

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2009 2. REPORT TYPE

3. DATES COVERED
 00-05-2009 to 00-06-2009

4. TITLE AND SUBTITLE
Crosstalk, The Journal of Defense Software Engineering. Volume 22,
Number 4, May/June 2009

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS/MXDEA,6022 Fir Avenue,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

36

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CROSSTALK The Journal of Defense Software Engineering May/June 2009

4

9

15

20

25

29

3
18
19
28
32
33

34
35

DeparDepar tmentstments

From the Publisher

In the Next Issue

SMXG Ad

Web Sites

Coming Events

Letter to Editor
Call For Articles

CrossTalk Backers Ad

BackTalk

Using WYSIWYG GUI Tools With UML
See how merging Unified Modeling Language with “what you see is what
you get” graphical user interface tools increases productivity and provides
an improved rapid prototyping platform.
by Ilya Lipkin and Martin Guldahl

Software Safety for Model-Driven Development
The authors examine a software safety process that has now been adapted
to a model-driven, spiral software development effort.
by Timothy J. Trapp, Donald S. Hanline II, Howard D. Kuettner, Jr., and
William A. Christian

Evolutionary Capabilities Developed and Fielded in Nine
Months
This article demonstrates how DRRS-A capabilities were successfully
and rapidly developed, taught to users, fielded, and supported by using
incremental and Agile methodologies.
by Portia Crowe and Dr. Robert Cloutier

A Distributed Multi-Company Software Project
See how two competing companies in different locations successfully used
the Team Software Process to collaborate and produce quality results on a
DoD project.
by Dr. William R. Nichols, Anita D. Carleton, Watts S. Humphrey, and
James W. Over

Measuring Maintenance Activities Within Development
Projects
The authors discuss impact points, a measurement that accounts for
functions that are impacted by a project, but are not changed by it.
by Lori Holmes and Roger Heller

From Substandard to Successful Software
The author examines the problems of substandard software and,
through his seven rules, provides a framework for successful software
projects.
by Martin Allen

RaRapid pid andand ReliabReliablele DeDevvelopmentelopment

SoftwarSoftwaree EngineeringEngineering TTechnoloechnologgyy

OpenOpen FForumorum

Cover Design by
Kent Bingham

ON THE COVER

CrossTalk
OSD (AT&L)

NAVAIR

309 SMXG

DHS

MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

PUBLISHING COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kristin Baldwin

Joan Johnson

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Drew Brown

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
stsc.customerservice@
hill.af.mil
www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Office of the
Secretary of Defense (OSD) Acquisition, Technology
and Logistics (AT&L); U.S. Navy (USN); U.S.Air Force
(USAF); and the U.S. Department of Homeland
Security (DHS). OSD (AT&L) co-sponsor: Software
Engineering and System Assurance. USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cyber Security Division in the National Protection
and Programs Directorate.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 18.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community. Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Published
articles remain the property of the authors and may be
submitted to other publications. Security agency releas-
es, clearances, and public affairs office approvals are the
sole responsibility of the author and their organizations.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.
af.mil/crosstalk>, call (801) 777-0857 or e-mail
<stsc.web master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

May/June 2009 www.stsc.hill.af.mil 3

From the Publisher

When asking a customer when they need something done, you’ve
most likely heard the reply, “Yesterday!” Why is this answer so

common? Possibly it’s because customers typically do not request prod-
ucts until they are needed. I liken this phenomenon to my lunchtime
habits. I don’t go looking for food until I’m saying out loud, “I’m starv-
ing!” Both are an exaggeration, but both cause the consumer to seek out
those who can deliver products in a rapid and reliable fashion. I know

this firsthand through both demanding software customers—and my own com-
plaints during two-minute waits at the drive-thru window. Sometimes we just can-
not get things fast enough.

I Googled the combination of the words “rapid” and “reliable” from this
issue’s theme to further research this need for fast-paced delivery. In less than a
second, my search produced more than 45 million results ranging from patient
care recovery to back-up recovery software and from cellular service to cellular
genotyping. To compare, searching the words “food, air, water, shelter” took twice as long to
produce only a half-million results. What can we deduce from this Internet exercise? Possibly
nothing, but at least anecdotally (or maybe facetiously), we can presume that consumers crave
fast and dependable products even more than the four basic necessities of life.

The fact that many of our customers reside in a theater of war only heightens the stakes and
drives delivery times to shorter and shorter periods. The shorter delivery time compels the soft-
ware community to find better methods and tools for increasing the rate of development while
maintaining, if not increasing, the dependability of our wares. Just in time, this issue of
CrossTalk provides an in-depth examination of such methods.

Ilya Lipkin and Martin Guldahl’s article, Using WYSIWYG GUI Tools With UML reveals the
benefits and hazards of combining these tools to increase productivity and improve rapid pro-
totyping. Timothy J. Trapp, Donald S. Hanline II, Howard D. Kuettner, Jr., and William A.
Christian examine software safety concerns when utilizing automated tools for rapid deploy-
ment efforts in Software Safety for Model-Driven Development. Portia Crowe and Dr. Robert
Cloutier—in Evolutionary Capabilities Developed and Fielded in Nine Months—show how to quickly
and economically use an Agile approach in every phase of a rapid development program.

Also in this issue is A Distributed Multi-Company Software Project, where Dr. William R. Nichols,
Anita D. Carleton, Watts S. Humphrey, and James W. Over describe how two software develop-
ment companies were able to jointly develop a large system without reducing quality. Lori
Holmes and Roger Heller introduce us to a measurement of previously unaccounted for devel-
opment project maintenance activities—termed as “impact points,” a compliment to tradition-
al function point measures—in Measuring Maintenance Activities Within Development Projects.

This issue concludes with Martin Allen’s Open Forum article, From Substandard to Successful
Software. Allen discusses the potential hazards of inferior software products and methods to
enhance the probability of creating great ones.

I encourage you to take a break from your hurried environment and enjoy this issue of
CrossTalk. Just don’t break too long because somewhere today a customer is noticing a soft-
ware need that you can supply—and they probably needed it yesterday.

Kasey Thompson
Publisher

Needing It “Yesterday”

CrossTalk
would like to thank
the 309th Software

Engineering
Maintenance
Group for
sponsoring
this issue.

4 CROSSTALK The Journal of Defense Software Engineering May/June 2009

This article is based on the current
work done on a project at Hill Air

Force Base, which is based on the Team
Software ProcessSM (TSPSM) practices in
the CMMI® Level 5 organization. One of
the requirements of our customer is that
the project should use a model-driven
design UML toolset, namely Rational
Rose RealTime. This project is tasked with
the design and development of a real-time
control system based on C++ auto-gener-
ated code. In addition, the project selected
to use the Tilcon Interface Development
Suite (IDS) in order to rapidly and effi-
ciently create graphical interfaces for the
real-time control system that generates
stunning displays to the operators of the
system at a fraction of the time or exper-
tise otherwise needed.

Overview of UML
The focus of UML is to model systems
using object-oriented concepts and
methodology. UML consists of a set of
model elements that standardize the
design description. These elements
include a number of fundamental basic
model elements and modeling concepts, in
addition to views that allow designers to
examine a design from different perspec-
tives and diagrams to illustrate the rela-
tionships among model elements.

Several views—such as Use Case View,
Logical View, Component View, Concur-
rency View, and Deployment View—cre-
ate a complete description of the system
design. Within each view, an organized set
of diagrams and other model elements are
visible. Diagrams include use case dia-
grams, class diagrams, object diagrams,
sequence diagrams, collaboration dia-
grams, state-chart diagrams, activity dia-
grams, component diagrams, and deploy-
ment diagrams. Some key primitive model
elements are states, transitions, signals,
classes, class roles, attributes, and opera-
tions [1].

The object-oriented principles (OOP)
used for the UML design and develop-
ment are based on the idea of creating
self-contained modules that describe
desired functionality and interact with oth-
ers through interfaces in order to create a
complete system. To achieve this goal,
some of the techniques available with
OOP include encapsulation and abstrac-
tion [2, 3].

Encapsulation describes the grouping
of related functionality, which separates
implementation from interface. The
implementation details are hidden from
outside users, who can only interact with
objects of the class through the interface.
In this way, the implementation can be
more easily changed.

Abstraction provides characteristics of
the object or a class that are unique and
creates specific defined boundaries with
respect to the currently desired solution.
Abstraction allows a way of managing sys-
tem complexity by hiding irrelevant
details. For example, it allows for develop-
ment to continue if a class is just a place-
holder for future implementation.

UML Elements for Real-Time
Systems Design
Designing real-time systems is a challenge.
To address this challenge, an active class
model element was introduced in UML.
The purpose of this element was to help
simplify both the design and the imple-
mentation.

The active class model element con-
sists of a communication structure
description and a behavioral description.
The communication structure is described
using a collaboration diagram that shows
the ports through which it sends and
receives messages to and from other active
classes. The behavior is described using a
state transition diagram that shows how
the active class acts and reacts to its envi-
ronment1. In other words, the active class
is a stand-alone capsule of software that
talks to its environment through ports
(specified in the structure diagram), and
performs actions as it transitions through a
sequence of states (specified by the state
diagram).

The characteristics of a run-time sys-
tem (RTS) object and the UML active
class were determined to simplify the
process of real-time software design and
implementation. In addition, by encapsu-
lating calls to the operating system of the
target platform within the RTS, the auto-
generated implementation of the UML
design can be made largely platform-inde-
pendent.

The UML language is complete
enough to allow the creation of auto-
generated code that implements the
design. The code can be generated from
the system description of the model
through the use of diagrams and other
model elements [4].

Overview of WYSIWYG
GUI Tools
The WYSIWYG concept is a well-known
technique that states that the end-product
will look, act, and behave the same way as
it does being designed on-screen from the
developer to the end-customer look and

Using WYSIWYG GUI Tools With UML

This article will discuss the merging of Unified Modeling Language (UML) with “what you see is what you get” (WYSIWYG)
graphical user interface (GUI) tools. The topics presented—and discussion of an example with benefits and hazards—will
show that the merged solution can increase productivity and provide an improved rapid prototyping platform.

Martin Guldahl
309th Software Maintenance Group

“The UML language is
complete enough to
allow the creation of

auto-generated code that
implements the design.

The code can be
generated from the

system description of the
model through the use of

diagrams and other
model elements.”

SM Team Software Process and TSP are service marks of
Carnegie Mellon University.

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

Rapid and Reliable Development

Ilya Lipkin
677th Aeronautical Systems Group

Using WYSIWYG GUI Tools With UML

May/June 2009 www.stsc.hill.af.mil 5

feel. Currently, there are many tools and
products on the market that make the
development of the GUIs easier for
embedded applications.

One of these tools is the Tilcon IDS.
Although there are other tools—such as
Altia Design and the Virtual Avionics
Prototyping System, which are in many
ways similar to Tilcon—the choice over
other similar tools was determined using a
CMMI Decision Analysis and Resolution
(DAR) matrix [5].

The DAR was based on criteria such as
customer service and technical support by
the vendor, operating system neutrality,
cost per use, development seat licenses,
performance of the solution, ease of
development, and training costs. Each was
assigned a weight factor with respect to
the importance for the project. In addi-
tion, a small prototype was implemented
with some of these tools to serve as an
input for the DAR. The winning solution
was selected from the highest cumulative
score.

The UML solution was designed with
the idea of neutrality to the GUI develop-
ment tool. Therefore, if the choice of
Tilcon no longer becomes a best-fit selec-
tion, the impact to the UML back-end
solution will be minimal when going with
an alternative GUI.

The Tilcon IDS (see Figure 1) consists
of three main components:
1. The Tilcon Interface Builder. The

Tilcon Interface Builder is a WYSI-
WYG GUI design tool2. An interface
is created by drag-and-drop of high-level
GUI objects like menus, buttons, text
boxes, labels, etc. Each of these
objects has properties associated with
it. These properties, such as color,
font, size, meter range, etc., can be tai-
lored to meet a given requirement. As
interface development is applied to
each object so the application pro-
gramming interface (API) can manipu-
late it, the resulting GUI design is
saved in a .twd file. The Interface
Builder does not require any program-
ming skills to construct a GUI. Non-
programmers such as graphic artists
can use the Interface Builder to con-
struct a GUI. It is highly recommend-
ed that a naming convention be fol-
lowed so that programmers using the
API can access the objects in a consis-
tent way.

2. The Tilcon Embedded Vector
Engine (EVE). The EVE is a plat-
form-specific engine that renders the
graphical interface. It reads the same
file as the Interface Builder and
ensures that the GUI is exactly the

same as seen in the Interface Builder.
The EVE runs as a separate process
from the application and manages all
user events (button presses, mouse
clicks, etc.) and handles the screen dis-
play. This engine is available for many
embedded operating systems, such as
VxWorks.

3. The Tilcon API. An API is provided
to connect the EVE to the application
(see Figure 1). The API starts and
stops the EVE, facilitates communica-

tion between the application and the
GUI objects, and allows objects to be
created, displayed, modified, or delet-
ed. No low-level, platform-specific
graphic calls are required; all of that
work is handled by Tilcon [6].

Merging of UML and a
WYSIWYG Interface
Now that the tools have been presented, it
is time to discuss the benefits and com-

State Description Attributes

Initial System not running Timer event set to 30 seconds

Green On timer time out event go to
(goYellow) Yellow

Timer event set to 45 seconds

Yellow On timer time out event go to
(goRed) Red

Timer event set to 10 seconds

Red On timer time out event go to
(goGreen) Green

Timer event set to 30 seconds

Table 1: State Specification Template for the Sequence of Event for the Traffic Light (SEI) [4]

Figure 1: Tilcon IDS

Initial

goRed

goYellow

Red

Yellow

Green

CurrentVehicleSpeed BarometerPressure

MonitorSpeed MonitorEnvironment

goGreen

Figure 2: Traffic Light Advanced Monitoring System States

Rapid and Reliable Development

6 CROSSTALK The Journal of Defense Software Engineering May/June 2009

mon pitfalls of the approach. To this end,
we will demonstrate a simple example
using a standard traffic light with some
basic gauges for the GUI presentation.

For example, consider Table 1 (on the
previous page), which is an SEI State
Specification Template [7]. The require-
ments for the traffic light state that in addi-
tion to correctly changing the lights from
green to yellow to red and back to green, it
will also monitor speed and pressure.

The UML solution shown in Figure 2
(on the previous page) is completely lan-
guage- and platform-neutral; because the
traffic light is drawn in UML, there is no
code associated with it (with the exception
of event descriptions). Therefore, it is left
for the auto-code generation engine to
translate UML to a destination language
or platform of choice; in this case, C++
[8]. As a result, the amount of source code
written is less than 20 lines of code for
both the functionality of the traffic light
and monitoring systems. The source code
written in C++ consists of timer com-
mands in the form “timer.informIn(sec-
onds)” and Tilcon API calls to the graph-
ical objects in the form of “TRT_Set

Value(objectID, value).” The Tilcon API
calls can be replaced one-to-one with
other GUI API calls such as from Altia’s
“AtSendEvent” if one chooses a different
front-end solution.

The structure diagram in Figure 3
represents system events that are used to
trigger actions on the state diagram. As a
result, the stimulus to these events is pro-
vided by the system itself in the case of
the timer port; as well, external entities
such as a radar detector or an environ-
mental sensor feed back data updates for
the other ports.

When merging WYSIWYG GUI
tools with UML on a complex develop-
ment project, it is of the utmost impor-
tance to exercise good OOP and spend
effort to simplify and abstract the WYSI-
WYG GUI as much as possible from the
rest of the UML solution. Abstraction
will allow for better unit testing as it is
possible to create wrappers that can sim-
ulate operator display and input.

The GUI in Figure 4 was quickly cre-
ated with the Tilcon Interface Builder.
This tool supports a drag-and-drop
development methodology to create an
interface, which consists of several
graphical objects listed in Figure 5. The
figure lists the object structure with the
type and identifier of each object. The
entire interface was created and tested
without any UML or programming effort
or an application back end.

In this example, the description of
the mechanics of the speed gauge, pres-
sure gauge, and traffic light animation
can be used to demonstrate the effective-

ness of this approach at the front end.
Therefore, it is of interest to discuss how
these objects were created in the Tilcon
editor.

Traffic Light
The image for the traffic light in Figure 4
(created in Adobe Photoshop) was
imported into the Tilcon Interface
Builder and placed into a state object.
One of many types available in the
Interface Builder, this object type can dis-
play a different image depending on its
state, which can be changed with mes-
sages sent to it through the API.

Using Adobe Photoshop with the
Tilcon Interface Builder allows for an
improved visual experience for the end
customer, as graphics generated are gen-
erally more visually appealing at a frac-
tion of the cost otherwise incurred if this
was done in any other way (e.g., using
C/C++).

In order to effectively identify the
object for the UML application back end,
the use of an API-unique ID such as
“StateTrafficLight” needs to be assigned
for the screen name. It is important to
note: As more complex GUIs with hun-
dreds of graphical objects are created in
the Tilcon editor, a strict adherence to a
naming convention will be required.

Speed Gauge
The speed gauge is a meter object that
was created directly in the Interface
Builder. This object is a standard devel-
opment component that requires a mini-
mum effort of customization. A meter
object has many attributes—the range,
alarm regions (green and red areas in the
scale), tick marks, fonts, and colors—that
were all entered in the Interface Builder.
For this example, the previously men-
tioned attributes were slightly adjusted
for the visual presentation.

Speed Gauge Needle
The needle for the speed gauge is a needle
object that was also created from the stan-
dard Interface Builder object type. The
needle selected is a predefined object type.
Several predefined styles are also available
or a custom style can be imported.

Pressure Gauge
Like the speed gauge, the pressure gauge
is a standard object available in the Tilcon
Interface Builder. It is an object of type
“FillMeter” that represents meter posi-
tion with a fill amount. The modifica-
tions for visual effects were primarily the
adjustment of the visual width, font
color, tick marks, and range.

Figure 4: Example GUI

+ / SpeedRadar
: speedingEvent

+ / Timer
: Timing

+ / WeatherSensor
: environmentalEvent

Figure 3: Traffic Light Input Structure

Using WYSIWYG GUI Tools With UML

May/June 2009 www.stsc.hill.af.mil 7

Speed and Pressure Label
The speed and pressure labels are stan-
dard label-type objects. The ID, text,
font, font size, and color are all attributes
that were entered into the Interface
Builder. The primary effort in the case of
the labels was to ensure their proper
alignment with their respective objects.

Once the graphical objects are
entered into the Interface Builder, the
GUI functionality can be verified with
the Interface Builder operation “Run
Test... .” This mode lets the GUI design-
er verify that the objects operate proper-
ly by animating their behavior without
the need for a back-end solution; in this
case, UML.

What Have We Gained?
The merged solution of a UML and
WYSIWYG GUI development tool
allows for several advanced flexibilities
for the software creation effort. Most of
those flexibilities are geared toward rapid
development and prototyping. The sepa-
ration between the front-end WYSIWYG
GUI and a back-end UML provides the
kind of platform development combina-
tion that can bring together technical and
non-technical development efforts seam-
lessly.

Non-Programmers Collaboration
Using a WYSIWYG GUI design tool, it is
possible to outsource the generation, pro-
totyping, and user interaction analysis
effort to usability experts, graphic artists,
and other non-programmers. They no
longer need to know anything about UML
or any programming language. As well, a
GUI object-naming convention should be
followed for the project. This will allow
programmers to access the objects in a
consistent way [9].

Quick Prototyping
With WYSIWYG GUI tools, it is possi-
ble to adjust the user interfaces in a mat-
ter of minutes—even in the field—rather
than hours or days with a comparable
native programming solution. It also pro-
vides a way to easily evaluate different
approaches that otherwise would have
taken too long to develop.

Platform Neutrality
The development effort for the GUI is
identical regardless of the deployment
platform. Whether the target platform is
Windows, Linux, VxWorks, or another
operating system, the same solution is
available and executes identically on the
operating systems previously mentioned.

Therefore, it is possible to deploy the
same solution to various other platforms.

Ease of Unit Testing
WYSIWYG GUI development tools
allow for automatic editor-based debug-
ging of the GUI designs such that the
prototype solution is debugged in terms
of visual actions and presentations to the
operator. This allows for software devel-
opers to concentrate more on the UML
part of the solution and spend more time
enhancing functionality and quality.

What Have We Risked?
As one might expect, there are always
drawbacks to any solution. Over the
course of the project, several pitfalls of
this merged tools approach have been
identified. Here are some of the key
issues:

Merging of Design Files
One of the features that has been sorely
missed was the ability to merge GUI
design files. Because the design resides in
a binary file format, the source control
tool could not merge them. Therefore,
when multiple developers work on the
GUI, developers have to be extra vigilant
when checking in files to avoid overwrit-
ing each other’s changes.

WYSIWYG GUI Editing vs.
UML Development
There is a fine line between what is con-
sidered GUI interface functionality and
the UML back-end functionality. There-
fore, it is the call of the system architect
to identify the separation criteria. When
developing in a WYSIWYG GUI tool, it
is easy to get carried away with point-
and-click, advance animation, and pre-
sentation development. While these are
great options for some projects, they
might not be for others. Some of the
functionality that belongs in the UML
part of the project should not be moved
over to the WYSIWYG GUI develop-
ment tool.

Let’s say someone needs to rapidly
change more than 100 objects or text ref-
erences at the same time on the screen.

One approach is to use the WYSIWYG
GUI development tool, which results in
100 point-and-click activities; another is
to implement the whole thing in the
UML back-end for a loop, which can per-
form the same task in three lines of code.
The risk of misplaced functionality can
easily wipe out the gains of the merged
solution.

Limited Development Language
Support
Most of the WYSIWYG GUI tools have a
predefined set of software languages that
they support. The selection of the WYSI-
WYG GUI front-end might force the
choice of a software language that is not
in the best interest of the project, or same
language translation must occur. For
example, if someone wants to use Visual
Basic .NET with a WYSIWYG GUI tool
(such as Tilcon or Altia), they will find that
it will not be supported and, therefore, be
forced to reconsider going with C/C++.
The implication of code generated from
UML is that it forces a restriction to what-
ever language the UML tool generates and
that this language must be compatible
with the API supported by the WYSI-
WYG tool.

Conclusion
The example presented in this article
shows that using UML for the back-end,
run-time engine development and a
WYSIWYG GUI builder tool for the
front-end graphics development can result
in overall gains in productivity and ease of
prototyping. The event-driven nature of
real-time UML facilitates straightforward
integration with an event-driven GUI; to
some extent, both solutions are platform-
neutral. The example demonstrates the
ease of these concepts and the integration
and simplification of the problem.

One of the key benefits of this
approach is that non-programmers can
utilize the WYSIWYG GUI design tool to
create the GUI. Requirements can be
expressed in UML, and these descriptions
can be used in the design and implemen-
tation of the system. As a result, the devel-
opment of a complex system is simplified,

Figure 5: Example Object Hierarchy

Rapid and Reliable Development

8 CROSSTALK The Journal of Defense Software Engineering May/June 2009

in turn minimizing risk, reducing develop-
ment costs, and shortening schedules.u

References
1. Sanderfer, Lynn. “How and Why to

Use the Unified Modeling Language.”
CrossTalk June 2005.

2. Bohn, Christopher A., and John
Reisner. “A Gentle Introduction to
Object-Oriented Software Principles.”
CrossTalk Oct. 2006.

3. Dennis, Alan, Barbara Haley Wixom,
and David Tegarden. Systems Analysis
and Design With UML Version 2.0:
An Object-Oriented Approach. 2nd
ed. New York: John Wiley & Sons,
Incorporated, 2004.

4. Lipkin, Ilya, and A. Kris Huber. “UML
Design and Auto-Generated Code:
Issues and Practical Solutions.”
CrossTalk Nov. 2005.

5. Chrissis, Mary Beth, Mike Konrad, and
Sandy Schrum. CMMI ® Guidelines for
Process Integration and Product
Improvement. 2nd ed. New York:
Addison-Wesley Professional, 2006.

6. Tilcon Software Limited. “Tilcon
Interface Development Suite White
Paper.” May 2008 <www.tilcon.com/
manual/Tilcon_WhitePaper.pdf>.

7. Humphrey, Watts S. A Discipline for
Software Engineering. New York:
Addison-Wesley Longman, Limited,
1995.

8. Webb, David R., Ilya Lipkin, and
Evgeniy Samurin-Shraer. “Designing
in UML With the Team Software
Process.” CrossTalk Mar. 2006.

9. Altia, Inc. “How Medtronic Used Altia
to Prototype and Deploy Custom User
Interfaces for Medical Devices.” 12
June 2008 <www.altia.com/down
loads/case_studies/Medtronic_Case_
Study.pdf>.

Notes
1. In the Rational Rose RealTime tool,

active classes are called capsules, and the
associated collaboration diagrams are
called structure diagrams.

2. The Tilcon Interface Builder (see
<www.tilcon.com/products/interface
-development-suite/tilcon-interface
-builder> to learn more) is not to be
confused with the Interface Builder
application for the Apple Mac OS X.

About the Authors

Ilya Lipkin is a project
engineer for the 677th
AESG/EN Global Hawk
Simulations at Wright
Patterson AFB. His cur-
rent research interests

include artificial intelligence, human
knowledge capture and analysis, neural
networks, fuzzy logic, user interface
design, software engineering, UML, sup-
ply chain control, and customer relations
management. Lipkin has a bachelor’s
degree in computer engineering, an MBA
in operations management, and a master’s
degree in computer engineering. He is
currently a doctoral student at the Uni-
versity of Toledo’s College of Business
Administration.

77th AES Wing
677th AES Group
2300 D ST, BLDG 32
Wright-Patterson AFB, OH
45433-7249
Phone: (419) 290-6017
E-mail: BookWormUT

@yahoo.com

Martin Guldahl is an
electrical engineer for the
Common Aircraft Porta-
ble Reprogramming Equip-
ment program, part of
the 520th Software

Maintenance Squadron, 309th Software
Maintenance Group at Hill Air Force
Base, Utah. He has more than 15 years
of experience in a variety of industry
and government positions. Guldahl has a
bachelor’s degree in electrical engineering
and has taken graduate level computer
science coursework from the University
of Utah. His areas of interest include
UML, C++, Verilog, and Perl.

520 SMXS/MXDED
7278 4th ST, BLDG 100
Hill AFB, UT 84056
Phone: (801) 775-4397
E-mail: martin.guldahl@hill.af.mil

May/June 2009 www.stsc.hill.af.mil 9

Software applications are being called
upon to perform ever-increasing, safe-

ty-critical activities. To that end, software
engineering is increasingly using automat-
ed tools and updated methods to sustain
and gain better intellectual manageability
over these solutions. The Missile Defense
Agency’s (MDA) Global Engagement
Manager (GEM) development is an exam-
ple of integrating these software method-
ology constraints. At the same time, soft-
ware safety assurance requirements
remain unchanged and mature software
safety processes exist. The strategy used
in the GEM software development
methodology was to leverage the pedigree
of existing software safety methods and
adapt them to model-driven software
development. The advancing software
development methodologies lend them-
selves to a rich, comprehensive approach
to safety analysis.

Software Applications Are
Becoming Increasingly Complex
The MDA has the mission to provide
mechanisms that protect the homeland,
deployed forces, friends, and allies from a
ballistic missile attack. To frame the prob-
lem, ballistic missile defense has a global
scale. Threats can originate from any
region and be directed at any destination.
Since the battlespace will most likely cross
multiple areas of responsibility, coordina-
tion among command echelons is critical
to prioritize the available radar and inter-
ceptor resources. To that end, the MDA’s
Command, Control, Battle Management,
and Communications (C2BMC) program
has been developing a series of products
to enable the DoD to integrate individual
sensor and weapon system elements into
their Ballistic Missile Defense System
(BMDS). One of the C2BMC’s products
is the GEM.

The GEM’s objective is to provide the
warfighter with execution-time decision
aids to enable them to think globally while

acting locally, thereby effectively using the
BMDS element resources for the globally
integrated active missile defense.
Generally speaking, the warfighter’s tasks
are to:
• Maintain a deep understanding of the

active defense design with its branches
and sequels.

• Monitor the ballistic missile battle-
space.

• Assess gaps from differences in the
anticipated and actual enemy courses
of action.

• When appropriate, manage by excep-
tion1.
Present warfighter doctrine involves

centralized planning while executing in a
decentralized fashion. Anticipating the use
of automated battle management capabil-
ities to support decisions, warfighters
must plan for retaining control over the
automation as weapon systems/sensors
join and leave the BMDS network. So, the
deployment planning process for the
BMDS will need to account for effectively
integrating technology, processes, and per-
sonnel. As the BMD operations are read-
ied for alert, the commander’s intent and
engagement priorities are configured in
the GEM. As suspect tracks are detected
and tracked, additional sensor resources
can be utilized to gather more information

on objects of interest. If tracks are
assessed to be a threat, a layered defense
based on priority will be calculated. Under
an operator’s control, weapon-system
tasking will be issued to BMDS weapon
systems. One can expect responses such
as will comply, cannot comply, etc. This can be
due to battlefield effects or conflicts
among missions within a multi-mission
platform. If an element is unable to sup-
port an engagement, the operators can
immediately assess and task other ele-
ments within the layered defense. Suspect
tracks will be prompted to the operators
for disposition. If they are promoted to
threat status, they will be prioritized and
assigned appropriate interceptors. This
workflow continues throughout battle.

In addition to being a decision aid, the
GEM has a second responsibility, a system
of systems (SoS) challenge. In looking at
SoS research, failures occur when one sys-
tem’s failure cascades across connected
systems or when properly working sys-
tems interact in unanticipated ways. The
present state of practice is to have a con-
troller manage emergent behavior. Even
though fire control remains with the
weapon systems engagement function, it
is envisioned that the GEM will be
assigned the SoS controller role for the
BMDS. To globally control effective, exe-
cution-speed coordination (in the face of
battlefield effects), unanticipated adver-
sary actions, and multiple command struc-
tures, the GEM is to be built to have a
level of predictability, dependability, and
correct behavior that the warfighter can
depend on during the fog of war.

Software Development
Increasingly Uses Automated
Tools and Updated Methods
To gain the warfighter’s trust in such a
mission-critical environment, the GEM
decision aid must have predictable behav-
iors across the broad environmental con-
ditions in which the product may find

Software Safety for Model-Driven Development

With software applications becoming increasingly complex and the demand for rapid deployment (including rapid prototyp-
ing) of software applications increasing, automated tools and updated methods for software development have become neces-
sary. It follows that these new software development processes require new approaches for software safety. One company’s
15-element Software Safety Process has now been adapted to a model-driven, spiral software development effort. This process
provides an open working relationship to incrementally identify the causes of hazards at different levels.

Howard D. Kuettner, Jr., and William A. Christian
APT Research, Inc.

Timothy J. Trapp
Raytheon

“The strategy ... was to
leverage the pedigree
of existing software
safety methods and

adapt them to
model-driven

software development.”

Donald S. Hanline II
U.S. Army AMCOM

Rapid and Reliable Development

10 CROSSTALK The Journal of Defense Software Engineering May/June 2009

itself operating. To achieve that end, the
Advanced Battle Management (ABM)
development process was crafted from
carefully selected modern software devel-
opment methodologies. The key princi-
ples came from model-driven develop-
ment, model-based acquisition, service
orientation, and Agile software develop-
ment methodologies (as shown in Tables
1 and 2). They were applied to the differ-
ent activities in the development life cycle
(i.e., specification, domain analysis,
design, implementation, and testing activ-
ities).

The goal is to develop and maintain a
common model of the product’s behavior
so that it optimizes errors and defect
exposure at the time they are introduced
in the software. A prime contributor to
errors and defects are language barriers in
systems. This approach strives to create a
common understanding across stakehold-
ers by mapping and relating perspectives
and points of view into a composite spec-
ification. It relates:
• Human-machine interface tasks.
• Functional threads of behavior.
• Use cases to capture desired behavior.
• Collaboration-like activity diagrams,

state charts, and algorithm definitions
to capture design.

• Code-generated executable models.
• Supporting software to create a

dynamic specification that can be
assessed.

• Verification cases for further analysis
and test.
A second key source of defects is

related to the misinterpretation of statical-
ly written requirements. This process cap-
tures the specification in a way that can be
exercised to see if the desired behavior
really does occur. This is called an exe-
cutable model. So, by analyzing this
model, one can both evaluate the proper
behavior and also reason about the pre-
dictable responses of the system when it is
faced with faults or conditions beyond its
operational bounds.

A complicating factor in software
development is identifying errors as they
are introduced during implementation. A
dominant Agile development methodolo-
gy tenet used in the ABM development
process is short iterations. The design,
implementation, and analysis is performed
on a small incremental portion of the
GEM’s required behavior. An iteration
consists of completed feature sets with
automated test suites. That is, iterations
deliver working code with working tests
every two weeks. In general, development

activities are broken into three major
release categories (shown in Figure 1):
1. Iterations: Two weeks of develop-

ment (approximately five iterations per
cycle).

2. Cycles: Approximately two months of
development (approximately six cycles
per increment).

3. Increments: Approximately one year
of development.

Example of Integrating
These Software
Methodology Constraints
To initially determine and capture the cor-
rect dominant behavior, use cases are used
as the documentation tool capturing func-
tional behavior from warfighters, analysts,
and subject matter experts. Use case
extensions are used to reason through
behavior under adverse conditions, such
as load shedding and fault handling. Safety,
performance, mission assurance, human
factors, and information assurance con-
cerns are analyzed and incorporated into
the use cases. With this behavioral defini-
tion captured, detailed design incorporates
architectural constraints and further elab-
orates finer-grained behavior that is only
exposed with detailed design.

At GEM’s foundation is an architec-
ture that follows well-established business
logic. The GEM uses the kill chain: detect,
track, assign, engage, and assess. Second,
from that stable and well-understood
structure, behavior that is more apt to
change is isolated into components. These
components interact only with the stable
structure, never with each other. Third, a
reactive system of this type demands pre-
dictable performance. Between compo-
nents, the GEM utilizes data queue and
blackboard structures—called data
stores—for information exchange. In the
GEM’s case, components must operate
concurrently. Each component uses input
from prescribed data stores. The safety
framework monitors information that
flows through the data stores, leveraging
policies that are captured in assertions to
trigger the safety executive and safety ker-
nel functions into action.

The approach starts with defining poli-
cies that capture key behavioral require-
ments. These policies represent critical
behavior that assesses proper operation of
the GEM. Many policies are then convert-
ed into assertions in logic, linear temporal
logic, and/or state charts. By monitoring
these assertions in a run-time monitor, fault
conditions can be detected, mitigated, or
possibly avoided. For safety, critical safety
assertions are monitored in the safety exec-

• Develop a ubiquitous language.
• Remove grey-matter translations.
• Institute shared understanding of the

customer, user, subject matter expert,
engineer, software engineer, and tester.

• Incorporate model checking and code
generation (to allow the specification to
be tested without significant investment
in implementation).

• Verification of GEM behavior in the specification phase.
• Verification of GEM computation code from third-party vendors.
• Component-based software engineering.
• Verification of modules prior to integration.
• Verification of safety components that ensure continuity of

operations against all run-time faults.
• Separation of computational code from behavior code:

° Design by contract.

° Verification of assertions in the specification phase.

° Asynchronous messaging among software modules.
• Test oracles with automated test procedures:

° Verified distributed system behavior in the specification

° Unified process approach with no more than two-month

° Validation of implementation against the GEM model

° Verification of meeting hard real-time deadlines.

Principles From Agile Practices Principles From Service Orientation

• Short iterations
• Automated test
• Continuous builds
• Re-factoring
• Retrospectives
• Daily stand-ups
• Feature-based development

• Service reusability: Logic divided into services with the intention of
promoting reuse.

• Service contract: Services adhere to a communications agreement,
as defined collectively by one or more service description documents.

• Service loose coupling: Services maintain a relationship that minimizes
dependencies and only requires they maintain awareness of each other.

• Service abstraction: Beyond what is described in the service contract,
services hide logic from the outside world.

• Service composability: Collections of services can be coordinated
and assembled to form composite services.

• Service autonomy: Services have control over the logic they encapsulate.
• Service statelessness: Minimize retaining information specific to

an activity.
• Service discoverability: Services are designed to be outwardly

descriptive so they can be found and assessed by discovery mechanisms.

Principles from Model-Driven Development Principles from the Model-Based Acquisition Approach

phase.

cycles.

at the conclusion of each cycle.

Table 1: Selected Model-Driven Attributes Used in the ABM Development Process

• Develop a ubiquitous language.
• Remove grey-matter translations.
• Institute shared understanding of the

customer, user, subject matter expert,
engineer, software engineer, and tester.

• Incorporate model checking and code
generation (to allow the specification to
be tested without significant investment
in implementation).

• Verification of GEM behavior in the specification phase.
• Verification of GEM computation code from third-party vendors.
• Component-based software engineering.
• Verification of modules prior to integration.
• Verification of safety components that ensure continuity of

operations against all run-time faults.
• Separation of computational code from behavior code:

° Design by contract.

° Verification of assertions in the specification phase.

° Asynchronous messaging among software modules.
• Test oracles with automated test procedures:

° Verified distributed system behavior in the specification

° Unified process approach with no more than two-month

° Validation of implementation against the GEM model

° Verification of meeting hard real-time deadlines.

Principles From Agile Practices Principles From Service Orientation

• Short iterations
• Automated test
• Continuous builds
• Re-factoring
• Retrospectives
• Daily stand-ups
• Feature-based development

• Service reusability: Logic divided into services with the intention of
promoting reuse.

• Service contract: Services adhere to a communications agreement,
as defined collectively by one or more service description documents.

• Service loose coupling: Services maintain a relationship that minimizes
dependencies and only requires they maintain awareness of each other.

• Service abstraction: Beyond what is described in the service contract,
services hide logic from the outside world.

• Service composability: Collections of services can be coordinated
and assembled to form composite services.

• Service autonomy: Services have control over the logic they encapsulate.
• Service statelessness: Minimize retaining information specific to

an activity.
• Service discoverability: Services are designed to be outwardly

descriptive so they can be found and assessed by discovery mechanisms.

Principles from Model-Driven Development Principles from the Model-Based Acquisition Approach

phase.

cycles.

at the conclusion of each cycle.

Table 2: Selected Agile and Service Orientation Attributes Used by the ABM Development Process

Software Safety for Model-Driven Development

May/June 2009 www.stsc.hill.af.mil 11

utive. Should the assertion trigger, mitigat-
ing action will be taken by the safety kernel.
Additionally, assertions are used for mis-
sion assurance and at interfaces between
components. By establishing assertions
about the pre-conditions, post-conditions,
and invariants, the errors, defects, and faults
can be detected and addressed.

With behavior defined and assertions
established, the executable model is creat-
ed. Code is generated directly from the
base logic state charts and activity dia-
grams. Then, this behavioral logic capabil-
ity is augmented with the action code. The
functionality is layered in during nine-
week cycles. It is done in short iterations
so all incremental functionality can be
evaluated. The proper behavior is ana-
lyzed as the executable model functionally
grows by monitoring the assertions from
an orthogonal view. The test environment
is a key analytical tool that is equivalent to
an engineer’s workbench. Portions of the
assertion base are in the test harness and
are independent from the implementation.
They are always checking to see if a new
functionality has broken what had been
previously built. It allows for exercising
the executable model to analyze and
demonstrate anticipated behavior across
the broad dynamic range of the battlefield
environment. At the end of a cycle, the
product leaves the analysis phase and
moves into testing. Testing activities that
occur at this time are looking for defects
that escaped that phase of development.

The ability to economically develop
software in this model-driven fashion is
made possible by the advancing state of
practice in software engineering. These
practices continue to make mainstream
computer-aided software engineering
tools. Though mission assurance and safe-
ty concerns are moving into the software
development culture in the form of relia-
bility and safety engineering constraints,
software safety training is important.
Seasoned developers/engineers often
have the tools but not the experience and
do not know what is sufficiently complete
or correct when it comes to these con-
cerns. Some examples of definitions
developed for GEM Software Safety train-
ing include:
• Sufficient Completeness. The con-

sensus of all of the qualified reviewers
that the specifications and develop-
ments for each part of the presented
system and subcomponents are full
expressions to the extent that is fore-
seeable in regards to intended behav-
ior, intended performance, and intend-
ed environment.

• Sufficient Correctness. The consen-

sus of all qualified reviewers that a
software system and its components
are free from foreseeable faults in its
specification, design, and implementa-
tion in regards to intended behavior,
intended performance, and intended
environment.

• Intended Behavior. The planned
aggregate of response, reactions, or
movements made by a system in any

situation. This conversely includes the
planned prevention of undesired
responses, reactions, or movements.

• Intended Environment. Conditions
of the elements external to the system
that are planned to be affected by or
are currently effecting the employment
or deployment of the system.

• Intended Performance. The metrics
of system behavior over time. Ex-
amples are latency, throughput, avail-
ability, and utilization.

Requirements and Processes
Safety Assurance Requirements
Remain Unchanged
MIL-STD-882D [1] forms part of the
basis for the MDA’s safety guidance.
Awareness of these requirements is the
beginning point for software safety train-
ing. MIL-STD-882D guidance applicable
to software development includes:
• Unacceptable conditions that are con-

sidered unacceptable for development
efforts. Positive action and verified
implementation is required to reduce
the mishap risk associated with these
situations to a level acceptable to the
program manager [1].

• Acceptable conditions are considered
acceptable for correcting unacceptable
conditions and will require no further
analysis once mitigating actions are
implemented and verified [1].

A Safety Process for Waterfall
Software Development
When software is developed using the
classic Waterfall development process,
assuring that the software is safe is some-
times difficult. Nevertheless, the software
safety process applied to classical software
development is understood and practiced
by experts today. The 15-element Software
Safety Process (developed by APT
Research, Inc.), shown in Figure 2 (see
next page), is an example of a mature
approach.

The fundamental premise is to focus
the effort that is needed to perform soft-
ware system safety. This is classically done
by further focusing efforts on the safety
subset of the system software. The safety-
critical functions are identified from the
system requirements documents, the
prime development specifications, and the
preliminary hazard analysis. Those safety-
critical functions with direct or indirect
software control are then identified and
become the focus for the software system
safety effort. The safety-critical software
requirements that flow from the safety
functional requirements are then identi-
fied. The software safety personnel per-
form this step while coordinating with
system safety and software developers.

Adaptation for Model-Driven
Software Development
The system-level preliminary hazard
analysis provides the framework for rea-
soning about sub-system (software in this
case) hazard analysis in the form of candi-

Iterations
Increments

Cycles

The content of an iteration is completed feature sets with complete, automated test suites.
That is, iterations deliver working code with working tests every two weeks.

Figure 1: Three Major Release Categories for Software Functionality

“Though mission
assurance and safety

concerns are moving into
the software

development culture ...
software safety training

is important.”

Rapid and Reliable Development

12 CROSSTALK The Journal of Defense Software Engineering May/June 2009

date causes, contributors, controls, and
policies within the context of a given
required behavior. The differences start
here. The analysis activity at the develop-
ment level is not limited to the safety-crit-
ical software functions at first. During
each cycle, the incremental specification
and implementation draws the whole
development staff into identifying broad
environmental impacts and captures them
in the design artifacts and in a develop-
ment-level software assessment report
called the GEM Assessment Report
(GAR). This highlights the value of incor-
porating the software safety training pro-
gram into the GEM program. The result
is a highly collaborative, fully integrated
involvement for:
• Identification of hazards and con-

cerns.
• Evaluation of causes.
• Establishment of detection logic and

mitigation policies.
• Selection of mitigator strategies.
• Verification case definition, develop-

ment, and execution.
• Analysis of results.
• Collection of mitigation assessment

and test evidence.
The combination of hazards and con-

cerns coupled with the incremental devel-
opment activities enhances the defect
detection and avoidance mentality. The
safety subject matter expert(s) can provide
substantial leverage when mentoring the
development staff during these activities.

Each of the 15-element Software
Safety Process portions was examined for
application to each of the development
activities. In many cases, the elements
were revisited and incrementally built up
over the development cycles (see Table 3).

GEM Safety Activities Overview
The GEM Software Safety Activities to
support a model-driven, spiral software
development effort are shown in Figure 3.
The end result is a software safety pro-
gram that includes all of the fundamental
software safety elements, and incremental-
ly grows and matures as the executable
model evolves. The beginning of the soft-
ware development process is the safety
entry point into the GEM architecture and
product. For the approach to work, it is
critical to get buy-in from all stakeholders
prior to beginning development.

All members of the GEM develop-
ment staff should analyze their work in
the context of the program’s concerns.
The following GEM safety principles are
integrated into the software development
process:
• Reasoning through safety mitigation

IDENTIFICATION

1
Identify
Hazards

2
Identify SW
Safety-
Functional

Requirements

PREPARATORY
ANALYSIS

4
Analyze

Hazards for
Life Cycle

3
Define

Malfunction
Modes

System Requirements
System Safety Program Plan
Software Development Plan

Lessons Learned
Generic Safety Requirements

Software Products
Software Safety Checklists

IN
P

U
T

S

Program Management
Safety Management
System Engineering
System Safety
Software Safety

System Safety Working
Group

SW Developers
SW Testers

P
L

A
Y

E
R

S
U

N
P

L
A

N
N

E
D

IN
P

U
T

S

Changes
Failure Reports
Deviations
Waivers

O
U

T
P

U
T

S Preliminary Hazard List, Preliminary Hazard Analysis,
Subsystem Hazard Analysis, System Hazard Analysis,

Hazard Tracking System, Safety-Critical SW Requirements
Matrix, SW Safety Analyses, Test Plan Procedure Updates,

Independent Assessments

METRICS

5 Define
Safety-Critical
Software

6 Define
HW/SW*
Control
Measures

7 Verify
Design Meets
Requirements

8 Integrate
SW Effects
in Hazard
Analyses

9 Refine
Hazard
Severity

10 Tailor
Safety Effort
to Criticality

SPECIFIC
ANALYSIS

TEST
PLANNING

11
Define Test
for Critical
Functions

12
Prepare
V&V** Test
Planning

TEST and
ANALYSIS

13
V&V
Testing

14
Review V&V
Results

15
Determine

Final RACs***

* HW: Hardware ** V&V: Verification and Validation
SW: Software *** Risk Assessment Codes

Figure 2: 15-Element Software Safety Process [2]

GEM Safety Process Phase

Continuous Throughout Increment 1. Identify Hazards
2. Identify SW Safety-Functional

Requirements
Identification

3. Define Malfunction Modes
4. Analyze Hazards for Life Cycle

5. Define Safety-Critical Software

8. Integrate SW Effects in Hazard Analyses
9. Refine Hazard Severity

10. Tailor Safety Effort to Criticality

Preparatory Analysis

Specific Analysis1.0 Perform Initial Survey of the
Capabilities of the Cycle

6. Define HW/SW Control Measures

6. Define HW/SW Control Measures
7. Verify Design Meets Requirements

6. Define HW/SW Control Measures
7. Verify Design Meets Requirements

2.0 Create and Document Policies
for Domain Analysis – Use Cases

3a. Realization of Controls and Mitigation
in Collaborations/Algorithms

3b. Implement Controls and Mitigation

4.0 Select Verification Evidence
Approach for Use-Case Policies

11. Design Test for Critical Functions
12. Prepare V&V Test Planning

Test Planning

5.0 Evaluate Verification Cases for
Software Safety

12. Prepare V&V Test Planning

6.0 Safety Analysis of Verification
Results

13. V&V Testing
14. Review V&V Results
15. Determine Final RACs

Test and
Analysis

7.0 Create and Maintain the GAR
(input to C2BMC Safety Assessment
Report)

Updates to Safety Artifacts and Input to
C2BMC Safety Assessment Report N/A

Waterfall Development Agile/Spiral

Requires complete sets (requirements,
high-level design, low-level design, code,

d t t)

Proceeds with partial sets of overall development.

15-Element Software Safety Process

Table 3: Mapping APT’s 15 Elements to ABM Software Safety/Mission Assurance Analysis
Activities

Software Safety for Model-Driven Development

May/June 2009 www.stsc.hill.af.mil 13

options modifies design and imple-
mentation trade space.

• Stringent coding standards on safety-
critical software are required by MDA
safety requirements.

• Analysis is reviewed incrementally by
safety staff.

• Safety activities and artifacts are incor-
porated into the design from the
beginning.
Use cases are the mechanisms for

specifying GEM safety-required behavior
within the GEM behavioral specification.
Just as use cases provide the required
behavior view, the GEM assessment
report provides a view of the key con-
cerns, their causes, contributors, controls,
policies, and verifications as they have
been defined.

The following stakeholders are to per-
form safety activities:
• Domain analysts.
• Model designers/architects.
• Model developers/implementers.
• Testers/test analysts.
• Safety subject matter experts.

During the domain analysis, model
design, model development, and test, the
stakeholders must be alert for the intro-
duction of new hazard causes. New haz-
ard causes may require additional hazard
controls and verifications. Additionally,
new hazard causes, controls, and verifica-
tions must be traced to the implementa-
tion and GEM assessment report. In the
end, all stakeholders must become familiar
with key safety artifacts: hazard logs (or
database), hazard causes and controls, and
the traceability of required behavior.

System-Level Safety-Critical
Functionality Assessment Is
Still Fundamental
The fundamental safety premise still
holds: Clear enumeration of the agreed-
upon safety-critical functions and the
assessment of the level of mitigation that
exists in the implementation is needed.
The safety-critical functions are identified
and analyzed in context with the broader
environment for which they will operate.
Those safety-critical functions with direct
or indirect software control are then iden-
tified and become the focus for the soft-
ware system safety effort. The safety-criti-
cal software requirements flow from the
system-level safety-functional require-
ments. The software safety personnel per-
form this step while coordinating with
system safety and software developers.
However, by using the GEM software
safety activities, there is now a rich
cause/contributor assessment captured in

the development artifacts. Determining
the appropriate control to mitigate the
causes of the identified hazards has both a
top-down and a bottom-up component.

Observations and Conclusions
Advancing software development meth-
odologies lend themselves to a rich, com-
prehensive approach to safety analysis. It
provides an open working relationship to
incrementally identify the following causes
at various tiers of granularity:
• Selection of architecture principles.
• Design and implementation of strate-

gies for mitigators.
• Selection of verification cases that

both enhance analysis of properly
operating functions and mitigation
mechanisms.

• Collection of the needed evidence to
satisfy safety review boards.
The GEM software development

approach maintains verification logic as

additional functionality is added to the
growing product base. This software safe-
ty analysis complements system-level safe-
ty analysis, as is currently being practiced.

In conclusion, a comparison of soft-
ware safety in Waterfall development pro-
jects versus those that use Agile/spiral
approaches is found in Table 4.

Additionally, when it comes to modify-
ing the application of software safety
analysis for model-driven, spiral-devel-
oped software (using the GEM develop-
ment as an example) this article draws four
observations:
1. State of practice in software engineer-

ing continues to make mainstream
computer-aided engineering tools.
Mission assurance and safety concerns
are moving into the culture in the form
of reliability and safety engineering
constraints. Training is important, as
seasoned developers/engineers do not
know what is sufficiently complete or

Figure 3: GEM Software Safety Activities

GEM Safety Process Phase

Continuous Throughout Increment 1. Identify Hazards
2. Identify SW Safety-Functional

Requirements
Identification

3. Define Malfunction Modes
4. Analyze Hazards for Life Cycle

5. Define Safety-Critical Software

8. Integrate SW Effects in Hazard Analyses
9. Refine Hazard Severity

10. Tailor Safety Effort to Criticality

Preparatory Analysis

Specific Analysis1.0 Perform Initial Survey of the
Capabilities of the Cycle

6. Define HW/SW Control Measures

6. Define HW/SW Control Measures
7. Verify Design Meets Requirements

6. Define HW/SW Control Measures
7. Verify Design Meets Requirements

2.0 Create and Document Policies
for Domain Analysis – Use Cases

3a. Realization of Controls and Mitigation
in Collaborations/Algorithms

3b. Implement Controls and Mitigation

4.0 Select Verification Evidence
Approach for Use-Case Policies

11. Design Test for Critical Functions
12. Prepare V&V Test Planning

Test Planning

5.0 Evaluate Verification Cases for
Software Safety

12. Prepare V&V Test Planning

6.0 Safety Analysis of Verification
Results

13. V&V Testing
14. Review V&V Results
15. Determine Final RACs

Test and
Analysis

7.0 Create and Maintain the GAR
(input to C2BMC Safety Assessment
Report)

Updates to Safety Artifacts and Input to
C2BMC Safety Assessment Report N/A

Waterfall Development Agile/Spiral

Requires complete sets (requirements,
high-level design, low-level design, code,
and test cases).

Proceeds with partial sets of overall development.

The focus on smaller details is achieved in
later phases.

The overall viewpoint is achieved in later phases.

Testing begins later in the development. Partial sections are tested sooner.

Lessons learned acquired in later phases. Lessons learned acquired in earlier phases.

The size of the set of changes for correction/
enhancement tends to be larger.

The size of the set of changes for correction/
enhancement tends to be smaller and occur
incrementally.

Configuration management is easier since the
initial set of requirements tend to be fixed.

Configuration management is harder due to
needed response to growing and varying
requirements.

It is in later phases that the complete set of
details come together that influence safety
concerns.

It is in later phases that the overall viewpoint for
efficient mitigation implementation can be selected.

15-Element Software Safety Process

Table 4: Comparison of Waterfall and Agile/Spiral Approaches

Rapid and Reliable Development

14 CROSSTALK The Journal of Defense Software Engineering May/June 2009

correct when it comes to these con-
cerns.

2. System-level preliminary hazard analy-
sis provides a framework for reasoning
about software causal analysis in the
form of candidate causes, contribu-
tors, controls, and policies within the
context of a given required behavior.
The use of incremental specification
and implementation draws the whole
development staff into identifying full
environmental impacts that are cap-
tured both in the design artifacts and a
development-level software assess-
ment report. The importance of soft-
ware safety training cannot be under-
estimated. The approach enhances the
defect detection and avoidance men-
tality and allows the safety subject mat-
ter expert to mentor the development
staff and have a high impact during
these activities.

3. Safety-critical functions at the system
level are used to define safety-critical
software functions. These functions
are reasoned through at the system
level, and use the candidate policies to
identify which policies will be tracked
as safety-critical. The total approach
provides both a top-down and bot-
tom-up assessment.

4. Active safety subject-matter expert
involvement is required in software
development phase sometimes as the
lead, sometimes as a mentor. This
allows the program to gain the values
afforded by advancing engineering
techniques.u

References
1. DoD. “Standard Practice for System

Safety.” MIL-STD-882D, Appendix A.
10 Feb. 2000 <http://safetycenter.
navy.mil/instructions/osh/milstd
882d.pdf>.

2. APT Research, Inc. “The Safety
Engineering and Analysis Center.” 15
Oct. 2007 <www.apt-research.com/
pages/about/S-07-00100_SEAC_
Booklet.pdf>.

Note
1. If manage-by-exception actions are

warranted, the warfighters are to adap-
tively direct sensor and weapon system
activities in coordination with the ele-
ment commander. Event-triggered
automated actions for elements are
coordinated with similar automated
actions by the GEM decision aid.

About the Authors

Timothy J. Trapp is the
global engagement man-
ager chief engineer with
the Missile Defense
National Team/C2BMC.
He has 25 years experi-

ence with the design, development, man-
agement, and operations of DoD and
commercial interactive systems that are
integrated with communications infra-
structures. He holds a bachelor’s degree
in electrical engineering from Purdue
University and a master’s degree in engi-
neering management from George
Washington University. Trapp also holds
a patent on the use of multicast-based
distribution for timely and real-time data.

Raytheon
2611 Jefferson Davis HWY
STE 700
Arlington, VA 22202
Phone: (703) 418-4288
E-mail: tim.j.trapp@mdnt.com

Howard D. Kuettner, Jr.
is the software safety lead
for a major system devel-
opment program at APT.
He has more than 35
years experience in sys-

tems and software development, systems
and software test, and systems and soft-
ware safety. Kuettner has been a member
of the System Safety Society (Tennessee
Valley Chapter) since 2000, and was
named their Engineer of the Year for
2003. He has a bachelor’s degree in
physics, and has co-authored papers pre-
sented at prior International System
Safety Conferences.

APT Research, Inc.
4950 Research DR
Huntsville, AL 35805
Phone: (256) 327-3383
E-mail: hkuettner@apt-research

.com

Donald S. Hanline II is
a system safety engineer
for the U.S. Army Avia-
tion and Missile Com-
mand (AMCOM). He has
more than 25 years of

experience in the aerospace industry, with
nine years of systems safety and software
systems safety experience on command
and control and weapons system develop-
ment programs. Hanline serves the
AMCOM Safety Office on independent
safety review boards, the development of
Army and AMCOM software system
safety requirements, and software system
safety training. He has bachelor’s degrees
in chemistry and mechanical engineering
from the University of Alabama in
Huntsville.

U.S.Army AMCOM
ATTN:AMSAM-SF-A
Redstone Arsenal, AL 35898-5000
Phone: (256) 842-3248
E-mail: donald.s.hanline

@us.army.mil

William A. Christian is
currently a software safety
engineer for the GEM at
APT. He has more than
30 years experience in the
hardware and software

requirements, design, implementation,
and test. Christian has co-authored a
paper on reviewing code for requirements
verification and has spent more than 20
years in developing software for instru-
mentation, intercom systems, databases,
and testing radio frequency applications.

APT Research, Inc.
4950 Research DR
Huntsville, AL 35805
Phone: (256) 883-3474
E-mail: bchristian@apt-research

.com

May/June 2009 www.stsc.hill.af.mil 15

Our intent with this article is to give
DoD programs another successful

data point for implementing an evolution-
ary acquisition strategy using Agile life
cycle processes, and share our learned
tenets of this process in the hopes of
helping others rapidly field capabilities. In
an environment where requirements are
unforeseen and quickly changing, we need
our systems to be flexible and adaptable to
meet these growing challenges. Before
2006, the U.S. Army readiness reporting
system had no longer met the needs of
commanders in providing timely and
detailed data to make informed decisions.
Complex environments and service-ori-
ented architecture (SOA) changed the
landscape of operation and the systems
that were operating in it. The challenge
was to, within nine months, transform an
old Army readiness system to meet cur-
rent needs without losing existing capabil-
ities while also developing key functions
currently needed by commanders.

The solution was for the Product
Manager Strategic Battle Command
together with the Headquarters–Depart-
ment of the Army G3/5/7 to modernize
the legacy Army readiness application, PC
ASORTS, by creating the Defense Readi-
ness Reporting System-Army (DRRS-A).
The DRRS-A aligns with SOA strategies
and supports the demands of new require-
ments, capabilities, and modifications in
the areas of force registration, force readi-
ness, force projection, and mobilization.
The DRRS-A team included about 60 peo-
ple from the government and multiple con-
tracting teams. The strategy was a phased
approach allowing for the deployment of
high-priority capabilities first and then sub-
sequent capabilities using an incremental
process. The DRRS-A software system
first deployed in late 2006 after only nine
months of development and has fielded
new capabilities incrementally in as soon as
two months [1]. The program consists of
secure Web-based capabilities such as unit

status reporting that details mission-critical
information including personnel levels,
training status, equipment availability, and
equipment serviceability. It is used as a
commander’s assessment tool as it reports
a unit’s capability to execute missions.
Using an evolutionary strategy, the legacy
application was a stepping stone for the
development of new capabilities and rapid,
yet disciplined, transition of processes.

Approach
The DoD embraces change after a long
history of Waterfall software methods and
single-step to full-capability approaches.
The goal of the DoD’s Evolutionary

Acquisition (EA) policy is to provide oper-
ational capabilities to the warfighter—
quicker than traditional methods—
through rapid incremental fielding, build-
ing to full-objective capability [2]. The
DRRS-A implementation plan included
using the DoD EA approach as a guideline
for delivering capabilities in increments.
Our evolutionary strategy was to take the
existing readiness system and perform sys-
tem modernization in a phased approach,
which included leveraging functionality
inherent in the old system and translating
it into usable functionality in an SOA,
combined with serial guidance and direc-
tives issued by the Joint Chief of Staff.
The DRRS-A currently has as many as

5,000 users including Army Commands,
the National Guard Bureau, Army Forces
Command, and the United States Army
Reserve Command (USARC).

Our system methodology was to inte-
grate all aspects of program life-cycle
phases using an Agile approach with rapid
prototyping to ensure that the customer
and user needs were met. We took a linear
life-cycle approach and worked life-cycle
phases in parallel and often at the same
time. Working within an aggressive sched-
ule, we carried out continuous facilitation
of the following phases:
• Concept refinement, requirements,

and architecture analysis and design.
• Capability and software development.
• Integration, testing, and demonstra-

tions.
• Production and deployment.
• Operations, support, and training.

The user community consistently
worked with the developers to refine con-
cepts and requirements to be developed.
In a month, the team could get as many as
five new requirements and enhancement
requests from various sources, such as the
readiness community and the Joint Chiefs
of Staff. New requirements can range any-
where from new calculations to new infor-
mation required from the user. During
testing time, the team mainly focuses on
fixes and performance of the applications.
The rapid and iterative software develop-
ment process included conducting contin-
uous integration and testing on a daily
basis by checking in and out software
code. Scrum, our Agile process, was
implemented in 30-day software develop-
ment sprints using a prioritized require-
ments list also known as a backlog. It
helped keep the focus on user needs with
demonstrations at the end of each interval
[3]. In a month, the development and test
teams can work through as many as 15
requirements. The Scrum development
process [4] is shown in Figure 1 (see next
page).

Evolutionary Capabilities Developed
and Fielded in Nine Months

The DoD is facing challenges to rapidly deploy operational capabilities in complex environments where bridging legacy and
new technologies are key to success. The challenges arise as a result of diminishing budgets and the need for new capabilities
to operate in war environments, including the global war on terrorism. To balance this imperative need with rapid response,
we found that our developed Agile life-cycle paradigm was a viable solution to meet challenges brought about by changes in the
environment. This article demonstrates how a DoD program used an Agile approach, throughout every phase of the pro-
gram’s life cycle, to rapidly field capabilities.

Dr. Robert Cloutier
Stevens Institute of Technology

Portia Crowe
U.S. Army, Program Executive Office C3T

“In an environment
where requirements are
unforeseen and quickly
changing, we need our
systems to be flexible

and adaptable.”

Rapid and Reliable Development

16 CROSSTALK The Journal of Defense Software Engineering May/June 2009

At the end of each development sprint
(estimated as every 30 days), a training
team of six people would develop or edit
training materials, user guides, and train
the help desk on these features. The user
community is trained on the new or edit-
ed features via remote, computer-based,
and/or face-to-face training. The imposed
user feedback loop gave us greater confi-
dence that we were building to expecta-
tions and user requirements. We were in-
line with priorities as a result of canvass-
ing for feedback during bi-weekly iteration
meetings, testing events, and surveys [5].

The key to an Agile life cycle is to keep
everyone informed so that functions can
be done in parallel. To ensure continuous
coordination, all of the functional leads
(i.e., system engineers, development, logis-
tics, and requirement proponents) and key
users were at every sprint review. This
helped to keep the team in sync on new
application features, training needs, inte-
gration and test events, and priorities of
requirements.

Interoperability and integration testing
was frequently conducted not only at the

subsystems level but for system of sys-
tems and external dependencies. Prior to
major releases, we found three to be the
magic number of user dress rehearsals or
test events. These allowed users to test
functions of the applications and engi-
neers to get a good read on the perfor-
mance of the system. Participants (usually
20 to 30 users) were chosen by the func-
tions or applications being tested during
that event and the location of participants
(such as Iraq or Afghanistan), which gave
us good performance data. These testing
events, each lasting three days, usually
started three months prior to a big release
and were about three to four weeks apart.
Coordination with participants, training,
and test procedures distribution occurred
prior to each event. An online survey was
prepared for the users to track their issues
and concerns during the event. We recent-
ly added performance questions to track
how fast the functions were loaded and
displayed. After each day of the test event,
a configuration control board met to dis-
cuss the feedback and developers began
fixing or discussing problems with the test

event participants. This rapid test
approach allowed us to get feedback and
work problems right away. Fixes were
incorporated into the next test event.
Performance test cases were conducted
with up to 50 simultaneous users doing
the same functions on the force registra-
tion application. During this process, we
found memory leaks to be causing signifi-
cant delays and were able to be proactive
in optimizing performance before the
application went into the field. Testing
resulted in force registration, the applica-
tion for unit registration data, performing
five times faster when users access the
most popular functions of the application.
Further application testing led to response
time improvements of up to three times.
Performance enhancements were made
where applications may have many simul-
taneous users in the United States and
abroad.

Learned Tenets
Our rapid prototyping and deployment
challenge was to take an Army readiness
reporting system that had existed for 12
years and modernize, deploy, and support
its new capabilities within nine months.
This brought about challenges for our
multiple contract teams who were behold-
en to many stakeholders, not to mention
being rigidly adherent to changing require-
ments in a complex wartime environment.
These Agile and rapid fielding initiatives
led us to several revelations of the rapid
prototyping and development approach.
We found some key characteristics that are
outlined in Table 1.

Rapid prototyping and deployment
challenges included development of a new
set of capabilities that didn’t exist in the
old system, and training and re-training a
large user community in parallel of build-
ing software and testing. New functionali-
ty included embedded workflow process,
identity management, and Web access
using the Secure Internet Protocol Router
network. We also had to gain security cer-
tificates and authority to operate; because
of their generally long lead time, we
planned for these issues in the beginning
stages. The stakeholders treaded in unfa-
miliar territory by collaborating closely
with users and knowledge sharing with
other contractors. Risk management was a
collaborative effort that emphasized the
software development phase. The greatest
challenge was to develop, train, and con-
duct integration testing with multiple con-
tractors in nine months.

Success
The initial fielding of DRRS-A capabili-

Sprint Backlog:
Feature(s) assigned
to sprint

Backlog:
Items

expanded
by team

30
Days
30
Days
30

Every
24 hours

New functionality
is demonstrated
at end of sprint

Product Backlog:
Prioritized product features desired by the customer.

Scrum: A 15-minute daily meeting.
Team members respond to basics, such as:
1) What did you do since the last Scrum meeting?
2) Do you have any obstacles?
3) What will you do before the next meeting?

Figure 1: Example Agile Process Flow for the Scrum Development Process

Characteristic Comments

Liberty to be dynamic Agility needs dynamic processes while adhering
to acquisition milestones.

Non-linear; cyclical and non-sequential The life-cycle behavior was not like traditional waterfall
models or linear frameworks; decreasing cycle times.

Adaptive Conform to changes, such as capability and environment.

Simultaneous development of phase
components

Rapid fielding time may not lend to traditional phase
containment (i.e., training and software development together).

Ease of change Culture shift to support change neutrality; ease of
modification built into architecture and design.

Short iterations Prototyping, demonstrating, and testing can be done
in short iterative cycles with a tight user feedback loop.

Lightweight phase attributes Heavy process reduction, such as milestone reviews,
demonstrations, and risk management.

Table 1: Emergent Agile Characteristics for Rapid Prototype and Development

Evolutionary Capabilities Developed and Fielded in Nine Months

May/June 2009 www.stsc.hill.af.mil 17

ties were successfully developed, taught to
users, fielded, and supported within nine
months by using incremental and Agile
methodologies [6]. Subsequent releases
have been just as successful adding on
existing capabilities and deploying new
ones. The success of DRRS-A and its net-
centric capabilities include improving user
accuracy, ease of use, and decreasing man-
power and manual input. As an example
of cost realization, the USARC cited
DRRS-A Web-based applications savings
that are expected to be more than $1 mil-
lion annually, and the Army Reserve
Medical Command has saved what aver-
ages to be $118,933 per month. The
DRRS-A capabilities are part of the
Defense Information System Agency’s
Net-Enabled Command Capability pro-
gram and readiness model for the U.S. Air
Force and Marine Corps.

Conclusion
Lessons learned during program develop-
ment and fielding have brought the impor-
tance of collaboration, communication,
and risk management to the forefront of
the Agile development process:
• A tight collaboration of several con-

tracting teams, stakeholders, and pro-
gram offices is necessary to prove inte-
gration of the right requirements into
the software.

• The set-up of checkpoints during the
process is crucial to ensure that devel-
opment was meeting the customers’
needs.

• Without the communication and
involvement of stakeholders and cus-
tomers, there would be limited sharing
and transfer of knowledge that can
hinder synchronization across the bat-
tlespace.

• It is easy to concentrate on risk man-
agement in the software development
stage since it is the meat of the pro-
gram, but lessons learned has taught us
that all of the other life-cycle stages
need to be risk-analyzed and evaluated
often during rapid development. For
example, training needs to be planned
up-front and during development or
else there won’t be ample time to train
the user community. This, in turn,
could lead to program failure.
As stated in the introduction, our

intent was to give a current successful data
point to the DoD’s evolutionary acquisi-
tion strategy using an Agile life-cycle
approach. We have also proven—through
cost and user acceptance of this system—
that DoD life cycles can be developed and
maintained using Agile methodologies.
With an aggressive schedule and high pro-

gram visibility, we broke traditional devel-
opmental and cultural barriers by imple-
menting an Agile and evolutionary
approach to rapid prototyping, develop-
ment, and fielding. It was critical to
implore a knowledge-sharing environment
between contractors and a close collabora-
tion between the functional proponents
and users, which in turn laid the ground-
work for success. Our Agile and flexible
approach to systems and software engi-
neering allowed us to capture the true
essence of rapid prototyping and capabil-
ity deployment while still meeting bud-
getary, schedule, and customer satisfaction
goals.u

References
1. “Army to Modernize its Unit Status

Reporting Processes.” Army Stand-To!
10 Aug. 2006 <http://lists.army.mil/
pipermail/stand-to/2006-August/
000136.html>.

2. DoD. Department of Defense Direc-

tive 5000.1: The Defense Acquisition
System. Washington, D.C.: Office of
the Under Secretary of Defense for
Acquisition, Technology, and Logis-
tics, 2003.

3. Boehm, Barry, and Richard Turner.
Balancing Agility and Discipline: A
Guide for the Perplexed. Boston:
Addison-Wesley, 2004.

4. “What Is Scrum?” Scrum: It’s About
Common Sense <http://control
chaos.com/about>.

5. Hansen, W.J., et al. Spiral Development
and Evolutionary Acquisition. The
SEI-CSE Workshop Special Report.
SEI, Carnegie Mellon University. May
2001 <www.sei.cmu.edu/pub/docu
ments/01.reports/pdf/01sr005.pdf>.

6. “New System Gauges Military
Readiness.” AFCEA Signal. 16 Oct.
2006 <www.imakenews.com/signal/
e_000144589000039843.cfm?x=b8fB
hsr,b5kS6S>.

About the Authors

Robert Cloutier, Ph.D.,
is an associate professor
of systems engineering in
the School of Systems
and Enterprises at the
Stevens Institute of Tech-

nology. He has more than 20 years expe-
rience in systems engineering and archi-
tecting, software engineering, and project
management in both commercial and
defense industries. Industry roles include
lead avionics engineer, chief enterprise
architect, lead software engineer, and sys-
tem architect on a number of efforts and
proposals. His research interests include
model-based systems engineering and
systems architecting using Unified and
Systems Modeling Languages, reference
architectures, systems engineering pat-
terns, and architecture management.
Cloutier has a bachelor’s degree from the
U.S. Naval Academy, an MBA from
Eastern College, and a doctorate in sys-
tems engineering from the Stevens
Institute of Technology.

School of Systems and Enterprises
Stevens Institute of Technology
Hoboken, NJ 07030
Phone: (201) 216-5378
E-mail: robert.cloutier

@stevens.edu

Portia Crowe is currently
working for the Army,
Program Executive Office
C3T-PM Battle Com-
mand as chief engineer of
the Army Defense Readi-

ness and Projection Systems. She is con-
ducting research in integrating risk man-
agement in Agile systems engineering.
Crowe has received two Commander’s
Awards for Civilian Service: one for suc-
cessful implementation of the DRRS-A
program, and the other for excellence in
research and development of technology
objectives. She has a bachelor’s degree in
computer science from Rutgers Univer-
sity, a master’s degree in engineering man-
agement from the New Jersey Institute of
Technology, and is currently a doctoral
student in the School of Systems
Engineering at the Stevens Institute of
Technology.

U.S.Army, PEO C3T-PM
Battle Command
SFAE C3T BC
BLDG 2525-Bay 3
Ft. Monmouth, NJ 07703
Phone: (732) 427-5757
E-mail: portia.crowe@us.army.mil

18 CROSSTALK The Journal of Defense Software Engineering May/June 2009

Departments

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

NOV2007 o WORKING AS A TEAM

DEC2007 o SOFTWARE SUSTAINMENT

FEB2008 o SMALL PROJECTS, BIG ISSUES

MAR2008 o THE BEGINNING

APR2008 o PROJECT TRACKING

MAY2008 o LEAN PRINCIPLES

SEPT2008 o APPLICATION SECURITY

OCT2008 o FAULT-TOLERANT SYSTEMS

NOV2008 o INTEROPERABILITY

DEC2008 o DATA AND DATA MGMT.

JAN2009 o ENG. FOR PRODUCTION

FEB2009 o SW AND SYS INTEGRATION

MAR/APR09 o REIN. GOOD PRACTICES

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil> .

COMING IN THE JULY/AUGUST ISSUE

Process Replication
From the battlefield to games like Guitar Hero®, processes

such as the PSP and TSP are proving successful.

CrossTalk explores articles in this issue that emphasize
the idea that these techniques are an effective and powerful

software development methodology when based on best
practices. Articles will address process replication efforts,
PSP/TSP applications, success stories, lessons learned, and

enhancements to repeatable software and
non-software practices.

Including the article,“Lean Enablers for Systems Engineering”
by Bohdan W. Oppenheim

Look for it in your mailbox early July!

Issue sponsored by:

May/June 2009 www.stsc.hill.af.mil 19

Departments

20 CROSSTALK The Journal of Defense Software Engineering May/June 2009

The DoD and almost all non-defense
government agencies increasingly

depend on large software-intensive sys-
tems. Unfortunately, with few exceptions,
such large-system development projects
are seriously troubled. While the programs
may ultimately deliver workable systems,
they are generally late, cost much more
than planned, and some even fail com-
pletely. While guidelines such as CMMI
provide useful guidance on what methods
should be used, many studies have shown
that seriously troubled large-scale devel-
opment programs have one problem in
common: They do not effectively follow
the methods they currently know [1].

The two companies doing the work
described in this article are the only sup-
pliers the DoD has for a category of high-
ly classified military equipment. These
companies’ development laboratories
were in different cities and had very dif-
ferent engineering practices and support
systems. This complicated the DoD’s
logistics and training systems, raised main-
tenance costs, and limited acquisition flex-
ibility. The DoD had urged the companies
to develop a common engineering design
and support system, but the companies

had resisted. Finally, the DoD issued a
joint contract and directed the companies
to develop a common system.

To meet this directive on schedule and
within prescribed costs, the senior execu-
tives of both companies knew they needed
a joint development team that had a level of
coordination and communication that they
had not previously been able to achieve.
Their joint team would have approximately
30 people from two competing organiza-
tions with several different disciplines and
with different processes and practices. To
build such a capability, they turned to the
SEI for guidance. The project described in
this article is the result.

Project Goals and Strategy
The SEI recommended that the two orga-
nizations use the TSP to guide them in
jointly establishing the project’s goals and
objectives, agreeing on the project manage-
ment strategy, and launching and managing
the development work. To start TSP intro-
duction, the SEI had both management
teams come to Pittsburgh for a one-day
executive seminar and a half-day planning
session [2]. The seminar described how the
TSP team-building process melds people

from different specialties and organizations
into high-performing development teams
with common goals, practices, processes,
and plans. TSP introduction also requires
that team leaders take a leadership course
and that team members take Personal
Software ProcessSM (PSPSM) training [3].

Team Training
All of the software engineers were trained
in common classes where the team mem-
bers met their counterparts from the other
company and completed a series of 10
programming assignments. Writing pro-
grams with the six PSP steps taught them
to plan and track their work and to mea-
sure and manage product quality (see
Table 1). The requirements team members
were also trained in a single Introduction
to Personal Process course that taught
them how to plan and track their work.

The introduction strategy started by
building self-directed teams that would
plan, manage, and track their own work.
To be on a self-directed team, however,
the members had to learn how to manage
themselves. PSP training showed them
how to gather data, use that data to make
accurate plans, precisely report project sta-
tus, and manage product quality. After
completing training, the team members
could see from their personal data that
these methods improved their perfor-
mance (see Table 2).

The first column of Table 2 describes
the measure, the second shows the class
average value for the first three PSP pro-
grams, and the third column shows the class
average value of the measure for the last
three programs at the end of PSP training.

The TSP Project Launch
Once management and the team members
were trained and the teams formed, the
next step was to build self-directed teams.
This was done in a five-day project launch
where the members produced their own
plans and negotiated their commitments
with management and the customer [4].

A Distributed Multi-Company Software Project
Dr. William R. Nichols, Anita D. Carleton, Watts S. Humphrey, James W. Over

Software Engineering Institute

This article describes how two software development groups—in different locations and working for competing companies—
were able to jointly develop a large and complex military systems product. Even with incompatible support systems and decen-
tralized management, these groups were able to work cooperatively and deliver a quality product on schedule1.

Software Engineering Technology

SM Personal Software Process and PSP are service marks of
Carnegie Mellon University.

New Process Concepts Introduced
Program
Number

Students use their current process with two added measurements.
They record time spent per process phase (planning, design, code,
review, compile, unit test, and post-mortem). They define a defect
type standard, and log all defects found in the review, compile,
and unit-test phases.

PSP0 1

Students define a coding standard and a line of code (LOC)
counting standard, use process improvement proposals (PIPs), and
start measuring the size of their programs in LOC.

PSP0.1 2, 3

Students add defined size estimation methods and effort estimation
methods to their personal process. Test reports are also introduced.

PSP1 4

Task and schedule planning are introduced. Earned Value (EV)
tracking is also introduced.

PSP1.1 5, 6

Quality techniques are introduced. Structured personal code and
design reviews, based on individual defect data, are conducted.

PSP2 7

PSP
Steps

Design templates and design verification methods are introduced.PSP2.1 8, 9, 10

Table 1: The Process Steps in PSP Training

May/June 2009 www.stsc.hill.af.mil 21

A Distributed Multi-Company Software Project

With the TSP, each development team and
its team leader is called a unit team; the
five-day multi-team launch for this project
had three unit teams. Everyone was
brought to one location and the leadership
team was formed from the three unit team
leaders and the two company project man-
agers. It monitored launch progress and
helped the unit teams coordinate their
work and resolve issues. A TSP coach
guided each unit team through the launch
and a multi-team coach guided the leader-
ship team and coordinated the overall
launch process (see Figure 1).

The First Launch Meeting
In launch meeting 1, the three unit teams,
the TSP coaches, and the leadership team
met with senior management and customer
representatives. The multi-team coach first
described the launch process and agenda
and two company executives described the
product requirements and desired eight-
month delivery date. The customer repre-
sentatives next explained the DoD’s rea-
sons for needing a single engineering and
manufacturing support system. At the end
of meeting 1, all of the team members
understood the job, had heard manage-
ment’s goals, and knew why the project was
important to the customer. Following
meeting 1, the unit teams, team leaders, and
coaches met in separate groups with no
observers or visitors to follow the launch
process for meetings 2 through 8.

Launch Meetings 2 Through 8
In launch meeting 2, the unit teams each
established team goals and the members
each selected from among the eight stan-
dard TSP roles: customer interface man-
ager, design manager, implementation
manager, test manager, planning manager,
process manager, quality manager, and
support manager. By accepting a role or
alternate role, each team member took
responsibility for an aspect of the team’s
work. The test managers, for example, did
not necessarily do the testing, but they
were responsible for ensuring that testing
issues were properly considered and
addressed throughout the project. The
teams decided that no additional roles
were required and every team member
except the team leader took at least one
role or an alternate role.

In launch meetings 3 and 4, the teams
each defined their unit team strategies,
processes, and plans. They listed the prod-
ucts to be produced, estimated their sizes,
and judged the time required for each
process step. They then estimated the hours
they would each spend on the project every
week and generated the project schedule.

Once the unit teams had produced
their task plans, they produced a quality
plan in launch meeting 5. This included
quality-tracking measures, review rates,
defect injection and removal rates, yields,
and defect levels. The result was an esti-
mate for the defects to be injected and
removed in each project phase, the defects
in the product at system-test entry, the
number of defects that would remain for
customer acceptance testing, and the
expected number of defects in the prod-
uct at final delivery.

In meeting 6, the teams made detailed
next-phase plans and balanced the work-
load between the teams and team mem-
bers. This resulted in the most efficient
workload allocation and the minimal pro-
ject schedule. During meeting 7, they iden-
tified and ranked the major project risks
and assigned team members to track and
prepare mitigation plans for each key risk.

In meeting 8, the teams prepared for
the management review in meeting 9.
They had been unable to meet the
requested eight-month schedule and their

base plan delivered a minimum-function
first release in 13 months with two subse-
quent releases at six-month intervals. They
also prepared an alternate plan with added
resources but, since no suitably skilled and
PSP-trained professionals were available,
it was considered impractical.

In the post-mortem step, the teams
reviewed the launch process, submitted
PIPs, and gathered and stored the launch
data and materials.

By the morning of the fifth day, the
unit team’s plans were finished and con-
solidated into an overall project plan. Each
team member had a personal plan, and the
overall project had a plan that all team
members had participated in producing
and would defend as best they could with
the available resources. The members
were all committed to making the project
a success and were excited about the chal-
lenges ahead.

Launch Meeting 9 With Management
and the Customer
The DoD program manager was invited to

10.8% 1.2%

26.3% 10.4%

54.0
defects/KLOC

11.7 defect/KLOC

Unit test defect density (number of defects found
during unit test per KLOC)

32.0
defects/KLOC

9.5 defects KLOC

Yield (percentage of defects found before first
compile)

2.6% 66.5%

Measure Start of
Training

End of
Training

33.9 LOC/hour 34.0 LOC/hrProductivity (in LOC per hour)

Percent time spent in compile

Percent time spent in unit test

Compile defect density (number of defects found
during compile per thousand LOC [KLOC])

Table 2: Performance Improvement During PSP Training

-

1. Establish
product and
business goals

2. Assign roles
and define
team goals

3. Produce
development
strategy

and process

4. Build
overall and
near-term
plans

5. Develop the
quality plan

6. Build individual,
consolidated, and
balanced plans

7. Conduct
risk assessment

8. Prepare
management
briefing and
launch report

9. Hold
management
review

Launch
post-mortem

DAYS 1 and 2 DAYS 2 and 3 DAYS 3 and 4 DAYS 4 and 5

Figure 1: The Standard TSP Unit-Team Launch Process and Meetings

22 CROSSTALK The Journal of Defense Software Engineering May/June 2009

Software Engineering Technology

the final management meeting with all of
the team members, senior management,
team leaders, coaches, and involved sup-
port-group managers. The unit team lead-
ers first described the planning process and
the unit team plans. There was considerable
discussion about the program schedule, the
release contents, the delivery dates, and
how the team had estimated the work.

Everyone was nervous about the pro-
gram manager’s reaction. While he had
not said much during the discussion, they
knew that he would be hard to convince.
Both companies had a long record of
missing software commitments and the
developers felt that, unless he bought into
this plan, they would have to continue
with the same practices that had failed in
the past. At the end of the plan presenta-
tion, the program manager said: “I am dis-
appointed with the dates, but this is the
best program plan I have ever seen.” He
congratulated them on producing a
detailed and convincing plan with dates he
felt he could count on. While he would
have liked an earlier date, he felt it was
much more important to have a solid date
that he could use to make commitments
to the DoD. They had won—now all they
had to do was deliver! With a common
plan they all believed in, they were excited
and ready to tackle the challenges ahead.

Challenges During the Launch
The principal challenge during the launch
was to ensure that the unit teams’ plans fit
together into an overall plan that mini-
mized the program schedule. That
required each unit team to identify its
dependencies on the other teams and
adjust its plan to minimize the overall pro-
ject schedule. The leadership team met
with the team leaders and the four TSP
coaches every evening to guide this coor-
dination work. The following three exam-
ples show how the TSP launch process
helped the teams identify and resolve
many of the problems that they would not
normally have recognized until later in the
program (when those problems would
have caused serious delays).

1. The Requirements Schedule
Problem. Even though the requirements
team members were from different organi-
zations and had a range of skills, they
agreed on the team goals and roles in
about three hours. Then they drafted a ten-
tative requirements schedule and invited
the two development team leaders to a
review meeting. Each of the development
team leaders had also prepared initial plans
that did not mesh with the preliminary
requirements plan. They needed some

planned requirements items immediately
so they could start high-level design work
while other items could be deferred until
detailed design or implementation. After
about an hour, the development team lead-
ers and the requirements team had pro-
duced an agreed-upon requirements prior-
ity. The requirements team then produced
an initial requirements schedule that put
the high-priority development items first
and gave this plan to the development
teams to use in producing their plans.

2. The Role-Manager Teams. Since
many activities required a project-wide per-
spective, cross-team role-manager teams
were formed of the role managers from the
three unit teams. For example, the planning
role-manager team tracked and coordinated
the dependencies among the teams.
Similarly, the test and quality role-manager
teams ensured that testing and quality-man-
agement tasks were included in every devel-
opment phase. The leadership team mem-
bers mentored the role-manager teams and
kept them working on key cross-team
issues. For example, the design role-manag-
er team’s principal assignment was to ensure
that all high-level design work remained
consistent and to define common design
methods and standards. The manager also
ensured that each element of the product
work breakdown structure was assigned to
the unit team that was best able to handle it.

3. Integrating the Unit Team Plans.
After the unit teams produced their plans
on launch day 2, the leadership team
found that one development team was
planning on three releases and the other
team on four. After considerable discus-
sion, the leadership team agreed on a
strategy with three releases. They also
asked the design and customer-interface
role-manager teams to produce and main-
tain a single official list of the functions
planned for each release. The develop-
ment teams then produced their detailed
plans and schedules and these schedules
were adjusted to synchronize the product
release dates. The teams found they could
only deliver the minimum required prod-
uct function in 13 months rather than the
desired eight months. The two follow-on
releases would then complete the basic
product function in 25 months.

Using the Process on the
Project
Before the TSP, the managers had made
the team plans. Because these were high-
level plans, they did not provide the detail
needed for precise project tracking, and
management had never been able to get
accurate project status information. The

managers had been reluctant to delegate
planning, tracking, and plan management
responsibility to the teams; however, after
the executive seminar, they agreed that
the new training should enable the mem-
bers to make the detailed plans needed to
precisely plan, track, and manage their
own work. The unit teams’ detailed plan-
ning and tracking data enabled them to
manage their resources, precisely report
status, and get management help with
problems before they delayed the project.

Every week, the teams reported
planned and actual EV, the Cost Perfor-
mance Index (CPI), and task hours to the
leadership team. With these reports, the
leadership team could precisely track and
report project status to senior manage-
ment; in turn, senior management could
see if any milestones were exposed and
identify and help resolve any problems.
For example, achieving a milestone with
less EV than planned generally meant that
some quality steps had been skipped,
while slipping milestones often indicated
coordination problems or approval delays.

Part-Time Staffing
Part-time staff assignments were a partic-
ularly difficult challenge. While the unit
teams had a number of part-time mem-
bers, several were not even putting in the
time they had committed to their teams.
Because these part-time members often
possessed special knowledge or skill, their
work could not be shifted to others. The
detailed TSP plans and effort tracking
allowed the managers to see this problem
in the first few weeks of the job. As the
teams gathered data, it was soon evident
that, when members planned to work less
than half of their time, they often failed
to work even that amount. Some critical
and highly specialized skills were
obtained on a part-time basis, but the
team leaders found that many of the
other part-time members were costing
the project more money than their work
was worth. As one team leader said, “I
could trade three half-timers for one full-
timer and come out ahead.”

Using a Defined Process
Many people were initially skeptical about
the value added by a defined process. But
they soon saw that their previous infor-
mal process of circulating documents,
marking them up, and having changes
incorporated by the document owner did
not scale up to a project with numerous
stakeholders. Changes could conflict or
be contentious, and baseline documents
were difficult to identify. A member of
the leadership team then created a simple

May/June 2009 www.stsc.hill.af.mil 23

A Distributed Multi-Company Software Project

cross-team process for circulating base-
line documents, collecting comments, and
distributing the collected comments and
revisions for a second review. This
worked so well that an additional review
was rarely needed. This experience
demonstrated that a defined process
would help to make the work more effec-
tive and efficient and would not add
unnecessary bureaucracy.

Another key process element was
standards development. Different stake-
holders had different document needs.
The requirements engineers used techni-
cal specifications to resolve analysis
issues. Once a technical specification was
approved by the customer, it was used by
the programmers to design and imple-
ment the code. By establishing standards
for content, format, and conventions,
communication among stakeholders was
improved, all needs were addressed, and
the review scope could be narrowed. The
programmers appreciated a consistent
presentation and precise calculations
while the engineers received fewer nui-
sance comments. Eventually, standards
were developed for coding, configuration
management, design representations,
testing, and reports.

Process Improvement Proposals
When the teams realized that they could
change the process, they started collect-
ing process problems and analyzing caus-
es before each re-launch. They evaluated
their PIPs during re-launch preparation
and made process changes before starting
the next development cycle. The availabil-
ity of the PIP mechanism enabled the
team members to identify places where
they found the process inconvenient or
inefficient and then get those issues
resolved. This improved process effec-
tiveness and gave the team members a
sense of process ownership.

The coaches also reviewed the teams’
process fidelity at the seven-week point.
They found that all teams were regularly
collecting some of their data but that
these data were not as complete or accu-
rate as required. This finding suggested
that further process changes, as well as
some additional team member training
and coaching, was needed. The planning
managers also started taking a more
active role. These actions improved data
quality and enabled the team members to
better manage their personal plans and to
promptly modify their task lists to reflect
work changes.

Estimating Improvement
After a year and several cycles of feedback

and learning, team estimating accuracy
had improved significantly. All teams were
now gathering data and meeting and using
team data to balance workloads. A team
member who had been unable to plan and
track at the previous review was now
training new project members on planning
and making commitments. Plans were
more realistic and performance-to-plan
was much improved. In the project’s initial
three-month checkpoint, the task hour
plan-to-actual ratio improved from 1.09 to
0.96, and the CPI improved from 0.88 to
0.95 (where a value of 1 means on-time
and on-cost performance, respectively).
This means that instead of being 35 per-
cent late, they were 3 percent early, and the
CPI improved by 7 percent.

Use of Data
Later in the project, the teams started
reviewing their data before each re-launch
and analyzing test defects. Although the
size and defect data were incomplete, the
team could see the costs of finding and
fixing defects. The most significant find-
ing was that 10 percent of the defects
were in the testing materials and another
10 percent were due to incorrect or mis-
understood requirements. Coding defects
seldom required more than an hour to
find and fix while the non-coding defects
averaged more than four hours each, and
the test-case defects were often even more
time-consuming. These and other findings
led to improved requirements and design
inspections as well as team and leadership
workshops on topics shown by the data to
need improvement.

Team Problems
Surprisingly, having a distributed team was
not a problem for the requirements team.
The members built trust by creating com-
mon documents, having weekly videocon-
ference status meetings, arranging for reg-
ular face-to-face contact, and defining
common team goals. The members felt
that getting together every other month
helped to keep the team jelled.

Even though the development teams
were in one location, they initially had not
become jelled or smoothly working units.
The reason was that management had cre-
ated an organizational structure with a col-
located development team at each compa-
ny location. This meant that each develop-
ment team had responsibility for what had
originally been thought to be a separate
sub-product. After high-level design, how-
ever, these sub-products were found to
have unforeseen dependencies that
required the teams to share a large amount
of common code. The teams had not

planned for this level of interaction and
found it difficult to coordinate their work.
The team members had frequent disagree-
ments and team cohesion was soon
destroyed.

To solve these problems, the project
members proposed an alternate team struc-
ture that retained the requirements team
but restructured the two software develop-
ment teams to have members from both
companies and locations. Based on the
experience of the requirements team, these
teams were each given one tightly coupled
component to develop and their members
were geographically distributed. These
restructured teams were established at the
next re-launch where they each defined
their processes and developed their plans.
This structure produced two cohesive, pro-
ductive, but distributed teams.

Another issue was that as the products
matured through subsequent follow-on
releases, they required more maintenance
work as well as much more regression test-
ing. The requirements team’s role shifted
from product specification to verification
and validation, and the developers spent
more time with the requirements engineers
on test requirements and expected test
results. This led to another project reorga-
nization where the project was reformed
into three fully integrated product teams
with requirements engineers teamed with
the software developers. Because the tech-
nical coupling of the work had changed,
the new organization was needed so the
requirements engineers and software devel-
opers could define common goals, share
work priorities, have a comprehensive strat-
egy, and agree to interim milestones.

Project Results
The planning, measurement, and quality-
management skills the team members
gained in PSP training enabled them to
handle the large-systems challenges of this
project (as shown in Table 2). Without
such skills, the individual and team plans
would have been incomplete and inaccu-
rate and product quality would have been
marginal at best. With accurate plans and
consistently high product quality, the three
project unit teams consistently met their
commitments to each other and to man-
agement. As the teams learned to work
collaboratively, they learned to anticipate
and resolve problems, increasing their
productivity and accelerating the work.
They completed the originally committed
product releases essentially on schedule,
though some first-release functions were
deferred. The customer was pleased and
extended the project to include mainte-
nance and follow-on development. The

24 CROSSTALK The Journal of Defense Software Engineering May/June 2009

Software Engineering Technology

organizations have continued to use the
TSP process.

Conclusion
Prior to introducing the TSP, the two com-
peting companies described in this article
had been unable to produce the joint prod-
uct for which they had contracted with the
government customer. In fact, they had
not even been able to agree on a plan for
doing the development work. Following
the introduction of the TSP, the compa-
nies formed a joint team and quickly pro-
duced a project plan that the government
representative accepted. They then deliv-
ered a quality product on schedule.

By using the TSP’s self-directed man-
agement style and forming integrated
development teams, these competing
organizations were able to build a collabo-
rative working relationship and pre-
dictably produce quality results, even
when working at distributed locations and
having separate management reporting
chains. This experience demonstrates the
power of a properly defined, planned,
measured, and quality-controlled process
in helping organizations produce quality
products on predictable schedules. It also
shows that a properly formed, suitably
trained team with common goals, process-
es, and plans will overcome the distrust
and friction normal with teams from dif-
ferent organizations or separate locations.
Without a defined, measured, planned,
tracked, and quality-controlled process
like the one used by these teams, large-
scale distributed development teams have
rarely been successful.u

References
1. Hansen, Marc, and Robert F. Nesbit.

Report of the Defense Science Board
Task Force on Defense Software.
Washington, D.C.: Office of the
Under Secretary of Defense for
Acquisition and Technology, 2000.

2. Humphrey, Watts S. Winning With
Software: An Executive Strategy.
Boston: Addison-Wesley, 2002.

3. Humphrey, Watts S. PSP: A Self-
Improvement Process for Software
Engineers. Boston: Addison-Wesley,
2005.

4. Humphrey, Watts S. TSP: Coaching
Development Teams. Boston: Addi-
son-Wesley, 2006.

Note
1. Since the work was highly classified,

this article cannot name the applica-
tion or development organizations.

About the Authors

William R. Nichols,
Ph.D., joined the SEI in
2006 as a senior member
of the technical staff and
serves as a PSP instructor
and coach with the TSP

program. Prior to joining the SEI,
Nichols led a software development team
at the Bettis Laboratory near Pittsburgh
where he developed and maintained
nuclear engineering and scientific soft-
ware for 14 years. His publication topics
include the interaction patterns on soft-
ware development teams, design and per-
formance of a physics data acquisition
system, analyses and results from a parti-
cle physics experiment, and algorithm
development for use in neutron diffusion
programs. He has a doctorate in physics
from Carnegie Mellon University.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213-2612
Phone: (412) 268-2727
Fax: (412) 268-5758
E-mail: wm@sei.cmu.edu

Watts S. Humphrey
joined the SEI after his
retirement from IBM. He
established the SEI’s
Process Program and led
development of the

CMM for Software, the PSP, and the TSP.
At IBM, he managed their commercial
software development and was vice pres-
ident of technical development. He is a
fellow for the SEI, the Association of
Computing Machinery, and the IEEE. He
is also a past member of the Malcolm
Baldrige National Quality Award Board
of Examiners. In 2003, the President
awarded Humphrey the prestigious
National Medal of Technology for his
contributions to the software engineering
community. He holds master’s degrees in
physics and business administration.

Phone: (412) 268-6379
Fax: (412) 268-5758
E-mail: watts@sei.cmu.edu

Anita D. Carleton is a
senior member of the
technical staff at the SEI.
She has worked for more
than 20 years on software
process improvement,

process measurement, and the TSP.
Carleton helped to launch the software
measurement initiative at the SEI in 1988.
She is the co-author of “Measuring the
Software Process: Statistical Process
Control for Software Process Improve-
ment.” She was awarded with a commen-
dation from Dr. Barry Boehm for her
leadership in producing measurement
definition frameworks for the DoD
Software Action Plan. Carleton has a
bachelor’s degree in applied mathematics
from Carnegie Mellon University and is a
senior member of the IEEE Computer
Society.

Phone: (412) 268-7718
Fax: (412) 268-5758
E-mail: adc@sei.cmu.edu

James W. Over, who has
been with the SEI since
1987, is manager of the
TSP and is a senior mem-
ber of the technical staff
for the Software Engi-

neering Process Management Program.
Both in the United States and abroad,
Over has led the SEI’s work transitioning
the TSP into several hundred organiza-
tions. He received an award from the
Boeing Corporation for innovation and
leadership in software process improve-
ment. He has 35 years of technical and
management experience in the software
engineering industry. Over is the co-
author of several SEI publications on
software process definition and improve-
ment.

Phone: (412) 268-7624
Fax: (412) 268-5758
E-mail: jwo@sei.cmu.edu

May/June 2009 www.stsc.hill.af.mil 25

Function points are an accepted indus-
try standard method used for measur-

ing the size of software projects and appli-
cations. They can be used in conjunction
with other data for estimating as well as in
conducting productivity and quality analy-
ses. Often organizations use FPs and FP-
based measures as the key metric in out-
sourcing contracts.

One drawback, though, is the inability
of FPs to measure other functions that
may be impacted by a specific change but
are not actually changed themselves.
Often, additional testing is required down-
stream of functions that will be using data
from changed functions, but they them-
selves are not modified by the project and
are not considered to be within the project
scope. This increases effort and can affect
productivity.

There is also work separate from the
FP measurable functionality that cannot
be counted under IFPUG 4.2 rules,
including changes to static Web pages or
populating code tables that are not related
or used by the FP countable functions.
The Q/P Management Group recognized,
along with our outsourcing clients, that
something was needed to measure the
impacted functions not covered by
IFPUG 4.2 FPs. It was determined that in
order to ensure more accurate estimates
and to provide a good foundation for pro-
ductivity measures for use in outsourcing
contracts, a separate measure was re-
quired. It was important for the measure
to be:
• Consistent.
• Repeatable.
• Unbiased to promote good develop-

ment techniques.
• Easy to apply with little effort and/or

expense.

IP Concept Development
Brainstorming sessions were held to
explore ideas to support the need for addi-
tional measures. The initial brainstorming
activity focused on identifying situations
when the FP analysis of projects resulted

in zero FPs. These situations were then
categorized and analyzed to ensure that
they met the criteria of zero FP projects
and the functionality was unrelated to
functions that could be measured with
IFPUG 4.2 FPs.

This type of work is often completed
by a separate maintenance group and
maintenance measures are used (e.g.,
application FPs/full-time equivalent sup-
port staff for a year). However, not all

organizations have application FP counts
to utilize this measure. In these situations,
this work is completed as an enhancement
project and needs to be measured sepa-
rately. Depending on the structure of the
organization, zero FP projects can equal
between 15 and 20 percent of the organi-
zation’s development work.

Separate sessions were held to identify
potential measures for these non-FP
countable situations. One concept focused
on a technical approach of counting the
number of files or number of tables
involved. When this concept was tested,
issues arose related to consistency, objec-
tivity, and the number of measures. It
seemed as though the resulting size mea-
sure would be impacted by how the soft-
ware was developed. As a result, this
approach cannot be used to measure pro-

ductivity consistently across technologies
or for different development methodolo-
gies.

The objective of developing the alter-
native measure was not to measure the
technical aspects of a project; it was to
measure user-recognizable functions that
are impacted by a project but are not
changed. In recent years, Q/P has devel-
oped a measure for analyzing functionali-
ty that needed to be tested in a project,
called test points, to estimate required test
cases and testing effort. Building on this
work and utilizing the standard IFPUG
FP methodology, Q/P developed IPs.

While developing this concept, it
became clear that IPs have several bene-
fits. IPs are:
• A single measure for all impacted

functionality so it is a manageable
addition to a measurement program.

• Independent of technology and imple-
mentation techniques so it can be used
in all development environments.

• Based on the IFPUG FP methodolo-
gy. Therefore, it does not require an
extensive set of guidelines to be devel-
oped and does not require extensive
training for employees already familiar
with FP counting.

• A consistent measure for zero FP pro-
jects so they can be used to quantify
productivity rates separately from FP-
based productivity.

What Are IPs?
IPs account for functions that are impact-
ed but not changed by a project. They fol-
low the same concept as FPs, but focus on
non-FP countable projects and functions
within projects. It is imperative that IPs
only be used for sizing functionality not
accounted for under traditional FP analy-
sis. The intent is not to diminish the use of
FP measures with overlapping measures
but rather to fill a void that exists in FP-
based software measurement. Since the IP
measure is intended to be complementary
to FPs, it is important to account for each
separately. Data related to IPs should be

Measuring Maintenance Activities
Within Development Projects

Although function points (FPs) are a good measure of the functionality that is added, changed, or removed through a devel-
opment project, they do not measure other functions that may be impacted by a specific change but are not actually changed
themselves. As well, there is often project work separate from the FP measurable functionality that cannot be counted under
the current International Function Point Users Group (IFPUG) 4.2 rules [1]. This article explores impact points (IPs), a
measure which accounts for these issues.

Lori Holmes and Roger Heller
Q/P Management Group, Inc.

“It was determined that
in order to ensure more
accurate estimates and

to provide a good
foundation for

productivity measures ...
a separate measure

was required.”

26 CROSSTALK The Journal of Defense Software Engineering May/June 2009

Software Engineering Technology

kept in a separate repository from FPs; IP
productivity rates should be developed
and reported independently from FP pro-
ductivity rates.

Once a non-countable function is
identified, the IFPUG concepts are used
to define the function and measure the
complexity.

Projects that can be counted using FP
analysis are not candidates for IP counts.
IP countable items include:
• Table Updates. Examples are rate

changes, adding products and/or ser-
vices, and parameter/configuration
changes.

• Code/Text Changes. Examples are
static page updates, Web content
updates, cosmetic changes, format
changes, sort changes, adding or
changing help, or error messaging.

• Data Management. Examples are
data migration and database restruc-
turing.

• Technical. Examples are multiple
browsers and new sources of data
(e.g., networks).
In all of these, the functions using the

new text, updates, etc., would be identified
as impacted functions and counted to
derive the project’s IPs.

Possible Scenarios for
Considering IPs
The following are three examples of pos-
sible applications of IPs, including one
scenario when IPs shouldn’t be used.

Example 1: Use IPs
A project requires changes to a logical file
to add additional fields necessary for cal-
culating billing rates. Input screens and
display screens of these new fields also
require changes. In addition, the bill cre-
ation process logic must be changed to
incorporate the new calculations. All of
this functionality would be FP countable.

Once the bill is generated, it is stored
in a logical file and the elementary process
is completed. All changes for the project
are included in the process that ultimately
stores the bill. No software changes are
required beyond the saving of the bill.
However, functions exist that display the
past bills and send the bills to other sys-
tems. These functions use the file where
the bill is stored, but themselves do not
require any software changes. Thus, even
though they are not modified by the pro-
ject, these functions are impacted because
they must pass along the bill as they did
before. These functions do not generate
any FPs but they have been impacted by
the change and need to be tested to ensure

that everything works properly.
The functions would then be counted

using the IFPUG definitions to determine
if they are external outputs or external
inquiries (EQs), and the IFPUG complex-
ity ratings would be applied.

Example 2: Use IPs
A request has been made to add fields to
multiple Web pages that retrieve informa-
tion from developer-maintained files and
do not calculate, derive, or maintain any
data.

Under IFPUG rules, these functions
are not countable because they would be
EQs with zero file types referenced
(FTR), which is not allowed. Data main-
tained by developers are not considered as

internal logical files or external interface
files, so the files containing the Web page
information cannot be FTRs.

IPs allow for inquiry functions (EQs)
to be counted when there are zero FTRs
accessed. The functional complexity
would be determined based on zero FTRs
and the number of data element types that
are entered or displayed.

Example 3: Do Not Use IPs
A project requires new rates to be added
to a table. This does not require any
change to the table structure, just rows to
be added. It is also necessary that logic be
changed in a screen to use the new rates
and to utilize different calculations when
inputting data.

In this case, the table is not countable
with FPs, but the screen is countable due
to the logic changes to the calculations.
For the specific requirement to be deliv-
ered, both changes are necessary. The
table is just the development technique to

assure that the rates are available to the
screen. This table change is related to the
FP countable change, and any effort relat-
ed to both activities should be considered
together when estimating the project or
calculating the productivity rate.

In this case, IPs should not be used for
the table change because the change is
related to a function that is FP countable.

Testing and Implementation
of IPs
To implement IPs in an organization, it is
important to assess and define the types of
projects and situations that will use them.
In addition, to use IPs for estimating and
measurement, a baseline study should be
conducted to quantify the current situa-
tion and establish productivity rates. Some
steps to consider are to:
• Develop a list of non-FP countable

situations and projects then categorize
them by type and volume (e.g., rate
changes, new products, etc.).

• Conduct IP counts on a representative
sample of projects from the non-FP
countable project list.

• Capture effort and delivery platform
for non-FP countable projects includ-
ed in the study to baseline their pro-
ductivity rates.

• Assess the productivity rates (IPs per
hour) to determine trends and any fur-
ther breakdowns/measures needed.

• Develop templates to use going for-
ward to avoid conducting IP counts on
all non-FP countable projects.
° If rate changes typically impact the

same functions, then the same IP
count would be used each time.

° Based on the baseline data, one to
three templates may be developed
per category (e.g., low, medium,
and/or high).

Conclusion
IPs can be a useful tool for organizations
that have a large amount of non-FP
countable projects or portions of projects.
They can be used similarly to FPs in mea-
suring productivity and quality for these
projects.

IPs are not intended to replace FPs,
but are meant to provide a supplement for
the areas FPs do not cover. It is imperative
that IPs do not overlap with the function-
ality that is measured by FPs. In other
words, IPs should not be used to double-
count or overstate the amount of work
that needs to be delivered.

IPs, as a measure for non-FP count-
able items, are beneficial for the following
reasons:

“It is imperative that IPs
do not overlap with the

functionality that is
measured by FPs. In

other words, IPs should
not be used to

double-count or overstate
the amount of work that
needs to be delivered.”

May/June 2009 www.stsc.hill.af.mil 27

Measuring Maintenance Activities Within Development Projects

• It provides one measure for all non-FP
countable projects.

• Once an impacted function is identi-
fied, guidelines for how to count are
already available (IFPUG).

• The measure is not impacted by the
development techniques or how things
are physically implemented.

• Organizations can associate productiv-
ity rates for each appropriate segment
(e.g., platform, type of change, size,
etc.).

• Organizations can develop IP tem-
plates for each type of non-FP count-
able project to reuse on future projects
of the same type.
Q/P is confident that IPs will fill the

void that organizations have with measur-
ing non-FP countable projects. Using IPs
correctly will provide consistent measure-
ment data that can be used in estimating,
productivity, and quality analyses, as well
as in outsourcing contract negotiations.u

Reference
1. IFPUG Counting Practices Commit-

tee. Function Point Counting Practices
Manual. Release 4.2.1, Jan. 2005.

About the Authors

Lori Holmes is a direc-
tor with Q/P, specializing
in software measurement,
process improvement,
and quality assurance.
Her areas of expertise

include FP analysis, software project esti-
mation, establishing measurement pro-
grams, and software quality assurance.
Holmes is recognized as an international
consultant, speaker, and instructor. She
focuses on helping organizations imple-
ment quality and productivity improve-
ment programs utilizing measurement
techniques. She is an experienced instruc-
tor in change management, quality in-
spections, measurement, and FP analysis.

Q/P Management Group, Inc.
10 Bow ST
Stoneham, MA 02180-1343
Phone: (410) 544-5781
Fax: (410) 544-5827
E-mail: lori.holmes@qpmg.com

Roger Heller is Q/P’s
vice president. He is a
recognized consultant,
instructor, and speaker
who specializes in helping
organizations improve

software quality and productivity through
measurement. Heller has assisted numer-
ous organizations in establishing software
measurement programs and quality
improvement initiatives. His other areas
of expertise include FP analysis (and its
application techniques in emerging envi-
ronments), evaluating and measuring
technical architectures, software estimat-
ing, and application and technology plan-
ning.

Q/P Management Group, Inc.
10 Bow ST
Stoneham, MA 02180-1343
Phone: (941) 629-0943
Fax: (941) 629-2467
E-mail: rheller@qpmg.com

28 CROSSTALK The Journal of Defense Software Engineering May/June 2009

Departments

Tilcon IDS White Paper
www.tilcon.com/manual/Tilcon _WhitePaper.pdf
The Tilcon Interface Development Suite (IDS) is a multi-plat-
form user interface development solution (graphical user inter-
face/human-machine interface builder) that delivers robust,
highly interactive user interfaces for real-time, embedded, and
mission-critical applications. Readers will get a high-level tech-
nical overview of the Tilcon IDS, details regarding the compil-
er, processor, and operating systems supported, and a quick
overview of how IDS works “from the user’s perspective.” You
can also learn more about the main components—the interface
builder, the embedded vector engine, and the application pro-
gramming interface—as discussed in this issue’s article, “Using
WYSIWYG GUI Tools With UML.”

Assessment of the Ballistic Missile Defense
System (BMDS)
www.cdi.org/pdfs/FY08BMDSJan09.pdf
As discussed in this issue’s article “Software Safety for Model-
Driven Development,” the Missile Defense Agency’s Command,
Control, Battle Management, and Communications program has
been integrating elements of the Global Engagement Manager
(GEM) software development methodology into its BMDS. This
January 2009 report—from the Director of Operational Test and
Evaluation—looks back at the BDMS in 2008. It includes an
examination of recent progress with respect to baselines and goals,
a determination of the current test program’s adequacy, and an
analysis of the system’s overall operational effectiveness. This
report also gives a GEM progress assessment and discusses their
future expectations for the GEM.

The Defense Readiness Reporting System:
A NewTool for Force Management
www.ndu.edu/inss/Press/jfq _pages/editions/i39/i39_forum
_05.pdf
In this edition of CrossTalk, Portia Crowe and Dr. Robert
Cloutier show “Evolutionary Capabilities Developed and
Fielded in Nine Months,” with the Defense Readiness
Reporting System-Army (DRRS-A) at the heart of that success.
Now Laura J. Junor—director and scientific adviser for the
Office of the Secretary of Defense Readiness Programming and
Assessment Division—explores the DRRS-A, which moves the
focus of force managers from reporting unit readiness to man-
aging force capabilities. In this Joint Force Quarterly article,
Junor explores the DRRS-A in regards to how force managers
can adapt to meet current needs under the DRRS-A, residual
capability identification, what capabilities the DoD has and
how they can be tailored and combined to respond to opera-
tional needs, and the roll of the Web-based Enhanced Status of
Resources and Training System.

Function Point Basics – IFPUG 4.2
www.totalmetrics.com/ __data/assets/pdf _file/
0012/2046/IFPUG-4.2-Quick-Reference.pdf
In this issue’s “Measuring Maintenance Activities Within
Development Projects,” Lori Holmes and Roger Heller discuss
a way to measure impacted functions not covered by the
International Function Point User’s Group (IFPUG) Counting
Practices Manual (CPM) 4.2. If you are foggy on the ins and

outs of IFPUG or CPM 4.2, or just want a refresher, Total
Metrics has simplified the concepts down to an easily under-
stood two-page “cheat sheet.” Several IFPUG 4.2-specific terms
are defined: user, user view, user identifiable, application
boundary, scope, and control information. You can also learn
the basics of external input, external output, external inquiry,
internal logical files, external interface files, function points
awarded (FPA), and the FPA measurement process.

Watts New?
www.sei.cmu.edu/news-at-sei/columns/watts _new/watts
-new.htm
Watts Humphrey, co-author of this issue’s article, “A
Distributed Multi-Company Software Project,” has his own col-
umn with the SEI called Watts New? As perhaps the best-known
member of the SEI’s technical staff, Humphrey has taken read-
ers on a process-improvement journey, step by step. Also avail-
able, at <www.sei.cmu.edu/news-at-sei/columns/watts_new/
watts-new-compiled.pdf>, is a collection of his columns dating
back to 1998. Humphrey explores a range of topics: the prob-
lem of setting impossible dates for project completion, planning
as a team, using the Team Software Process, the importance of
removing software defects, applying discipline to software devel-
opment, and approaching managers about a process improve-
ment effort.

A View of 20th and 21st Century
Software Engineering
http://sunset.usc.edu/csse/TECHRPTS/2006/usccsse2006-626
/usccsse2006-626.pdf
In this issue’s Open Forum, “From Substandard to Successful
Software,” Martin Allen recognizes Barry Boehm’s call to look at
history for successes—instead of just failures not to repeat. In
this sweeping report covering Boehm’s 54-year career in soft-
ware engineering, he identifies some of the past major software
experiences that are worth repeating (as well as some that are
not). Boehm explores software engineering’s past, present, and
future: the 1950s, including the semi-automated ground envi-
ronment software development process; software crafting in the
1960s; formality and the Waterfall processes of the 1970s; the
productivity and scalability of the 1980s; concurrent versus
sequential processes in the 1990s; our current focus on agility
and value; and the future, analyzing how globalization and sys-
tems of systems might affect the next decade.

Software Technology Support Center
(STSC) Consulting Services
www.stsc.hill.af.mil/consulting
Does your organization need help implementing and appraising
CMMI? Do you struggle with software estimation? Do you
need help assessing, preparing, planning, applying, and effec-
tively using software technologies? Do you want to learn more
about requirements engineering technology, object-oriented
programming, Ada for managers, or the Personal Software
Process? STSC Consulting Services—a U.S. Air Force-based
provider of assessment and workshops—is the first line of
defense in solving software challenges in your organization.

WEB SITES

May/June 2009 www.stsc.hill.af.mil 29

In 2007, a financial earthquake started
shaking the stability of global

economies, with the epicenter situated in
the subprime mortgage market. Banks and
investment institutions with hundreds of
years of displaying prudence disclosed
that their very foundations were riddled
with toxic debt. From this, the credit
crunch was born. The scale of the prob-
lem was enough to bankrupt countries
such as Iceland1, and behemoths in the
banking industry continue collapsing or
are subject to nationalization. Given the
tens of thousands of financial experts
employed and the maturity of risk man-
agement processes in the credit industry,
one question remains: How did the prob-
lem become so large and so widespread
without earlier detection?

Very few of us are qualified to under-
stand why the circumstances for econom-
ic meltdown were not avoided, nor are the
majority of our citizens equipped to com-
prehend even the basics of the global
banking industry and the risks in the cred-
it systems. Nonetheless, some of us ask
whether there is a warning in the credit
crunch for the acquirers and providers of
high-technology systems. Could unman-
ageable levels of substandard software
paralyze the software industry the way that
unmanageable levels of subprime loans
paralyzed finance?

Substandard Software
Recently, we have witnessed a significant
rise in the number of organizations rely-
ing heavily on the successful deployment
of SISoS. In industries such as defense,
transport, medical, communications, ener-
gy, space, entertainment, and finance,
reliance on software keeps growing. An
exponential increase in the magnitude and
complexity of the systems attempted is
also evident. Undoubtedly, the risks from
substandard software have increased
respectively. For instance, the volume and
complexity of software systems in the

average family car have increased substan-
tially in the last 10 years; however, it is
clear that the vast majority of these soft-
ware systems are dependable because oth-
erwise our roads would be strewn with
inoperable vehicles. On the other hand,
there have been a few well-publicized hic-
cups with embedded software in the auto-
motive industry, culminating in the embar-
rassing and expensive recall of thousands
of vehicles [1]. A glut of substandard soft-
ware is certainly capable of damaging the
reputation of a car manufacturer, and is

theoretically capable of contributing to
the demise of automotive giants. Articles
such as “Software’s Chronic Crisis” [2]
and various other reports suggest that
multiple industries are afflicted by sub-
standard software.

Far too many substantial projects still
flounder when involving software-intensive
systems. Project success in terms of cost,
schedule, capability, and user acceptance is
too rare an occurrence (refer to the sidebar
on page 31). Furthermore, significant num-
bers of software systems that are success-
fully deployed are later found to have issues
with maintainability, portability, scalability,
flexibility, and reliability. In part, this is due
to the fact that the first thing to be sacri-
ficed in the rush to deploy a late project is
quality; this provides a perfect incubator
for substandard software. Professional
engineers are taught to sacrifice non-essen-
tial system capabilities first and quality last.
If the constraints of a schedule or budget

mean an all-singing-and-all-dancing system
cannot be deployed, then at least it may still
satisfy customers and users temporarily.

Causal Factors
One favored approach for participants in
failed or troubled software projects is to
perform a forensic analysis or lessons-
learned exercise. From experience, this
tends to inappropriately concentrate an
organization’s attention on symptomatic
rather than causal factors. By way of anal-
ogy, take the medical profession: For many
decades, they strived to move from treat-
ing symptoms to curing disease to disease
prevention; treatment of symptoms is
often necessary, but far from sufficient.

It is easy to understand why a systems
acquirer or supplier team struggles to over-
come inherent bias in order to focus on
and expose fundamental technical and
managerial weaknesses. An alternative for
them is to work diligently on eradicating
symptomatic factors on succeeding pro-
grams, while ignoring conveniently the
endemic causes of project problems. In
the wake of an expensive project failure,
there often follows an inglorious frenzy to
reinvent software engineering processes
from first principles, or the latest project
management tool is rolled out in true
panacea fashion. Thereby, unsuccessful
project teams are provided with a myriad
of opportunities to spread the spores of
substandard software into other areas.
Most diseases and infections rely on some
interaction of their human hosts in order
to spread and multiply; likewise, the spread
of substandard software depends on peo-
ple. In short, lessons-learned initiatives
aimed at organizational improvement,
based solely on failed or troubled projects,
may be simply acting as a Trojan Horse2.

The Seven Rules for Success
Analyzing and reporting the causal factors
of failing software projects is often too

From Substandard to Successful Software
Martin Allen

Independent Software Consultant

Our global finance industries are in the grip of a fearsome tempest known to us as the credit crunch, triggered by bad subprime
mortgages and toxic debt. Is there a lesson here for our industries and government agencies that have become reliant on software-
intensive systems of systems (SISoS) and are susceptible to the potential ravages of inferior software? It is essential for the soft-
ware industry to identify and tackle what I call substandard software: software life-cycle products that do not have basic quality
attributes such as reliability, usability, accuracy, efficiency, adaptability, and testability. This article provides indicators and pro-
fessional advice in a set of seven rules that will increase the probability of a successful software project.

Open Forum

“Far too many
substantial projects still
flounder when involving

software-intensive
systems.”

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering May/June 2009

onerous or uncomfortable an assignment
for organizations. A complementary and
more palatable strategy may be to concen-
trate on the fundamental factors that pro-
fessionals know contribute to successful
teams and projects. This is the transpose
of a typical lessons-learned initiative.
Could such an approach be influential in
halting a substandard software plague3?

The following is a proposed set of
seven rules to enhance the probability of
success:
• Rule 1: Professionalism and software

engineering competence should be
assessed objectively and encouraged
proactively by senior management.

• Rule 2: The number and seniority of
software professionals employed with-
in an organization should be commen-
surate with the magnitude and critical-
ity of the required software systems.

• Rule 3: Good quality life-cycle prod-
ucts are the essential ingredients in the
development, deployment, and main-
tenance of successful software sys-
tems.

• Rule 4: Mature industry standards are
key to the production of high-quality,
consistent life-cycle data products.

• Rule 5: Employ COTS software prod-
ucts with due care.

• Rule 6: The formality or weight of
processes needs to be tailored and
applied in accordance with project
risks.

• Rule 7: Processes are necessary but
not sufficient; competent people and
practical life-cycle products are equally
necessary.
In the following sections, the origins

of these rules are considered in the con-
text of the three elementary components
of a project. I refer to these as the 3Ps:
people, products, and processes.

People
In “The Mythical Man-Month,” Frederick
P. Brooks suggested that a tenfold produc-
tivity chasm existed between the most and
least efficient software development teams
[5]. This hypothesis was given further cre-
dence in Barry Boehm’s “Software
Engineering Economics” [6], and by sub-
sequent studies. From assembly languages
to Java, from structured methods to com-
puter-aided software engineering tools,
from process improvement to object ori-
entation, each advance in software engi-
neering has been fundamentally reliant on
its application by competent managers and
engineers (Rule 1). My extensive experi-
ence also helps confirm that a profession-
al and competent staff, organized efficient-
ly, is the primary influence on productivity.

Enterprises that depend on software
systems should assess carefully and peri-
odically whether the levels of education,
training, experience, and seniority of per-
sonnel can accommodate the current and
future needs of their industry. If anything
is a causal factor in the success of projects,
it is individual and team competence.

For some project teams, learning a best
engineering practice is perhaps easier than
abandoning systemic poor practices.
When current project teams are found to
be designing with flow charts, profession-
als must question why four decades of
engineering progress are ignored. In “The
Challenges of Complex IT Projects,” pro-
fessionalism and education are identified
as having a major influence:

A striking proportion of project
difficulties stem from people in
both customer and supplier organi-
zations failing to implement known
best practices. This can be ascribed
to the general absence of collective
professionalism in the IT industry,
as well as inadequacies in the edu-
cation and training of customer
and supplier staff at all levels. [7]

Increasingly, there are calls for the
competence of personnel working in safe-
ty-critical industries to be assessed and
managed [8, 9]. At the time of writing this
article, there were no legislative require-
ments in place in Europe to regulate the
competence of software safety profes-
sionals.

What differentiates professionals and
amateurs? Their behavior. Software pro-
fessionals are characterized by a relevant
education and continued learning; they
have a holistic or system life-cycle focus;
they work to industry standards; and they
have a balanced approach to technical risk.
In contrast, amateurs have no relevant
software engineering education: They
focus on implementation, coding, and
tools, and have a naïve view of risk.

In some situations, organizations
employing software professionals still find
success elusive. This may be due to the
pattern of seniority within the teams. In
an environment where deployment of
SISoS is essential to the business, software
professionals should hold a commensu-
rate level of senior roles (Rule 2). One
possible alternative to the proliferation of
process maturity models (e.g., CMMI)
could be a framework for objective assess-
ment of an organization’s capability, based
on the number and seniority of compe-
tent software engineers employed.

Along with the seniority of competent

personnel, organizational structure is
known to have a significant bearing on sus-
tained success. The relative advantages and
disadvantages of project-managed and dis-
cipline-managed structures have been
acknowledged for many years. A hybrid
matrix management structure is a reputable
alternative that attempts to capture the
advantages of both while reducing the dis-
advantages. Experience has shown that the
matrix works effectively when the (soft-
ware engineering) discipline is responsible
for strategic decisions, while tactical deci-
sions are best made by project teams. For
example, the selection of a system architec-
ture is a strategic concern. Organizational
policy may be used to separate explicitly
strategic and tactical concerns.

Products
If processes are viewed as the recipes for
development of successful software sys-
tems, then life-cycle products are the vital
ingredients (Rule 3). Good quality ingredients
are essential in the creation of gastronomic
delights, and there is a direct analogy here
with software products. There is a finite
limit to what can be achieved by processing
or cooking with inferior ingredients.

Several mature software standards,
particularly those originating from the
DoD and IEEE, emphasize the produc-
tion of data items (Rule 4). Software pro-
fessionals recognized many years ago that
the collection and management of cohe-
sive, decoupled life-cycle data or informa-
tion products is a crucial facet of the dis-
cipline. Tangible life-cycle data are
required to support both verification and
validation activities or processes.

Complementary ingredients are
required to produce a decent meal, just as
the availability of good quality code does
not by itself satisfy the multiple criteria for
a successful software system. Typical soft-
ware system life-cycle products include:
• ConOps.
• System requirement specification.
• System architectural design.
• Software requirements specification.
• Interface requirement/design.
• Software architectural design.
• Source code.
• Executable code.
• A qualification test plan.
• A qualification test description.
• A development plan.
• A quality and configuration plan.

Superior standards tend to be prescrip-
tive in the types of life-cycle data required,
generic in the way the life-cycle data is col-
lected and managed, and flexible enough
to support tailoring for different cate-
gories of software projects. Effective tai-

From Substandard to Successful Software

May/June 2009 www.stsc.hill.af.mil 31

loring is arranged from safety-critical,
through mission- or business-critical,
down to support software. Additionally,
several standards provide evaluation crite-
ria to direct the quality control of life-
cycle products.

One proposed approach to the global
software crisis—prevalent now in the
defense communities—is to employ COTS
software products (Rule 5). This remains a
commendable strategy but is far from a
panacea. There remain significant issues
with the deployment of COTS-based appli-
cations into environments for which they
were not intended (as indicated in [10]).

Processes
Software system processes and organiza-
tional process maturity have received a sig-
nificant degree of academic and industry
exposure in the 1990s and 2000s. The
ubiquitous CMM and CMMI offerings
from the SEI are familiar to software engi-
neers around the globe. As stated previ-
ously in this article, processes are the
essential recipes for the development of
software systems.

However, it is a popular myth (cau-
tioned in [10]) that processes alone can
transform an enterprise from a Level 1 ad-
hoc underachiever to a Level 5-optimized
corporate machine. An established tenet is
that overemphasis on processes and pro-
cedures makes an organization bureau-
cratic, inflexible, and overly reliant on
checklists.

It has been suggested that the extraor-
dinary interest in Agile methods has been
fueled in part by a general dissatisfaction
with heavyweight processes; the propo-
nents of processes have fractured into two
opposing entrenched camps: CMMI ver-
sus Agile. Quite simply, the weight or for-
mality of processes applied should be
commensurate with the project risks,
especially with respect to magnitude and
criticality (Rule 6). This is an established
approach with safety-related standards
such as DO-178B and IEC 61508. Such
issues are also tackled in [10]. A measure
of diligence is required because processes
and techniques that are considered suc-
cessful on small developments do not
tend to scale-up. Software standards MIL-
STD-498 and IEEE 12207, which are
geared toward medium to large-scale
SISoS development and integration, use
project risk criteria as keys to the suitabili-
ty of different life-cycle models. Grand
design, incremental, and evolutionary
models are included in these standards.

To all the proponents of software
process—whether light or heavy, Agile or
CMMI—a note of caution is appropriate.

Stringent processes are very effective in
volume manufacturing environments
(from where the original concepts of
process and quality control originated)
where repeatability and consistency are
gods. Stringent processes are also effective
in software engineering. However, software
engineering can never resemble a produc-
tion line, and processes are necessary but
not sufficient for success because compe-
tent people and practical life-cycle products
are similarly indispensable (Rule 7).

3Ps Aligned
Ensuring the alignment of the 3Ps by
employing these seven rules is no guaran-
tee, but it will maximize the probability of
success. I have had the privilege of work-
ing on and witnessing several successful
projects where competent people—ana-
lysts, designers, project managers, test
professionals, and programmers—em-
ployed mature processes to produce
dependable software products.

Commentators have remarked that
many financial institutions will survive the
present credit crunch, but will necessarily
emerge with a different modus operandi,
particularly with respect to acceptable
risk. Perhaps too, our industries that are
dependent on SISoS may have to go to
the edge of a similar abyss before taking
the opportunity to address the causal fac-
tors of substandard software. Alterna-
tively, influential people and organizations
could start applying the seven rules and
may never need to explain why so many
experts overlooked the substandard soft-
ware epidemic.u

References
1. Noon, Chris. “Okuda’s Toyota Recalls

Prius Fleet Over Software Glitch.”
Forbes. 14 Oct. 2005 <www.forbes.
com/2005/10/14/toyota-prius-recall
-cx_cn_1014autofacescan03. html>.

2. Wayt Gibbs, W. “Software’s Chronic
Crisis.” Scientific American. Sept. 1994.

3. Boehm, Barry W., and Richard Turner.
Balancing Agility and Discipline: A
Guide for the Perplexed. New York:
Addison-Wesley Longman, 2003.

4. Boehm, Barry W. A View of 20th and
21st Century Software Engineering.
Proc. of the 28th International Con-
ference on Software Engineering.
Shanghai, China: 20-28 May, 2006.

5. Brooks, Frederick P. The Mythical
Man-Month: Essays on Software
Engineering. New York: Addison-
Wesley Longman, 1974.

6. Boehm, Barry W. Software Engineer-
ing Economics. Upper Saddle River,
NJ: Prentice Hall PTR, 1981.

7. The Royal Academy of Engineering
and The British Computer Society.
The Challenges of Complex IT
Projects. London, UK: The Royal
Academy of Engineering, Apr. 2004.

8. Health and Safety Executive, The
Institution of Electrical Engineers,
and The British Computer Society.
Managing Competence for Safety-
Related Systems. 2007 <www.hse.gov.
uk/humanfactors/comah/mancom
ppt1.pdf>.

9. International Electrotechnical Com-
mission: IEC 61508-1. Functional
Safety of Electrical/Electronic/Pro-

Substandard Software Indicators

In 2007, I was involved in a large European collaboration projectÑwith three interna-
tional customers and one main system supplierÑworth hundreds of millions of Euros.
It was an environment that lent itself to creating substandard software. The main indi-
cators were weaknesses in:
• Standards Compliance. The supplier organization had no demonstrable evi-

dence of compliance on previous or current projects.
• The Life-Cycle Model. The supplier initially proposed the use of Agile methods,

even though the application was large and safety-related [3].
• Concept of Operations (ConOps). After more than two years of project activity,

the ConOps had not been considered.
• Software and System Qualification Testing. Contrary to all mature standards

and test regimes, qualification testing did not feature in any project plans.
• Data Modeling. The system was predominantly a data management and distribu-

tion system, but no data model was available.
• Competence. The customers and supplier lacked competent software profes-

sionals in the project management teams.
• System and Software Architecture. Techniques to derive the system architec-

ture were archaic and discredited (e.g., functional decomposition).
The lack of ability was a causal factor, whereas the other factors were symptomatic.

32 CROSSTALK The Journal of Defense Software Engineering May/June 2009

Open Forum

grammable Electronic Safety-Related
Systems. Appendix B. 1 Dec. 1998.

10. Boehm, Barry, Peter Kind, and
Richard Turner. “Risky Business: 7
Myths About Software Engineering
That Impact Defense Acquisitions.”
Project Management. May-June 2002
<www.dau.mil/pubs/pm/pmpdf02/
boe-mj2.pdf>.

Notes
1. There are many articles on this topic,

including <www.cnn.com/2009/ WORLD
/europe/01/26/iceland.government>.

2. This is the more classic definition of
“Trojan Horse” (see <http://en.
w i k i p e d i a . c o m / w i k i / Tr o j a n _
Horse>), not the computer malware.

3. Barry W. Boehm, the respected soft-
ware engineering professor at the
University of Southern California,
hints at such a strategy in “A View of
20th and 21st Century Software
Engineering.” In a riposte to George
Santayana’s famous quote, “Those
who cannot remember the past are
condemned to repeat it,” Boehm
advises that failing to acknowledge and
record past successes condemns an
organization not to repeat them [4].

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

COMING EVENTS

June 29-July 2
ACM SIGMOD/PODS 2009

Providence, RI
www.sigmod09.org

July 1-3
21st International Conference on

Software and Knowledge Engineering
Boston, MA

www.ksi.edu/seke/seke09.html

July 13-16
2009 International Conference on

Software Engineering Theory and Practice
Orlando, FL

www.promoteresearch.org/2009/
setp

July 19-23
International Symposium on Software

Testing and Analysis
Chicago, IL

www.cse.msu.edu/issta09

July 20-24
33rd Annual IEEE International

Computer Software and
Applications Conference

Seattle, WA
http://conferences.computer.org/

compsac/2009/

August 18-20
LandWarNet Conference

Ft. Lauderdale, FL
www.afcea.org/events/land

warnet/09

August 24-28
13th International Software Product

Line Conference
San Francisco, CA

www.sei.cmu.edu/activities/splc2009/

2010
22nd Annual Systems and Software

Technology Conference

Salt Lake City, UT
www.sstc-online.org

About the Author

Martin Allen is a soft-
ware engineering profes-
sional with more than 28
years experience, mostly
in the defense industry in
the United Kingdom. He

has worked on many successful software
intensive systems for the British Royal
Air Force and the Royal Navy. Allen has
always had a strong interest in industry
standards for the engineering of depend-
able systems. His other professional
interests include risk management, soft-
ware cost economics, requirements
analysis, design methods, and software
testing. Allen and his colleagues work on
the boundary between the academic
research of computer science and the
practical application of software engi-
neering.

37 Priestfields
Fareham, Hampshire
United Kingdom, PO14 4TE
Phone: +0044 (0) 7881542031
E-mail: mjallen60@yahoo.co.uk

May/June 2009 www.stsc.hill.af.mil 33

Departments

Dear CrossTalk,
As someone who supports process engineering in my job, and in
light of the numerous and recent cuts to process improvement (PI)
efforts across the nation, I felt the need to share my thoughts with
the PI community.

Most PI professionals soon realize that their job is unique in that
they not only need to perform all of the activities related to PI itself,
but that they also need to be able to sell the value of what they do.

In many organizations, PI is often viewed with just a bit of sus-
picion, especially by those in management who see it as “overhead,”
or just a fad that will eventually fade away. When times get tough and
the belt-tightening starts, PI can become an easy target for an orga-
nization needing to reduce or redirect resources. The harsh reality is
that in this job we need to always remember that there is a “target”
on our back. We not only need to produce value, but show that value
on a regular basis—or risk becoming another statistic.

Some time ago, my organization decided that we (and by infer-
ence me) would no longer perform compliance auditing of the more
than 200 projects in our IT department. My first impression was that
this was simply a “less than ideal” decision by management, but
upon reflection, I realized that the root of the problem was me: My
team and I had been plugging along doing some really terrific work,
but failing to regularly showcase our successes before key stakehold-
ers. We showed a lot of data, but not to all the right people and with
little emphasis on our unique value. In short, we had become com-
placent with doing the work and forgot about the essential element of
selling it.

So what’s a PI professional to do? How do you improve the
chances that your work isn’t the next target for a reduction? If I
could go back in time and give myself some advice, here is what I
would have proposed:
1. Stakeholder management is the lifeblood of PI efforts. Identify

your key stakeholders and work to uncover their real needs.
Refresh and re-evaluate this information on a regular basis. Over

time, stakeholder roles and needs will change, and (by extension)
so will their perceptions of the value of your work.

2. Find a “champion”: someone who understands what you do and
has influence in the organization. In many cases, you may need
to educate them on why your work is so important and let them
see the actual results. If you can involve your champion in what
you are doing in such a way that they can put their fingerprints
on your work—and even claim some of the credit for your
results—all the better.

3. Showcase your successes regularly and seek out feedback from
those you support. Feedback from tools such as mini-customer
satisfaction surveys can help, but actual quotes from your cus-
tomers are even better. If management knows that you are mak-
ing their people more productive, they are more likely to put
your work above the “cut” line.

4. Think “small words and large fonts” when presenting your value
to stakeholders. If it’s simple and focused on the bottom line,
they are more likely to comprehend and remember it (and you).

5. Bring data: how many dollars you saved the organization, the
impact of the risks you helped them to avoid, etc. An interesting
activity is to take a look at your own metrics set from the stand-
point of the value and viability of your work: Do these metrics
tell a compelling story of your value to your key stakeholders?
In these tough economic times, our employers need more of

what PI professionals do, not less. Our ability to help them work
“better, faster, cheaper” is even more critical now. We need to con-
stantly be aware that it’s not only our job to deliver the improve-
ments, but to keep management aware of the value and the need to
continue on this path.

—Terry Leip
IT Program Management Office, Intel Corporation

Terry.Leip@intel.com

LETTER TO THE EDITOR

21st Century Defense
November/December 2009

Submission Deadline: June 12, 2009

Getting a Handle on CMMI
January/February 2010

Submission Deadline: August 16, 2009

Please follow the Author Guidelines for CrossTalk, available on the Internet at <www.stsc.hill.af.mil/crosstalk>.
We accept article submissions on software-related topics at any time, along with Letters to the Editor and BackTalk. We also provide a link

to each monthly theme, giving greater detail on the types of articles we're looking for at <www.stsc.hill.af.mil/crosstalk/theme.html>.

If your experience or research has produced information that could be useful
to others, CrossTalk can get the word out. We are specifically looking for
articles on software-related topics to supplement upcoming theme issues.
Below is the submittal schedule for two areas of emphasis we are looking for:

CALL FOR ARTICLES

f ll h A h G id li

Departments

34 CROSSTALK The Journal of Defense Software Engineering May/June 2009

Be a CrossTalk Backer
CrossTalk would like to thank the accompanying
organizations, designated as CrossTalk Backers,

that help make this issue possible.

CrossTalk Backers are government organizations that provide
support to forward the mission of CrossTalk.

Co-Sponsors and Backers are our lifeblood.

Backer benefits include:
• An invaluable opportunity to share information from your

organization’s perspective with the software defense industry.
• Dedicated space in each issue.
• Advertisements ranging from a full to a quarter page.
• Web recognition and a link to your organization’s page via

CrossTalk’s Web site.

Please contact Kasey Thompson at (801) 586-1037 to find out
more about becoming a CrossTalk Backer.

309th Software Maintenance Group

OO-ALC Engineering Directorate

309th Electronics Maintenance Group

CrossTalk would like to
thank our current Backers:

Cost Analysis Group

Director, Systems and Software Engineering
ODUSD (A&T) SSE
3090 Defense Pentagon
Room 3B938
Washington, DC 20301-3090

Phone: 703-695-7417
Email: atl-sse@osd.mil

Learn more at: www.acq.osd.mil/sse/

SSE Initiatives:
Provide proactive program oversight, ensuring appropriate›
levels of systems engineering discipline through all phases
of program development

Foster an environment of collaboration, teamwork and joint›
ownership of acquisition program success

Provide engineering and developmental test and evaluation›
policy and guidance

Establish acquisition workforce development requirements›

Engage stakeholders across government, industry and›
academia to achieve acquisition excellence

Promoting Acquisition Excellence Through World Class Technical Expertise

Systems and Software Engineering

DEPARTMENT OF DEFENSE

Systems and
Software Engineering

May/June 2009 www.stsc.hill.af.mil 35

As a software engineer, I often find myself “on the road,”
consulting at a customer site. Inevitably, I find myself stuck

in a hotel in a strange town, often for several days at a time. Being
a fun-loving, thrill-seeking, typical software engineer, I make an
effort to find the REALLY fun spots: an electronics store, a
bookstore—and, in many cases, a video store or movie theater.

When seeing a movie, I have rather unique criteria: I want the
movie to be either really good, or REALLY bad. I don’t mean
bad as in within 15 minutes you can’t remember the title or plot.
I mean BAD as in “I’ll remember this movie forever. I’ll joke for
years about it with anybody who had the misfortune to see it also.
I’ll brag about how horrible it was to all of my friends.”

As I was recently watching yet another contender for the
dubious honor of REALLY BAD movie, I realized that several
of these terrible films I have watched over the decades shared a
common trait—they were directed by “Alan Smithee.”

I thought it odd that anybody who could make so many
“memorable” movies didn’t seem to start doing better as a direc-
tor over the years. As soon as the movie was over, I started
searching various Internet movie databases for enlightenment. I
found out that Alan Smithee is well-known for his ability to make
stinkers. In fact, that’s ALL that he makes.

It seems that Alan Smithee (or Allen Smithee – the name
varies) is not a real person. To quote from the Internet Movie
Database (IMDB)1:

The Directors Guild contract generally does not permit a
director to remove her/his name from films ... striving for
decades to establish the director as the “author” of a film,
and part of getting the credit for the successes is taking
the blame for the failures. The only exceptions they make
are cases in which a film was clearly taken away from a
director and recruit heavily against her/his wishes in ways
that completely altered the film. Directors are required to
appeal to the Guild in such cases. If the appeal is suc-
cessful, their name is replaced by Alan Smithee. So if you
notice a film directed by Alan Smithee, it is certain it is not
what its director intended, and likely that it is not any
good.

Wow ... what a great deal! A director can work for several
years on a movie, and if he or she decides that somebody else has
messed up their “artistic vision,” they can have their name
removed from the credits.

Imagine, fellow software engineers, that if you are associated
with a colossal failure, and the failure is not because of what you
have done but because of what others have done to you, you can
have your name removed. Imagine if the following problems
could be exempted from your responsibility:
• Totally lacking, too much, or poor quality upper-level man-

agement.
• Funding cuts.
• Requirements changes that you weren’t consulted on.
• Key personnel removed in the middle of the project.
• No requirements at all.

Do the best you can, and submit an appeal to a board of fel-
low software engineers. If the appeal is upheld, your name would
be removed from the project, and a pseudonym used instead2!

By the same token, some movie stars, for various reasons,
have decided not to take credit for success! Kathleen Turner pro-
vided the voice of Jessica Rabbit in “Who Framed Roger
Rabbit?” back in 1988. She elected to be unlisted in the credits3.
However, neither I nor any other software engineers I know have
had the problem of being associated with a colossal success, yet
wishing to remain anonymous.

I don’t think my suggestion of adapting pseudonyms for
managing software will be received seriously. Maybe we don’t
need them. Back in the early ’70s—when I was a programmer at
Strategic Air Command Headquarters—I remember that my pro-
ject manager had the following posted on his office wall:

The project manager in question had been on the job for more
than 20 years, and the copy he had posted was very weathered
and worn. Obviously, the semi-humorous idea was not new, even
then.

According to both the IMDB and the authors of the semi-
parody book, “Directed by Allen Smithee4,” the use of the pseu-
donym started in 1969.

Come to think of it, maybe Hollywood got the idea from us.

—David A. Cook, Ph.D.
Principal Member of the Technical Staff

The AEgis Technologies Group, Inc.
dcook@aegistg.com

Notes
1. See <www.imdb.com/name/nm0000647/>. While formally

discontinued by the DGA in 2000, Alan Smithee seems to live
on.

2. I am not suggesting any particular name AT THIS TIME.
One of the reviewers jokingly suggested calling such a project
a “Dave Cook.” I immediately suggested his name instead.
Feel free to e-mail me with a similar suggestion, and I’ll add
YOU to the list of potential names.

3. She only provided the speaking voice. Amy Irving provided
the singing voice.

4. See <www.upress.umn.edu/Books/B/braddock_directed.
html>.

Alan Smithee: Where Are You When I Need You?
(or,“A Software Engineer Goes to the Movies”)

THE FIVE PHASES OF
PROJECT MANAGEMENT

1. Initial enthusiasm
2. Inevitable problems
3. Search for someone to blame
4. Punishment of those who are innocent
5. Praise and reward for the non-participants

BACKTALK

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk thanks
the above

organizations for
providing their support.

	Front Cover
	Table of Contents
	From the Publisher
	Rapid and Reliable Development
	Using WYSIWYG GUI Tools With UML
	Software Safety for Model-Driven Development
	Evolutionary Capabilities Developedand Fielded in Nine Months

	Software Engineering Technology
	A Distributed Multi-Company Software Project
	Measuring Maintenance ActivitiesWithin Development Projects

	Open Forum
	From Substandard to Successful Software

	In the Next Issue
	SMXG Ad
	Web Sites
	Coming Events
	Letter to Editor
	Call For Articles
	CrossTalk Backers Ad
	BackTalk
	Back Cover

