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This work extended the basic process development started in the master's thesis of Bryan 
Cord [1], and applied it to nanofabrication by metal-trilayer evaporation and liftoff. It 
included fabrication of Josephson-junction structures, and development of novel methods 
for metal liftoff at the sub-10-nm length scale. The ultranarrow features developed in this 
project also has direct relevance to the nanofabrication of nanowire phase-slip qubits, 
which are would provide an interesting alternative approach to superconducting 
qubits [2]. 

 

Suspended shadow-mask evaporation is a widely-used process for fabricating Al/AlOx/Al 
Josephson junctions.  Its minimal processing overhead and compatibility with high-
resolution scanning electron-beam lithography (SEBL) make it ideal for rapidly 
generating simple superconducting circuits for quantum computing applications.  The 
primary challenge in designing a shadow-mask evaporation process is the patterning of a 
suspended membrane, or shadow mask, in a two-layer photoresist structure.  A junction is 
then created under the shadow mask via two aluminum angle-evaporation steps, with a 
brief oxidation to produce the tunnel barrier in between.   

 

The resist bilayer in a shadow-mask process is typically composed of a thick support 
layer underlying a thin, high-resolution imaging layer.  Previous shadow-mask processes 
have generally used poly(methyl)methacrylate (PMMA) as the imaging resist and 
PMMA/PMAA copolymer or low-molecular-weight PMMA as the support layer.  The 
difference in the sensitivities of the support and imaging layers was usually enough to 
produce sufficient undercut for a clean evaporation and liftoff after a single exposure 
step.  However, the fact that the imaging and support layers were developed 
simultaneously led to a degradation in resolution, as the additional development time 
required to create a sufficient undercut in the support layer caused an unwanted increase 
in linewidths in the imaging layer.  In addition, the reliance on development to produce 
the necessary undercut made the process very sensitive to poorly-controlled factors in the 
development process; implementing this type of process in our lab showed very 
inconsistent results and spotty device yields.  
 
By using poly(dimethylglutarimide) (PMGI) as the support layer and extensively 
characterizing its unique properties, many of these problems have been eliminated [2].  
As the support layer in a suspended shadow-mask process, Poly(dimethylglutarimide) 
(PMGI) has several desirable properties.  It is not affected by the organic solvents used to 
develop PMMA, while the bases that develop PMGI do not affect PMMA.  As a result, 



the two layers in a PMMA/PMGI bilayer can be developed independently; the resolution 
of the PMMA layer will not be affected by the development of the undercut layer.  The 
decoupling of the two development processes means that the resolution of the process is 
limited only by the resolution of the imaging layer. 
 
Since the primary factor limiting process resolution is now the PMMA imaging layer, 
considerable work has been done to push the resolution of PMMA past previously-
established limits.  Recently, developing PMMA below room temperature has been 
shown to increase the contrast of the resist, which in turn increases its final 
resolution[3][4][5].  The benefits of this effect appeared to increase as the development 
temperature was reduced, but no temperatures lower than -17˚C had been investigated in 
published work, leading us to hypothesize that it may be possible to reach even higher 
resolutions by further reducing the temperature, possibly close to the freezing point of the 
developer at approximately -80˚C[6].  Our experiments showed that this was not the case, 
however; below a certain temperature, the exposure process causes significant 
crosslinking of the exposed PMMA molecules, altering their dissolution behavior and 
degrading the contrast significantly (figure 1).  Fortunately, we were able to identify an 
optimum development temperature; when PMMA is developed at this temperature, 
feature sizes of 10 nm and below are readily achievable even on a relatively low-cost 30 
KeV electron-beam lithography tool (figure 2).   
 

 
Figure 1: Resist contrast function γ as a function of temperature; to the first order, a 
higher γ value corresponds to higher lithographic resolution. Three temperature 
regimes are visible in the plot; in region I, contrast is degraded by development of 
partially-exposed resist at the edges of the exposure area.  In region II these 
partially-exposed polymer chains are frozen in place, enhancing contrast, and in 
region III the presence of increasing amounts of crosslinked PMMA hinders the 



development process of highly-dosed resist and sharply degrades the contrast.  
From this chart, the optimal range of development temperatures appears to fall 
between 0˚C and -15˚C, with optimum contrast occurring at -15˚C. 

 

 
Figure 2: SEM images of 60-nm-pitch gratings developed at 15˚C, 0˚C, -15˚C, and 
-30˚C and etched into a Si substrate, showing the minimum achievable linewidth at 
each development temperature.  As the contrast data in figure 2 predicts, the 
resolution improves as the temperature is reduced, peaks at -15˚C, then drops 
sharply at -30˚C.  The poor line-edge definition and bridging in the -30˚C 
micrograph are characteristic of sloped resist sidewalls, a symptom of poor resist 
contrast. 
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