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Abstract – Airborne bistatic radar systems require 
effective techniques to mitigate the impact of ground clutter 
returns on detection performance.  Bistatic clutter generally 
appears more severe than in monostatic systems owing to 
increased two-way antenna gain over a broad set of angles and 
greater clutter spectral variation over range.  Adaptive filtering 
seems like a natural response to combat both of these effects.  
However, the consequent clutter non-stationarity – variation of 
clutter angle-Doppler response with range – presents difficulty 
when implementing the adaptive filter, since such an effect 
leads to errors in the requisite clutter covariance matrix 
estimate.  Approaches for coping with clutter non-stationarity 
are central to effective bistatic space-time adaptive processing 
(STAP) techniques.  In this paper we consider the impact of 
sensor geometry on the performance of several recently 
proposed bistatic STAP techniques.  Our findings suggest best 
performance for those methods providing pre-STAP 
compensation of the data in both angle and Doppler. 

1. INTRODUCTION 

Bistatic radar systems offer several advantages over their 
monostatic counterparts, including reduced space loss, silent 
operation, reduced susceptibility to jamming, and synergistic 
coherent operation with existing systems.  Among the 
drawbacks, bistatic aerospace radar systems must effectively 
cope with severe, spectrally diverse ground clutter returns.  
For this reason, effective bistatic clutter cancellation 
techniques are crucial for air-to-surface bistatic radar system 
deployment. 

The classes of adaptive clutter filtering techniques 
developed for monostatic airborne radar – viz., space-time 
adaptive processing (STAP) and its variants [1-6] – offer a 
logical starting framework in the bistatic case.  However, the 
non-stationary nature of bistatic ground clutter directly 
violates intrinsic adaptive algorithm assumptions, thereby 
complicating STAP implementation, and potentially degrading 
detection performance [4, 7-8].  In response to this challenge, 
a variety of non-stationary clutter mitigation techniques have 
been recently proposed [9-17].  These various methods exhibit 
differing performance, depending on the scenarios presented.  
The purpose of this paper is to consider the impact of sensor 
geometries on the class of bistatic, data warping STAP 
techniques [11,13,14,15,17]. We illustrate the performance 
differences using a numerical simulation of an airborne 
bistatic radar system. 

2.  ADAPTIVE BISTATIC CLUTTER MITIGATION  

Bistatic ground clutter appears non-stationary in the range 
dimension due to non-proportionality between Doppler and 
spatial frequencies, even in the sidelooking receive case. This 
is brought about by the combination of projected transmitter 
and receiver velocity vectors, which determines the Doppler 
component [7-12, 14-17].  The degree of non-stationarity is 
highly dependent on the bistatic geometry and the range swath 
of interest.  Non-stationarity degrades STAP performance 
through consequent covariance matrix estimation error.   

The objective of STAP is to maximize output signal-to-
interference-plus-noise ratio (SINR), thereby equivalently 
maximizing the probability of detection for a fixed false alarm 
rate (in the presence of Gaussian disturbance) [1].  The STAP 
combines M channel outputs and N pulses over K range bins; 
the corresponding output is H

k ˆy = k kw x , where 1NMxC∈kx  is 
the space-time observation vector and ˆ kw  is the adaptive 

weight vector.  Given constant β̂ , covariance matrix estimate 
ˆ

kR , and surrogate space-time steering vector v , the adaptive 

weight vector follows as 1ˆ ˆˆ β −=k kw R v .  An estimate of the 
unknown covariance matrix is given as  

 
K H

m 1

1ˆ
K =

∑=k m mR x x  (1) 

where the mx  are known as training data [18]; in accord with 
[18], this estimator is maximum likelihood if the training data 
are Gaussian, independent and identically distributed (iid).   

SINR loss factors conveniently characterize the impact of 
colored noise and errors in the adaptive process on output 
SINR [1-6].  Two useful SINR loss definitions used herein 
are: 

 
s,1

s,2

output SINR for optimal filterL clairvoyant loss;
signal-to-noise ratio

output SINR for adaptive filterL  adaptive loss.
output SINR for optimal filter

= =

= =
 (2) 

Note that the calculation of ,1sL  requires the known 
covariance matrix.   

When the training data are non-stationary (non-iid), as in 
the bistatic case, the adaptive filter converges to a response 
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representative of the average behavior of the secondary data 
set, rather than a response best suited to the particular range 
bin of interest.  An increase in s,2L  reflects this increased loss 
due to covariance estimation error.  

2.1. Bistatic Clutter Mitigation Techniques  

The class of adaptive bistatic clutter mitigation techniques 
generally fall into one of the following categories: 

1. Methods attempting to limit the degree of range variability 
by selecting training data in proximity to the cell under test 
(accomplished by applying a reduced-rank or reduced-
dimension STAP technique [1-6]); 

2. Methods acknowledging the range non-stationary issue by 
allowing time evolution of the weight vector consistent 
with the presumed variation (e.g., linear variation over 
range) [9, 11, 12, 19]; and, 

3. Methods either compensating or mapping training data to 
enforce alignment with a particular reference point [11, 
13-17]. 

In this paper we focus on bistatic STAP methods falling 
within the third category and based on data warping.  The 
algorithms having been previously reported include: 
Doppler Warping (DW) [11, 13] – the processor accomplishes 
DW by temporally modulating the series of voltages recorded 
in each spatial channel to align the clutter Doppler to a 
reference. 
Higher-Order Doppler Warping (HODW) [14] – this 
algorithm extends the DW concept to multiple receive angles, 
thereby aligning sections of the clutter ridge.  The processor 
first transforms the data to beamspace, applies a different 
temporal modulation to each beam, and then inverse 
transforms to the space-time domain.   
Angle-Doppler Compensation (ADC) [15] – this approach is 
similar in spirit to DW and HODW, but applies a range-
varying space-time modulation to each range to align the peak 
clutter angle-Doppler response to a reference.  Generally, 
ADC presumes perfectly characterized peak clutter response 
via precise knowledge of transmitter and receiver velocity 
vectors and array pointing directions.     
Adaptive Angle-Doppler Compensation (A2DC) [17] – this 
method extends the ADC approach by adaptively estimating 
the range-varying peak clutter angle-Doppler response.  When 
the clutter environment is homogeneous and the platform 
velocity vectors, array normals, and steer directions are 
known, ADC and A2DC yield virtually identical results.    

2.2 Influence of Bistatic Geometry 

Given the variation of Doppler with range and angle, the 
algorithms will be highly dependent on the scenario and 
geometry.  We illustrate this point by considering the 
taxonomy of Figure 1, showing transmitter and mainbeam 
(blue triangle) and receiver position and mainbeam (red 
triangle), overlapped mainbeams, and platform direction 
indicated by the arrow located at either transmitter (Tx) or 

receiver (Rx).  The chart also depicts the surface clutter 
Doppler (colors), iso-range contours (green ellipses) and the 
Doppler ambiguities (blue hyperbolas).  This indicates the 
spatial variation of Doppler as seen by the receiver. The 
taxonomy covers four practical scenarios: (1) the pseudo-
monostatic, sidelooking case, where gain patterns maximally 
overlap and Doppler variation over range for a given angle is 
slight; (2) the forward-looking adjunct, showing mild variation 
in gain pattern, but significant Doppler variation over range; 
(3) the hybrid scenario, with increased spatial gain variation 
and significant Doppler variation over range; and, (4) the near 
90o bistatic case, with severe spatial gain and Doppler 
variation.     

 

Fig. 1.  Taxonomy of bistatic geometries affecting 
 receiver Doppler 

In the pseudo-monostatic case, data warping is 
unnecessary due to the lack of clutter non-stationarity.  The 
processor employs localized training to cope with any 
heterogeneous conditions arising from varying clutter cultural 
features.  Given the characteristics of the forward-looking 
adjunct, data alignment in the Doppler domain alone will 
prove adequate, a capability met by all four data warping 
strategies.  Clutter non-stationarity increases in the hybrid 
scenario; under such circumstances, alignment in both angle 
and Doppler provides the potential for best performance.  
HODW’s ability to align sections of the clutter ridge will also 
prove beneficial.   Significant range variation in both angle 
and Doppler in the near 90o bistatic scenario requires data 
warping in both domains to attain best performance; only 
ADC and A2DC provide this capability. 

3. EVALUATION SCENARIO WITH  
HOMOGENEOUS CLUTTER 

Figure 2 depicts a bistatic geometry yielding significant 
clutter non-stationarity in both angle and Doppler.  TRL  is the 
bistatic baseline; Th  and Rh  indicate Tx and Rx platform 
altitudes; Tv  and Rv  represent Tx and Rx velocity vectors, 
where the x-component points due North, the y-axis aligns in 
the Westerly direction and the z-axis points away from the 
Earth’s surface; and, Ta  and Ra  are the antenna normals, 
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each pointing in elevation at swath center denoted by C.  This 
scenario is somewhat between hybrid and near-90o bistatic 
cases, though tending more towards the latter.  As it represents 
a stressful scenario, it is a useful geometry for algorithm 
performance evaluation and suitable for the brief nature of this 
exposition.  

vT

aT

vRaRLTR 0.6 LTR

Swath Center

Tx

Rx

0.93 LTR

(100, 0, 0) m/s

(61.87, 78.56, 0) m/s

C

0.37 LTR

68.22o

0.47 LTR

51.78o

hT = hR = 0.12 LTR

 

Fig. 2.  Bistatic geometry yielding significant  
clutter non-stationarity 

Table 1 provides salient parameters used in subsequent 
numerical simulation.  Simulating the ground clutter response 
proceeds as follows.  A representative, curved Earth’s surface 
is pixelized to a fraction of a range-Doppler-angle resolution 
cell.  We then calculate Tx and Rx gains and Doppler 
contributions at each pixel.  Next, we generate the space-time 
response for each pixel commonly within Tx and Rx horizons, 
calculate the bistatic range sum, and then range bin the 
response.  Finally, we sum all pixel responses corresponding 
to a particular range bin.  The clutter complex envelope is 
Rayleigh-distributed, with reflectivity of –15 dB and sigma-0 
following from the Bistatic Equivalence Theorem [20].  We 
further incorporate additive, white receiver noise with 
variance of one watt.  Moreover, we calculate a known space-
time covariance matrix for each range bin.       

Table 1.  Radar Parameters 

Parameter Value Parameter Value 
Center Frequency 5.3 GHz PRF 1,400 Hz 
Uncompressed/ 

compressed pulse 
width 

21.12 µs/ 
0.33µs Pulses (N) 16 

Peak Transmit Power 10 kW Array 
Configuration Side-looking 

Noise Figure 2.6 dB Spatial 
Channels (M) 18 

RF Losses 9.5 dB 
Horizontal 
Element 
Spacing 

0.58 
wavelengths 

Platform Velocity 100 m/s 
Vertical 
Element 
Spacing 

0.74 
wavelengths 

 
Figure 3 shows the precise spectral centers – clutter peak 

response in angle and Doppler – over bistatic range.  From the 
simulation we retain 250 range bins – in large part due to 
memory storage used to record the space-time covariance 
matrix at each range – roughly focused on swath center; thus, 
range bin 125 is approximately the center of the scene shown 

in Figure 2.  The dashed, horizontal line indicates the array 
normal, the dotted line shows peak azimuth measured from 
true North, and the solid line shows absolute Doppler (aliased 
in subsequent plots by the 1,400 Hz pulse repetition frequency 
(PRF)).  The variation in both angle and Doppler over range is 
evident from this figure.  As described in prior sections, this 
variation leads to covariance matrix estimation errors and 
degraded adaptive clutter mitigation. 

 

Fig. 3.  Spectral centers 

Figure 4 compares clairvoyant SINR loss for three 
steering angles calculated from array normal: 0°, -10°, and 
10°.  As expected, the strongest clutter for steer angle 0° 

corresponds to swath center, near bin 125, with Doppler from 
Figure 3 of 250-300 Hz (after accounting for Doppler 
aliasing).  As the beam scans to negative azimuths, 
corresponding to a direction towards the transmitter, the peak 
response moves inwards in range and slightly downward in 
Doppler, results anticipated from Figures 2-3.  Conversely, for 
positive steer angles, away from the transmitter, the peak 
response moves downward in range and upward in Doppler.  
This variation in peak response is further evidence of clutter 
non-stationarity. 

 

Fig. 4.  Clairvoyant SINR loss for varying azimuth scan cases 
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4. PERFORMANCE EVALUATION 

In this section we compare the performance of the 
aforementioned data warping techniques using the synthetic 
data whose characteristics are shown in Section 3.  We 
consider performance for several implementations.  All known 
covariance matrices undergo the various warping 
transformations to enable precise benchmarking.  In our 
analysis, we consider the extended factored algorithm (EFA) 
of [21] with three temporal DoFs and the full complement of 
spatial DoFs, yielding fifty-four space-time DoFs. 

Figure 5 shows the clairvoyant SINR loss for the broadside 
direction after applying DW, HODW, ADC, and A2DC.  DW, 
HODW and ADC all presume perfect a priori knowledge, 
whilst A2DC derives all requisite information in situ.  The 
HODW implementation warps eighteen beams – for an 
invertible transform – spaced six degrees apart from -54 to 
48 degrees; since these beams are non-orthogonal, the HODW 
result does not default to the DW case.  All data are warped to 
reference range bin 100. Figures 5a-5d capture the essence of 
the various compensation mechanisms.  DW and HODW 
localize the clutter Doppler over range, but gain variation is 
evident.  ADC and A2DC localize both angle and Doppler 
responses.  The similarity between ADC and A2DC confirms 
the proper functioning of each algorithm.  Due to this 
similarity, we subsequently only consider the A2DC approach.   
Figure 6 and Figure 7 show adaptive SINR loss calculated at 
range bin 100 and the broadside direction.  We also show the 
upper bound on performance (denoted “ 1Ls ” in the figure) for 
EFA and the joint-domain optimum (JDO) filter.  In Figure 6, 
we train EFA over all 250 range bins, finding significant 
improvement for all data warping methods; performance for 
the unwarped case is abysmal.  The similarity in performance 
among all three data warping methods is not surprising 
considering the cell under test and a substantial amount of 
training data reside in the peak clutter region; the losses due to 
undernulling of distributed clutter are mild.  The slight “walk 
off” in clutter Doppler evident in Figure 5 is a likely result of 
the modest Doppler resolution; this effect leads to slight A2DC 
losses to the right of the clutter null, but are likely correctable 
with increased temporal aperture.  Figure 7 is contrasting: 
A2DC performance is generally far superior to the other 
methods as a result of the limited training set.  The peak 
characteristics of the training set show better match to the cell 
under test when applying A2DC.       

Factors leading to a reduced training set can include 
clutter heterogeneity (e.g., due to changing clutter types, 
shadowing, no return areas, etc.) and computational burden 
restricting data selection to a given region.  A2DC owes its 
performance enhancement to its ability to align the data in 
both angle and Doppler.  Other implementations with varying 
training support, compensation points, or steer directions may 
be chosen to emphasize the notion that angle-Doppler warping 
provides an added degree of robustness. 

a. Doppler Warping

c. Angle Doppler Compensation d. Adaptive-Angle Doppler Compensation

b. Higher-Order Doppler Warping
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Fig. 5.  Clairvoyant SINR loss post-data warping algorithms 

 

Fig. 6.  Adaptive SINR loss comparing data warping  
schemes with training over all ranges (bins 1:250) 

 

Fig. 7.  Adaptive SINR loss comparing data warping  
methods with reduced training set (bins 143:250) 
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5. PERFORMANCE IN HETEROGENEOUS CLUTTER 

Analysis in the prior section employed homogeneous 
terrain type to demonstrate performance improvement offered 
by the distinct capabilities of DW, HODW, ADC, and A2DC 
data warping methods.  It was further suggested that factors 
impacting the uniformity of the peak clutter response over 
range, such as clutter heterogeneity, affect algorithm 
performance.  This section briefly considers site-specific 
clutter effects and their potential consequences for bistatic 
STAP techniques. 

We modeled two scenarios based upon the geometry in 
Figure 2 and radar system information in Table 1 using 
RLSTAP, a radar system modeling and simulation tool 
developed by the Air Force Research Laboratory (AFRL).  
The first scenario corresponds to homogeneous terrain type, 
with clutter reflectivity governed by the constant gamma 
model [20], whilst the second scenario employs a site-specific 
clutter model corresponding to Northwestern New York State, 
USA, where a rich variety of terrain types are present.  The 
site-specific terrain resolution is approximately 90 meters by 
90 meters and is available for public download from the 
United States Geological Survey’s (USGS) web site.   

Figure 8 shows a plot of the product of transmit gain, 
receive gain, and “normalized scatterer” response (which takes 
into account terrain cell area, sigma-0, and range effects) for 
one of the eighteen receive channels.  Each single receive 
channel has a very broad antenna pattern in azimuth.  The 
transmit system is denoted by a cluster of red icons, the 
receive system by a cluster of green icons, and the aim point 
of transmit and receive beams by a cluster of purple icons.  
High intensity is denoted by lighter colors (with white being 
the most intense) and low intensity by darker hues.  Figure 8 
highlights the broadened two-way gain illuminating the 
Earth’s surface and leading to severe clutter conditions. 

 

Fig. 8.  Normalized reflected power for the homogeneous 
clutter case generated using RLSTAP  

Figure 9 shows the reflected power for the case of site-
specific terrain.  In contrast to Figure 8, the non-uniform 
variation in reflected power is evident.  This variation affects 
the a priori calculation of peak clutter response and utility of 

one-dimensional warping.  Specifically, the peak clutter 
response must either incorporate site-specific information, or 
estimate the peak in situ, as in the case of A2DC. 

 

Fig. 9.  Normalized reflected power for site-specific  
clutter scenario – Northwestern New York State –  

generated using RLSTAP 

Next, we duplicate the previous SINR loss analysis of 
Section 4 using the RLSTAP-generated data consisting of the 
datacube of complex voltages and known covariance matrices 
at select ranges.  As in the prior section, we apply the EFA 
STAP method and consider performance with and without 
data warping.  We only consider the A2DC warping method, 
as it showed best performance in the prior section, requires no 
a priori knowledge, and can track variation in peak clutter 
response.  Figure 10 and Figure 11 are the site-specific 
counterparts to Figure 6 and Figure 7.  Observe the closely 
matching clutter nulls, confirming the veracity of the two 
different simulations (based on Georgia Tech models in 
Section 4 and RLSTAP in this section).  From both Figure 10 
and Figure 11 we again find tremendous improvement 
resulting from application of the A2DC warping method.  
Overall, however, the loss levels are greater than in Figure 6 
and Figure 7.  We attribute this additional loss to the impact of 
clutter heterogeneity, which is not entirely compensated by the 
data warping method.   

 

Fig. 10.  Adaptive SINR loss for site-specific case, 
 training over all range 
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Fig. 11.  Adaptive SINR loss, site-specific case,  
reduced training set  

6. SUMMARY 

This paper considered the performance of the class of data 
warping-based bistatic STAP techniques as a function of 
sensor geometry.  Specific contributions made herein include: 

• Development of a taxonomy of bistatic geometry and 
identification of consequences for data warping algorithms; 

• Rigorous benchmarking of data warping methods for a 
specific scenario involving clutter non-stationarity in both 
angle and Doppler; and, 

• Consideration of the impact of site-specific clutter on 
bistatic STAP performance.   

Our findings suggest that all data warping methods 
provide substantial enhancement over traditional (unwarped) 
STAP implementation.  Those methods warping the data in 
both angle and Doppler – viz., ADC and A2DC – lead to the 
most homogeneous training set, and consequently the potential 
for more robust adaptive filter implementation. 

Future work should consider the impact of site-specific 
clutter in further detail, as well as other factors affecting 
algorithm robustness (e.g., the required accuracy of a priori 
knowledge, factors impacting estimation accuracy, etc.).   
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