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[i]    We  show  that  ocean  temperature  profiles  can  be 
accurately recovered using only acoustic methods 
employed at the sea surface. Using a towed air gun array 
and a hydrophone streamer, thermohaline boundaries are 
ensonified at a suite of frequencies and angles, yielding 
travel time trajectories and reflectivities. These data are 
inverted via full waveform inversion to estimate sound 
speed and, subsequently, a temperature profile. The high 
lateral data density of the seismic technique offers the 
potential of acoustically derived temperature profiles to be 
used to constrain models of ocean mixing and internal 
waves. Results on realistic synthetic data show that sound 
speed can be recovered with arbitrary accuracy when using 
broadband data, with known source function and recording 
geometry. Application to field seismic data (corroborated by 
expendable bathythermograph) shows that even with a 
seismic acquisition system not specifically calibrated for 
seismic oceanography, temperature contrasts within the 
ocean can be recovered to within one degree Celsius. 
Citation: Wood. W. T., W. S. Holbrook. M. K. Sen, and P. L. 
Stoffa (2008). Full wavefonn inversion of reflection seismic data 
for ocean temperature profiles, Geophys. Res. Lett., 35, L04608, 
doi: 10.1029/2007GL032359. 

1.    Background and Motivation 

[2] Marine reflection seismology has recently been 
shown capable of producing detailed images of oceanic 
thermohaline finestructure at lateral resolution of ~10 m 
[Holbrook et al, 2003]. Images of finestructure have been 
produced in numerous ocean settings, including fronts 
[Holbrook et al., 2003; Noguchi et al, 2006; Tsuji et al, 
2005; White et al, 2006], Meddies [Klaeschen et al, 2006; 
Pinheiro et al., 2006], intrathermocline lenses [Bullock, 
2006], warm-core rings [Seymour et al, 2006], water-mass 
boundaries [Huthnance et al., 2006; Nandi et al., 2004], and 
thermohaline staircases [Nandi et al, 2006]. While the 
images alone have intrinsic interest, a key topic of current 
research in "seismic oceanography" is the extraction from 
seismic data of quantitative information on physical ocean- 
ographic processes and properties, such as internal-wave 
spectra [Holbrook and Fer, 2005; Krahmann et al, 2006] 
and temperature contrasts [Paramo and Holbrook, 2005]. In 
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this paper we explore the possibility of inverting seismic 
reflection data for temperature-depth profiles in the ocean, 
using one-dimensional (ID) full-waveform inversion, dem- 
onstrated on seismic data co-located with XBT profiles in 
the Norwegian Sea. 

[3] Seismic oceanography data are especially well suited 
to one-dimensional waveform inversion approaches, be- 
cause thermohaline boundaries in the ocean are very nearly 
flat and horizontal, lateral variations in sound speed are 
small, no converted shear waves are present, and intcrbed 
multiples are negligible due to the small reflection coef- 
ficients (~0.001). Through full waveform inversion [e.g., 
Singh et al., 1993; Wood et al, 1994; Korenaga et al, 
1997], every reflection within the water column is mod- 
eled simultaneously, resulting in a 1-D profile of sound 
speed, which can then be readily converted to temperature 
via an equation of state [e.g., Chen and Millero, 1977], 
Although the inversion algorithm is capable of distin- 
guishing independently varying density and sound speed, 
density contrasts are typically much smaller than sound 
speed contrasts in the ocean and contribute little to the 
reflectance in the Norwegian Sea data set used here 
[Paramo and Holbrook, 2005], so we assume for this 
study that all reflectivity in the water column is associ- 
ated with sound speed contrasts. 

2.    Inversion Method 

[4] The groundwork for the class of problems and sol- 
utions used here has been discussed extensively by Menke 
[1989] and Tarantola [1987], and the application to reflec- 
tion seismic data is based on the work of McAulay [1985, 
1986], Dietrich and Kormendi [1990], Amundsen and Ursin 
[1991], and Wood et al. [1994]. We define the general 
forward problem as 

d = g(m) +v ID 

where m is a vector of nmod model parameters (in this case 
sound speeds), g is a non-linear operator, in this case 
containing information on acoustic wave propagation and 
the experimental configuration, v is a vector of additive 
noise, and d is a vector of ndal data (in this case waveform 
amplitudes) that would be observed if the water column 
sound speed was perfectly described by m, if g was a 
perfect theoretical relation, and if v was identically zero. 
(Vectors and vector functions of vectors are cast in lower 
case bold type while matrices are cast in uppercase bold 
type). The inverse problem can then be defined as 

m = y(d - v) (2) 
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where v can be absorbed into the data vector, and y is a 
generalized inverse, the structure of which is the subject of 
much discussion in the literature, (e.g., monographs by 
Tarantola [1987] and Menke [1989]). For linear problems 
and wisely chosen objective functions a single evaluation of 
the slope and curvature of the objective function at any 
point can be used to generate the best possible estimate of 
the location of the objective function minimum and optimal 
model. If the problem is almost linear, then an evaluation of 
the slope and curvature result in an improved, but not 
optimal model estimate, and may have to be re-evaluated, 
making the solution iterative, but still linearizable (as is the 
case for sound speed in this study). We use the least squares 
objective function, S, defined in vector notation as; 

with 

and 

2S[Ad'CZ)
l Ad + Am'C,,,1 Am], 

Ad = [d^-dota] = [g(m)n-d„, 

Am (3) 

where CD and Cm are prior data and model covariance 
matrices respectively, and m() and mn are model vectors 
containing the a priori and n'h trial model parameters, 
respectively, (superscript t denotes transpose). The vector 
dobs contains the observed data, and dsyn contains the 
synthetic data generated from the nlh model iteration by 
the operator g. The vector dsyn can also be expressed as the 
vector function, g(mn). The objective function consists of 
both a model and data error, and it is the combination of 
these errors that is to be minimized. Even if the data are 
matched exactly the objective function may be quite large if 
the corresponding model is far from the prior model. Errors 
in the theory of the forward modeling g(mn) take the same 
form as, and are absorbed into, the data covariances in CD. 
For this study these modeling errors occur when the ocean 
structure is not 1 -D (dipping or discontinuous layers), not 
isotropic (wave speeds are directionally dependent), or 
inelastic (wave amplitudes are attenuated as a function of 
time). 

[5] For this study we chose the least squares error 
solution defined above with Newton's method of minimi- 
zation. The convergence for linear problems is quick, the 
mathematical foundation for the solution is well known 
[Tarantola, 1987; Menke, 1989], and a quantitative estimate 
of the variance (uncertainty) in the solution can be easily 
obtained from the curvature of the error surface at the point 
of minimum error. 

[6] The iterative form of Newton's method can be written 
in multi-dimensional form [Tarantola, 1987] as 

m„+i - m„ - [<^S/19m-,],;1[r;S/am]„ (41 

where d denotes the partial derivative, and S is the value of 
the objective function. Here both the slope and curvature of 
the model space at the nth iteration are used to find the next, 
or n + 1 th model estimate. 

[7]   Taking the derivative of S to find the local multidi- 
mensional slope yields 

[aS/dm]„=G!,C0lAd + Cm'Am (5) 

where the matrix Gn (sensitivity or Frechet derivative 
matrix) contains the sensitivity of each data parameter to 
each model parameter 

G{ = [dd'/dr^l (6) 

[8]  Taking the second derivative to find the local multi- 
dimensional curvature yields; 

[(fS/(?ni2]„==Gl,C/)
lG,,+C„; (7) 

where the neglected term is small when the forward 
problem is nearly linear. 

[9]   Combining equations (4), (5), and (7) gives the 
expression used in this study, 

m„+1 =m„ + [G:CplG„+Cj]-'[G^CD
lAd + Cm

,Amj,   (8) 

where Gn is re-computed at each iteration, and each of the 
other components on the right hand side is known at the 
start of the inversion. The nmod x nmod matrix, [G[, Co' G„ + 
Cm'], referred to as the Hessian, is solved via singular value 
decomposition (SVD) [e.g., Menke, 1989]. 

3.    Application to Synthetic Seismic Data 

[10] To apply equation (8) to seismic reflection data, we 
parameterize the problem such that the model is a series of 
sound speeds corresponding to layers in the water column 
whose time thicknesses are held constant at the seismic data 
sample increment of 0.004 seconds. This ensures that any 
layer that can affect the seismic data can be completely 
modeled, i.e. any synthetic seismogram can be reproduced 
exactly. We parameterize the data as frequency domain, 
plane-wave seismograms as obtained by a Fourier-Hankcl 
transform of a common midpoint (CMP) gather. This allows 
for use of the very efficient reflectivity method [Kennett and 
Kerry, 1979] as the forward operator g(m) in equation (1). 
Our use of the reflectivity method also requires knowledge 
of the source function (wavelet), whose shape (phase) was 
determined by iteratively modeling frequency component 
phases to minimize the total energy of a series of field data 
traces [Wood, 1999]. 

[11] The degree to which each of the data and model 
misfits are minimized is controlled by the a priori cova- 
riances in Cm and Co- For the trials presented in this study 
both Cm and CQ are assumed to be purely diagonal 
matrices, with each diagonal a constant value. The data 
and model covariances, which correspond to the squared 
uncertainties, were chosen as 0.01 and 300 respectively. 
Note that these parameters can also be regarded as regular- 
ization parameters that introduce stability in the inversion. 
The chosen values result in the data misfit being much more 
heavily weighted than the model misfit, appropriate in this 
case where we are much less certain about the a priori 
model than about the observed data. 
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[12] To test the sensitivity of the inversion we generate a 
synthetic seismogram based on the same Norwegian Sea 
seismic data and coincident XBT (expendable bathyther- 
mograph) profiles presented by Paramo and Holbrook 
[2005], displayed here in the intercept time-slowness 
(Tau-p) domain, rather than the frequency-slowness (w-p) 
domain for ease of interpretation (Figure lb). The temper- 
atures from the XBT were converted to sound speed 
assuming a constant salinity of 32 PSU, and using these 
sound speeds were converted to time and re-sampled at 4 
millisecond intervals (Figure la). Errors in overall salinity 
manifest only at the lowest frequencies (less than 1 Hz), and 
because an a priori starting model supplies this frequency 
band, the sensitivity of the inversion to overall salinity is 
small. The XBT and the wavelet estimated from the data 
were used to generate the synthetic seismogram shown in 
Figure lb. 

[13] Two inversion results of ideal synthetic data are 
presented in Figures la-lc, using starting models (red 
curves) that are 0.0 and 5.0 Hz low pass (cosine tapered 
from 0 to 5 Hz) versions of the true model, and both 
performed over the entire 0-125 Hz frequency band of the 
seismic data. When using the 5 Hz starting model, the 
algorithm converged to the true model (black curve, 
Figure la), matching the data to within one part in a 
thousand, leaving only a low amplitude, low frequency 
residual (Figure lc). Using the 0 Hz, constant sound speed 
of 1499 m/s as the starting model, the algorithm accurately 
recovered the higher frequency portions of the model, but 
recovery of the lower frequency components is incomplete 
below the strongest reflection event at about 0.6 seconds 
(Figure la). The degradation is due mainly to the lack of 
strong reflections in this portion of the data set, whose 
trajectories drive the recovery of the low frequency model 
components, hence the low frequency residual in Figure lc. 
The higher frequency components of the profile (detail) 
actually enable the recovery of the lower frequency com- 
ponents (background) through the generation of reflection 
events. 

[14] For the "noiseless" synthetic examples in Figures 
la-lc, the accuracy of the inversion is limited only in that 
the ratio of the smallest to the largest eigenvalue in the 
Hessian matrix must be larger than the machine precision. 
This places the effective noise floor at the level of machine 
precision, i.e. 10 s, for all synthetic trials in this study, 
allowing exceptionally low amplitude frequency compo- 
nents to contribute to recovering the thermal profile. Re- 
cently reported techniques may eliminate the need to 
compute the matrix inverse, allowing even greater accuracy 
[Sen and Roy, 2003; Roy et al, 2005]. 

[15] The successful recovery of the correct temperature- 
depth profile by the seismic waveform inversion is not 
merely confirmation that the inversion technique and algo- 
rithm work, but rather a demonstration that, for seismic data 
with typical frequency range of 10-125 Hz, realistic fines- 
tructure can be fully resolved to the extent that certain 
practical conditions, which we discuss next, are met. 

4.    Application to Field Data 

[16] We next apply the inversion to field data coincident 
with an XBT so the inversion technique can be indepen- 

dently corroborated. The data were originally sampled at 
0.002 milliseconds, however, most of the source band was 
below 125 Hz, so we low pass filtered and re-sampled the 
data to 0.004 milliseconds. This reduces the number of 
model parameters, nmm), by a factor of two, greatly facili- 
tating the SVD of the Hessian matrix. 

[17] Application of the inversion to field data also requires 
transforming the data into the plane wave (a>p) domain [e.g.. 
Brysk and McCowan, 1986a, 1986b] and using tapering to 
minimize the transform artifacts. The inversion is performed 
over the slowness range p = 0-0.6 s/km, or approximately 
0-64 degrees incidence angle. The small group size in the 
array affects the directivity only slightly (1.5% at 90 Hz and 
65 degrees incident angle) so we assume it is negligible. 

[is] Both the absolute value, and the angle dependence of 
the reflection coefficient are required for the inversion. To 
convert seismic signals to reflection coefficients we com- 
pare the water bottom primary and first sea surface multiple 
[Warner, 1990] resulting in a scale factor of 5.0 x 104 +/- 
2.0 x 104. The large uncertainty was due to significant 
interference between the multiple and primary reflections 
from subsurface stratigraphy. The data scaling error mani- 
fests primarily as a constant multiplicative factor to the 
entire a posteriori model, but because the lowest frequen- 
cies in the a posteriori model rely almost completely on the 
lowest frequencies in the a priori model, the inversion at 
these frequencies is mostly insensitive to scaling error. 
Within the data band, the scaling errors manifest as an error 
in the deviation from the smooth background, which can be 
incorporated into the model uncertainties associated with 
the smooth starting model. Although not done so here, the 
scale factor could potentially be included as a model 
parameter for which to invert. 

[19] The observed data in the plane wave domain are 
shown in Figure le, along with the best (smallest) residual 
from the inversion (Figure If), and the model responsible 
for the best residual (Figure Id). As in the synthetic data 
example, two inversion results are presented; corresponding 
to starting models that are low-pass filtered (cosine taper 
from 0-30 Hz) versions of the XBT profile. The zero Hz case 
is extreme and used here for illustrative purposes. In most 
cases, analyzing the trajectory of the sea bottom reflection 
can yield an average velocity profile in the 0-1.0 Hz range. 
The 30 Hz starting model supplies the components that are 
poorly constrained or missing in the data band (about 25- 
80 Hz) and the inversion supplies the rest, resulting in a 
low data residual (Figure 1 f). This result also provides a 
gross check on the inversion, confirming that the algorithm 
will converge on what we expect is the true model, (i.e. the 
XBT profile lies very near the position of the global 
minimum). 

[20] Even when a constant sound speed is used as the 
starting model, the lowest frequency components of the 
model are well recovered down to the major reflection at 
0.6 seconds. There are two exceptions: 1) the shallow 
portion corresponding to the warm surface waters where 
the corresponding data were muted due to interference with 
the direct wave, and 2) the event at about 0.75 s that results 
from a more gradual thermal transition than the event at 
0.6 s, placing it near the low end of the spectrum where 
recovery is weak. The inset in Figure le shows that the 
magnitude of the temperature step at 0.6 s is recovered 
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Water Column  syntnetic "Observed" data       1000 x Residual 
Slowness (s/km) Slowness (s/km) 

0.2 0.4 0.6 0.2 0.4 Model 0.0 

0        5       10 T(°C) 

Water Column     Observed Data (Tau-p) 
Model 

Slowness (s/km) 
0.0 0.2 0.4 0.6 

Residual 
Slowness (s/km) 

0.2 0.4 0.6 

Figure 1. The sound speed profile from (a) an XBT cast (true model, black curve) was used to generate (b) a synthetic 
data set, used as the observed data in a test of the inversion. The starting models (red curves) are 0 Hz and 5 Hz low pass 
filtered versions of the true model. The green curve is the inversion from the 0 Hz starting model, and the inversion result 
from the 5 Hz starting model (not shown) is effectively coincident with the true model, resulting in (c) a data residual 
(difference between observed and synthetic, magnified one thousand times) that is extremely small, (e) The field data were 
acquired coincidently with (d) the XBT (black curve), which can be used to independently corroborate the inversion result. 
The starting models (see Figure Id, red curves) are 0 Hz and 30 Hz low pass filtered versions of the XBT profile. The two 
inversion results are shown in green. When the low frequency portion of the model is supplied in the starting model, the 
inversion result matches the XBT and the (f) data residual is minimized. 
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20      40       60 
Frequency from 

Two-way Time (Hz) 

Figure 2. The discrepancy between the spectra of the XBT 
and inverted sound speed profile using the 0 Hz (black) and 
30 Hz (gray) starting model shows that either starting model 
will result in roughly equal recovery of frequencies above 
about 30-40 Hz. Supplying frequencies below 30 Hz in the 
sound speed model (gray) significantly reduces the 
discrepancy. 

accurately regardless of the starting model, but recovery of 
the absolute temperature requires accurate background (low 
frequency) components. Figure 2 shows more quantitatively 
how spectra of the inverted sound speed profiles differ from 
the spectrum of the XBT. For the profile recovered using the 
30 Hz starting model, the spectral difference (gray curve) is 
much smaller at the lower frequencies, because these 
frequencies have been supplied by the starting model. The 
discrepancy is much larger (black curve) for the profile 
recovered using the zero Hz starting model. Frequency 
components well within the data band (25-80 Hz) are 
recovered roughly equally well regardless of the starting 
model. 

[21] Based on the successful recovery of the low frequen- 
cy components above 0.6 seconds, and the results of the 
trials on synthetic data, we would expect that had the 
seafloor reflection been included in the inversion, the 
seismic data alone would have had the low frequency 
components necessary to recover the absolute temperature. 
These components would not need to have been contributed 
via the starting model. The seafloor reflection was not 
included in the inversion because the vast difference in 
amplitude (about 3 orders of magnitude) between seafloor 
and water column reflections caused significant artifacts in 
the frequency domain processes (filtering, plane-wave trans- 
form, and inversion) used here. 

[22] Unlike the synthetic data example, there are small 
discrepancies between the best-recovered model and the 
"true" XBT profile. The XBT may not be located at exactly 
the same position as the CMP. Also, the CMP is composed 
of several subsequent source firings, acquired up to several 
minutes and tens of meters apart, over which some averag- 
ing is inevitable. Further, each source fire may be different 
due to irregularities in firing time, air pressure, sea state, or 
other mechanical phenomena. The irregularities are usually 

negligible, but may, along with any artifacts of the finite 
integral transform, manifest either as errors in the wavelet, 
which can result in unwanted deviations in the final model, 
or as artifacts in the data that cannot be modeled but may 
draw the algorithm away from its desired course of conver- 
gence. Acquisition irregularities or source wavelet errors arc 
the most likely cause of the approximately 10 Hz undu- 
lations in the recovered profiles in Figure Id, and could 
likely be significantly mitigated in an experiment designed 
specifically for seismic oceanography. 

5.    Conclusions 

[23] We have demonstrated that full waveform inversion 
can recover ocean temperature profiles from surface towed 
seismic measurements alone. Inversions of synthetic seis- 
mic data show the technique can resolve oceanic finestruc- 
ture at the 5 m vertical scale with arbitrary accuracy. In a 
test on field data, the accuracy of the recovered profile 
depends on how well the frequency bands of the seismic 
data and starting model cover the band of the desired 
profile, and on the presence of reflections throughout the 
profile to provide the low frequency components of the 
profile. The latter requirement can be relaxed if sufficient 
XBT data are present regionally to provide background 
temperature-depth profiles for starting models. The recovery 
of sharp thermal changes is generally more accurate than the 
recovery of the absolute temperature. With customary 
seismic equipment and recording techniques, we have 
estimated the magnitude of a temperature contrast to within 
approximately 20%, or 0.5 degrees C of its value as 
measured directly with an XBT. This accuracy could be 
improved significantly with more accurate measurements of 
the source wavelet, and broader band data. Our results 
suggest that augmenting sparse direct temperature measure- 
ments (e.g., XBTs) with inversions of seismic data, may 
result in an effective means of achieving high lateral and 
vertical resolution thermal cross-sections over extensive 
regions of the ocean. 

[24] Acknowledgments. The authors thank the reviewers for their 
helpful comments. This work was funded by NSF-OCE 0452744 and NSF- 
OCE 0648620. 
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