic behavior as the source position tends to the infinity is unknown. This means that we
need a special treatment of the so-called “tail”. The tail is unknown a priori and appears
due to the truncation of an improper integral with respect to the source position, see (6.11).
In order to apply our layer stripping procedure, we need to approximate the tail. Thus, we
use a heuristic approach of approximating the tail. At the same time, we point out that if
the tail is given, then the global convergence of our layer stripping procedure is rigorously
guaranteed.

6.1 Statement of the Inverse Problem and Applications

6.1.1 The Inverse Problem

For the sake of generality we consider the 3-D case with x = (x1, x2, z) ∈ R3. The 2-D case,
for which our numerical experiments are conducted, is both simpler and similar. Let the
function a(x) ≥ const. > 0, a ∈ C1 (R3) and a(x) = k2 = const. > 0 for x ∈ {|x| > R} ,
where R is a positive number. Let the function u(x, s), where s is a parameter, satisfies the
following elliptic equation

∆xu− a(x)u = −δ (x− xs) in R3 (6.1)

with the conventional condition at the infinity

lim
|x|→∞

u(x, s) = 0, ∀s ∈ R. (6.2)

The source position is at the point xs and when s is changing, the source is running along
the line l = {x = (x1, 0, zm)} , where zm = const. > 0. We also assume that

a(x) = k2 in lε, (6.3)
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where lε is a small neighborhood of the line l.
If the function a(x) ≡ k2, then the fundamental solution of the equation (6.1) with the

condition (6.2) is

u0(x, s) =
exp (−k |x− xs|)

4π |x− xs| .

Hence, we seek the solution of the problem (6.1), (6.2) in the form u = u0 + û, where the
function û ∈ C2 (R3) and satisfies the following conditions

∆xû− a(x)û =
(
a(x)− k2

)
u0 in R3, (6.4)

lim
|x|→∞

û(x, xs) = 0. (6.5)

Uniqueness and existence results of the problem (6.1), (6.2) for functions
u ∈ C2+α (R3� {|x− x0| < ε}) follow from the classic theory of elliptic equations, see,

e.g., []. Here ε > 0 is an arbitrary number, α ∈ (0, 1) and C2+α are H
..
older spaces.

Let Ω ⊂ R3 be a rectangular prism

Ω = {x : −A < x1, x2 < A, z ∈ (z0, zm − θ)} ,

where A and L are positive numbers. Denote Γ = Ω ∩ {z = z0}. We are not setting θ := 0
because we want to avoid working with the line l, where the singularities of the function u
occur. We consider the following

Inverse Problem. Suppose that the function a(x) is unknown inside of the domain Ω,
known outside of it, and it is also known in Ω ∩ {z ∈ (zm − θ, zm)} . Determine the function
a(x) in Ω ∩ {z ∈ (z0, zm − θ)} given the following functions ϕ and ψ

u (x, s) = ϕ (x, s) , uz (x, s) = ψ (x, s) , for x ∈ Γ, s ∈ [s0, s] , (6.6)

where s0 and s are two numbers. Thus, functions ϕ and ψ represent the Dirichlet and
Neumann data caused by the transmitted signal.

6.1.2 Applications

In applications discussed below it would be more natural to consider equation (6.1) either
in a bounded domain or in the half-space {z < zm} . In principle, these cases can also be
incorporated in the scheme of the convexification. However, this would create some additional
difficulties in the forward problem solution near the boundary. Thus, we consider the forward
problem (6.1), (6.2) in the entire space, for brevity.

1. Electrical Impedance Tomography
One of applications of the EIT is in the search of land mines and underground bunkers

via probing the ground by the constant current at different source locations. Let v(x, s) be
the voltage generated by the source of the constant current located at (s, 0, zm) and let σ(x)
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be the electric conductivity of the medium, σ(x) ≥ const. > 0. Then the function v(x, s)
satisfies the following equation

∇ · (σ(x)∇v) = −δ (x1 − s, x2, z − zm)

and
lim
|x|→∞

v(x, s) = 0.

Replacing the function v with the function u = v
√

σ and assuming that σ (x1, 0, zm) = 1, we
obtain equation (6.1) with

a(x) =
∆ (
√

σ)√
σ

. (6.7)

Hence, assuming that the function σ(x) is known near the surface Γ, we arrive at the above
inverse problem with the unknown coefficient in the form (6.7).

2. Optical Diffusion Tomography
In Optical Diffusion Tomography, lasers with the CW (constant wave) light are used

as light sources. The first application of the Optical Diffusion Tomography is in optical
medical imaging of tumor-like abnormalities both in human organs and small animals using
Near Infrared (NIR) light with the wavelength of light somewhere between 500 and 1000
nanometers. The second feasible application is in optical imaging of targets on battlefields
via smogs and flames. Both cases of transmitted and back reflected light are feasible for
both applications. The light source should move along a straight line and the output light
should be measured at a part of a surface.

Let u(x, xs) be the light intensity at the point x due to the light source located at the
point xs. It can be derived from the well known literature sources (see, e.g., [31]) that the
function u(x, xs) is the solution of the problem (6.1), (6.2) with the coefficient a (x) as

a (x) = 3 (µ′sµa) (x) , (6.8)

where µ′s is the reduced scattering coefficient and µa is the absorption coefficient of the
medium. Both coefficients are measured in [1/cm]. The reduced scattering coefficient µ′s is
assumed constant here. This is reasonable because in NIR applications the coefficient µ′s
usually changes quite slowly with respect to x for this spectrum of light waves, whereas the
coefficient µa changes significantly. Furthermore, µa can be used for the diagnostics. In the
case of imaging of targets through flames these targets are usually impenetrable for light,
meaning that µa = ∞ in them. However, one can model those targets as ones with finite,
though large values of µa, i.e., the ones having large contrasts with the surrounding.

6.2 The Convexification

Let xs = (s, 0, zm) , where the running parameter s characterizes the changing source position
of the source. Below we consider the function u(x, s) and all related functions only in the
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above domain of interest Ω. By the maximum principle u(x, s)̇ > 0. Hence, similarly with
section 2 we consider the function

v(x, s) = ln u(x, s)̇.

By (6.1)
∆v + (∇v)2 = a(x) in Ω. (6.9)

To remove the unknown coefficient a(x) from (6.9), differentiate (6.9) with respect to s and
denote q(x, s) = ∂sv(x, s). Hence,

∆q + 2∇q · ∇v = 0. (6.10)

We now need to express the function v via the function q. This expression is obviously given
by

v(x, s) = −
s∫

s

q(x, τ)dτ + v (x, s) . (6.11)

We set s to be a large number. We call the function v (x, s) “tail”. In the frequency dependent
case the function v (x, s) was dropped, for s >> 1 because v (x, s) ≈ 0 in that case. However,
the latter is not true in our case. Hence, we need a special treatment to approximate the
tail. We focus now on an approximation of the function q. Substituting (6.11) in (6.9), we
obtain

∆q − 2∇q ·
s∫

s

q(x, τ)dτ + 2∇q · ∇v (x, s) = 0. (6.12)

Also, conditions (6.6) imply that

q(x, s) = ϕ1(x, s), qz (x, s) = ψ1 (x, s) , for x ∈ Γ, s ∈ [s0, s] , (6.13)

where

ϕ1(x, s) = ∂s ln ϕ(x, s), ψ1 (x, s) =
ψs

ϕ
(x, s)−

[
ϕs

ϕ2
ψ

]
(x, s).

Although the calculation of the derivative with respect to s is an ill-posed procedure, but it
can be handled via a regularization method, see, e.g., [34] for a simple method.

We have obtained the Cauchy problem for the nonlinear integral-differential elliptic Par-
tial Differential Equation (6.12) with the Cauchy data (6.13). Its numerical treatment was
similar with the one described in section 2. As to the basis functions in (2.21),we have chosen
trigonometric functions. As to the tail, we have used the asymptotic formula for the solution
of the forward problem (6.1), (6.2) and the available data to get an approximate value of
the tail. Interestingly, we have discovered that it is sufficient to have only three (3) source
positions for the tail and only two (2) source position for the subsequent reconstruction via
the convexification.
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6.3 Some details of numerical experiments

We now describe some ideas of numerical experiments. For the forward problem, we calculate
the solution of the diffusion equation

∆u− a(x, z)u = −δ (x− s, z − zm) (6.14)

with the conventional condition at the infinity

lim
|(x,z)|→∞

u(x, z, s) = 0, (6.15)

where the physics of the function a(x, z) is defined in (6.8). We have considered a medical
application. However, the above application to imaging of targets on battlefields can also be
considered after a proper re-scaling. Consider the rectangle Ω,

Ω = {(x, z) : 5cm < x < 15cm, 5cm < z < 10cm} .

We assume that
a(x, z) = k2 = const. > 0 in R2�Ω. (6.16)

We assume that in (6.14) the source position (s, zm) is running along the right side of Ω, i.e.,
zm = L = 10cm. Also, consider a bigger rectangle

Ω0 = {(x, z) : 0cm < x < 20cm, 0cm < z < 15cm}.

The reason why we consider the rectangle Ω0 along with the rectangle Ω is that it is natural
to approximate the solution of the problem (6.14), (6.15) in the infinite domain by the
solution of equation (6.14) in Ω0 with Robin boundary conditions at ∂Ω0. We have established
numerically that for the range of parameters we use the solution of the problem (6.14), (6.15)
is close in Ω to the solution of equation (4.1) in the bigger rectangle Ω0 with the Robin
boundary conditions at its sides.

The light sources are located in several positions (xi, z) = (si, 10) along the right-hand
side of the smaller rectangle Ω, and receivers are located at the left-hand side of Ω. However,
we have found in our numerical experiments that only three farthest away sources are typi-
cally useful for the reconstruction. We use three (3) sources to construct an approximation
of the tail functions to be described below. Next, we use two (2) sources for the above layer
stripping procedure both in the s-derivative and the s-integral. Although it is possible to
use more data or light source positions, but our numerical experiments showed no significant
improvement. We have also introduced the multiplicative random noise in the data.

Following the convexification method described above, we divide the domain Ω along the z
axis into 30 layers within the interval z ∈ [z0, zm − θ]. In each layer we then approximate the
vector function p(z, s) along the z-axis by interpolations using quadratic polynomials (2.14).
Coefficients bi(s) and ci(s) are determined by the values of solutions from the previous layer.
The unknown coefficient ai(s) is determined by solving equation (2.33) with the contractive
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mapping operator, see Theorem 2.1 in section 2. In our case we take only two values s1 and
s2 = s, s1 < s2 and assume that

bi(s) = bi(s1), ci(s) = ci(s1), ai(s) = ai(s1) for s ∈ [s1, s2] .

In x-direction we approximate the solution using Fourier series. Although this is not
completely justifiable (because the boundary conditions are not periodical), it does provide
a reasonable approximation in our problem. We first tried the number 65 of terms in Fourier
series (2.21), or 32 Fourier modes involving

sin(
πmx

5
) and cos(

πmx

5
) for m = 0, ..., 32.

However, this case was unstable. To explain the latter, we note that the problem (2.22),
(2.23) inherited the instability of the original Cauchy problem for the nonlinear integral
differential equation (2.20a) with the Cauchy data (2.20b). It is well known that the Cauchy
problem for an elliptic equation is unstable. Hence, in our case the numerical error will
be increasing with the number of Fourier modes. In order to reduce the numerical noise
generated by the layer stripping reconstruction, we need to reduce the number of modes in
our truncated Fourier series.

Because of the latter, we start our calculations with five (5) Fourier modes in the first
layer and end up with two (2) Fourier modes at the 30st layer (the right edge). To do this,
we change initial conditions in each layer as follows

b̃im(s) := bim(s)

(
1− (i− 1)h

30

)
, c̃im(s) := cim(s)

(
1− (i− 1)h

30

)
,

where bim(s) is the component of the vector bi(s), which corresponds to either of functions

sin(
πmx

5
) or cos(

πmx

5
),m = 3, 4, 5.

The coefficient cim(s) is defined similarly.

6.4 Tails v̂(x, s) in (6.11)

A crucial issue in our problem is to find a good quality approximation of the function v̂(x, s)
in (6.11) for a large value of s. In the case of inverse problems for time dependent equations
this can be done using a clear asymptotic behavior of the Laplace transform of the solution
of the forward problem. In our case, however, the free parameter s is the location of the light
source. For real world applications, the source location cannot be too far from the inclusion,
both due to the restriction in size and the limit of the light intensity. We have undertaken
a substantial effort to understand the behavior of solutions when locations of light sources
move at realistic scales.
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First, we consider the fundamental solution of the problem (6.14), (6.15) for the case
a(x, z)/D ≡ k2. This solution is

u0 =
1

2π
K0(k|(x− s, z − zm)|),

where K0(z) a modified Bessel function. It is well known that the asymptotic behavior of
this function is

K0(z) =

√
π

2 |z|e
−k|z|

(
1 + O

(
1

|z|
))

, |z| → ∞. (6.17)

Represent now solution of the problem (6.14), (6.15) with the condition (6.16) as the solution
of the following integral equation

u(x, z, s) =
1

2π
K0(k|(x− s, z − zm)|) (6.18)

− 1

2π

∫

Ω

K0

(
k

√
(x− ξ)2 + (z − η)2

) [
a (ξ, η)− k2

]
u (ξ, η, s) dξdη.

Let S (x, z, s) = |(x, z)− (s, zm)|. Introducing the function

U(x, z, s) = 2
√

2πSekS · u(x, z, s)

and taking into account (6.17) and (6.18), we obtain that

u(x, z, s) =
1

2
√

2πS
e−kS

[
1 + g̃(x, z) + O

(
1

S

)]
, S →∞.

The function g̃(x, z) is unknown and is independent of S as S → ∞. Hence, we obtain for
the function v = ln u

v(x, z, s) = −kS − ln S + g(x, z) + O

(
1

S

)
, S →∞ (6.19)

where the unknown function g(x, z) 6= g̃(x, z).
We approximate the function g(x, z) by two different methods and the final answer is the

average of two. We start at z = z0 where the boundary values are known. We decompose
the boundary values of v into

v(x, z0, s) =
5∑

m=0

[
b(1)
m (s) cos

(mπ

5
x
)

+ b(2)
m (s) sin

(mπ

5
x
)]

, (6.20a)

vz(x, z0, s) =
5∑

m=0

[
b(1)
zm(s) cos

(mπ

5
x
)

+ b(2)
zm(s) sin

(mπ

5
x
)]

. (6.20b)

47



Hence,

b(1)
m (s) =

1√
5

15∫

5

v(x, z0, s) cos
(mπ

5
x
)

dx, (6.21a)

b(2)
m (s) =

1√
5

15∫

5

v(x, z0, s) sin
(mπ

5
x
)

dx. (6.21b)

Therefore it follows from (6.19) that the asymptotic expansions for functions b
(1)
m (s) are

b(1)
m (s) =

1√
5

15∫

5

− [kS(x, z0, s) + ln S(x, z0, s)] cos
(mπ

5
x
)

dx + b̃(1)
m

+O

(
1

S(x, z0, s)

)
.

The function g(x, z0) can be approximated by a truncated Fourier series with coefficient

b̃
(1)
m (s) and b̃

(2)
m (s) and similarly for gz(x, z0). To approximate numbers b̃

(1)
m , we take three

measurements ranging for source locations s1,s2, s3 that are far enough and set

b̃(1)
m =

1

3

3∑

k=1


b(1)

m (sk) +
1√
5

15∫

5

(kS(x, z, sk) + ln S(x, z, sk)) cos
(mπ

5
x
)

dx


 , (6.22)

where numbers b
(1)
m (sk) are calculated by (6.21a,b). We do similarly for other coefficients in

(6.20a,b). Note that in (6.20a,b) and (6.22) one should actually put ”≈” sign instead of ”=”.
The number of light sources N = 3 is taken in all our experiments when we approximate the
function g.

However, the above procedure (6.19)-(6.22) gives us the value of the tail function v̂ (x, z, s)
and its derivative v̂z (x, z, s) in (6.11) only at z := z0, i.e., v̂ (x, z0, s) , v̂z (x, z0, s) . Equation
(6.19) provides an approximation for all (x, z) ∈ Ω if we simply set g(x, z, s) = g(x, z0, s). In
our numerical experiments we found that this is insufficient. Hence, we use the measurement
data from a different angle, which enhances our numerical results. We obtain a similar tail
function using the measurement data at the lower edge of Ω, i.e., at x = 5cm. We have
decomposed the boundary values v (5, z, s) and vz (5, z, s) into a Fourier series of z and got
a second tail function using the idea similar with the above. Thus, we have approximated
v (5, z, s) , vz (5, z, s) . Finally we set for the tail

v̂ (x, z, s) :=
1

2
[v̂ (x, z0, s) + v̂ (5, z, s)] , (6.23)

v̂z (x, z, s) :=
1

2
[v̂z (x, z0, s) + v̂z (5, z, s)] , (6.24)
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In our numerical experiments we have used the value of λ = 50. We have attempted to use
the tail function alone from (6.23), (6.24) for the reconstruction of a(x, z). The tail function
has provided most of the information about locations of the inclusions. These locations
were reconstructed precisely. However the peak value of the reconstructed coefficient within
inclusions was is about 30% off the original. To overcome that, we follow the following four
steps procedure:

Step 1. Use the tail function to obtain an initial guess µa0(x, z) for the unknown coefficient
µa(x, z).

Step 2. Re-scale µa0(x, z) linearly to a commonly acceptable biological value. In our case,
we set µa1(x, z) = µa0(x, z) if µa0(x, z) < µ̂, below the threshold and µa1(x, z) = αµa0(x, z)
if µa0(x, z) > µ̂, where µ̂ is a threshold value. The scaling constant α in our problem is
chosen such that the maximum of µa1(x, z) = 0.3 which is the maximum value of the actual
coefficient. In problems where the actual µa(x, z) is unknown, we use biologically well-known
coefficient for that specific kind of medical application. The value of µ̂ ranges from 0.14 to
0.16 in numerical examples we calculated.

Step 3. Re-calculate the forward problem using re-scaled a1(x, z) as the coefficient. The
function v (x, z, s) resulting from the calculated solution is used then as the tail function
instead of (6.23)-(6.24).

Step 4. After we have obtained the function u(x, z, s) at the measurement surface at
z = 0 and obtain consequently v = ln u at s = s1, s2, where s2 > s1, we set s := s2. Then
we calculate the function q(x, z, s1) as

q(x, z0, s1) =
v(x, z0, s2)− v(x, z0, s1)

s2 − s1

.

Similarly for the derivative qz(x, z0, s1). This way we obtain initial values b0(s1), c0 (s1) . In
all follow up calculations on all layers we set q(x, z, s) := q(x, z, s1) for s ∈ [s1, s2] . In each
layer we have solved equation (2.33) with the contractive mapping operator. After we obtain
q(x, z, s1) for all z, we update v(x, z, s1) = v̂(x, z, s2)− q(x, z, s1)(s2 − s1)

Step 5. Reconstruct the coefficient µa(x, z) from the function v(x, z, s1) using a finite
element code of [10].

Figures 15 and 16 display some results of reconstruction from the transmitted data in
the 2-D case with x = (x, z). That is, the source was running along the line {x1, zm} , zm =
const. > 0, x ∈ [c, d] and the data were given at the line {x, z0} , z0 = const. < zm, x ∈ [c, d] ,
as well as at the line x = {c, z} , z ∈ [z0, zm] , where the data at the second line were used to
get an approximate value for the tail function.

6.5 Conclusions

Although the case of the running source is not covered by the original theory of the convexi-
fication, especially the issue of tails, we were capable to adapt the convexification scheme to
this case. Applications include imaging of land mines by the Electrical Impedance Tomog-
raphy, optical imaging of targets on battlefields covered by smogs and flames and medical
optical imaging.
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Figure 15: The original function a(x, z) (top left) and its 1-d cross-section (top right) via
the centerline of inclusions. Other 1-d cross-sections of Figs. 15 and 16 are by the same line.
The bottom figures display the reconstruction for the noiseless data.50
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Figure 16: Reconstruction of the medium of Figure 15 (top) with 2% noise in the data.

7 Convexification via the Cauchy-Riemann-like Sys-

tem of the First Order

The work of this section was performed by Dr. A. Timonov, who was working during 2007
under a subcontract as a faculty of University of South Carolina Upstate. He has proposed
the idea of replacing the second order PDE (2.20a) with the Cauchy-Riemann-like system of
PDEs of the first order.

Consider again the Cauchy problem (2.20a,b). To simplify the presentation, consider the
“tail free” case, although tails were incorporated in the numerical scheme. We rewrite it now
in the 2-Dimensional case as follows

qzz + qxx + 2s2qz


−

s̄∫

s

qz (x, z, τ) dτ


 + 2s2qx


−

s̄∫

s

qx (x, z, τ) dτ




+2s




s̄∫

s

qx (x, z, τ) dτ




2

+ 2s




s̄∫

s

qz (x, z, τ) dτ




2

= 0. (7.1)

In addition, the following Cauchy data are given

q (x, 0, s) = ϕ2 (x, s) , qz (x, 0, s) = ψ2 (x, s) , (7.2)

for (x, s) ∈ (−A,A)× (s0, s̄) .
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Equation (7.1) contains only derivatives of the function q. Hence, introduce two new func-
tions u (x, z, s) and v (x, z, s) as

u (x, z, s) := qz (x, z, s) , v (x, z, s) := qx (x, z, s) . (7.3)

Then (7.1) leads to

uz + vx + 2s2u


−

s̄∫

s

u (x, z, τ) dτ


 + 2s2v


−

s̄∫

s

v (x, z, τ) dτ


 (7.4)

+2s




s̄∫

s

v (x, z, τ) dτ




2

+ 2s




s̄∫

s

u (x, z, τ) dτ




2

= 0.

In addition, since qxz = qzx, then (7.3) implies that

vz − ux = 0. (7.5)

And by (7.2)
u(x, 0, s) = ψ2 (x, s) , v(x, 0, s) = ϕ2x (x, s) . (7.6)

We have obtained the first order system (7.4), (7.5) with the initial conditions (7.6). If
integrals would be absent, then (7.4), (7.5) would be exactly the classic Cauchy-Riemann
equations known from the complex analysis for real and imaginary parts of an analytic
function.

To solve the problem (7.4)-(7.6), we apply an analogue of the convexification method
of section 2. However, instead of using quadratic polynomials on each layer, we use linear
functions with respect to z: because of the first order derivatives.

Convergence Theorem. A stability and convergence theorem similar with the above
Theorem 2.1 can be proven.

It is natural to first test the case of the 1st order equation in the 1-dimensional case. Three
algorithms were tested for the case of imaging of land mines: (a) the original convexification
algorithm for the 2nd order PDE, (b) the above new version of the convexification for the 1st

order PDE, and (c) another version of the convexification, which is based on the introduction
of a new norm using the Carleman Weight Function; this version was tested for the 1st order
PDE. Figure 14 displays some of obtained numerical results. Since the performance of
versions (a) and (b) is very similar, results for the version (a) are not displayed on Figure
17.

Conclusion. The original version of the convexification for the 2nd order PDE (section
2) and two new versions for the 1st order PDE provide very similar numerical results in the
1-d case. Therefore, the activity of this section was not pursued in 2008.
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Figure 17: Numerical comparison of the performance of the convexification in the 1-d case
for the first order equation. Solid line: true solution. Bullets: numerical reconstruction using
the first order PDEs described in this subsection. Stars: numerical reconstruction using the
re-normalization and the first order PDEs. Very similar results were obtained by the original
version of the convexification for the second order PDE.
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8 Numerical Solution of the Inverse Problem of Ther-

moacoustic Tomography

Results of subsections 8.1 and 8.2 are obtained jointly by Dr. C. Clason (Austria) and the
PI and are published in [10]. Results of subsection 8.3 are obtained jointly by the graduate
student Mr. A. V. Kuzhuget, Drs. S. I. Kabanikhin, D.V. Nechaev (Russia) and the PI,
and are published in [11]. The PI is the thesis advisor of Mr. Kuzhuget and Kuzhuget was
partially supported by this grant.

8.1 Theory

Thermoacoustic computed tomography is a new imaging method that uses different modal-
ities for the illumination of the target and measurement of its response. The target is
subjected to a short electromagnetic impulse, which is absorbed, leading to a temperature
increase and hence to expansion. This induces a pressure wave in the target, which can
be measured as a change in the acoustic field outside the sample. If the absorption of the
electromagnetic energy is spatially varying, the resulting wave field will carry the signature
of that inhomogeneity. The problem is hence to calculate this absorption of the target from
time dependent acoustic measurements outside it. the mathematical statement of the prob-
lem is to find initial condition of the wave equation given time dependent measurements of
both its solution and its normal derivative at a surface.

The propagation of the resulting acoustic pressure field u(x, t) in R3 is governed by the
equation

1

c2(x)
utt = ∆u, (x, t) ∈ R3 × (0, T ) (8.1)

with the initial conditions

u(x, 0) = f1(x), ut(x, 0) = f2 (x) , (8.2)

where the function f1(x) = α (x) k, where α(x) is the spatially varying absorption coefficient,
which is unknown, the positive constant k is known, so as the spatially varying sound speed
c(x). In applications to thermoacustic tomography f2 (x) ≡ 0 and only the function f1(x) is
unknown. However, our numerical scheme of subsections 8.1 and 8.2 does not rely on any
knowledge of functions f1 (x) , f2 (x) and actually determines both of them simultaneously.
We consider the following

Inverse Problem. Let Ω ⊂ R3 be a bounded domain with the piecewise smooth
boundary ∂Ω. And let Γ ⊆ ∂Ω be a part of the boundary. Denote ΓT = Γ × (0, T ) .
Determine functions f1 (x) , f2 (x) in Ω assuming that the following lateral Cauchy data
ϕ0(x, t) and ϕ1(x, t) are known

u |ΓT
= ϕ0(x, t), ∂nu |ΓT

= ϕ1(x, t). (8.3)
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Denote QT = Ω× (0, T ) , ST = ∂Ω× (0, T ) . Suppose that there exists a function g(x, t) ∈
H2 (QT ) satisfying boundary conditions (8.3), i.e.,

g |ΓT
= ϕ0(x, t), ∂ng |ΓT

= ϕ1(x, t). (8.4)

Denote

w(x, t) = u(x, t)− g(x, t), L =
1

c2(x)
∂2

t −∆,

Φ(x, t) = −L(g)(x, t).

Then (8.1)-(8.4) imply that
Lw = Φ(x, t) in QT , (8.5)

w |ΓT
= ∂nw |ΓT

= 0. (8.6)

If we find the function w from conditions (8.5), (8.6), then we can easily find unknown
initial conditions f1(x) = w(x, 0)+ g(x, 0), f2(x) = w(x, 0)+ g(x, 0). Hence, we now focus on
obtaining a good approximation of the function w(x, t) from conditions (8.5), (8.6). Clearly,
the problem (8.5), (8.6) is a non-classical one. We first formulate a Lipschitz stability
estimate for this problem, which is Theorem 8.1. This theorem is proven via a Carleman
estimate for the operator L.

Theorem 8.1 [10]. Assume that

cmax > c(x) > cmin > 0, ∀x ∈ Ω,

there exists a point x0 ∈ R3 such that

1

2
+

〈∇ (
c−2(x), x− x0

)〉 ≥ 0, ∀x ∈ Ω.

Let r = maxx∈Ω |x− x0| . Choose a number β > 0 such that

√
β <

1

4
(
c−4
min + r |∇c−2(x)|) ,∀x ∈ Ω

and

β <
c2
min

3
.

If c ≡ const. > 0, then these conditions reduce to c > β. Suppose that the observation time
T > diameter (Ω) /

√
β. Then there exists a positive constant C = C (QT , x0, cmin, cmax) such

that the following Lipschitz stability estimate holds

‖v‖H1(QT ) ≤ C
[
‖Lv‖L2(QT ) + ‖v |ST

‖H1(ST ) + ‖v |ST
‖L2(ST )

]
,∀v ∈ H2 (QT ) .

This theorem guarantees stability of the numerical method proposed below for the case
ΓT = ST . To solve the problem (10.5), (10.6) numerically, consider the Tikhonov functional
Jε (w) ,

Jε (w) =
1

2
‖Lw − Φ‖2

L2(QT ) +
ε

2
‖w‖2

QR , (8.7)
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where ε > 0 is the regularization parameter and

‖w‖2
QR := ‖w‖2

L2(QT ) + ‖wtt‖2
L2(QT ) + ‖∆w‖2

L2(QT ) .

Denote 〈, 〉QR the scalar product corresponding the norm ‖.‖2
QR . We consider this functional

over the space H2
0 (QT ) , where

H2
0 (QT , ΓT ) =

{
w ∈ H2 (QT , ΓT ) : w |ΓT

= ∂nw |ΓT
= 0

}
.

By the variational principle the minimizer wε of the functional Jε (w) satisfies the following
integral identity

∫

QT

LwεLvdq + ε 〈wε, v〉 =

∫

QT

ΦLvdq, dq := dxdt, ∀v ∈ H2
0 (QT , ΓT ) . (8.8)

Hence, we need to solve (8.8). First, we formulate the existence, stability and convergence
theorems for (8.8). Theorem 2 follows from the classic Riesz theorem.

Theorem 8.2 [10]. For any function Φ ∈ L2 (QT ) and any ε > 0 there exists unique
solution wε ∈ H2

0 (QT , ΓT ) of the problem (10.8) and

‖wε‖H2
0 (QT ,ΓT ) ≤

C√
ε
‖Φ‖L2(QT ) ,

where a positive constant C independent on ε, wε and Φ.
However, Theorem 8.2 does not guarantee existence of the solution of the original problem

(9.5), (9.6). To formulate convergence and stability result, we assume first, that ΓT = ST .
Also, we assume by the Tikhonov principle [37] that there exists an exact solution w∗ ∈
H2

0 (QT , ST ) of the problem (8.5), (8.6) with the “ideal” non-noisy data Φ∗. In addition, we
assume that the actual data Φ := Φδ are given with an error, i.e.,

∥∥Φδ − Φ∗∥∥
L2(QT )

≤ δ,

where δ > 0 is a small number characterizing the level of the error in the data. Let wδ
ε be

the solution of the problem (8.8) with Φ := Φδ. Theorem 8.3 guarantees convergence of the
regularized solution wδ

ε to the exact solution w∗ as ε := δ2 → 0. Theorem 8.3 follows from
Theorem 8.1.

Theorem 8.3 [10]. Suppose that conditions of Theorem 8.1 hold and ΓT = ST . Then
there exists a positive constant B = B (QT , x0, cmin, cmax) such that the following estimate
holds ∥∥wδ

ε − w∗∥∥
H1(QT )

≤ B
[
δ2 + ε ‖w∗‖2

H2(QT )

]
.
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8.2 Numerical Solution

To test the above method in the 2-D case, we took Ω = (−3, 3) × (−3, 3) and T = 7
in all numerical experiments below. We have used the Riesz-Galerkin approximation of the
function w (x, y, t) via cubic B-splines, which provides necessary smoothness. In other words,
we take certain partition of each of intervals

x ∈ [−3, 3] , y ∈ [−3, 3] , t ∈ [0, 7]

represent the function w (x, y, t) as

w (x, y, t) =
N∑

i,j=1

P∑

k=1

aijkBi(x)Bj(y)Bk(t)

with unknown coefficients aijk. As test functions v in (8.8) we took products of cubic B-
splines,

vi1j1k1 (x, y, t) = Bi1(x)Bj1(y)Bk1(t).

This gave us a linear algebraic system Ma = F with respect to the vector a = (aijk) . We
have solved this system to a tolerance of 10−6 by a stabilized biconjugate gradient method
(BICGSTAB, provided by MATLAB). Due to the matrix being diagonally dominant, we

employ Jacobi prescaling, i.e., solving DMDa = DF with the diagonal matrix Dii = M
−1/2
ii .

This has proved more efficient than specialized preconditioners, since the matrix is diagonally
dominant.

To test the stability of our method with respect to the random noise in the data, we
introduce noise in calculated spline coefficients

aδ
ijk = aijk

(
1 + δξijk

)
aijk,

where δ ≥ 0 is the noise level and ξ is the random variable uniformly distributed over [−1, 1]
For simulations of forward problems we took f2 (x, y) = 0 in all our tests. We test our

algorithm for the case of the reconstruction of the initial condition f1(x, y) in (8.2) of the
form

f1(x, y) = sin(3x) sin(3y) exp
[−x2 − y2

]
,

which is negligibly small outside of the test domain Ω. Denote

fε(x, y) = wε(x, y, 0) + g (x, y, 0) .

Test 1. Constant coefficient c. We take ΓT = ST and c (x) ≡ 1. Figure 18 shows the
slice fε(x, 0) for ε = 10−3 for various noise level δ ranging from 0 to 3. One can see that
even at 300% noise level the reconstruction is quite good, which is in a good agreement with
the previous publication [10]. The Lipschitz stability estimate of Theorem 2 provides an
explanation of such a stability.
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Figure 18: Comparison of the reconstructed initial condition f1ε (x, y) with the exact one
(solid line) in a homogeneous medium for test 1 for various noise levels δ ∈ [0, 3] , i.e., from
0% to 300% noise. The regularization parameter δ = 10−3. Slices of f1ε (x, y) are shown.

Test 2. Non-constant coefficient c(x, y). We take

1

c2(x, y)
=

5

2
− 1

12

(
x2 + y2

)
. (8.9)

This coefficient satisfies conditions of Theorem 8.1. By this theorem we should take
√

β <
1/197, which leaves us with T = 1672. However, we still take T = 7, since we believe that
the estimate of Theorem 8.1 is a pessimistic one. Figure 19 displays the slice fε(x, 0) for
ε = 10−3 for various noise level δ ranging from 0 to 3. One can see again that even at
300% noise level the reconstruction is quite good. Test 3. Limited boundary data with
ΓT 6= ST . Again we take a heterogeneous medium with the coefficient c(x, y) in (8.9). We
take T = 14 and

Γ = {(x, y) ∈ ∂Ω : {x = −3} ∪ {y = −3}} . (8.10)

Uniqueness of the solution can still be proven. Figure 20 shows numerical results for various
noise levels δ ∈ [0, 1] .

8.3 The case of a smaller observation time

We now consider the same Inverse Problem as in subsection 8.1 but under assumption that
at least one initial condition at t = 0 is known, whereas the second one is unknown. We
show that the required observation time T can be lowered by the factor of 2 in the case
when in (8.1) c ≡ 1. In numerical experiments we consider the case of unbounded domain.
Specifically, quadrant. It was shown in [11] that this case can be reduced, under certain
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Figure 19: Comparison of the reconstructed initial condition f1ε (x, y) with the exact one
(solid line) in a homogeneous medium for test 1 for various noise levels δ ∈ [0, 1]. The
regularization parameter δ = 10−3. Slices of f1ε (x, y)are shown.
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Figure 20: Results for the case of incomplete boundary data at the boundary Γ in (8.10).
The heterogeneous medium (8.9) was considered. Slices of f1ε (x, y) are shown. Due to the
energy loss at the rest of the boundary ∂Ω�Γ the resulting solution has a lower amplitude.
The shape, however, is preserved.
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conditions, to the situation of a bounded domain. The second significant difference with
the above is that instead of using finite elements of subsection 8.2, we use in our numerical
implementation finite differences. This enables us to image narrow peaks, which model δ-
function. The latter was impossible when using finite elements of the previous subsections,
because of their over-smoothness.

Let Ω ⊂ Rn be a convex domain with a piecewise smooth boundary ∂Ω and 2R be the
diameter of Ω, 2R = maxx,y∈Ω |x− y| . Let T = const. > R. Denote QT = Ω × (0, T ) .
Consider the elliptic operator L(x, t) of the form

L(x, t)u = ∆u +
n∑

j=1

bj (x, t) uj + b0 (x, t) ut + c (x, t) u,

where uj := ∂xj
u. We assume that all coefficients of the operator L belong to C

(
QT

)
. Let

the function u ∈ H2 (QT ) be a solution of the hyperbolic equation in the cylinder QT ,

utt = L(x, t)u + F (x, t) in QT , (8.11)

F ∈ L2 (QT ) with initial conditions

u (x, 0) = ϕ (x) , ut (x, 0) = ψ (x) , ϕ ∈ H1 (Ω) , ψ ∈ L2 (Ω) . (8.12)

In this subsection we consider
Inverse Problem 1. Let one of functions ϕ or ψ be known and another one be unknown.

Determine that unknown function assuming that the following functions f and g are given

u |ST
= f (x, t) ,

∂u

∂ν
|ST

= g (x, t) , ST = ∂Ω× (0, T ) , (8.13)

where ν is the unit outward normal vector at ∂Ω. We call the problem of the determination
of the function ϕ the “ϕ−problem” and the problem of the determination of the function ψ
the “ψ−problem”.

It follows from Theorem 8.1 that in the case T > 2R one should not assume that one
of functions ϕ or ψ is known. So, we are interested here in the case T ∈ (R, 2R) . We now
specify conditions of our numerical study. Suppose that equation (8.11) is homogeneous with
F (x, t) ≡ 0 and it is satisfied in D3

T = R2×(0, T ) . Consider the quadrant QU = {x1, x2 > 0} .
And also consider the square SQ ⊂ QU,

SQ (a) = {0 < x1, x2 < a} .

Suppose that
ϕ(x) = ψ (x) = 0 outside of SQ (a) . (8.14)

Then the energy estimate implies that

u (x, t) = 0, ∀ (x, t) ∈ {x | x ∈ QU, dist (x, SQ (a)) > T} × (0, T ) . (8.15)

60



Figure 21: Geometry for the case of quadrant (Inverse Problem 2).

Denote
Γ1T = {x1 ∈ (0, a + T ) , x2 = 0} × (0, T ) ,

Γ2T = {x2 ∈ (0, a + T ) , x1 = 0} × (0, T ) ,

Γ3T = {x1 = a + T, x2 ∈ (0, a + T )} × (0, T ) ,

Γ4T = {x2 = a + T, x1 ∈ (0, a + T )} × (0, T ) ,

see Figure 21. Then by (8.15)

u =
∂u

∂ν
= 0 on Γ3T ∪ Γ4T . (8.16)

Hence, we focus our numerical study on
Inverse Problem 2. Let equation (8.11) be satisfied in D3

T with initial conditions (8.12)
satisfying (8.14). In this case Ω := SQ (a + T ) . Suppose that one of these initial conditions
is zero. Determine the second initial condition, assuming that functions f and g are known,
where

u |Γ1T∪Γ2T
= f (x, t) ,

∂u

∂ν
|Γ1T∪Γ2T

= g (x, t) . (8.17)

It was proven in [11] that if

T >
a
√

2

2−√2
(8.18)
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and one of functions ϕ or ψ equals zero, then the following Lipschitz stability estimate is
valid

‖u‖H1(GT ) ≤ C
(
‖f‖H1(ΓT ) + ‖g‖L2(ΓT )

)
, (8.19)

where ΓT = Γ1T ∪ Γ2T and ‖f‖H1(ΓT ) = ‖f‖H1(Γ1T ) + ‖f‖H1(Γ2T ) .
We consider Inverse Problem 1, because it is more general than Inverse Problem 2.

Denote Mu = utt − Lu. To solve the Inverse Problem 1 numerically, consider the Tikhonov
regularizing functional

Jε (u) = ‖Mu− F‖2
L2(QT ) + ε ‖u‖2

H2(QT )

+
∥∥Dβu |ST

−Dβf
∥∥2

L2(ST )
+ ‖uν |ST

−g‖2
L2(ST ) (8.20)

+χϕ ‖ut(x, 0)− ψ‖2
L2(Ω) + χψ ‖u(x, 0)− ϕ‖2

H1(Ω) , ∀u ∈ H2 (Qt) .

Here ε > 0 is the regularization parameter,

uν |ST
:=

∂u

∂ν
|ST

and Dβ, |β| ≤ 1 is the operator of (x, t) derivatives with, where x-derivatives are those, which
are taken in directions orthogonal to the normal vector. Also,

χψ =

{
1 for the ψ − problem
0 for the ϕ− problem

}
, χϕ =

{
1 for the ϕ− problem
0 for the ψ − problem

}
.

Hence, χϕχψ = 0, χϕ + χψ = 1. In subsection 8.2 and in all previous works on the QRM
terms in the second line of (8.20) were absent because of subtracting off boundary conditions
from the original function u. Terms in the third line of (8.20) were absent also, and they are
incorporated now to emphasize the knowledge of one of initial conditions.

To find the minimizer of Jε (u) , we set the Fréchet derivative of this functional to zero
and obtain for all v ∈ H2 (QT )

∫

QT

MuMvdxdt +

∫

ST

(
DβvDβu + vu

) |ST
dS +

∫

ST

(vνuν) |ST
dS

+χψ

∫

Ω

[∇u∇v + uv] (x, 0) dx + χϕ

∫

Ω

ut(x, 0)vt(x, 0)dx + ε [u, v] (8.21)

=

∫

QT

FMvdxdt +

∫

ST

∑

|β|≤1

(
Dβv |ST

)
DβfdS + +

∫

ST

(vν |ST
) · gdS

+χψ

∫

Ω

[∇ϕ∇v (x, 0) + ϕv (x, 0)] dx + χϕ

∫

Ω

ψvt(x, 0)dx.
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Riesz theorem and (8.21) imply
Lemma 8.4. For any vector function (F, f, g) ∈ L2 (QT )×H1 (ST )×L2 (ST ) there exists

unique solution uε ∈ H2 (QT ) of the problem (3.2) and

‖uε‖H2(QT ) ≤
C√
ε

(
‖F‖L2(QT ) + ‖f‖H1(ST ) + ‖g‖L2(ST ) + χψ ‖ϕ‖H1(Ω) + χϕ ‖ψ‖L2(Ω)

)
.

Setting in (8.21) v := u, we obtain that the unique minimizer of the functional Jε (u)
satisfies the following estimate

‖Mu‖2
L2(QT ) + χψ ‖u(x, 0)‖2

H1(Ω) + χϕ ‖ut(x, 0)‖2
L2(Ω)

+ ‖u |ST
‖2

H1(ST ) + ‖uν |ST
‖2

L2(ST ) (8.22)

≤ ‖F‖2
L2(QT ) + ‖f‖2

H1(ST ) + ‖g‖2
L2(ST ) + χψ ‖ϕ‖2

H1(Ω) + χϕ ‖ψ‖2
H1(Ω) .

To prove convergence of our method, we need to derive from (8.22) the Lipschitz stability
estimate for the function u in the H1 (QT )-norm.

Theorem 8.5 [11]. Let Ω ⊂ Rn be a convex bounded domain with the piecewise smooth
boundary and let T > R. Suppose that the function u ∈ H2 (QT ) satisfies the inequality

‖Mu‖L2(QT ) + χψ ‖u(x, 0)‖H1(Ω) + χϕ ‖ut(x, 0)‖L2(Ω)

+ ‖u |ST
‖H1(ST ) + ‖uν |ST

‖L2(ST ) ≤ K,

where K = const. > 0. Then

‖u‖H1(QT ) + χϕ ‖u (x, 0)‖H1(Ω) + χψ ‖ut (x, 0)‖L2(Ω) ≤ CK.

Theorem 8.5 enables us to prove convergence of our method. Following the Tikhonov
concept for ill-posed problems [50], we first introduce an “ideal” exact solution of either ϕ
or ψ problem without an error in the data. Next, we assume the existence of the error
in the boundary data f and g and prove that our solution tends to the exact one as the
level of error in the data tends to zero. We consider the more general Inverse Problem 1.
Let f ∗ ∈ H1 (ST ) and g∗ ∈ L2 (ST ) be the exact boundary data (8.13), F ∗ ∈ L2 (QT ) be
the exact right hand side of equation (8.11) and ϕ∗ and ψ∗ be exact initial conditions. We
assume that there exists an exact function u∗ ∈ H2 (QT ) satisfying

u∗tt = L(x, t)u∗ + F ∗ (x, t) in QT ,

with initial conditions

u∗ (x, 0) = ϕ∗ (x) , u∗t (x, 0) = ψ∗ (x) , ϕ∗ ∈ H1 (Ω) , ψ∗ ∈ L2 (Ω) ,

u∗ |ST
= f ∗ (x, t) ,

∂u∗

∂ν
|ST

= g∗ (x, t) ,
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where ϕ∗ and ψ∗ are exact initial conditions. We assume that the real boundary data in
(8.13) have an error, so as the given initial condition. In other words, we assume that

‖f − f ∗‖H1(ST ) + ‖g − g∗‖L2(ST ) + ‖F − F ∗‖L2(QT )

+χψ ‖ϕ− ϕ∗‖H1(Ω) + χϕ ‖ψ − ψ∗‖L2(Ω) ≤ δ,

where δ > 0 is a small number. The following convergence theorem holds
Theorem 8.6 [11]. Suppose that T > R. Let uεδ ∈ H2 (QT ) be the solution of the QRM

problem (8.21), which is guaranteed by Lemma 2.1. Let conditions (5.1)-(5.4) be satisfied.
Then the following estimate is valid

‖u− u∗‖H1(QT ) + χϕ ‖ϕ− ϕ∗‖H1(Ω) + χψ ‖ψ − ψ∗‖L2(Ω) ≤ C
(
δ +

√
ε
)
.

In our numerical study we have considered the Inverse Problem 2. To generate the data
for the inverse problem, we have solved the Cauchy problem

utt = ∆u, (x, t) ∈ R2 × (0, T ) , (8.23)

u(x, 0) = ϕ (x) , ut(x, 0) = ψ (x) . (8.24)

In our numerical experiments ψ (x) ≡ 0 for the ϕ−problem, and ϕ (x) ≡ 0 for the ψ−problem.
Because of (8.15) and the finite speed of propagation, we use in our solution of the forward
problem zero Dirichlet boundary condition at the boundary of the rectangle (−T, a + T )×
(−T, a + T ) (Figure 18). Hence, we solve initial boundary value problem inside of this
rectangle for equation (8.23) with initial conditions (8.24) and zero Dirichlet boundary con-
dition. In all our calculations we took a = 1, T = 3. The square SQ(a) is SQ(a) = SQ(1) =
(0, 1)× (0, 1) , the domain Ω is

Ω := (0, 4)× (0, 4)

and in all tests
ϕ (x) = ψ (x) = 0 for x /∈ SQ(1).

We have solved the Cauchy problem (6.1), (6.2) via finite differences using the uniform
grid. To find the minimizer of the functional Jε, we have also used finite differences and have
minimized the resulting functional J̃ε with respect to the vector {ukmn} , which approximates

values of the function u at grid points. Here J̃ε means the functional Jε, which is expressed
via the finite differences. The norms ‖ux1(x, 0)‖L2(Ω) , ‖ux2(x, 0)‖L2(Ω) in ‖u(x, 0)‖H1(Ω) in

the ψ−problem were calculated via finite differences. As to the term
∥∥Dβu |ST

−Dβf
∥∥2

L2(ST )

in (8.20), we have used only β = 0, thus ending up with ‖u |ST
−f‖2

L2(ST ) (in the discrete

sense).

To minimize the functional J̃ε, we have used the conjugate gradient method. Derivatives
with respect to variables ukmn where calculated in closed forms, using the following formula

∂ukmn

∂ukmn

= δkkδmmδnn,
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where δkk is the Kronecker symbol. This formula can be conveniently used to obtain closed
form expressions for derivatives

∂J̃ε (u)

∂ukmn

.

We have always used the regularization parameter ε = 10−6. Larger values of ε such
as 10−5 brought lower quality results. In our numerical experiments we have imaged both
smooth slowly varying functions and the finite difference analogue of the δ− function. Let
(x1k, x2r) ∈ Ω be a fixed grid point. To obtain the finite difference analogue of δ (x1 − x1k, x2 − x2r),
we consider the following grid points (x1n, x2m) and model the function δ (x1n − x1k, x2m − x2r)
as

δ (x1n − x1k, x2m − x2r) =
3

4hx2hx1

δnkδmr,

where the multiplier at δnkδmr is chosen such that the volume of the pyramid based on
(x1k−1, x2r−1) , (x1k−1, x2r+1) , (x1k+1, x2r+1) , (x1k+1, x2r−1) equals to 1. Hence, the support
of the function δ (x1n − x1k, x2m − x2r) is limited only to the point (x1n, x2m).

Test. The ϕ−problem with two δ−functions. We now consider the Inverse Problem 2
with the domain Ω as with ψ(x) ≡ 0. The data for the forward problem were simulated for
the case of two δ−functions

ϕ (x1, x2) = δ (x1 − 0.4, x2 − 0.4) + δ (x1 − 0.7, x2 − 0.7) (8.25)

with the above described finite difference analogue of the δ− function. Figure 19 displays the
resulting image of the function (8.25) for the case of 50% of the noise in the boundary data,
scatter plot mode was used, squares show exact height. Very similar results (not shown)
were obtained for the ψ−problem with exactly the same δ− functions as ones in (8.25).

9 An Inverse Problem for a Nonlinear Parabolic Equa-

tion with Applications in Population Dynamics and

Magnetics

Results of this section are obtained jointly with Dr. B. Kaltenbacher, University of Stuttgart,
Germany [14]. We formulate uniqueness theorem, outline a numerical method and present
some numerical results.

Nonlinear parabolic PDEs arise in a large variety of applications ranging from combustion
theory via environmental pollution, population dynamics and nonlinear magnetics to the
theory of the economic growth. Since the coefficient depending nonlinearly on the solution
of the PDE is often not accessible to direct measurements, its determination from boundary
measurements is an important task.

We consider the question of the identifiability, i.e., whether this coefficient function can
be uniquely determined from the given data. While there exist results on the situation that
the coefficient depends on values of the solution (as it is relevant, e.g., in nonlinear heat
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Figure 22: Test of subsection 8.3. Exact (red) and calculated (black) function ϕ with 50%
noise in the boundary data. The function χϕ=1 in (8.20). Scatter plot mode. Squares show
heights. Correct heights are achieved.
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conduction), we here concentrate on the problem when this coefficient is a function of the
derivative of the solution (as typical for nonlinear magnetics, (cf., e.g., [25]) or where the
equation is in non-divergence form (e.g., in diffusion models for population dynamics, cf.
[24]).

To prove our uniqueness theorem, we apply the above mentioned method of Carleman
estimates. The majority of works on this method is concerned with linear equations in which
unknown coefficients depend on spatial variables. Nonlinear parabolic equations were treated
by this technique in [32], [45], [46] and Chapter 4 of the book [41]. Our inverse problem is
a problem with the data resulting from a single measurement event. In the case of multiple
measurements uniqueness theorems for inverse problems for nonlinear parabolic equations
with unknown coefficients depending on solutions and their first derivatives were proven in
[36]. The case of single measurement data for such equations was considered in e.g., [32],
[41], [45], [46]. However, in these works the unknown coefficient depends on the solution of
the original parabolic equation (as well as on some spatial variables in the multidimensional
case). The case of the dependence on derivatives of the solution was not considered. Thus,
it is an important new element here that the unknown coefficient k (ux) is involved together
with its first derivative.

9.1 Statement of the Problem and Uniqueness Theorem

The forward problem is

ut = (k (ux) ux)x , (x, t) ∈ (0, L)× (0, T ) , (9.1)

u (x, 0) = r(x), x ∈ (0, L) , (9.2)

u (0, t) = f0 (t) , u(L, t) = f1 (t) , t ∈ (0, T ) , (9.3)

or with v(x, t) = ux(x, t), i.e., u(x, t) =
∫ x

0
v(ξ, t) dξ + f0(t)

vt = (k (v) v)xx , (x, t) ∈ (0, L)× (0, T ) , (9.4)

v (x, 0) = r′(x), x ∈ (0, L) , (9.5)

(k(v)v)x(0, t) = f ′0(t), (k(v)v)x(L, t) = f ′1(t), t ∈ (0, T ) , (9.6)

which results from the previous setting by the differentiation with respect to the space
variable. Naturally, it is assumed that the function k(z) ∈ C1 (R) and

k (z) ≥ k0 = const. > 0, ∀z ∈ R. (9.7)

It is well known that it is difficult to investigate the question of uniqueness of coefficient
inverse problems for parabolic equations unless one assumes that the solution of the forward
problem is known at t = ε ∈ (0, T ). In the latter case, however, one does not need to assume
the knowledge of the initial condition at {t = 0} , see, e.g., subsections 3.3.1 and 3.3.2 in
[41]. In other words, one needs to assume that the knowledge of the initial condition (9.2)
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is replaced with the knowledge of the function u(x, ε) for an arbitrary ε ∈ (0, T ) ; also see
below for a physical interpretation. Because of this, we formulate the inverse problem as

Inverse Problem. Assume that equation (10.1) is satisfied for (x, t) ∈ (0, L)× (−c, T ) ,
where c ∈ (0, T ] is an arbitrary number, the function u (x, 0) = r(x) in (10.2) is known, so
as boundary conditions f0 (t) and f1 (t) for t ∈ (−c, T ) . Also, assume that the following two
functions g0(t) and g1(t) are given

ux (0, t) = g0(t), ux (L, t) = g1(t), t ∈ (−c, T ) . (9.8)

Let the interval (a, b) be the range of the function ux (x, t) for (x, t) ∈ (0, L)× (−c, T ) , i.e.,
a ≤ ux (x, t) ≤ b. Determine the interval (a, b), as well as the unknown coefficient k (z) for
z ∈ (a, b) .

The following uniqueness theorem holds.
Theorem 9.1 [14]. Let the conditions of the statement of the Inverse Problem be satisfied.

Suppose that there exist two functions k1 (z) and k2 (z) satisfying condition (10.7) and such
that

zk′i (z) + ki (z) ≥ const. > 0,∀z ∈ R, i = 1, 2.

Let u1 (x, t) and u2 (x, t) be two functions satisfying (10.1) and (10.3) for t ∈ (−c, T ) , as well
as the same Neumann boundary conditions (10.8) and such that (see (10.2)) u1 (x, 0)=u2 (x, 0) =
r(x) and

Ds
t D

j
xui ∈ C ([0, L]× [−c, T ]) for s = 0, 1; j = 0, 1, 2, 3; i = 1, 2.

Assume also that in (0, L)× (−c, T )

D2
xui ≥ α = const. > 0, i = 1, 2.

In addition, let
g′0(t) ≥ 0, t ∈ (−c, T ) ,

g1(t) ≡ const. = g̃, t ∈ (−c, T )

and
k1 (z) = k2 (z) , z ∈ (g0(−c), g0 (ε)) ,

where ε ∈ (0, T ) is an arbitrary number. Denote a = g0(−c), b = g̃. Then the range of both
functions u1x and u2x coincides with the interval (a, b) and k1 (z) = k2 (z) for z ∈ (a, b) .

9.2 Application Examples

9.2.1 A Diffusion Model in Population Dynamics

In this section we discuss the assumptions of Theorem 9.1 for an example from population
dynamics, given in the form (10.4). Aronson in [24] has proposed the diffusion model

vt = (φ(v)v)xx (9.9)
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in the absence of drift, where v(x, t) is the population density at location x and time t
and the diffusion coefficient φ(v) is the population density dependent limit (as the minimal
individual step length tends to zero) of the second moment of the transition probability
between different locations. The function φ plays the role of k in the setting of Theorem 9.1.
With u(x, t) =

∫ x

0
v(ξ, t) dξ + f0(t) and an integration with respect to the space variable this

can be rewritten as
ut − (φ(ux)ux)x = c (9.10)

with c depending on time only, which without loss of generality we can set to zero, which
yields

ut = (φ(ux)ux)x (9.11)

so that with k = φ we get the PDE considered in Theorem 9.1. The boundary and initial
data as well as the conditions imposed on them have the following interpretation in the
context of this example:

• u(x, 0) = r(x), i.e., v(x, 0) = r′(x) means that the population density is known every-
where at time t = 0, e.g., from a census at that instance of time.

• u(0, t) = f0(t) is satisfied by our setting of the integration constants.

• u(L, t) = f1(t), i.e.,
∫ L

0
v(ξ, t) dξ = f1(t) − f0(t) means that the total population

density is known at each time instance, e.g., by observation of the in- and outflow at
the boundary.

• ux(0, t) = v(0, t) = g0(t) with g′ ≥ 0: The population density at location x = 0 is
observed for all time instances and it increases with time.

• ux(L, t) = v(L, t) = g1(t) = g̃ and [g0(ε), g̃] is the interval on which k can be identified
according to Theorem 9.1: The population density at location x = L is observed for
all time instances and is constant in time, where this constant should be as large as
possible, e.g., equal to some saturation value.

• uxx = vx ≥ α > 0: The population density increases from left to right.

9.2.2 Nonlinear Magnetics

Quasistationary magnetic fields can be described by a subset of Maxwell’s equations, which
leads to the system of PDEs

γut +∇× (ν∇× u) = Jimp

for the magnetic vector potential u, where γ is the electric conductivity, µ the magnetic
reluctivity, Jimp the impressed current density and the magnetic flux density B as well as
the magnetic field intensity can be expressed as

B = ∇× u , H = νB .
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In the situation of high magnetic fields, the parameter ν is not constant but depends on the
magnetic flux density, i.e.,

H = ν(B)B .

Assuming an appropriate geometry (flat, ring shaped probe with large interior radius) we
can restrict our attention to the spatially one-dimensional model problem

γut − (ν(ux)ux)x = 0 ,

i.e., with k = 1
γ
ν we arrive at the PDE considered in Theorem 9.1. An interpretation of the

conditions of Theorem 9.1 in the context of this example can be made as follows:

• Neumann boundary data ux(0, t) = g0(t), ux(L, t) = g1(t) here have the meaning of a
magnetic flux density, which can be extracted from measurements of the magnetic flux
through two coils positioned on both sides of the material strip, i.e., at the endpoints
of the interval [0, L]. The magnetic flux can be controlled via the impressed current
through these coils such that it is monotonically nondecreasing (and small) at the left
endpoint as well as constant (and large) at the right endpoint to achieve g′0 ≥ 0, g′1 = 0,
and a wide interval (a, b).

• Via the relation ut = E with E the electric field, one can obtain the initial and
boundary data of u by time integration of electric field measurements.

The conventional measurement setup for determining ν consists of just an excitation
(and measurement) coil wound around the probe and does not enable to collect all the
data required from the point of view of our uniqueness theorem (especially not electric field
measurements inside the probe which would be required for giving initial data for u). In
this sense, there is a gap between theory and practice. Still, the model problem considered
in this paper gives important insight, since the correct form of the PDE with a coefficient
depending on the space derivative of u is considered.

9.3 Numerical results

In this subsection, we shortly outline a numerical method for determining the coefficient k
and provide some computational results.

Here we make use of a special time discretization based on trigonometric polynomials,
i.e., in a complex valued setting, time harmonic functions t 7→ exp(ınt). This leads to a so
called multiharmonic formulation of the forward (cf., e.g., [25], [35], [37]) problem as follows:
We think of the boundary data as extended periodically and sufficiently smoothly to the
larger interval [0, T̄ ] = [0, T + T1] with some T1 > 0, and make an ansatz

u(x, t) ≈ uN(x, t) :=
N∑

n=−N

exp(ınωt)ûn(x) ,
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with ω = 2π/T̄ . (Note that continuation of the boundary values beyond T , by the causality
of the problem does not influence u for t < T .) Inserting into the PDE, we get

N∑
j=−N

eıjωt

(
ıωjûj −

(
k(

N∑
n=−N

eınωtûn x)ûj x

)

x

)
= 0 .

Testing this with the functions

t 7→ 1

T̄
e−ılωt

and using the orthonormality

1

T̄

∫ T̄

0

e−ılωteıjωt dt = δlj (9.12)

where δlj is the Kronecker Symbol, yields

ıωlûl − 1
T̄

∫ T̄

0

∑N
j=−N eı(j−l)ωt

(
k(

∑N
n=−N eınωtûn x)ûj x

)
x
dt = 0

∀l ∈ {−N, . . . , N} .
(9.13)

To eliminate the time integral, we use an appropriate approximation for k that enables to
take advantage of the orthogonality (9.12). For this purpose we make use of a polynomial
ansatz

k(z) ≈
P∑

p=1

αpz
p ,

which is justified by the fact that in the applications we have in mind, k is typically a smooth
function. Since the multinomial theorem yields

(
N∑

n=−N

eınωtûn x

)p

=
∑

p = (p−N , . . . , pN) ∈ IN2N+1
0∑N

n=−N pn = p

(
p
p

) N∏
m=−N

(
eımωtûm x

)pm
,

with the multinomial coefficients
(

p
(p−N , . . . , pN)

)
=

p!

p−N ! · · · pN !
,

by (9.12) one arrives at a system of space dependent PDEs

ıωlûl −
(

N∑
n=−N

P∑
p=0

αpc̄
p
l−nûn x

)

x

= 0 l ∈ {−N, . . . , N} , (9.14)
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where

c̄p
s =

∑

p∈I(p,s)

(
p
p

) N∏
m=−N

(ûm x)
pm ,

I(p, s) = {p = (p−N , . . . , pN) ⊆ IN2N+1
0 |

N∑
n=−N

pn = p ∧
N∑

n=−N

npn = s} ,

i.e., the coefficients c̄p
l−n depend nonlinearly on (û−N x, . . . , ûN x). The boundary conditions

and measurements become

ûl x(0) = ĝ0 l, ûl x(L) = ĝ1 l, l ∈ {−N, . . . , N} (9.15)

ûl(0) = f̂0 l, ûl(L) = f̂1 l, l ∈ {−N, . . . , N}
with

f̂i l =
1

T̄

∫ T̄

0

exp(−ılωτ)fi(τ) dτ ,

and analogously for gi, i = 0, 1. Note that we consider the Neumann data as boundary
conditions (and the Dirichlet data as measurement) in our numerical tests below in order
to be able to directly prescribe a monotonically increasing g0 and a constant g1. To avoid
singularity of the system due to the elliptic Neumann problem for index l = 0, we make

the additional normalization assumption û0 = 1
T̄

∫ T̄

0
uN(·, t) dt = 0. Physically, this corre-

sponds to the fact that in experiments only higher harmonics (i.e. multiples nω with |n| ≥ 1
of the basic frequency ω) appear. From a mathematical point of view this normalization
corresponds to a T̄ periodicity assumption on the antiderivative of uN , while the multihar-
monic ansatz implies periodicity of uN itself. To keep compatibility, we add this assumption
of vanishing time integral also to the conditions imposed on the periodic extension of the
boundary values f0, f1, g0, g1.

Since k is real-valued, we expect to get a real-valued solution and therefore additionally
stipulate

û−n = ûn . (9.16)

The inverse problem of reconstructing k from boundary measurements of u in this kind of
discretization amounts to determining the polynomial coefficients α0, . . . , αp from boundary
data of ûl, l = 0, . . . , N . Writing this as a system of equations

F P
N (α) = y

where F P
N : α 7→ (ûn x(0), ûn x(L))n=0N with (ûn)N

n=0 solving (9.13), (9.15), (9.16), we can
apply Newton’s method

αm+1 = αm + θβ with F P
N

′
(αm)β = y − F P

N (αm) ,

to iteratively recover α. In here θ is an appropriately chosen stepsize that guarantees strictly
monotone decrease of the residual. Keeping in mind the fact that the original infinite di-
mensional inverse problem of recovering k is ill-posed in the sense of instability, we here rely
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Figure 23: A typical B-H curve for iron.

on the regularizing effect of discretization. More precisely, we stabilize the problem by pro-
jection in data space, since our special time discretization corresponds to an L2 projection
in data space to the subspace spanned by the first 2N +1 trigonometric polynomials. These
L2 projections converge pointwise to the identity due to the fact that {t 7→ 1√

T̄
eıjωt | j ∈ ZZ}

forms a complete orthonormal system in L2
IC(0, T̄ ). To fully discretize this method, it remains

to define a space discretization of the space dependent functions ûl, which we do by using
finite elements on a uniform grid.

The application we have in mind here is nonlinear magnetics, where the nonlinearity is
usually considered in terms of the B-H curves a where a−1(z) = k(z)z. B-H curve means
a plot of the magnetic flux density B over the magnetic field intensity H. A typical B-H
curve for iron is displayed in Figure 23, where the ratio between the slope at B = 0 and the
slope at B = Bsat amounts to the relative reluctivity µrel ∼ 1

5000
. For testing the proposed

method, we constructed two test problems with similar behavior. Upon renormalization
to Bnorm

sat = 1, νnorm
rel = 1

10
, the values Hnorm

sat = 3.6 and Hnorm
sat = 2.4 as appearing in the

synthetic test example in Figure 24 indeed turn out to be in a realistic range.
For the test example of Figure 20, Figure 21 shows the iteration history of the proposed

method for exact and for randomly perturbed data with a noise level of one per cent, as
compared to the true curve aex in black. Note that in our numerical tests, the starting value
for k is just a constant function, corresponding to the fact that in practice the constant
reluctivity coefficient for small magnetic fields is typically known.
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Figure 24: Starting value a0 and Newton iterations a1, a2, a3, a4 for a, where a−1 (z) = zk(z).

74



10 The First Result on the Second Generation of Glob-

ally Convergent Numerical Methods

This activity is an ongoing joint effort of Dr. L. Beilina (Norway) and the PI [12]. Prior to this
activity Dr. Beilina has developed (with co.-authors) the so-called adaptivity technique for
inverse problems [26-28]. The idea is to develop the second generation of globally convergent
numerical methods. The first step of such methods is the same as in the convexification: the
transformation procedure which leads to the nonlinear integral differential equation (2.20a).
However, the question of numerical solution of this equation is the most challenging one
in the entire approach. Thus,the main difference with the convexification is in the solution
of this equation. Instead of using the layer stripping procedure with respect to a spatial
variable, we now use the layer stripping with respect to the pseudo frequency s via going
from the truncation high pseudo frequency in the downward direction. On each small s-layer
we solve the Dirichlet boundary value problem for an elliptic equation via the FEM. Since
the derivative with respect to s is not a part of the differential operator (unlike derivatives
with respect to spatial variables of the convexification), we expect a better stability of this
second generation methods. Further, the Dirichlet boundary value problem presumes that
the “measurements” are taken over the entire boundary. At the same time, in problems
of the interest to the Army only back reflected data are given. Nevertheless, it seems that
this new approach can be extended to this case. To do this, one should impose radiation-
like boundary conditions (i.e., Robin conditions actually) on the rest of the boundary. In
this case one should replace the Dirichlet boundary problems with “mixed” boundary value
problems. In other words, Dirichlet conditions will be assigned on the “accessible” part of
the boundary and Robin conditions on the rest. However, the latter development is a matter
of future effort, since only the first result in this direction is obtained so far [12].

Another essentially new and important element here is the presence of s-dependent Car-
leman Weight Functions (CWFs) in the numerical scheme. s-dependent CWFs are present in
our numerical scheme. Until now CWFs have been widely used for proofs of unique continu-
ation and conditional stability results for ill-posed Cauchy problems for PDEs, as well as for
multidimensional CIPs with the single measurement data, see, e.g. [29,30,32,38,39,41,45]. In
this capacity CWFs were dependent on spatial variables, since they have provided weighted
estimates for differential operators. In the convexification CWFs also depend on the spatial
variable z. However, CWFs of this new method are used for integral Volterra-like operators,
they are involved in the numerical scheme and depend on the pseudo frequency s, rather
than on a spatial variable.

We now state the inverse problem a little bit differently than in section 2. Namely, we
use only one boundary condition at the entire boundary. And also we do not require that
the domain Ω be a rectangular prism.

Inverse Problem. Let Ω ⊂ R3 be convex bounded domain with the boundary ∂Ω ∈ C2.
Suppose that one of coefficients of the equation (2.9a) is unknown in Ω and known in R3�Ω
and all other coefficients are known everywhere. Determine that unknown coefficient for
x ∈ Ω, assuming that the following two function ϕ (x, s) is known for a single source position
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x0 /∈ Ω
w (x, , s) = ϕ (x, s) , for (x, s) ∈ −∂Ω× [s0, s] , (10.1)

where s0 and s are certain positive numbers.
Denote

ψ (x, s) =
∂

∂s

(
ln ϕ (x, s)

s2

)

10.1 Layer Stripping With Respect to the Pseudo Frequency

We approximate the function q (x, s) in (2.20a) as a piecewise constant function with respect
to the pseudo frequency s. That is, we assume that there exists a partition s = sN < sN−1 <
... < s1 < s0 = s of the interval [s, s] with the sufficiently small grid step size h = si−1 − si

such that q (x, s) = qn (x) for s ∈ (sn, sn−1] . Hence,

s∫

s

∇q (x, τ) dτ = (sn−1 − s)∇qn (x) + h

n−1∑
j=1

∇qj (x) , s ∈ (sn, sn−1] .

We approximate the boundary condition (10.1) as a piecewise constant function,

qn (x) = ψn (x) , x ∈ ∂Ω, (10.2)

where

ψn (x) =
1

h

sn−1∫

sn

ψ (x, s) ds.

Hence, for s ∈ (sn, sn−1] the equation (2.20a) can be rewritten as

L̃n (qn) := ∆qn − 2
(
s2 − 2s (sn−1 − s)

)
(

h

n−1∑
j=1

∇qj (x)

)
∇qn

+2
(
s2 − 2s (sn−1 − s)

)∇qn∇V (x)

= 2 (sn−1 − s)
[
s2 − s (sn−1 − s)

]
(∇qn)2 − 2sh2

(
n−1∑
j=1

∇qj (x)

)2

(10.3)

+4s∇V (x)

(
h

n−1∑
j=1

∇qj (x)

)
− 2s |∇V (x)|2 , s ∈ (sn−1, sn]

The equation (10.3) is nonlinear, and it depends on the parameter s, whereas the function
qn (x) is independent on s. This discrepancy is due to the approximation of the function
q (x, s) by a piecewise constant function. Although it seems that the equation (10.3) is over-
determined because the function qn (x) is not changing with the change of s, variations of
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s-dependent coefficients of (10.3) are small over s ∈ [sn, sn−1) , because this interval is small.
This discrepancy is actually helpful for our method, because it enables us to “mitigate” the
influence of the nonlinear term (∇qn)2 in (10.3) via introducing the s-dependent CWF.

In addition, we add the term −εqn to the left hand side of equation (10.3), where ε > 0 is
a small parameter. We are doing so because, by the maximum principle, if a function p(x, s)
is the classical solution of the Dirichlet boundary value problem

L̃n (p)− εp = f(x, s) in Ω, p |∂Ω= pb(x, s),

then

max
Ω
|p| ≤ max

[
max

∂Ω
|pb| , ε−1 max

Ω
|f |

]
, ∀s ∈ (sn−1, sn] . (10.4)

On the other hand, if ε = 0, then an analogue of the estimate (10.4) would be worse because
of the involvement of some other constants. Therefore, it is anticipated that the introduction
of the term −εqn should provide a better stability of our process, and we indeed observe this
in our computations.

Introduce the s-dependent CWF Cn,λ (s) by

Cn,λ (s) = exp [−λ |s− sn−1|] , s ∈ (sn, sn−1] , (10.5)

where λ >> 1 is a parameter. Multiply both sides of (10.3) by this CWF and integrate with
respect to s over the interval [sn, sn−1] . We obtain

Ln (qn) := ∆qn − A1,n

(
h

n−1∑
i=1

∇qi

)
∇qn + A1n∇qn∇V − εqn

= 2
I1,n

I0

(∇qn)2 − A2,nh
2

(
n−1∑
i=1

∇qi (x)

)2

(10.6)

+2A2,n∇V

(
h

n−1∑
i=1

∇qi

)
− A2,n (∇V )2 , n = 1, ..., N,

where

I0 := I0 (λ, h) =

sn−1∫

sn

Cn,λ (s) ds =
1− e−λh

λ
,

I1,n := I1,n (λ, h) =

sn−1∫

sn

(sn−1 − s)
[
s2 − s (sn−1 − s)

] Cn,λ (s) ds,

A1,n := A1,n (λ, h) =
2

I0

sn−1∫

sn

(
s2 − 2s (sn−1 − s)

) Cn,λ (s) ds,
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A2,n := A2,n (λ, h) =
2

I0

sn−1∫

sn

sCn,λ (s) ds.

Thus, we have obtained a boundary value problem (10.2), (10.6) for a coupled system of
nonlinear elliptic PDEs with respect to the vector function (q1, ..., qN). In this system the
tail function V is also unknown and should be treated differently. An important observation
is that

|I1,n (λ, h)|
I0 (λ, h)

≤ 4s2

λ
, (10.7)

for λh, s ≥ 1. Therefore by taking λ >> 1, we mitigate the influence of the nonlinear term
with (∇qn)2 in (10.6).

In computations the above integrals with the CWF should be calculated in closed forms.
This is because the function Cn,λ (s) changes rapidly for large λ, which means that the
integration step size should be taken too small. In principle, one can decrease the step
size h in the s-direction instead of using the CWF. However, the introduction of the CWF
provides more flexibility for the choice of parameters for computations, since parameters h
and λ are independent, as long as λh ≥ 1. In addition, taking h too small would increase
the computational time, because one would need to compute too many functions qn then.

10.2 The Algorithm

The above considerations lead to the algorithm described in this section. Below Ck+α
(
Ω

)
are standard Hőlder spaces, where k ≥ 0 is an integer and α ∈ (0, 1). Denote |f |k+α =

‖f‖Ck+α(Ω) ,∀ f ∈ Ck+α
(
Ω

)
. Our algorithm reconstructs iterative approximations cn,k (x) ∈

Cα
(
Ω

)
of the function c (x) only inside the domain Ω. On the other hand, to iterate with

respect to tails, we need to solve the forward problem (2.9a,b) in the entire space R3. To do
this, we need to extend each function cn,k (x) outside of the domain Ω in such a way that
the resulting function ĉn,k ∈ Cα (R3) , ĉn,k ≥ d1 in Ω and ĉn,k = 2d1 outside of Ω. So, we
first describe the procedure of such an extension and this procedure is a rather standard one.
Choose a smaller convex subdomain Ω′ ⊂ Ω. Choose a function χ (x) ∈ C1 (R3) such that

χ (x) =





1 in Ω′,
between 0 and 1 in Ω�Ω′,

0 outside of Ω



 .

The existence of such functions χ (x) is well known from the Real Analysis course. Define
the target extension of the function cn,k as ĉn,k (x) := 2d1 (1− χ (x))+χ (x) cn,k (x) ,∀x ∈ R3.
Hence, and ĉn,k (x) = const. = 2d1 outside of the domain Ω and ĉn,k ∈ Cα (R3). Furthermore,
if cn,k (x) ≥ d1 in Ω, then also ĉn,k (x) ≥ d1 in R3. Indeed,

ĉn,k (x)− d1 = (1− χ (x)) d1 + χ (x) (c (x)− d1) ≥ 0.
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Step 11. Choose an initial tail function V1,1 (x) ∈ C2+α
(
Ω

)
. Choose a large parameter

λ >> 1 and a small parameter ε ∈ (0, 1) . To compute the first approximation q1,1 for the
function q1 with this tail, solve the following Dirichlet boundary value problem

∆q1,1 + A1,1∇q1,1∇V1,1 − εq1,1 = −A2,1 (∇V1,1)
2 ,

q1,1 = ψ1 (x) , x ∈ ∂Ω.

By the classic Schauder theorem this problem has unique solution q1,1 ∈ C2+α
(
Ω

)
. Re-

construct an approximation c1,1 (x) ∈ Cα
(
Ω

)
for the unknown coefficient c (x) using the

function q1,1 (x) and formulas (2.13), (2.18), where x ∈ Ω, V (x, s) := V1,1 (x, s) , s := s1.
Next, construct the function ĉ1,1 ∈ Cα (R3) .

Step 1k, k ≥ 2. Suppose that the function c1,k−1 ∈ Cα
(
Ω

)
is reconstructed, c1,k−1 (x) ≥

d1 in Ω and the function ĉ1,k−1 ∈ Cα (R3) is also constructed. Solve the forward problem
(2.6), (2.7), where c(x) := ĉ1,k−1 (x), s = s. Let w1,k(x, s) be the solution of this forward.
Update the tail function as

V1,k (x) =
1

s2 ln w1,k(x, s) ∈ C2+α
(
Ω

)
.

Next, solve the boundary value problem for the equation

∆q1,k + A1,1∇q1,k∇V1,k − εq1,k = 2
I1,1

I0

(∇q1,k−1)
2 − A2,1 (∇V1,k)

2

with the boundary condition (10.2) (at n = 1). We obtain the function q1,k ∈ C2+α
(
Ω

)
.

Reconstruct a new approximation c1,k ∈ Cα
(
Ω

)
for the unknown coefficient similarly with

the Step 11 in which V1,1 (x, s) is replaced with V1,k (x, s). In addition, construct the func-
tion ĉ1,k−1 ∈ Cα (R3) . Make several steps 11, 12, .., 1m1 . As a result, we obtain functions
q1, c1, ĉ1,m1 , V1,m1 where

q1 := q1,m1 ∈ C2+α
(
Ω

)
, c1 := c1,m1 ∈ Cα

(
Ω

)
, ĉ1,m1 ∈ Cα

(
R3

)
, V1,m1 ∈ C2+α

(
Ω

)
.

Step n1. Having functions q1, ..., qn−1 ∈ C2+α
(
Ω

)
and the tail function Vn−1,mn−1 ∈

C2+α
(
Ω

)
, set qn,0 (x) := qn−1 (x) in Ω,

Vn,1 (x) := Vn−1,mn−1 (x) , x ∈ Ω.

Solve the following Dirichlet boundary value problem for the function qn,1 (in (10.8), (10.9)
the vector function (qn.k, qn,0, Vn,k) should be replaced with (qn,1, qn,k−1, Vn,1))

∆qn,k − A1n

(
h

n−1∑
j=1

∇qj

)
∇qn,k − εqn,1 + A1,n∇qn,k · ∇Vn,k

= 2
I1,n

I0

(∇qn,k−1)
2 − A2,nh

2

(
n−1∑
j=1

∇qj (x)

)2

(10.8)
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+2A2,n∇Vn,k

(
h

n−1∑
j=1

∇qj (x)

)
− A2,n (∇Vn,k)

2 ,

qn,1 (x) = ψn (x) , x ∈ ∂Ω. (10.9)

Hence, we obtain the function qn,1 ∈ C2+α
(
Ω

)
. Reconstruct a new approximation cn,1 ∈

Cα
(
Ω

)
for the unknown coefficient c (x) using the function qn,1 (x) , functions q1, ..., qn−1

and formulas (2.13), (2.18), where x ∈ Ω, V (x) := Vn,1 (x) , s := sn. Next, construct the
function ĉn,1 ∈ Cα (R3) .

Step nk, k ≥ 2. Suppose that the function cn,k−1 ∈ Cα
(
Ω

)
is reconstructed, cn,k−1 (x) ≥

d1 in Ω and the function ĉn,k−1 ∈ Cα (R3) is also constructed. Solve the forward prob-
lem (2.9a,b), in which c(x) := ĉn,k−1 (x), s = s. Let wn,k(x, s) be the solution of this for-
ward problem. Update the tail function as Vn,k (x) = s−2 ln wn,k(x, s) ∈ C2+α

(
Ω

)
. Next,

solve the boundary value problem (10.8), (10.9). Reconstruct a new approximation cn,k ∈
Cα

(
Ω

)
for the unknown coefficient similarly with the Step n1 in which Vn,1 (x, s) is re-

placed with Vn,k (x, s). Make several steps n1, n2, .., nmn . As a result, we obtain the functions
qn, cn, ĉn, Vn,mn , where

qn := qn,mn ∈ C2+α
(
Ω

)
, cn := cn,mn ∈ Cα

(
Ω

)
, ĉn ∈ Cα

(
R3

)
, Vn,mn (x) ∈ C2+α

(
Ω

)
.

If functions cn(x) did not yet converge, then proceed with Step (n + 1)1 , provided that
n < N . However, if either functions cn(x) converged, or n = N, then stop. The convergence
criterion for functions cn(x), which we have established in our computational experiments, is
described in sub-subsection 10.4.2. In principle, however, there might be several convergence
criteria, which indicates that a better one might be found. Thus, we do not specify such a
criterion here.

10.3 Global convergence theorem

First, we reformulate the Schauder theorem in a way, which is convenient for our case.
Assuming that

s > 1, λh ≥ 1 (10.10)

and (10.7) and formulas for numbers A1,n, A2,n, we obtain that |A1,n| ≤ 6s2 and |A2,n| ≤ 2s
for all n = 1, ..., N . Hence,

max
1≤n≤N

{|A1,n|+ |A2,n|} ≤ 8s2. (10.11)

Introduce the positive constant M∗ = M∗
(
‖q∗‖C2+α(Ω)×C1[s,s] , s

)
= M∗ (C∗, s) by

M∗ = 2C∗ max

(
8s2, max

1≤n≤N
{|A1,n|+ |A2,n|}

)
. (10.12)
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Hence, (10.10)-(10.12) imply that
M∗ ≤ 16C∗s2. (10.13)

Consider the Dirichlet boundary value problem

∆u +
3∑

j=1

bj(x)uxj
− d(x)u = f (x) , x ∈ Ω,

u |∂Ω= g (x) ∈ C2+α (∂Ω) .

Assume that the following conditions are satisfied

bj, d, f ∈ Cα
(
Ω

)
, d (x) ≥ 0; max

(|bj|α , |d|α
) ≤ C1,

where C1 is a positive constant. By the Schauder theorem, there exists unique solution
u ∈ C2+α

(
Ω

)
of this boundary value problem, and with a constant K = K (C1, Ω) > 0

depending only on the number C1 and the domain Ω the following estimate holds

|u|2+α ≤ K
[
‖g‖C2+α(∂Ω) + |f |α

]
.

In the formulation of Theorem 10.1 we provide estimates (10.17)-(10.22) via M∗ and also
use (10.14) to obtain estimates via s.

Theorem 10.1. Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈ C3.
Suppose that the inequality (10.12) holds. Let the exact coefficient c∗ (x) satisfies (2.6),(2.7)
and also c∗ ≥ 2d, where the numbers d1, d2 > 0 are given. For any function c (x) ∈ Cα (R3)
such that c (x) ≥ d1 in Ω and c (x) = 2d1 in R3�Ω consider the solution wc (x, s) ∈
C3 (R3� {|x− x0| < γ}) ,∀γ > 0 of the problem (2.9a,b). Let Vc (x) = s−2 ln wc (x, s) ∈
C2+α

(
Ω

)
be the corresponding tail function. Suppose that the cut-off pseudo frequency s is

so large that both for c∗ (x) and any such function c (x) the following estimates hold

|V ∗|2+α ≤ ξ, |Vc|2+α ≤ ξ, (10.15)

where ξ ∈ (0, 1) is a sufficiently small number. Let V1,1 (x, s) ∈ C2+α
(
Ω

)
be the initial tail

function and let
|V1,1|2+α ≤ ξ. (10.16)

Denote η := 2 (h + σ + ξ + ε) . Choose an arbitrary constant C1 independent on other above
parameters. Let K = K (C1, Ω) > 0 be the constant of the Schauder theorem and N ≤ N be
the total number of functions qn calculated by the above algorithm. Suppose that the number
N = N (h) is connected with the step size h via N (h) h = β, where the constant β > 0 is
independent on h. Let β be so small that

β ≤ min

(
2

7
,

1

162KC∗s4 ,
C1

162C∗s4

)
≤ min

(
2

7
,

1

16KM∗ ,
C1C

∗

(M∗)2

)
, (10.17)

81



In addition, let the number η and the parameter λ of the CWF satisfy the following estimates

η ≤ η0 (Ω,M∗, d1, C1) = η0

(
Ω, ‖q∗‖C2+α(Ω)×C1[s,s] , d1, s, C1

)

= min

(
1

2
,

1

4K
,

d1

32 · 16C∗s4 ,
C1

8C∗s2

)
≤ min

(
1

2
,

1

4K
,

d1

32M∗s2 ,
2C1

M∗

)
, (10.18)

λ ≥ λ0 (C∗, K, s, η) = max

(
164 (C∗)4 s8, 6 · 162 (C∗)2 Ks4,

1

η2

)
. (10.19)

Then for every integer n ∈ [
1, N

]
the following estimates hold

|qn,k − q∗n|2+α ≤ 2KM∗
(

1√
λ

+ 3η

)
≤ 32C∗Ks2

(
1√
λ

+ 3η

)
, (10.20)

|qn,k|2+α ≤ 2M∗ ≤ 32C∗s2, (10.21)

|cn,k − c∗|α ≤ 8M∗s2

(
1√
λ

+ 3η

)
≤ 128C∗s4

(
1√
λ

+ 3η

)
. (10.22)

In addition, functions cn,k (x) ≥ d1 in Ω and ĉn,k (x) ≥ d1 in R3.
Remarks:
1. It often happens in the computational practice of inverse problems that theoretical

estimates in convergence theorems are more pessimistic than ones obtained in numerical
studies. Our computational experiments show that this is exactly our case in reference to
estimates (10.17)-(10.22). For this reason, we use in our computations a stopping rule, which
is different from (10.17).

2. By the Tikhonov concept, the constant C∗ should be known a priori. It is reasonable
to assume that C∗ is independent on s, although we do not use this assumption in our proof.

3. The parameter η characterizes the error both in the data and in our mathematical
model. One should have η → 0. However, since in the reality it is off its limiting value and we
also have some other parameters, it is important to conduct numerical experiments, which
would verify this theorem.

4. Truncating integrals at a high pseudo frequency s is a natural thing to do, because
one routinely truncates high frequencies in physics and engineering. By truncating integrals,
we actually come up with a different, although a quite reasonable mathematical model.
Consider now the influence of this truncation on the accuracy of the reconstruction. Let,
for example h = ε = σ = ξ, and λ−1/2 = ξ. Then (10.22) implies that the error of our
reconstruction is O (ξ) for ξ → 0. In other words, one of claims of Theorem 10.1 is that the
error of the reconstruction of the unknown coefficient is mainly determined by the truncation
error, which means the error in our new mathematical model.

5. Conditions (10.15) and (10.16) with a small number ξ are natural ones, because the
number s is supposed to be sufficiently large, and by (3.4) the function ṽ (x, s) tends to zero
together with its x-derivatives as s → ∞. Therefore, the condition (10.16) does not imply
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(a) (b) (c)

Figure 25: The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is
applied, and a mesh (c), where we use FEM, with a thin overlapping of structured elements.

the assumption of the closeness of the first guess to the correct solution. Furthermore, in
our computations we always take the initial tail V1,1 ≡ 0, which reflects the fact that no a
priori knowledge about the medium is given.

6. One of the back bones of the theory of ill-posed problems is that the number of
iterations can be chosen as a regularization parameter, see, e.g., page 157 of [33]. Therefore,
we have a vector

(
s,N, m1, ..., mN

)
of regularization parameters, see details about their

choice in subsection 7.4. Setting N (h) h = β = const. > 0 is in an agreement with, e.g.,
Lemma 6.2 on page 156 of [33], since this lemma shows a connection between the error in
the data and the number of iterations (that lemma is proven for a different algorithm).

7. It seems to be at the first glance that because of (10.22), one can stop the iterative
process at n = 1. However, our numerical experience shows that this way one cannot obtain
good images.

10.4 Some numerical results

We work with the computationally simulated data. That is, the data are generated by
computing the forward problem (10.24) with the given function c(x). To solve the forward
problem (10.24), we use the so-called hybrid FEM/FDM method. The computational domain
in all our tests G = GFEM ∪ GFDM is set as G = [−4.0, 4.0] × [−5.0, 5.0]. This domain is
split into a finite element domain GFEM := Ω = [−3.0, 3.0] × [−3.0, 3.0] and a surrounding
domain GFDM with a structured mesh, see Figure 25. The space mesh consists of triangles
in Ω and of squares in GFDM , with the mesh size h̃ = 0.125 in the overlapping regions. At
the top and bottom boundaries of G we use first-order absorbing boundary conditions, which
are exact in this particular case. At the lateral boundaries, mirror boundary conditions allow
us to assume an infinite space domain in the lateral direction.
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The forward problem (10.24) is computed in the rectangle G ⊂ R2 (Figure 21). The
coefficient c(x) is unknown only in a square Ω ⊂ G and

c(x) = 1 in G�Ω. (10.23)

Hence, 2d1 = 1 in (2.6), (2.7). The trace of the solution of the forward problem is recorded
at the boundary ∂Ω. This trace generates the Dirichlet boundary data ψ (x, s) in (10.1)
(after the Laplace transform). Next, the coefficient c(x) is “forgotten”, and our goal is to
reconstruct this coefficient for x ∈ Ω from the data ψ (x, s) . The boundary of the rectangle
G is ∂G = ∂G1∪∂G2∪∂G3. Here, ∂G1 and ∂G2 are respectively top and bottom sides of the
largest rectangle of Figure 25 and ∂G3 is the union of left and right sides of this rectangle.
The forward problem is

c (x)
∂2u

∂t2
−4u = 0, in G× (0, T ),

u(·, 0) = 0,
∂u

∂t
(·, 0) = 0, in G,

∂nu
∣∣
∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣∣
∂G1

= ∂tu, on ∂G1 × (t1, T ),

∂nu
∣∣
∂G2

= ∂tu, on ∂G2 × (0, T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0, T ),

(10.24)

where T is the final time. When calculating the Laplace transform of the boundary data,
we integrate for t ∈ (0, T ), thus calculating an approximation of this transform. The plane
wave f is initialized at the top boundary ∂G1 of the computational domain G, propagates
during the time period (0, t1] into G, is absorbed at the bottom boundary ∂G2 for all times
t ∈ (0, T ) and it is also absorbed at the top boundary ∂G1 for times t ∈ (t1, T ). Here

f(t) =
(sin (st−π/2) + 1)

10
, 0 ≤ t ≤ t1 :=

2π

s
, T = 17.8t1.

10.4.1 Main discrepancies between the theory and the numerical implementa-
tion

It makes sense to summarize in this subsection main discrepancies between the above theory
and our numerical implementation. We note that such discrepancies quite often occur in
computations of inverse problems.

The first discrepancy is that in order to generate the data for the inverse problem, we
have solved the forward problem (10.24) in the finite domain G with the plane wave instead
of the Cauchy problem (2.1), (2.2) with the point source. To explain this, we note that
our theory needs the problem (2.1), (2.2) only for the asymptotic behavior (2.11), and
consequently for (2.16). However, conditions guaranteeing the asymptotic behavior (2.11)
(see those conditions in [12]) are very hard to verify computationally. Therefore, in all our
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numerical tests we have somewhat verified numerically the asymptotic behavior (2.16). To
do this, we have considered functions g1 (s) and g2 (s) , for s ∈ [6.5, 7.5] ⊃ [s, s] = [6.7, 7.45] ,
where

g1 (s) = s ‖∇ṽ (x, s)‖L2(Ω) , g2 (s) = s2 ‖∇q (x, s)‖L2(Ω) ,

where functions ṽ (x, s) and q (x, s) are taken from the solution of the forward problem. We
have found that the interval [s, s] = [6.7, 7.45] was the optimal one for our reconstruction
procedure, and we have used it in all our numerical experiments. Graphs of functions g1 (s)
and g2 (s) (not presented here) have shown that these functions are very close to constants
for s ∈ [6.5, 7.5] , which corresponds well with (2.16). We have also verified numerically in
all our tests that the function w (x, s) > 0, which justifies the introduction of the function
ṽ (x, s) = ln w (x, s) /s2. In our opinion, these verifications provide numerical justifications
for the above discrepancy.

We describe the 2 nd main discrepancy in this paragraph. Because of (10.23), we set
2d1 = 1. Instead of using the extension procedure described in the beginning of section 5,
we simply set cn,k (x) := 1 in G�Ω. In addition, since by (2.6) we need a priori lower bound
c(x) ≥ d1, we enforce that the coefficient c(x) belongs to the set of admissible coefficient
Cadm = {c(x) ≥ 0.5} as follows: If cn,k(x0) < 0.5 for a certain point x0 ∈ Ω and a certain pair
(n, k), then we set cn,k(x0) := 1. The only reason why we use the value 1 in this setting is
that we are supposed to know that the condition (10.23) is satisfied. Therefore, this setting
as well as the fact that we allow the function c(x) to attain values between 0.5 and 1 does
not mean that we assume the knowledge of the background value of the function c(x). In
principle, this constraint cannot guarantee neither the continuity of the resulting function
cn,k (x) nor that cn,k (x) ≥ 1. Nevertheless, we have observed in our numerical tests that
all resulting functions cn,k are continuous and cn,k (x) ≥ 1 for all x, i.e., “allowed” values
between 0.5 and 1, are not actually attained in iterations. Another reasonable setting would
be to assign cn,k(x0) := 0.5. We have not done this yet and hope to investigate this topic in
the future.

The 3rd main discrepancy is that our square Ω does not have a smooth boundary, as it is
required by the Schauder theorem. Furthermore the Dirichlet boundary value problems for
functions qn,k in the square Ω were solved by the FEM, in which the same finite elements were
used as ones in the forward problem (10.24). The “inverse crime” was not committed because
the forward problem was solved for the hyperbolic equation (10.24), whereas we solve many
different elliptic equations in our iterative algorithm. The FEM cannot guarantee that
resulting functions qn,k ∈ C2+α

(
Ω

)
, as it is required by Theorem 10.1. Nevertheless, an

analogue of Theorem 10.1 can be proved for the discrete case when the FEM analogues
of equations for functions qn,k are used, and also the domain Ω with ∂Ω ∈ C3 is replaced
respectively with either a rectangular prism in R3 or a rectangle in R2, as in our numerical
examples. To prove this analogue, one needs to use the weak formulations of equations (5.4),
(5.6) and the Lax-Milgram theorem instead of the Schauder theorem. Next, because of the
equivalency of norms in finite dimensional spaces, the rest of the proof is very similar with
the above. However, the latter development is outside of the scope of this publication and
might be considered in our future works. Another interesting question here is about the
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change of reconstructed images due to the increase of the number of finite elements, because
that equivalency of norms “worsens” with the increase of the dimension of the space. This
question might also be addressed in future publications.

The 4th main discrepancy is that because of the above mentioned equivalency of norms,
as well as because the L2 (Ω) norm is easier to verify computationally than the Cα

(
Ω

)
norm

(especially because α ∈ (0, 1)), we use L2 (Ω) norms for our stopping rule. An additional
discrepancy is that in order to produce updates for tails, we have solved on each iterative
step the forward problem (10.24) instead of solving the elliptic problem for the function w.
Next, we have calculated the Laplace transform to obtain the function wn,k (x, s) .

10.4.2 Results of reconstruction

In this subsection we present results of our reconstructions. We have performed numerical
experiments to reconstruct the medium, which is homogeneous with c (x) = 1 except of
either two small squares or a single square, see Figure 25. However, we have not assumed
a priori knowledge of neither the structure of this medium nor of the background constant
c (x) = 1 outside of those squares.

In all our numerical experiments we have chosen the step size with respect to the pseudo
frequency h = 0.05. Hence, N = 15 in our case. It is important that in all our tests the
regularization parameters where chosen the same. This means that results were not “tilted”
towards desired ones. We have chosen two sequences of regularization parameters λ := λn

and ε = εn for n = 1, ..., N . The formulation of Theorem 10.1 remains almost unchanged
for this case. The reason of choosing different values of λn and εn is that values gradients
of functions q1 and q2 are very small. Hence, in order not to eliminate totally the influence
of the nonlinear term (∇qn,k−1)

2 , n = 1, 2 in (10.8), the values of λ1 and λ2 should not be
too large. Next, the values of the nonlinear term start to grow, and we balance them by
taking a larger value of λn for n = 3, 4, 5. For n > 5 the values of the nonlinear term become
even bigger, and we balance them via increasing the value of λn again. This points towards
the importance of the introduction of CWFs in the numerical scheme, as compared with the
decrease of the step size h. The considerations for choosing different values of εn are similar.
In all our tests of [] the values of the parameters λn and εn were:

λn = 20, n = 1, 2; λn = 200, n = 3, 4, 5; λn = 2000, n ≥ 6;

εn = 0, n = 1, 2; εn = 0.001, n = 3, 4, 5; εn = 0.01, n = 6, 7,

εn = 0.1, n ≥ 8.

We use the following approximation to find c(x) at the point (i, j):

ci,j =
ṽi+1,j − 2ṽi,j + ṽi−1,j

dx2
+

ṽi,j+1 − 2ṽi,j + ṽi,j−1

dy2

+ s2

((
ṽi+1,j − ṽi,j

dx

)2

+

(
ṽi,j+1 − ṽi,j

dy

)2
)

,
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where dx and dy are grid step sizes of the discrete finite difference mesh in the directions
x and y respectively. We also use the smoothness indicator in values of cn.k(x) via local
averaging over the neighboring elements.

The resulting computed function is c (x) := cN(x). Recall that the number of iterations is
a part of the vectorial regularization parameter in our case. We have used mn = 4 iterations
with respect to tails for n ≤ n0 and mn = 7 for n = n0 + 1, ..., N , where numbers n0 and
N are chosen on the basis of an objective stopping rule described below. Hence, while the
pairs

(
n0, N

)
differ in our tests, the rule of their choice (i.e., the stopping rule) remains

the same. As it is always the case in ill-posed problems, the choice of proper regularization
parameters and of a proper stopping rule was time consuming. However, we point out that
our stopping rule as well as regularization parameters λn, εn,mn, s once chosen, remained the
same for all our numerical experiments described in Tests 1-4 below. Hence, results were
not “conveniently adjusted” for each specific test in order to obtain the best possible image
for that test.

In all our tests we have introduced the multiplicative random noise in the boundary data.
Next, we apply the Laplace transform to the boundary data, which helps to both “smooth
out” and decrease the noise, due to the integration. Because of that, we have successfully
used the following formula for the s−derivative of the boundary data ϕ (x, s) in (10.1)

∂ϕ (x, sn)

∂s
≈ ϕ (x, sn−1)− ϕ (x, sn)

h
, h = 0.05.

In all tests of [12] the starting value for the tail was chosen V1,1 (x, s) = 0, which is in
an agreement with (10.16) and also reflects the fact that no advanced knowledge about tails
is available. While we present results of only two tests here, more numerical results can
be found in []. It is also important that in all our tests we have used the same objective
stopping rule, which was based on stabilization of relative L2 norms of discrepancies between
two consecutive iterations of both tails and functions cn,k, see details in [12].

Test 1. We now test our numerical method on the reconstruction of the structure given
on Figure 25c. We introduce σ = 5% of the multiplicative random noise in the boundary
data. We take c = 4 for both small squares of Figure 25c and c = 1 outside of these squares.
Hence, the inclusion/background contrast is 4 : 1. Figure 26 presents resulting image of the
function c := c12,7. Figure 27 displays the one-dimensional cross-sections of the images of
the function cn,k along the vertical line passing through the middle of the left small square.
The imaged function c(x) is superimposed with the correct one. One can see that the value
of the function c (x) both inside and outside of the inclusion is imaged correctly, although
the location of the inclusion is somewhat shifted to the top.

Test 2. While our method does not require a good a priori guess about the solution,
the main point of this test is to show that a reconstruction algorithm, which is based on the
minimization of a least squares objective functional, might lead to a poor reconstruction, if
a good first guess about the solution is unavailable. We use the reconstruction algorithm
described in [26-28], where the inverse problem is formulated as an optimal control problem
of the minimization of a least squares objective functional. The latter is solved by the
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Figure 26: Computed image for Test 1.
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Figure 27: Computed image for Test 2.
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(a) (b) (c)

Figure 28: Computed image for Test 5.

quasi-Newton method, which is known to be a good method for this purpose. We find a
stationary point of a Lagrangian, using the forward wave equation (the state equation), the
backward wave equation (the adjoint equation), and an equation, which reflects the fact that
the gradient with respect to the parameters should vanish. A minimizer of a corresponding
least squares objective functional is found via an iterative procedure via solving the forward
and backward wave equations for each iterative step and updating the unknown coefficients.
We generate the data for the inverse problem using the same computational mesh and the
same parameters as ones in Test 1. We start the optimization algorithm with different values
of the first guess for the parameter cguess = const. at all points of the computational domain
Ω. Figure 28 presents the images of the computed function ccomp. for the following initial
guesses: on a) cguess = 1.0, on b) cguess = 1.5, and on c) cguess = 2.0. We observe that images
deteriorate from a) to c) with the deterioration of the first guess. We conjecture that local
minima are achieved in all these three cases, although an investigation of the latter topic is
outside of the scope of this publication.

We note that in [26-28] the quasi-Newton method was applied in a combination with
the so-called “adaptivity technique”. It is known that this technique is capable to improve
the quality of some images, which are initially obtained via minimizations of least squares
objective functionals. We are not presenting corresponding results here because of space
considerations. We refer to the recent work [28] where tests were conducted using the
adaptivity technique for a structure similar with one considered in Test 2. It was concluded
in [28] that while the adaptivity significantly improves images with the cguess = 1.0 and
cguess = 1.5, the image quality with cguess = 2 has deteriorated not only on the coarse mesh
but also on the one and two times refined meshes. Hence, the adaptivity technique works
well in [28] only in a neighborhood of the initial guess cguess ∈ [1, 1.5] .

89



10.4.3 An extension of the method of [12].

In the joint effort of the PI with Drs. H. Shan, J.Su, N. Pantong and H.Liu, who were
co-authoring in [8], an extension of the above idea of this section for the case of the running
source was carried out [8]. Since there is no clear asymptotic behavior of the solution of the
equation () when the source runs to infinity, a heuristic treatment of tails was proposed in
[8]. Images of [8] are of the same quality as ones of section 6, see Figures 15 and 16. In
addition, recently we have figured out how to arrange a “clean”asymptotic behavior and this
work is currently in progress. Preliminary results on the latter idea are encouraging.

11 Some Analytical Results of the Project

Although the main target of this project is globally convergent numerical methods for CIPs,
it is quite natural that a number of purely analytical results were also obtained, in addition
to the above uniqueness Theorem 8.1. These results are reflected in publications [15-20]. In
this section we outline most interesting analytical results, also see annual report of 2006 for
more details [21].

11.1 Inverse problems for the non-stationary transport equation

Results of this subsection have formed a major part of the Ph.D. thesis of Mr. Sergey E.
Pamyatnykh [15], [16], whose Thesis Advisor was the PI. Sergey has defended his thesis in
2006 at The University of North Carolina at Charlotte. No analogs of Theorem 11.1 were
known before the publication [15]. Theorem 11.2 [16] is the first global uniqueness result for
a non-overdetermined CIP for the transport equation. Previous uniqueness results for CIPs
for the transport equation were obtained either for the case of the over-determined data
or under some restrictions imposed on coefficients of the transport equation, see [23,48,49].
This is because, unlike results of this subsection, the method of Carleman estimates was not
applied previously.

Let R = const. > 0,

Ω = {x ∈ Rn : |x| < R}, Sn = {ν ∈ Rn : |ν| = 1}, Z = Ω× Sn,

H = Ω× (−T, T )× Sn, Γ = ∂Ω× (−T, T )× Sn,

H+ = Ω× (0, T )× Sn, Γ+ = ∂Ω× (0, T )× Sn,

H− = Ω× (−T, 0)× Sn, Γ− = ∂Ω× (−T, 0)× Sn,

so that

H = H+ ∪H− and Γ = Γ+ ∪ Γ−.
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Also, introduce spaces

C̃k(H), k = 1, 2, C̃k(H) =

{
u (x, t, ν) : max

0≤s≤k

∥∥Ds
x,tu (x, t, ν)

∥∥
C(H)

= ‖u‖C̃k(H) < ∞
}

.

The non-stationary transport equation in the domain H has the form [6]

Ku := ut + (ν,∇u) + a(x, t, ν)u +−
∫

Sn

g(x, t, ν, µ)u(x, t, µ)dσµ = F (x, t, ν), (11.1)

where ν ∈ Sn is a unit vector of the particle velocity, u(x, t, ν) ∈ C̃1(H) is the density of
the particle flow, a(x, t, ν) is the attenuation coefficient, F (x, t, ν) is the angular density of
sources, g(x, t, ν, µ) is a scattering indicatrix., and (ν,∇u) denotes the scalar product of
vectors ν and ∇u in Rn.

Consider the following boundary condition

u(x, t, ν) = p(x, t, ν), (11.2)

for (x, t, ν) ∈ Γ ∩ {(n(x), ν) < 0} .

Here (n(x), ν) is the scalar product of the outer unit normal vector n(x) on the surface ∂Ω
and the direction of the velocity ν. Hence, only incoming radiation is given at the boundary
in this case. The boundary condition (11.2) together with the initial condition at t = −T

u(x,−T, ν) = f(x, ν), ∀(x, ν) ∈ Z (11.3)

form a classic boundary value problem for the non-stationary transport equation (11.1) in the
domain H. This problem means that given the initial condition and the incoming radiation
at the boundary, find the density of the particle flow.

Consider now a
A non-standard boundary value problem. Suppose that the initial condition (11.3)

is unknown, but the outgoing radiation at the boundary is known instead. In other words,
the following function h(x, t, ν) is known in addition to the function p(x, t, ν) in (11.2),

u(x, t, ν) = h(x, t, ν), (11.4)

for (x, t, v) ∈ Γ ∩ {(n(x), ν) > 0} .

Determine the function u(x, t, ν) in the domain H.
The problem (11.1), (11.2), (11.4) is ill-posed. Hence, one cannot expect to obtain an

existence theorem. However, one can expect to obtain a stability result, i.e., to estimate the
function u via functions p and h.
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Theorem 11.1 (Lipschitz stability) [15]. Let in (7.1) ‖a‖C(H) ≤ r and ‖g‖C(H×Sn) ≤ r,

where r = const. > 0. Assume also that the function F ∈ L2 (H) and T > R. Denote

q (x, t, ν) =

{
p (x, t, ν) if (n(x), ν) < 0
h(x, t, v) if (n(x), ν) ≥ 0

}
.

Let the function u ∈ C1
(
Ω× [−T, T ]

) × C (Sn) satisfies conditions (6.14), (6.15), (6.17).
Then the following Lipschitz stability estimate is valid

‖u‖L2(H) ≤ C
[
‖q‖L2(Γ) + ‖F‖L2(H)

]
,

where the positive constant C = C (r, R, T ) depends only on numbers r, R and T .
The PI and Pamyatnykh [16] have considered the following
Inverse Problem. Suppose that the equation (11.1) is satisfied in the domain H+ =

Ω × (0, T ) × Sn. Suppose that the attenuation coefficient a (x, ν) is independent on time t
and unknown, but the following functions s (x, ν) and k (x, t, ν) are known

u (x, 0, ν) = s (x, ν) , (11.5)

u (x, t, ν) |Γ+= k (x, t, ν) . (11.6)

Determine the function a (x, ν) .
Thus, the following theorem was proven
Theorem 11.2 [16]. Suppose that the derivative ∂tg exists in H+×Sn and ||∂k

t g||C(H+×Sn) ≤
r1 for k = 0, 1, where r1 is a positive constant. Let in (7.6) |s(x, v)| ≥ r2, where r2 =
const > 0. Assume that there exist two pairs of functions (a1, u1) and (a2, u2) satisfying
(11.1), (11.2), (11.5), (11.6) and such that

a1, a2 ∈ C
(
Z

)
and ui, uit, uitt,∇ui,∇uit ∈ C

(
H+

)
, i = 1, 2.

Suppose also that
[(aif) (x, ν)]2 = [(aif) (x,−ν)]2 , i = 1, 2.

Let ‖uit‖C(H+) ≤ r3, where r3 = const > 0. Then there exists a number T0 = T0 (R, r2, r3) >

R such that if T > T0, then a1 = a2 in Z and u1 = u2 in H+. If the function u2(x, t, ν) 6= 0

in H+, then it is sufficient to assume that T > R.

11.2 Exact controllability for the non-stationary transport equa-
tion

In the work of Klibanov and Yamamoto [17] the exact controllability theorem for the non-
stationary transport equation was proved for the first time. Consider the homogeneous
transport equation (11.1),

Ku := ut + (ν,∇u) + a(x, t, ν)u +

∫

Sn

g(x, t, v, µ)u(x, t, µ)dσµ = 0 in H+, (11.7)
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where H+ is defined above with the only difference that now Ω ⊂ Rn is a bounded domain
with its boundary ∂Ω ∈ C∞. Assume that functions

a ∈ C1
(
H+

)
, g ∈ C1

(
H+ × Sn

)
. (11.8)

Let
Γ− = {(x, t, ν) ∈ ∂Ω× (0, T )× Sn : (n(x), ν) ≤ 0} ,

Introduce the Hilbert space of real valued functions L2
cos (Γ−) as the one with the scalar

product

〈p, q〉 =

∫

Γ−

p (x, t, ν) q (x, t, ν) |cos (n(x), ν)| dSxdtdσν .

Observe that a particular difficulty in working with this scalar product is that the weight
function |cos (n(x), ν)| has zeros on Γ−.

We first introduced the weak solution u ∈ C ([0, T ] ; L2 (Ω× Sn)) of the equation (11.7)
with the initial condition

u (x, 0, ν) = 0 (11.9)

and the boundary condition

u |Γ−= p (x, t, ν) ∈ L2
cos (Γ−) . (11.10)

To do this, we have used modified classic density arguments. Next, we posed the following
The Exact Controllability Problem. Consider an arbitrary function w (x, ν) ∈

L2 (Ω× Sn) . Find such a control function pw (x, t, ν) ∈ L2
cos (Γ−) that

u (x, T, ν) = w (x, ν) , (11.12)

where u ∈ C ([0, T ] ; L2 (Ω× Sn)) is the weak solution of the equation (11.7) with the initial
condition (11.9) and the boundary condition (11.10), in which p = pw. The time T is the
so-called “steering time”.

We have modified Theorem 11.1 to prove
Theorem 11.3 [17]. Let Ω be strictly convex bounded domain with ∂Ω ∈ C∞ and

conditions (11.8) hold. Let the steering time T > diameter (Ω) . Then for any function
w (x, ν) ∈ L2 (Ω× Sn) there exists a control function pw (x, t, ν) ∈ L2

cos (Γ−) such that if the
function u ∈ C ([0, T ] ; L2 (Ω× Sn)) is the weak solution of the equation (11.7) satisfying
(11.9) and (11.10) with p = pw in (11.10), then (11.12) holds.

11.3 Estimates of initial conditions of parabolic equations and in-
equalities with the lateral Cauchy data in finite domains

The result of this subsection is published in the work of Klibanov [18]. As it was stated in
subsection 1.2, this results was featured as one of the best of 2006 by the Editorial Board of
Inverse Problems. Let Ω ⊂ Rn be a bounded domain with the boundary ∂Ω ∈ C1. For any
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T = const. > 0 denote QT = Ω × (0, T ) , ST = ∂Ω × (0, T ) . For any function s(x), x ∈ Rn

denote si = ∂s/∂xi, i = 1, ..., n, whenever the differentiation is appropriate. We also denote
∇s = (s1, ..., sn) . Let L = L(x, t, D) be an elliptic operator of the second order in QT ,

Lu := L(x, t,D)u =
n∑

i,j=1

aij(x, t)uij +
n∑

i,j=1

bj(x, t)uj + b0(x, t)u,

with its principal part L0,

L0u := L0(x, t, D)u =
n∑

i,j=1

aij(x, t)uij,

where coefficients

aij = aji, aij ∈ C1
(
QT

) ∩B
(
QT

)
; aij

k , bj, b0 ∈ B
(
QT

)
,

where B
(
QT

)
is the set of functions bounded in QT . Naturally, we assume the existence of

two positive numbers σ1, σ2, σ1 ≤ σ2 such that

σ1 |ξ|2 ≤
n∑

i,j=1

aij(x, t)ξiξj ≤ σ2 |ξ|2 , ∀ (x, t, ξ) ∈ QT × Rn. (11.13)

Let the function u ∈ H2,1 (QT ) be a solution of the parabolic equation

ut = Lu + f(x, t), a.e. in QT , (11.14)

with the unknown initial condition g(x),

u(x, 0) = g(x) ∈ H1 (Ω) , (11.15)

where the function f ∈ L2 (QT ) . Along with the equation (11.14) we also consider a more
general case of the parabolic inequality

∫

QT

(ut − Lu)2 dxdt ≤ M2, (11.16)

where the function u ∈ H2,1 (QT ) satisfies condition (11.15) and M = const. > 0.
Inverse Problem. Assume that the following lateral Cauchy data h1(x, t) and h2(x, t)

are given

u |ST
= h1(x, t),

∂u

∂n
|ST

= h2(x, t), ST = S × (0, T ) , (11.17)

where the function u ∈ H2,1 (QT ) satisfies either conditions (11.14) and (11.15) or condi-
tions (11.15) and (11.16). Estimate the unknown initial condition g and the function u via
functions h1, h2 and f .
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This is an inverse problem of the determination of the initial condition in the parabolic
equation using lateral Cauchy data h1 and h2. Applications are in such diffusion and heat
conduction processes, in which one is required to determine the initial state using boundary
time dependent measurements. To describe a more specific application, consider the cooling
process of a solid, which is contained in a bounded domain Ω ⊂ R3. Suppose that the initial
temperature of this solid is high, unknown, and is the subject of one’s interest. Suppose also
that interior points of this solid are unavailable for the temperature measurements. Instead
one is measuring the time dependence of both the temperature u and the heat flux at the
boundary ∂Ω. Assuming that near ∂Ω the principal part L0 = ∆, we obtain that the heat
flux at the boundary is ∂u/∂n |ST

. Hence, in this application the Inverse Problem is the
problem of the determination of the spatial distribution of the initial temperature u(x, 0),
using time dependent boundary measurements.

A particular benefit of considering this applied example is that it helps to understand
the naturality of imposing a priori bound on the L2 (Ω)−norm of the gradient ‖∇g‖L2(Ω)

in Theorem 11.4. Indeed, this assumption means a priori knowledge of the absence of high
gradients in the initial temperature, which is quite natural in this application. A similar
idea, although in a more general form, is one of building blocks of the theory of ill-posed
problems and it follows from the above mentioned fundamental Tikhonov theorem [50].

The idea of the proof of Theorem 11.4 (below) is to combine two types of Carleman
estimates: “lateral” and “backwards” ones. Lateral Carleman estimate is the one, which
estimates the solution of the parabolic equation (or inequality) via lateral Cauchy data.
It estimates that solution in a subdomain G of the time cylinder QT . However, since G ∩
{t = 0} = ∅, then the lateral Carleman estimate does not provide an estimate for the initial
condition g(x). Still, it ensures an estimate of the norm

‖u (x, t0)‖L2(Ω) (11.18)

via norms of the lateral Cauchy data. In (11.18) t0 ∈ (0, T ) is a certain constant.
Thus, one should somehow estimate the initial condition g(x) via the norm (11.18). To

do so, a backwards Carleman estimate is used. The backwards Carleman estimate is the one,
which estimates the solution u(x, t) of the parabolic equation for t ∈ (0, t0) ⊂ (0, T ) via the
norm (11.18), i.e., it estimates solutions of parabolic equations with the reversed direction
of time. However, the previously known such estimate enabled one to estimate the certain
norms of the function u(x, t) only in Ω× (τ , t0) for a 0 < τ < t0. Hence, the case of u(x, 0) is
a more delicate one. The main new element of the work [18] is a new backwards Carleman
estimate, which enabled to estimate ‖u(x, 0)‖L2(Ω) , as well as to consider the general case of
the operator L with (x, t)−dependent coefficients, including the inequality (11.16).

A similar problem was considered earlier by Xu and Yamamoto [51]. However, their
technique cannot handle the case of non-self adjoint operator L with (x, t)− dependent
coefficient, including the inequality (11.16). This is because they use the so-called “loga-
rithmic stability” method for the backwards estimate, and this method works only with the
self-adjoint operator L with x-dependent coefficients, see, e.g., [22] for that method.

The following stability estimate was proven in [18].
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Theorem 11.4. Assume that the above conditions imposed on the coefficients of the
elliptic operator are fulfilled. In the case of the problem (11.15)-(11.17) denote f(x, t) = M.
In both problems (11.14), (11.16), (11.17) and (11.15)-(11.17) denote F = (h1, h2, f) and

‖F‖ =
[
‖h1‖2

H1(ST ) + ‖h2‖2
L2(ST ) + ‖f‖L2(QT )

]1/2

.

Suppose that ‖F‖ ≤ B, is a positive number. Assume that the function g ∈ H1 (Ω) . Then
there exists a positive constant C such that, for every number α ∈ (0, 2) there exists a number
β ∈ (0, 1) such that the following stability estimate holds

‖g‖2
L2(Ω) ≤

C

α
‖∇g‖2

L2(Ω) · ln
[

B

β ‖F‖
]−1

+ C

(
B

β

)α

‖F‖2−α . (11.19)

The constant C depends only on the operator L and the domain QT and the constant β
depends on the same parameters as C, as well as on α.

The estimate (11.19) is the so-called conditional stability estimate, because it assumes
boundedness of a stronger norm ‖∇g‖2

L2(Ω), see above about the applied aspect. Conditional
stability estimates are typical ones for ill-posed problems, as it follows from the Tikhonov
theorem [50]. While constants like B, α and β do not appear in traditional well-posed
problems (at least in the linear case), their appearance is quite natural in ill-posed problems.
On the other hand, assuming that ‖F‖ is sufficiently small, one can drop constants B, α, β,
so as the second term in the right hand side of (11.21).

11.4 Stability estimates of initial conditions of parabolic equations
and inequalities in infinite domains

The result of this subsection was obtained by the PI and one of his collaborators Dr. A.V.
Tikhonravov (Professor of Moscow State University) [19]. Suppose that in the previous
subsection the domain Ω ⊆ Rn is infinite rather than finite, ∂Ω ∈ C1. Consider the same
problem as in the previous subsection. Let the function u ∈ H2,1 (QT ) satisfies the following
conditions

ut = Lu + f(x, t), a.e. in QT , (11.20)

u |ST
= 0, (11.21)

u(x, 0) = g(x) ∈ H1 (Ω) . (11.22)

Conditions imposed on the coefficients of the elliptic operator L are the same as ones in
the previous subsection. Along with the equation (7.28) consider a more general parabolic
inequality

|ut − L0u| ≤ M [|∇u|+ |u|+ |f |] , a.e. in QT , (11.23)

where L0 is the principal part of the elliptic operator L and M is a positive constant. Let
P ∈ C2, P ⊂ Ω be an arbitrary surface and PT = P × (0, T ). Consider the following
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Inverse Problem. Let Φ ⊂ Ω be a finite subdomain. For either of problems (11.20)-
(11.22) or (11.21)-(11.23), estimate the unknown initial condition g(x) in the domain Φ via
the lateral Cauchy data h3(x, t) and h4(x, t), where

u |PT
= h3(x, t),

∂u

∂n
|PT

= h4(x, t). (11.24)

The main difficulty of the case of the infinite domain Ω compared with the previous case
of the finite domain is that the previously used idea of combining lateral and backwards
Carleman estimates does not work in this case. Indeed, lateral Carleman estimates work
only in finite subdomain. Hence, the lateral Carleman estimate would enable one only to
estimate the norm ‖u(x, t0)‖L2(Φ) for a t0 = const. ∈ (0, T ) . Then, however, one cannot use
the backwards Carleman estimate (unlike the previous subsection) to estimate the function
g(x). The reason of the latter is that any backwards estimate requires the knowledge of the
function u(x, t0) for all x ∈ Ω. This is why analogues of Theorem 11.5 are unknown.

To overcome this difficulty, a new lateral Carleman estimate for the parabolic operator
∂t − L0 was derived. The level surface of the corresponding Carleman Weight Function
(CWF) is contained in a thin strip t ∈ {|t− δ| < δ

√
ω0

}
, where δ > 0 is sufficiently small

and the number ω0 ∈ (0, 1) is fixed. The main new feature of this estimate is that, unlike
previously known Carleman estimates, this one does not break down when the width 2δ

√
ω0

of this strip approaches zero as δ = δ(‖F‖) → 0+ for ‖F‖ → 0.
Before formulating the stability estimate, we formulate a geometric condition. Let Φ ⊂ Ω

be a convex bounded subdomain. We shall say that Φ has the P -property, if the following
two conditions are fulfilled: (1) For any point x ∈ Φ there exists a point x̃ (x) ∈ P such that
the straight line connecting points x and x̃ does not lie in the hyperplane, which is tangent to
the hypersurface P at the point x̃ and (2) dist [Φ, (∂Ω�P )] > 0, where dist [Φ, (∂Ω�P )] :=
ds (Φ) is the Hausdorff distance. An example of the P -property is the case when either
P ⊆ ∂Φ or P ⊂ ∂Ω and ds (Φ) > 0. Another example is when the hypersurface P is a part
of a hyperplane, P ⊂ {x1 = 0}, Φ ⊂ {x1 > 0} ∩Ω or Φ ⊂ {x1 < 0} ∩Ω and ds (Φ) > 0. The
following analogue of Theorem 11.4 was proven

Theorem 11.5 [19]. Suppose that above conditions imposed on coefficients of the operator
L(x, t, D), the domain Ω and the surface P are fulfilled. Let the function u ∈ H2,1 (QT )
satisfies either conditions (11.20)-(11.22), (11.24) or conditions (11.21)-(11.24). Let Φ ⊂ Ω
be a convex bounded subdomain of the domain Ω which possesses the P -property. Let the
function h3 ∈ H1 (PT ) . Consider the vector valued function F = (h3, h4, f) and denote

‖F‖ =
[
‖h3‖2

H1(PT ) + ‖h4‖2
L2(PT ) + ‖f‖2

L2(QT )

]1/2

.

Suppose that ‖F‖ ≤ B, where B is a positive constant. Choose an arbitrary number α ∈
(0, 2) . Then there exist constants C > 0 and β ∈ (0, 1) such that the following stability
estimate holds

‖g‖2
L2(Φ) ≤

C

α

[
‖|∇g|‖2

L2(Ω) + ‖g‖2
L2(Ω�Φ)

]
·
[
ln

(
B

β ‖F‖
)]−1

+ C

(
B

β

)α

‖F‖2−α . (11.25)
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Here the constant C = C1 (L, M, Φ, P ) depends on the operator L, the constant M in (6.31),
the domain Φ and the surface P. The constant β depends on the same parameters as ones
listed for C, as well as on the number α.

Hence, if, in particular, it is known a priori that the function g(x) has a finite support
with g(x) = 0 for x ∈ Ω�Φ, then the term ‖g‖2

L2(Ω�Φ) = 0 in (11.25).
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