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Abstract

In previous research, we documented our evolving rcsearch that expanded on and formalized an
approach to the dcsign of a Performancc Evaluation (PE) methodology for Data Fusion (DF)-based
tactical aircraft systems. We have shown that the design of a PE process for any multi-scnsor or multi-
aircraft fusion-based system involves the design of a scparate data fusion process involving association
and estimation functions for PE purposes per se. Our publications to date have developed the theorctical
and architectural groundings for this new PE process, and several case studies have been carried out to
show sample implementations of the principles of this new methodology. In addition, some limited-
objectivc parametric expcriments have also bcen carried out that show the application of thc new
evaluation methodology for typical tactical aircraft problems. In this report, we summarize the findings of
thcse past works, and show our research cfforts related to extending the design and application of this
mcthodology to air-to-air engagement problems involving higher-levels of data fusion capability
(situation and threat estimation) and the employment of clectronic warfare systems. The report discusses
the detailed strategies for data association, metrics estimation, and also the analytical tcchniqucs that
exploit the formality of the methods of Statistical Design of Experiments (DOE) and Analysis of Variance
(ANOVA) for thcse fusion applications. At the end we survey and study the various methods available in
literature to solve the large factor Dcsign of Experiment problem, with a detailed guidclines for

classification and selection of a proper dcsign.
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1 Introduction

Data fusion is an information process involving functional sub-processes that align or normalizc the
data from several input sourccs (typically sensor data from surveillance and reconnaissance scnsors in
defense applications), associatc these data to hypothesized specific entitics or events or behaviors in the
observation space, and then employ these associated or assigned observations toward developing
improved state estimates regarding those entities or events or behaviors. Data Fusion (DF henceforth) is a
relatively young technology, having had its start in the 1970’s driven largely by the necd to manage large
sensor data volumes from surveillance operations during the Cold War; DF was thus notionalized as a
kind of “data compression” technique in the formative years of its development. Later, since many DF
applications involved devcloping these fuscd state estimatcs for human users of various type, a more
holistic and systemic view of the DF process was developed and the overall process was bettcr defined.

The process can be described as follows (Figure 1):

H

In thc typical defense application context, the state of thc Real World is not known but can be

Figure 1. Notional Data Fusion Process.

estimated a priori, in the usual approach to the design of a deductivcly-based or model-based approach to
the design of an cstimation or inferencing process. This dynamic changing Real World is obscrved by
multiple types of sensor systcms as noted, and these obscrvations thcn need to be sct into a common

frame of reference to include e.g., transforming all observations to a common coordinate system, common
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time base, etc. Then the observation data set needs to be related to thc entities and features in the modcl
knowledge base; this is done via a Data Association process that employs metrics reflecting the
“closeness” of any given observation to a modclcd entity; this process culminates in the assignment of all
observations to the various hypothesized entities. The assigned observations arc allocated to specific state
estimation algorithms that are specially designcd to exploit the overall information content of the assigned
observations to generate improved entity statc cstimates. The usual notion of developing “improved”
¢stimates is in thc sense of improvements in accuracy but also in the reduction of uncertainty, as all of the
input can sensibly be treated as random variables, resulting from noisy observations from impcrfect
sensor devices. These estimates, in many but not all applieations, arc oftcn employed by a human
user/operator to effect decisions and action-taking, which themselves can possibly change the Real World
statc as notcd. Ideally, the DF process is designed as an adaptive feedback process, involving for example
adaptive, real-time control of the scnsors (“scnsor managemcnt”), or dynamic adaptations to the
algorithmic processes (“process refinement”) as shown above in the notional feedback depicted.
Evaluation of this process is approached within thc framework of comparing estimated states of the Real
World with the “truth” states of the Rcal World; truth states are often only known during the Test and
Evaluation (T&E) phase of the design and development of the prototype DF process, c.g., during

simulation-based or range-testing of the DF process.

A very typical application of the DF process is for the case of multisensor-multitarget tracking, i.e., the
casc where multiple sensors are employed to dcvelop data that allows DF-based kinematic statc cstimatcs
(position, velocity, etc) of objccts of intcrest (“targets”) to be developed. This is called “Level 1” DF,
wherein state estimates on single objects are developed; often these L1 estimates also includc identity
estimation by fusing the observed entity/feature data to cstimate the object class or specific idcntity type
(c.g., fighter aircraft or alternately F-16), depending on the specificity needcd in any given application.
Whilc these types of cstimates are very useful for military applications, as they aid a commander in

assessing “‘where is it?” and “what is it?” more can be done using additional DF methods. Thc typical
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next levels of processing, called “Level 2: Situation estimation”, and “Level 3: Threat estimation”, then
leverage from the Level estimatcs essentially by putting the L1 estimates in contcxt, i.e. exploit contextual

information to develop the situational and threat state estimatcs.

2 Developing an Approach to T&E for Data Fusion Processes

2.1 Addressing the T&E Process for Level 1 Data Fusion-based Tracking Systems

The design and development of algorithmic techniques for estimating the “best” location and related
kincmatic parameters of moving objects which arc observed by single or multiple sensors is a complex
process. It is complicated in part by the difficulty of obtaining high-quality mcasurements from sensor
systems due to underlying sensor limitations regarding precision and accuracy, rcliability, etc., from
natural phenomena that complicate the observing process (weather effeets, terrain clutter, etc), and in the
defense-problems of interest, from the possible use of sensor countermeasures employed (covertly) by an
adversary. Another complicating factor is the inaccuracy associated with the cstimation algorithm being
used. Virtually all estimation algorithms are modcl-based, and employ a priori models of target motion,
sensor errors, system noises ctc in order to estimate the target kinematics. The process is further
complicated in environments consisting of multiple closely spaced targets. As a result, there will be
differences between the estimated (from the “System Under Test or SUT”) and the real (“Truth”) picture
of the composite multi-object kinematic behavior. The goal of a Multi Target Tracking System (MTTS)
designer is to devclop a fusion-based tracking system that yields a composite, estimated kinematic picture
which is in some scnse considered a *“good cnough” estimate of the composite, truc object behavior.
Hence at various stages in development of a tracking system it is necessary to evaluate the performance of
the system in ordcr to scc how close the system’s estimate is to the true picturc. This is the fundamental
issuc addressed here: given all the components of a typical tracking system (whose design, as a nctwork
of separate fusion processing nodes, is often referred to as a “Data Fusion Tree”), along with the
ovcrarching stochastic characteristics of the problem, on what basis can an equitable approach to

evaluation of a candidate-design tracking system—the “SUT” -- be based? This issue is far ranging in that
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it applies to most multi-target, multi-sensor based tracking systems, although strictly speaking it only
applics when there is ambiguity in the Data Association process. However, since we lack the knowlcdge
to quantify the degree to which Data Association ambiguity affects the need to carefully determine an

evaluation approach, the coneern about this issue extends across a broad range of tracking applications.

During the process of designing and developing the SUT DF prototype process, the T&E phascs
evolve from concept validation testing to developmental testing; in these phases, and often in later in
controlled operational testing, the truth statcs of the “Real World” are known. Presuming the evaluation
philosophy is based on comparisons betwecn SUT DF process-generated state estimates and the truth
states, the known truth conditions usually allow for straightforward calculation of the various cvaluation
metrics being employed. Such evaluation techniques presume that there is an ability to relate specifie
SUT-generated state estimates to specific truth states, i.e., that the associability between “Tracks” (the
SUT-generated track estimates) and “Truth” (the specified Truth states for the given T&E experiments) is
known. However, conditional on many factors both related to the sensors being employed as well as the
behavior of the targets and also the specific characteristics of the various algorithms being employed, the
ability to clearly determine which SUT Track should be compared, for evaluation purposes, with which
Truth track may often be unclear. Such ambiguities in DF-based tracker algorithm evaluation have been
known and flagged as evaluation issues as far back as the 90’s (e.g., see Refs [1], [2]). However, very
few papers deseribing techniques to deal with this problem when evaluating fusion-based trackcrs have
been published, and in particular almost no papers (other than our past works) have been published that

address the T& E methodological issues related to this problem.

There arc a number of types of tracker algorithm pathologies that can arise ¢an give rise to the Track-

to-Truth association problem. A few cases are shown below in Figure 2.
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Figure 2. Examples of pathologies in tracker estimates.

Most of these problems oceur as a result of mis-assoeiations of the sensor data to the estimates being
generated by the tracker algorithm (often based on Kalman Filter-based techniques), such that some of the
sensor data for given targets are associated to anothcr target, or beeause a loeal assoeiation or estimation
crror creates a condition where the track is lost, or another example is when two (or “n”) targcts are truly
closely-spaced and sensor resolution limits eouplcd with association errors result in track switehing,
where the estimation process mixes estimates for multiple targets together (this can occur even when
target identity is also being estimated although such estimatcs do help in reducing this particular type of
crror). A widc variety of other difficulties can arise even with thc most sophisticated and modern tracking

tcchniques. Thus, tracker evaluation conditions such as shown in Figure 3 can arise:

CUBRC | Developing an Approach to T&E for Data Fusion Processes _



“Tracks (L1 Fusion)” and “Truth”
Error = Estimated - Truth

_______ Truth Track

SUT Computed
Tracks

Measurements,
Observations

Tracking
Errors

Clearly Depend on “Track-to-Truth” Association

Figure 3. Notional evaluation case for fusion-based targct tracking process.

The point of this diagram is that in ordcr to assert that specific tracking errors cxist, i.e., that therc arc
specific differences between the SUT DF-based track estimates (here shown in black) and the Truth
tracks (in red), an assertion of which SUT track goes with which Truth track must be made. In the face of
the many pathological conditions that can arise (e.g., the track fragment in Figurc 3, as well as the
closeness of the computed tracks to the Truth tracks), such associations arc not at all easy to assert. As thc
figure indicates on the right-hand side, a many-to-many association problem must be solved to assert the
SUT Track to Truth track relationships with any confidence. The specific insertion of such steps is onc
specific recommendation of our proposed T&E methodology. Said otherwisc, a new Data Fusion process
must be designed for the specific purpose of testing and evaluating any DF-based tracker. (We will show
later that this is a requirement for any DF process, including the highcr levels of fusion (L2, L3) as

previously described.) This modificd approach to T&E is shown notionally in Figure 4.
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SUT Algorithm Data Association

Hypothesis Hypothesis Hypothesis State - SUT Computed
Generation Evaluation Selection Estimation Tracks

T&E Data Association

Computed Computed
Track-to-Truth ﬂ Evaluation
Assignments Metrics

Hypothesis Hypothesis Hypothesis
Generation Evaluation Selection

e Scord Assignment
(TRUTH) Metric ¥ .\;or‘iltim ¥

Tracks Cl Iv
Core of T&E Methodology s

Interdependent

Figure 4. Separate Data Fusion proeesses; the SUT DF process and the T&E DF proeess.

It should first be mentioned that the approach to constructing any Data Association (DA) approach
involves three sub-processes as shown in Figure 4: Hypothcsis Generation, where the feasible causes of
any given observation, to include Elcctronic Warfare techniques i.e., deception, are defined, Hypothesis
Evaluation, where metrics or scores that reflect the degree of “closeness’ of an observation to an cstimate
are defined and calculated, and Hypothcsis Selection, where the many-to-many DA or “assignment™ type
problem is solved, culminating in an optimal assignment of the observations to the appropriatc statc
estimation (fusion) algorithms for each target. This last step employs what are called “assignmcnt
algorithms” imported from the ficld of Operations Research. (The term “hypothesis” hcre mcans and

association hypothesis, i.e., a nominated observation-to-estimate pairing.)

Along the top of Figure 4 we have the DA and DF process for the System Under Test (SUT); this
process notionally uses certain Scoring Metrics and Assignment algorithms. This process operates on the
multi-sensor input stream and produces target track estimates, the SUT Tracks. The T&E DA proccss,
notionally cmploying different types of Scoring Metrics and Assignment algorithms, takes the Truth

tracks as the definitive associable hypotheses, and calculates the “best” assignmcnts of SUT Tracks to

CUBRC | Developing an Approach to T&E for Data Fusion Processe_



Truth Tracks. Given those assignments, the tracking errors (basically grounded on differences betwcen
the estimated states and the Truth states) and any nominated performancc metrics can be estimatcd. As
pointed out in Figure 4, the valucs of the performance metrics clearly depend on the computed Track-to-

Truth association.

In all of the above, we have bcen cmphasizing that the DF proccss produccs estimates. This is
because, in the strictest sense, the inputs to the DF processes are the statistically-noisy sensor data having
stochastic propertics. These features have yet other implications for the T&E methodology, namely that
the stochastic nature of the process needs to be recognized and dealt with in any T&E approach. At lcast
when conducting any simulation-based T&E, this implies that (a) thc expcriments should be designed
through thc employment of the methods of statistical experimental design (aka Dcsign of Expcriments or
“DOE”), and (b) in conjunction with this that Monte-Carlo based replications of any given test condition

should be done.

It is recognized by thc way that such rigor comes at a price, cven when using simulations, and
cspecially when doing ficld tests and the like. It is likely that there has been limited application of these
formal methods because of the cost implications. As academics however, we fecl it is our job to nominatc
rigorous methods so that their application can at least be assessed in any given case. It is only through the

use of such methods that assertions about the computed metrics can bc made with statistical confidencc.

There are other issues regarding the design of the overall T&E process, and a complete discussion of
them is beyond the scope of this paper. To give one example, there is the issuc of the design of thc
ovcrall T&E process for a typical prototype SUT DF process. Any given rcal DF proccss will involve a
complex processing architecture, not a single DF node, because the dcsign of such real systems involves

various design tradeoff decisions. A typical DF process architecture may appear as that in Figurc 5.
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Figure 5. Representative Data Fusion processing architecture.

Here we see that the processing flow for a multiscnsor system involves the usual batching and
partitioning decisions necessary to evolve an effcctive and cfficicnt processing approach. It is thus typical
that tuples of sensor groups are joined in local DF operations (each “F” node above is a fusion operation);
this is done for various reasons, to include availability of the data, or commonality of the data, ctc. Thc
point is that there arc in any systcm multiple DF nodes and so the strategy for the design of the T&E DF
process can become equally complex. Examples of the various stratcgics that can be applicd to the design

of thc T&E DF process are shown in Figure 6.
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Figure 6. Representative design choices for T&E DF nodal processing.

Here we sce that the T&E-specific DF processing architecture may involve choosing DF nodes that arc
sensor or source specific (e.g., specific to a radar sensor), or a strategy that is time-based where Track-to-
Truth associations and estimates of metrics are computed at set time intcrvals, or a strategy that is cvent-
driven according to the events occurring in the test scenario. Thus, the assertions rcgarding the Track-to-
Truth rclations can change over time, or change according to the flow of events, or according to yet other

choices in the overall T&E DF processing architecture.

2.2  Addressing the T&E Process for Higher Level Data Fusion-based Tracking Systems
In this research, we are now looking at the higher levels of fusion, involving the formation of Threat or
Risk estimates for each friendly aircraft in these scenarios, as developed from the available multi-scnsor
data. In this case we are exploiting the use of the onboard radars and the Electronic Support Measurcs
(ESM) sensors that cstimate the operating modes of hostile radars. Conceptually, the Actual Risk to a

friendly aircraft can be thought of as defined by the relationship betwcen an Inherent Risk and the ability
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to thwart that risk with available countermeasures. The way this notional proccss is being implementcd is

shown in Figure 7.

RF MODE Al ASPECT TIME TO
LETHAL
ENVELOPE

Figure 7. Design of the Actual Risk estimation logic.

For the cases we are examining, thc Inhcrent Risk ean be cstimatcd by cstimating the Intent and
Lethality of a given hostile platform. In turn, with the available sensor suite, we can employ that data to
estimate Intent by examining (a) the Mode of the hostile radar (from the ESM data) and (b) the relative or
Airborne Intercept aspect or inter-platform geometry, to assess for example whether the hostile is in a
shoot gcometry; this can be estimated from the estimated track data for the hostile and the ownship
navigation data. We estimate Lethality using a concept called “Time to Lcthal Envelope” or TTLE, also
estimable from the fused kinematic data, and representing a hypothetical worst-case condition where both
platforms turn direetly to each other, with the TTLE being the time it takcs to get within maximum hostile

weapon range.

The design of Airborne Intercept aspect or inter-platform geometry is shown in Figurc 9. The Airborne
Intercept is calculated based on the truth track of the own ship (blue). The aspect angle is the angle
formed by the estimated rangc vector with the estimated velocity vector of the hostile platform (red). The
Airbome Intercept is the angle formed by the own ship velocity vector and the hostile ship velocity

vector. (Shown as Tue Al Aspeet Angle C and Estimated Al Aspect Angle D in Figure 8)
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Figure 8. Air Intercept Aspect Geometry

To calculate the Intent the possible scenarios should be considercd. These scenarios are represcnted in
Figure 9. Here the range veector is defined to origin at the estimated hostile loeation and end at own ship
loeation. The range vector angle is ealeulated based on these two loeations. There are four possible
seenarios; based on the Al Aspeet angle formed: less than 900; between 90° and 1800; between 180° and
270" and between 270° and 360°. There are two possibilitics in cach of the case and the range angle is

used to differentiate between a hostile and friendly situation. These possibilities are shown in Figurc 9.
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Figure 9. Air Intercept Aspect Geometry — Possible scenarios

To further simulate hostile conccpt of employment or operation (COE/COP) for hostile radar, we use
the ESM data. The ESM data is estimated using the cstimated velocity vector and field of view (FOV)
[FOV angle is a user input] of the hostile platform (30° around the velocity vector). In Figure 10 we scc
that, hostile H can see platform F, while F, is out of thc FOV range of H.

F,
FOV o

F,
w

Figure 10. Ownship/ Friendly ESM

There are four possible modes simulated for the hostile radar:

1. Unknown: F is not in FOV of H
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2. Search: When F is in H FOV and both platforms arc in an approaching or closing kinematic
rclationship.

3. Track: When F is 1n search mode for At; time.

4. Lock-on: (Figure 11) When F is in Track on mode for At, timc and also reaches within the

Hostilc missile range (Rpux)

H Range Vector
Hostile Truth track — |

H

H\/

D"hﬂce d

May lﬂssﬂo Rap i
ge

Figure 11. Lock-on Mode Declaration Logic

The ESM sensor is assumed to have long range, 4n sensitivity. Being passive, the correct calculation
for the condition that the Friendly has ESM data available to it is based on whether the Friendly is truly in
the FOV of the Hostile radar (we assumc thc H ConOp employs the radar actively). Thus, the geometric
calculations for FOV containment are based on thc Hostile Truth track data. To generate Truc Mode

according to this logic, go to Confusion matrix to gencrate Actual Mode Declaration Report (Tablc 1).

Table 1. Actual Mode Declaration Report.

True Mode (Geometry, Time)
Actual Mode Declaration

Search Track Lock-On

Search PSIS) | P(SIT) | P(S|LO)

Track P(TIS) | P(TIT) | P(T|LO)
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Lock-On

P(LOIS)

P(LO|T) | P(LO|LO)
Unknown P(U|S)

P(U|T)

P(UILO)

To simulate the lethality, we use the concept of “Time to Lethal Envelope” (TTLE). TTLE is the

range depicted in Figure 12.

hypothetical, worst-case calculation which assumes that both hostile and fricndly platforms turn directly
toward each other at max velocity. TTLE is the time to close to within Hostile missilc launch maximum

TTA-based

Hostile Truth Track

v,

SUT-estimated Hp;tile Track

VEyg\/'\

\\‘ \\ ‘ V ,EH

\\\ \ / L.

\ \\ \ R (missile)
RT \‘\ Ré\ \ ~ 15km

\ N AT

\w -7~
\:'
<

At=Vcomb (RE - Rmax)
Figure 12. Time to Lethal Envelope (TTLE)
These Intent and Lethality estimates can be logically fused to assert a level of Inherent Risk. The top-

level approach is shown in Figure 13. Here wc see that the friendly platform sensor data are fed to the
Level I SUT DF process which provides the fused kinematic statc estimates on all hostile platforms. The
ESM data are used to estimate the RF Mode of the hostile radars and the fused kinematic estimatcs are

used to construct the Level 2 SUT DF estimatc of thc “situation”, and then the situational cstimatcs are
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fused using the logie of Fig.9 to provide the Level 3 fused estimate of Inherent Risk. We are using a

Fuzzy Logie approach to forming the L3 DF logie for the reasons shown in Figure 13.

L2, L3 SUT Process Design

Sensors L2 SUT
Estimated Hi RF Mode
from Friendiy ]
L1 Estimated Hi Ai Aspect
_ from Friendiy }
SuUT

Estimated Hi TTLE

L1 Tracks from Friendiy ]

SUT Hi's w

Attributes L2 ~ {Reiations between SUT Hi, F]}

“L2 Tracks”
L3 SuT Design Options Rationale
: / --Bayesian Network --can deal best w vague data
--Figure of Merit --quantitative

--existing software, experience
--computationally fast

L3 ~ {inherent Risk (Threat) relations between SUT HI, Fj}
“L3 Tracks”

Figure 13. Top-level approach to higher-level fusion process design.

There are various design options available to fuse the L2 SUT estimates to get L3 SUT estimate of
Inherent Risk; like Bayesian Networks, Figure of Merit, ete. Here we use Fuzzy Logie to fuse the L2
estimates. Fuzzy Logie (FL) is an infereneing methodology that is directed toward vague relationships
between evidence and assertions. Using natural language statements that eontain appropriately-vague
terms (e.g., “elose”), FL provides a quantitative framework for relating the interdependent phrases of
these expressions. Fuzzy inference is the proeess of formulating the mapping from a given input to an
output using FL. Fuzzy inference systems that have been sueeessfully applied in fields sueh as automatie
eontrol, data elassification, deeision analysis, expert systems, and eomputer vision. Beeause of its

multidisciplinary nature, fuzzy inferenee systems are associated with a number of names, sueh as fuzzy-
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rule-based systems, fuzzy expert systems, fuzzy modeling, fuzzy assoeciative memory, fuzzy logie

eontrollers, and simply (and ambiguously) fuzzy systems.

Fuzzy Logie is a useful tool in making deeisions in light of information that is impreeise and
incomplete. Given information collected from multiple sourees such as a target's loeation, aspeet, and
speed, FL ean be used to measure the degree of danger of the target without formulating eomplex
mathematical equation. The FL funetions are more natural for the representation of the feeling of
ineertitude. A very preeise information is not expeeted absolutely, but hope for the greatest possible
coherenee. On the other hand, preeise but fluetuating data more usually result from the observation of a

physical phenomenon.

Given information eolleeted from multiple sourees sueh as a target’s ESM Mode, Air Intereept, and
TTLE, we measure the degree of Inherent Risk of the target by adopting FL casily without formulating
the complex mathematical equation. In this rescarch, we adopt FL for measuring the Inherent Risk
beeause of a eouple of reasons. In certain obscrvation and reporting eireumstanees, it may not be
appropriate to represent those variables in the probability domain. That is, the state of these variables does
not have an associated “erisp” set. For eonvenienee, we suppose that the three SUT estimates have three
states respeetively; these are the type of representations that would eome from a reporting or message-
based input, rather than from the sensors themselves. Unlike the variables in Bayesian Networks, whieh

have erisp set, these Aspect and TTLE variables have fuzzy sets.

Consider an example of measuring the height of all the children in a elass. How ean we elassify the
height of the children as low, medium or high? If we say a person having height greater than 6 feet is tall,
then we have a situation where a 5.9 feet person terms out to be of medium height and a person with
height of 6.1 feet turns out to be in tall group. But in FL a membership function is used to measure the

degree of membership of the quantitative value (Here, height of a child) in a fuzzy set.

Fuzzy Logie also has advantage in representing of kinematie and angle data sinee it uses natural

language. The fuzzy inference system has membership funetions, fuzzy logie operators and if-then rules.
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There are two types of fuzzy inference systems: Mamdani-type and Sugeno-type. The Mamdani type

inference system has bcen adopted in the framework for L3 fusion that is reported herein.

Table 2. Fuzzy Logic - Threat/Risk Logic Rules

Al TTLE RF Threat Al TTLE RF Threat
1 low large | Unknown low 15 med low Track high
or search
2 low med | Unknown low 16 med large Lock-on med
or search
3 low low | Unknown | mcd 17 mced med Lock high
or search
4 low large Track low 18 med low Lock high
5 low med Track med 19 high large | Unknown low
or scarch
6 low low Track hi 20 high med | Unknown low
or search
7 low large Lock-on med 2] high low Unknown med
or search
8 low med Lock high 22 high large Track med
9 low low Lock high 28 high med Track high
10 med large | Unknown | low 24 high low Track high
or search
11 med med | Unknown low 25 high large Lock-on med
or search
12 med low | Unknown | med 26 high med Lock high
or scarch
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13 med large Track med 27 high low Lock high

14 med med Track high

Note that the L3 SUT DF process can be thought of as produeing “Inherent Risk Tracks”, i.e. timcwise
histories of the estimated lcvel of Inherent Risk, conceptually as much as track as thc timewise position
histories of a physical platform. Note too that the issue of associating estimated Inhercnt Risk tracks-to-
Inherent Risk Truth tracks will be a challenge in designing the new T&E DF process to evaluate thesc
new estimates. The Inherent Risk Truth tracks are those computed by using the truth values of kinematics

etc in the track formation.

2.3 Addressing the T&E Process for Level 4 Data Fusion-based Tracking Systems

That risk would be mitigated according to the possible employment of Countermcasurcs (CM)
availablc to the friendly platform. Continuing from the T&E framework for Level 2 and 3 Fusion process
we employ the Lcvel 4 Fusion process as shown in Figure 14. Here we employ electronic countcrmeasure
(ECM). Any electronic cffort whieh intends to disturb normal radar operation is referrcd to as ECM. ECM
are employed to aceomplish improper or delayed target detection, analyst dcception or generatc falsc
positives. There are two classes to CMs, one which actively deny radars to perceive an measurement like

Jammers, and dcceptive CMs like changing trajectory.
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L4/RM SUT

L3 SUT

» Fuzzy Logic
» AFFT C-provided approach
» Other

Figure 14. Top-level approach to level 4 fusion process design

Here we simulate the situation where the own ship platforms have Self-Sereening Jammers (SSJ).
They are type of self protecting jammers which carry a jammer on the platform like beam jammers.
Another type of jammer not implemented here is Stand-off jammer whieh requires an eseort vehicle
whieh earries the jammer. The details about the jammers parameters were refereneed from Mahafza and

Elsherbeni [49]. Here are some of the terms relevant to the CM implementation [49]:
P, = Peak Power in Watts = = 50.0e+3
G = Antenna Gain in dB = 35.0
A = Antenna wavelength

A; = Antenna aperture
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o=10.0; % Radar Cross Section in m sqaured

B, = Radar Operating Bandwidth in Hz = 667.0e+3

L = Radar Losses in dB = 0.1000

P; = Jammer Peak Power in Watts = 200.0

B, = Jammer Operating Bandnwidth in Hz = 50.0e+6

G, = Jammer Antenna Gain in dB =10.0

L, = Jammer Losses in dB = 0.10

R = Range

A single pulse power received by the radar from target is given as:

N P.G*A%pr
T (4m)3RL

The power received by the radar from a SSJ jammer at same range is given as:

PO
47TRZB] L]
2%6 PG A%G g S : . g .
Where 4, = - then | = @nR)E " A jammer ean be identified by its effective operating bandwidth

and its Effeetive Radiated Power (ERP):ERP = .’.’IL_GL' Then the Signal to Jammer ratio(S/J) is given as:
]

G 1 i
: P+ (10%) + o + 5y« (105)
i G

L
40+ * P * (1010) xB, * (1016) « ((R * 1000.0)2)
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S/J tells what the effect of the jammer on the radar is. The jamming power from the platform is a onc-
way transmission while the target signal power is a two way transmission. So, the jamming power is
generally greater than target signal power (S/J < 1). But as the target comes closer there will certain rangc

at which S/J ratio equals 1, and it is called as cross-over range and is given as:

G L
P, * (10ﬁ> « g % B * <10ﬁ)

o L
4.0 x T * PI *| 1010 | * B, * (1010>

Cross Over Range = 10000

So, to remain undetected the platform has to remain at a range higher than cross-over range. The rangc
at which the radar can detect and perform proper measurements for a given S/J is called as burn-through
range. So the logic on CM implemented here is that the own ships try to maintain safe distance from thc
hostile targets. The platform jamming power is in proportion to the target signal power until thc platform
reaches the cross-over range. When the platform reaches thc cross-over range and is unable to block the
targct signal, the second counter measure logic scts in. The ownship platform will change its flight plan

by changing the flying trajectory by a preset angle and try to movc out of the hostile field of vicw (FOV).

3 Case Study: PE Simulator for AFFTC

In our earlier work, we have summarized some of the generalized issues when considering thc test and
cvaluation of a prototype data fusion process (what we have called the “System Under Test” or SUT).
We focused on the problem of PE and the “faimcss” issue for the distributed data fusion case. In this
AFFTC application, one type of distributed fusion application will be the case of multiple aircraft
platforms working cooperatively on a common mission, each performing local or platform-specific fusion
while also exchanging data and fused estimates to each other. A core evaluation issue herein is thc
asscssment of the degree of consistency in the multiple track pictures across the platforms. It is also
critical to guarantee that the alternative PE network node outputs are consistent, in accordance with a

consistency specification pertinent to the application. PE nodes perform track-to-truth association to
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support track accuracy-related or other MoPs, and perform track-to-track association to support platform
track file consistency-related MoP estimation for two or more internetted platforms (e.g., Joint Strike

Fighters (JSFs), or the “F-35" aircraft).

3.1 PE Node Design

In the PE framework the PE nodes perform 3 necessary functions: (i) data preparation (ii) data
association and (iii) MoP state estimation. In our Case Study, during data prcparation the PE node puts
tracks and truth information in [x, y] co-ordinates and common time. Data association performs
dcterministic  track-to-truth association and track-to-track association. During data association the

following three actions are performed:

(i)  Hypothcsis Generation,
(iiy Hypothesis Evaluation, and
(iiif) Hypothesis Selection.

The PE node uses a Kalman filtcr for Level 1 MoP state estimation. Using the Levcl | cstimates
the Level 2 and 3 estimates are generated. SUT tracking errors will induce Intent (Al Aspect and ESM
modc) and Lethality (TTLE) errors.Thcse crrors will propagate to a component error in Threat/Risk
assessment. Note that thesc arc diffcrent than Threat crrors derived from Threat-to-Truth Threat

Association.

3.2 Case Study Measures of Performance for PE

This overall T&E methodology has been applied to somc cases of intercst to the Air Force that involve
DF-capable tactical aircraft. (Many modern-day tactical aircraft have multiple scnsor systems and can
employ DF processes to support the execution of thcir missions.) Because certain aircraft employment
concepts involve multiple aircraft cooperating on a given mission, wc have recently examincd a casc
involving two friendly aircraft engagced in an air-to-air combat environment with six hostile aircraft. From
a Data Fusion point of view, this involvcd addressing the T&E issues associated with Distributed Data

Fusion (DDF), since fusion occurs not only on each friendly aircraft but also betwecn them, sincc they are
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intercommunicating, and exchanging both data and fused estimates in a rather complex DDF process.

The framework of these experiments is shown in Figure 15.

Trachs

Unigue v |

Figure 15. Framework of Distributed Data Fusion experiments.

From thc point of view of supporting the tactical mission, onc critical issue of course if whether there
is a consistent “track picture” across the two aircraft. It can be seen in Figure 15 that it is typical that
there are differences in the local target track pictures on each platform which need to be reconciled for
mission application. In these recent studies then, we studicd fused track picture consistency as a function

of ccrtain factors, looking at both Track-to-Truth and Track-to-Track consistency metrics.

Figure 15 depicts how the two platforms have their own vicw of the truth picture based on the on-
board sensors. There are both “‘common” pictures and “unique” pictures. Let us assume, for the sake of
example, that all the on-board sensors see the samc targets. Let platform 1 sees 3 tracks (based on on-
board sensors) which are common to platform 2 and vice versa. The common tracks are shown in rcd.
Note that even though both of thc platforms sec the same targets, their measurements about those
common targets could be different depending on how the on-board sensors report the measurements. Also
there are certain targets that are uniquely seen by platform 1 and platform 2; note that some of either the

common or unique tracks could be false tracks.

Each of the platforms exchange their track files and data fusion is done upon receipt of this
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information at each platform. We will explain further how this information is exehanged when we diseuss
Tier 0, Tier 1 and Tier 2 (Section 3.3). We assume that there is no bandwidth limitation in
eommunication. We have incorporated more realistic asynchronous (delayed) communieation among the

sensors and the platforms.

The baseline distributed fusion output is the Consistent Taetical Pieture (CTP). The sensor track file
“consistcney” is eomputed at each time point as the pereentage of matehing CTP traeks in the track files
of eaeh platform. In addition to this measure, the following four higher level consisteney metries have

been computed:

1. Track-to-Track Aspect, ESM and TTLE Consistency: These are Level 1l metrics which compares the
Air Intereept, ESM mode and TTLE estimates across platforms.

2. Track-to-Truth Aspect, ESM and TTLE Consistency: These are Level 1l metrics which measure the
accuracy of the Air Intercept, ESM mode and TTLE estimates.

3. Track-to-Track Threat Consistency: This is a Level 11l metric whieh compares the estiamted Threat
aeross platforms.

4. Track-to-Truth Threat Consistency: This is a Level 11l metric which measures the aeeuraey of the
estimated Threat.

3.3 Explanation of Fusion Tiers

Tier 0: (Figure 16) In Tier 0, each of the on-board sensors (Radar, ESM and IRST) fuse their own

reports. The resultant Tier O tracks are then fused together to get the Tier | consistent track picture. Here

the information is not yet shared aeross the platforms, so the result tends to be less accurate than for

example the fusion of Tier 0 sensor tracks to the all souree CYP. Generally, batching of larger data sets

for fusion is more accurate; albeit more complex.
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Figure 16. Tier 0
Tier 1: (Figure 17) In Tier 1, cach of the on-board scnsors (Radar, ESM and 1IRST) share their Tier 0
track files to generate the ownship consistent track picture. This is typically done for each sensor track file
as it is updated, rather than all sensors at onee. The DNN architecture exposes these and many other ways

to network fusion nodes on a single platform for Tier 1 fusion or on multiple platforms for Tier 2 fusion.

Figure 17. Tier 1
Tier 2: (Figure 18) In a typical Tier 2 fusion the Tier | track files are fused sequentially as each Tier |

track file is updated. A modified form of a Tier 2 fusion network is for each platform to sharc its own
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sensor measurements with the other platforms. This can be done one sensor at a time sequentially as each
sensor scan of data is received. This alternative tends to be more accurate, however at a cost of morc
communications bandwidth and fusion complexity (e.g., due to report propagations for time dclays,

multiple platform coordinate misalignments, internetted ghost tracks, etc.).

Figure 18. Tier 2

4 Experimental Results and Analysis

The baseline 2 vs. 6 offensive sweep scenario has 6 foe fighters (targets) engaging simultancously in
pairs from left and right 45 degrees and center to achieve a simultaneous missile launch against the blues
(platforms). The blue 1 launches AMRAAM missiles on reds (fighters) 1, 2 and 3, 4 respectively. The
blue 1 launches AMRAAM for the second time against the surviving red. Then the other blue turns
towards reds 5, 6 and launches missile. All thc red fighters are in a pair staggered formation with the
trailing fightcr off to the left or to the right, sufficient to be not resolvable by blue radar until after the

final red turn.

Tier 0: We ran the simulation for all Tiers from time periods 1 to 329 with an interval of 1 time period.
The time period was | sccond. The baseline 2vs6 offensive sweep scenario has 6 foe fighters coming
towards 2 bluc fighters with the objective of engaging at 10-15 km simultaneously in pairs from +45

degrecs and center. The blue launch AMRAAM missiles between 20-25 km on 1, 2 and 3, 4, respectively.
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The seeond launch by blue 1 against the surviving rcd 3 oceurs at about 10-15 km. Then the other blue
turns at 5g towards red 5, 6 and launches on 5, 6. All fighters are in a pair staggered formation with the
trailing fighter off to right and behind sufficient to be not resolvable by blue radar until after the final red

turn.

The blue and red fighters are both initially in search mode for each other. Once the reds deteet they
turn off emissions and execute their pre-planned maneuvers to achieve near simultaneous launch on the
projeeted blues. The reds all turn on their radars to lock-on to blues just after their last turn towards the
projeeted blue position. The reds launch radar guided missiles at their closest blue targets as soon as
possible. Red 5/6 should pull delaying turns together then turn towards an intereept with US 1 (i.c.,
highest elosure rate) once their radar acquires.

The blues split and turn towards the outsidc threats to take advantage of their longer range
AMRAAM shots at each of outside red pairs. They support their launches until both outside reds are
killed or until seeond shots are needed. In the baseline seenario shown, US2 achieves 2 kills with its first
launches then turns towards reds 5/6 that have engaged US1 while taking its second shot at the surviving
red 4. US1 will leave this sccond AMRAAM onee it has acquired red 4, then pulls defensive maneuvers
and eountermeasures against the reds 5/6 missile launches while US2 eompletes red 5/6 kills.

The SUT gate multiplication factor was 5 and 15. The PE gate multiplieation faetors of 3 and 5, PE
designs for Vogel and Hungarian based association, expectcd probability of false tracks, expected

probability of detection and eonfidenee 1D updates.

Tier 1: Similar to Tier 0, the simulation for Ticr 1 was run from time periods 1 to 329 with an interval of

1 time period.
Tier 2: The simulation for Tier 2 was run from time periods 1 through 329 at an interval of 1 time period.

5 Design of Experiments

When employing DOE test-planning methods, one issue that can arise is the complexity involved in

designing efficient test plans if there arc many independent variables (or “factors”, the term used in the
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DOE literature) whose effects on the DF process under test want to bc known. Using traditional DOE
experimental designs, the number of runs that have to be made will grow exponentially when the number
of factors is large, and the number of “levels” (specific value settings of the factors) is largc ; these go as
the number of lcvels raised to the number of factors, or LF. This cxponential growth is associated with the
typc of experimental design being employed, called a “factorial” design, which not only allows thc so-
called “main effects” to be discerned from the experiments but also what are called “interaction” effects,
where knowledgc is gained about the effects on the metrics of interest due to interacting cffccts among
thc factors. If the desire to learn about the interaction effeets is relaxed, using a typc of experimental
design called a “fractional factorial” design, the severity of the exponential growth is lcssened but can still
be an issue to dcal with. Although we are still studying the strategies for and efficiencics of large factor-
many level experimental designs, we are now cmploying a phascd approach as shown in Figure 19, where
we usc the fractional designs initially as a scrcening step to dctcrmine those factors which are most
influential on the metrics, and then the factorial designs to better understand thc main and interaction
effects of the kcy variables and, if necessary what are callcd “response surface” mcthods to understand

thc broad effects of the factors across the levcls of interest for the application.
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DOE Strategy for Many-Factor Cases

Focus of Analysis

Fractional Factorial * Screening
STAGE 1 Experiments * High-order Interactions are assumed

negligible
€.g. two or three level * Several main effects and low-order
Fractional desig interactions can be estimated with fewer
eliminate runs
insignificant
factors

2k 3k or mixed level Fractional factorial designs are projected
STAGE 2 Factorial Designs in stronger (larger) designs in the subset of

significant factors

* Many complete factorial designs to
Full Factorial Designs estimate the factor effects and interactions
STAGE 3 Respollse Surface of interest at different levels

Methods * RSM estimates interaction and gives us
the response surface

Figure 19. Phased experimental design strategy to deal with many factors and levels.

Perhaps the most important aspect of this formalized approach is that the post-tcst analysis
procedures, generally falling under the title of “Analysis of Variance” or “ANOVA” procedures, allows
the assessments of the results to be done with statistical significance. That is, assertions of the typc that
“the hypothesis that there is an cffect of factor X on metric Y can be rejected with 95% statistical
confidence” can be made as a rcsult of thc combincd utilization of DOE test designs and ANOVA
analysis methods. We planned a Design of Experiments (DOE) scheme for the PE MoPs. We conducted
these tests on Tier 0, Tier | and Tier 2. We decided on the following factors to sctup thc DOE:
¢ Scenario Factors (Fixed):

— Offensive Swecp 2vs6 Air-to-Air
¢ PE Factors:

— Dcsign (Association)

Vogel Approximation (PE 1), and

Hungarian based association (PE 2)
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— QGating Factor: 3and§
» System under test (SUT) Design Factors:

— Gating Factor: 5 and 15

So this yields a 2* or 2’ full factorial design. We used MINITAB to perform the DOE runs. The full

factorial design dctails are as follows:
Factors: 3
Levels: 2

(A) SUT Design Gating Factor

(B) PE Gating Factor

(C) PE Dcsign

Base Design: 3, 8
Runs: 80
Replicates: 10

Blocks: 1

Centecr pts (total): 0

All terms are frce from aliasing. The factors and interactions that are significant for various MoPs are

dcnoted by *S’. Table 3, Table 4 and Tablc 5 show the summary of the DOE run results for Tier 0, 1 and 2

respectively. 1n addition to these DOE runs, we ran another set of full factorial runs to sce the effect of

communication tiers on the various MoPs. We added another factor, (D) Tier, with two levels: Tier 1 and

Ticr 2. Tablc 6 shows the significant factors and their interactions for the various MoPs. The detail DOE

charts are given in Appendix A, B, C and D.

Table 3. Tier 0 DOE run summary

A

B

C

AB

AC

BC

ABC

Track 1 to Truth Radar Aspect Consistency

ESM Consistency
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TTLE Consistency

Threat Consistency S
Track 2 to Truth Radar Aspect Consistency S
ESM Consistency S S
TTLE Consistency S S S
Threat Consistency S
Track 1 to Truth ESM Aspect Consistency S S

ESM Consistency

TTLE Consistency S S

Threat Consistency S S S
Track 2 to Truth ESM Aspect Consistency

ESM Consistency S S

TTLE Consistency S S

Threat Consistency S
Track 1 to Truth IRST Aspect Consistency

ESM Consistency S

TTLE Consistency S

Threat Consistency

Track 2 to Truth IRST Aspect Consistency

ESM Consistency

TTLE Consistency

Threat Consistency S

Table 4 . Tier 1 DOE run summary

A B C AB AC BC ABC
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Track to track Aspect

ESM

TTLE

Threat S

Track | to truth Aspect S S

ESM S

TTLE

Threat

Track 2 to truth Aspect S S

ESM S

TTLE, S S

Threat S

Table 5. Tier 2 DOE run summary

A B C AB AC BC ABC

Track to track Aspect S

ESM

TTLE S

Threat S
Trackl to truth Aspect S S

ESM S S S S S

TTLE S S S

Thrcat S
Track 2 to truth Aspect S

ESM S
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TTLE

Threat

Table 6 . Inter Tier 1 and 2 DOE run summary.

C|D|AB | AC | AD |BC | BD | CD | ABC | ABD | ACD | BCD | ABCD

Track
to track | Aspect

ESM SIS S S

TTLE S

Threat S
Track!
to truth | Aspect S|S|S S S S S S

ESM S S S

TTLE S S S

Threat S S
Track2
to truth | Aspect S S

ESM S 'S S S

TTLE S

Threat S

The concept of analyzing the design for L4 design is really difficult. According to the Countermeasure

logic implemented in Section 2.3, the estimated tracks generated will be significantly differcnt than the

truth track. The countermeasure logic suggests that jam the radar signal from the hostilc platform, until

the hostilc rcaches the cross-over range (S/J =1). After that the ownship changes its current trajectory to
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get out of the FOV of the hostile platform. Due to this countermeasure implementation the true threat will
be different that the estimated threat and will hence forth have different tracks. To check for the change in

S/J consistency over the truth and estimated tracks and the DOE charts arc shown in Appendix E.

The statistical design shown here dcals with very small number of factors. But in case of large number
of factors we will need humongous number of runs to analyze the statistical design under study. We nced
to change our approach or find a new method to handle the increasing number of factors. In following

section we have elaboratcd large factor DOE (Design of Experiment).

6 Large Factor DOE

Here we are trying to achieve a tradeoff between the number of factors, their levels and the cost of
carrying out the experiment. As the former increase, the cost increases. In a full factorial design we
analyze all the factors at all levels which have large number of runs. For example in a 2 level full factorial
design with S factors a minimum of 32 runs need to be carried out. This makes it impractical to carry on
with such an experiment. Generally this is the major reason experimenters opt for a fractional factorial
design where information is obtained very easily and in fewer runs. But it is a highly confounded design.
A lot of information is lost because of this confounding. As intcractions are confounded with the main

effect it becomes very unclear as to which is the factor that is responsible for the effect.

Goals of large factor design In order to overcome the shortcomings of a fractional factorial design,
certain designs tend to the large number of factors and are economical and produce optimal results in very

Icss time. The goals of such designs can be listed as:

e Lower number of trails with variations of multiple factors.
¢ Finding the separation of effects due to individual factors and interactions.
e Keeping a vertical balance
These dcsigns have fewer runs and some of them even incorporate variations in them. They try to keep

main effects separate from the interactions and find the influences of each of these on the experiment by
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solving them individually. They also try to maintain same number of runs at all levels of each factors.
From some of Taguchi methods to other individual ones achieve these goals with ease where they solve

right from 14 to 100 factors. The following subsections discuss these methods in detail.

6.1 Latin Square Design

A Latin Square design is used when therc is a need to compare the treatments and to control up to 2
known sources of variation. As the other designs these were also first used to design agricultural
experiments (Figure 20). The fertility trends were secn to run up and down and across the field. In such a
scenario 1f there were 4 fertilizers used, then the ficld would be divided into 16 smaller plots by running 4
horizontally and 4 vertically. So when a Latin square design is used in such a scenario, the Latin square
design will allocate the four different types of fertilizers in these plots with each type oecurring only once

in a row and column.

Figure 20. Example of a Latin square design applied in the ficld of agriculture.

In the early 70’s researchers such as Finney [28][29], Federer [30], Frecman [31][32][33] and
Addleman [34] explored on the coneepts of generalizing the Latin Square designs and called them F

square designs. Hedayat and Seiden [5] studied this concept in detail. In F square designs instead of the
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number appcaring oncc in a row and a column, the number appears same number of times in the rows and

columns. So these designs are explored to develop an understanding of them.

In a Latin square design the domain is needed to be known before hand. The factors of interest have
more than two levels. These factors are also known well before hand. Each of these factors appcars only
oncce in each row and column. One of the most striking fcaturc of such a design is that there arc negligiblc
or no interactions at all. It is one of the more complex dcsigns. But it provides good rcsults by making
sure that the main effect of one factor does not bias the main effect of other factors. Unconfoundcd main
cffects are also derived in this design. Nuisance factors are used as blocking factors. The blocking is
carried out in order to randomize the design. Lindquist argues that in a single Latin square design, the
main effcct is confounded with the interactions of the other two factors and also with the triple
interaction. He also stresses that thc residual of such a design is of ambiguous nature. The error is much
lesscr than that in a randomized block design (RBD) because there is a blocking factor used. The most

common sizes of this design are 5x5 and 8x8, where a 5x5 design is shown in Tablc 7.

Table 7. A 5XS Latin square design.

A B C D E
B € D E A
C D E A B
D E A B G
E A B C D

These designs have also been uscd in the field of mcdicine for cross over trials (suggested by
Armitage and Berry [35]). This concept was further studied by Clark O Neil er al. [36] where they
investigated 10 products on each of the patients. Since it needed to be orthogonal, 10 paticnt scts werc

chosen and a complete analysis was carried out. The benefits of using this design in a cross over trial werc
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discussed in the paper by Kramer and Glass [6]. This design has also been used in the field of psychology,
though very rare. In a paper by Gatio [7], the author discusses the inherent defects in the significance tests

of a Latin square design when interactions occur under four conditions namely:
e  One random variatc model
e Two random variates model
e Three random variatcs model
e Four random variatcs model

Significance tests were carried out on all these conditions for all the effects and their intcractions. The
author concludes that before using this design, the user must get familiar with all the scenarios under
which significant results arc produced by this design. Also hc says that in a psychological study, mainly
the first two scenarios are prevalent. Information technology is also not very far from the other fields in

the use of this design.

In the field of computer scicncc, this design has been particularly used in compiler tcsting. Robert
Mandl [8] uses this design to verify that evaluation of the operators on the enumerating values in ADA is
correct cven if these values were in ASCII code. The author illustrates this by using an examplc from a
test. He concludes that the dcsign provides comparatively great results in form of information for the
amount of effort one puts in. He even feels it is quite a cost effectivc solution. The other common
applications of thesc designs have been in the field of animal nutrition, insecticide field trials and even
greenhouse effects. There are two variations of this design. But a detailed analysis is out of the scope of

the thesis.

o Graeco Latin Square Design — 1t is a kxk design just like the Latin square design but thc
information gathered from this design is more than just a normal Latin squarc design. For example

if a 3x3 design is considered one can evaluate the main effects of four 3 level factors in just 9 runs.
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o  Hyper Latin Square Design — 1t is also a kxk design similar to the Graeeo Design but differs from
it as it uses more number of blocking factors. For example if a 4x4 design is considered one can

evaluate main effeets of five 4 level faetors in just 16 runs.

6.1.1 Advantages

e Several nuisanee faetors are handled with these designs either when they need to be treated

separately or they should not be eombined in to one faetor.
e Numbers of runs are very small.
e At least two sourees of variation are eontrolled.

6.1.2 Disadvantages

e It should be a square design as in the number of levels of each bloeking variable must equal the

number of levels of the treatment factor.

e A major assumption made by this design is that there are no interactions between the bloeking

variables and between the main variable and a bloeking variable.
e The degree of freedom assoeiated with the error term is relatively small for a small design.

e If the number faetors are more, the design tends to get bigger and the error term associated gets

lager.
e If there are any missing values then the design beecomes statistieally too eomplex.
e The following interactions eannot be evaluated:

= Rows and eolumns
= Rows and treatment faetors

=  Columns and treatment faetors
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6.2 Plakett-Burman Design

During the initial stage of experimentation when there is minimal knowledge of the problem in hand,
sereening experiments are eondueted in order to find the major factors in few runs. Until 1946, the most
common design used to eonduet these sereening experiments was the fractional factorial design. But R.L.
Plackett and J.P. Burman in their famous paper “The Design of Optimal Multifactorial Experiments”
deseribed a new economieal and efficient design for sereening experiments. The design was named after
them. In an un-replieated fractional factorial design the number of runs is restricted as a power of 2
whereas in a Plackett-Burman design the number of runs is treated as a multiple of 4, henee making it
economieal in obtaining the factors in fewer runs. This design is used only when main effects are of
importance because the main effeets are highly confounded with 2 factor interactions. There is no
defining relation beeause interactions are not identieally equal to the main effeets. They are resolution 111

design known as saturated main effeet. For example just 12 runs would be needed for up to 11 factors.

Table 8 . The six-factor Plackett-Burman Design used in the first conjoint study.

Faetor No/ contrast A B C D E F

ll l2 13 14 15 16 l7 18 19 l10 ll]
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10 1 1 1 -1 -1 -1 -1 1 1 -1 1

11 1 1 -1 1 -1 1 -1 -1 -1 1 1

12 1 1 -1 -1 1 -1 1 -1 -1 | -1

]; represents the i™ eontrast and 171}, consist of interaetion effeets

There are 2 kinds of Plakett-Burman designs — geometrie and non geometric. It is a geometric PB
design when the number of runs can be depicted as a power of 2 if not it is non geometrie. The design is
distribution of equal number of pluscs and minus in a column. For each of the n-1 columns, the design
allows the contrasting of data by taking the difference betwecn the averaged data opposite to these signs.
In the geometric designs, the columns are orthogonal. But in a non geometric design, the contrast eolumns
are mutually orthogonal but at the same time they ean be correlated to contrast columns of the
interactions. Due to this the major factors may not even show up on the radar making the analysis
inaccurate. Even though there is such a complex alias strueture, the design under some cireumstanees

works and also estimates the interactions simultaneously which other designs are unable to do.

In order to analyze the eomplexity of the alias structure formed in this design, many authors have
proposed various methods. During sereening experiment, based on the assumption that only some faetors
are the eause of variation in the experiment (Box and Meyer [37]) and that for an interaetion to be
significant, the eorresponding main effeets also should be signifieant, Hamada and Wu [38] proposed one
such method in which they contrast the main effeets and two factor interaetions orthogonally to the ones
found by standard methods. But their design is limited to 2 faetor interaetions. Some studies by Hynen
[39] showed that due to aliasing in the design unwanted two factor interactions would appear if the major
factors were more in number. Box and Meyer [40] also proposed a method which employed Bayesian

methodology in order to determine if the faetor is a major factor or not. In the paper by Tyssedal and
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Samset [9], the authors try to makc the PB design more robust design by trying to overcome the
shortcomings. They provide an alternative method for analyzing the design by understanding the alias

structure and by finding consistency between the analysis and the projection properties of the PB design

[10).

The Plackett-Burman designs have seen light in various ficlds of research and practical applieations
for sereening. In the paper by Devos et al. [11] the authors use this design to calibrate partial least square
regression model which was being used to test six polyclinic aromatie hydroearbons and compare it with
the ones calibrated using collinearity. They conclude that the results obtained by using this design arc
optimal. This design can casily solvc more than 27 factors in just 28 runs. Plackett Burman design has
also been used in the field of Biotechnology to find the effect of the medium in xylanase produetion using

a 12 trial design [41] (Li ez al.).

Tyssedal and Samsct [9] use a 12 run 9 response non gcometric PB dcsign to makc an injection
moulding cnvironment, where 15 to 20 variables are considercd while produeing a new plastie
component. It is seen to be a more cost effeetive solution and also eyele times are reduced. The design is
also used to obtain signifieant parameters rapidly and objeetively in a thcrmal proeess which synthesizes

eompounds.

Another application of these designs has been in agrieulture to find the main extraction factor that
affected the yield and quality of peetins in ehieory root. The authors decided to use a two level design
with 17 factors and 20 experiments because they faced a problem as there were too many faetors and were

unsure of the settings which produced optimal results [13].

One of the main applications of thcse designs is in the simulation experiments. They help in screening
out the important faetors used in simulating the design. They are used in setting up and analyzing the
eomputer architeeture simulation cxperiments. The solution was proposed to use such a design as the
authors observed that the processor simulation does not follow any particular statistical method and the

results are not in any confidence levels. Taking this eoneept further, Vanderster ef al. [15] use this design

—
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to optimally selcct the parameters for a knapsack metascheduler which provides a way to systematically

allocate policies on a computational grid.

A Plackett Burman design gcnerally produces a saturatcd design. In order to solve thcse saturated
designs a new mcthod called Fixing Effects and Adding Rows (FEAR) has been discusscd in a paper by
Heyden er.al. [14] Here the authors have described a model by adding zero cffccts rows to the model
matrix after which thc largest estimated effect is fixed in order to examine the factor effccts accuratcly.
This method helps in estimating the effects of the factors. With a set of data values, a comparison betwcen
FEAR and thc conventional Multiple Linear Regression method was carried out and from the rcsults it
can be seen that thc new proposed mcthod performs better than the conventional mcthod of rcgression
because the main cffects that are significant are estimated more accurately in FEAR than when comparced
to Multiple Linear Regression. If the PB design is complete then thc error is very lcss even if not they are

insignificant and the design produces satisfactory results [14].

6.2.1 Advantages

e FEconomical for detecting large main effects (assuming that all the interactions arc ncgligible in
comparison with few important main effects).
e Due to thc confounding the negligiblc impact is averaged and information may bc obtained about

significant intcractions.

6.2.2 Disadvantages

e Due to confounding, the presenee of a large interaction may distort the effect of an individual

factor.

6.3 Split Plot Designs

Split Plot designs are one of the most robust designs found. Though Taguchi’s approach is also robust;
the size of the experiment is large and needs a large number of trails. Reeognizing this drawbaek, Box and
Jones [42] suggested the use of Split Plot designs, which save thc number of runs and even provide

additional information Split plot designs are an extension for randomized block designs. These designs
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are used in an industrial applieation when there are moments where various faetors (proeessing and set
up) and levels are difficult to understand or the experiment is more expensive or it is a very laborious and
time consuming experiment. To overcome these problems, the re ordering of runs is earried out which
results in a Split Plot Design. Instead of earrying out experiments and then reordering it into a Split Plot,
the design can be used in the first place. Many a times this goes unnoticed. In a paper by Kowalski and
Potener [16], there are guidelines to recognize a Split Plot diagram. They say that these designs have three

main charaeteristies:

1. The levels of the faetors are not random and are reset after cach run.
2. For each factor the size of the experiment varies.
3. The random assigning of the treatment eombinations to the experimental unit is not allowed.
Though large in size these are cost effeetive design as shown by Webb et al. [44]. Also in the paper by
Bisgaard [43], there is a cost model for such a design along with examples. These illustrations also show

a reduction in the runs and additions in the information obtained.

There are 2 levels or as Goos and Jones [45] say strata in these designs. The experimental runs are
divided amongst thesc strata. The upper stratum is made up of whole designs and the lower stratum
consists of subplot runs. The whole plots are a group of runs where the factor which is difficult to change
remains constant. This nomenclature of the strata came to existence as these designs were like many other
designs used in agriculture originally. For example; the use of the fertilizer or an irrigation method as one
of the factors that can be applied to the large sections of land called whole plot came to be known as the
whole plot factor and the factor associated with variety of seed to be ploughed in various seetions of this
land by splitting it into sub plots came to be known as the subplot factor. Sueh a design is used only when
therc are many stages in the experimental design. There can be reordering of designs within these strata
which give rise to split- split- plot diagrams. The most common example used while understanding this

method is the production of cheese, a case study by Schoen [46]. There is not much literature to
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understand the details of a three stratum experiments. However, details on how to design and analyze two

level factorial and fractional factorials are provided by Bisgaard [43].

There are a few additional assumptions that an experiment needs to mect before the use of Split Plot

Design. They arc:

1. There are two or more indcpendent variables such that one is a non repeatcd mcasure trcatment or
betwcen-block treatment and there is at least one repeated, or within-block treatment.

2. The number of combinations of treatment levels is greater than the desired number of observations
within each block.

3. If recpeated measurements are used on factors, then each block will consist of only onc factor; if not
thcre will be more factors.

4. The sequence for administcring the rcpeated measurcs levels in combination with each level of the
non repeated measures treatment is randomized independently for cach block.

The Split Plot Design is one where a factor is subjected to all levels of some trcatments but only onc
level of the other treatments. These designs combine both the features between the plots as well as within
the plots. This fcaturc helps in saving the number of runs and thus a large amount of information is
gathered very efficicntly. The first level factors are randomly assigned to the whole units dcpending on
the whole unit design. The sccond level factors are assigned to the sub units randomly within each whole
unit according to the rules of Randomized complete block design (RCBD). Thus the entire design is
randomized. It would not be too harsh to say a good understanding of the domain is needed in order to use

this design.

Table 9. Example of a 3x2 Split Plot Design.

Al A2 A3
Bl B2 Bl
B2 Bl B2
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Table 10. Randomization of the 3x2 design shown above.

Al A2 A3
Bl Bl B2
B2 B2 Bl

When an ANOVA is condueted on such a design, it is seen to have two error terms. The first error
corresponds to the pooled variation between the factors within the groups and the other corresponds to the
pooled interaction of the treatment with factors in each bloek. This happens because there arc two
separate randomizations that oecurred when the experiment was run {16]. According to Kowalski and
Potener [16] in a Split Plot Design one needs to be sure that there is a true replication in the whole plot

factor.
From the varied literature, the applications of this design can be seen in

1. Experiments in which the each factor has a need for different number of experimental units.

2. Expeniments where one factor needs to be more sensitive than the other.

3. Expeniments where there is a need to introduce new factors unexpeetedly.

6.3.1 Advantages

e The sub plot’s treatment factor and interactions are tested to a generally high sensitivity than the
wholc plot because the variance in the former is much higher than in the variance in the latter.

e Experiments with a large number of whole plots and lesser number of sub plots ean be condueted in
a single experiment.

e Factors may be added with minimal additional cost.

e It is a design where whole units are subjected to repeated measuring and these repeated measures

are the sub plots.

6.3.2 Disadvantages

The design is very robust however there are a few shorteomings which are listed below.
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o The cxistence of two error terms causes complicated analysis as there are many standard crror
comparisons.

o The sensitivity of the whole plot is poor as therc is high variance and few replications associated

with it.

6.4 Central Composite Design

Generally during the Design of an Expcriment, mcan models are estimated by assuming that a design
is homogeneous. Central Composite Designs are the second dcsign type discussed so far which are used
in screening experiments. It was proposed by Box and Wilson in 1951 [47]. These designs are an
extcnsion of the factorial designs. When either the full or fractional factorial designs are embedded with
centre points and axial points or star points; a Central Composite Design is formed (Figure 21). The
centre points are experimental runs in the design whose values correspond to the median values in the
factorial design and the design is usually replicatcd along this centre. The axial or star points however are
the points which aid in the rotation of the design by adding curvature to the design, mainly by including

the uppcr and lower median values of the two factorials.
® ®

an ] = . + *

° ¢ *

Figure 21. Formation of a central Composite design.

A second order central composite design is an alternative design to a 3 level fractional factorial design
or a 3* design. As k increases the design size is greatly reduced in a Central Composite Design (CCD). As
a known fact such a design contains twice the numbcr of star points as the number of factors present in it.

Like in a factorial design onc can choose the value for high and low levels, in a composite design the

CUBRC | Large Factor DOE




values are represented by these star points. There are different kinds of Central Composite Designs based

on the position of the star points. They are:

e Circumscribed composite design
e Inscribed composite design
e Face centered composite design
A Circumscribed Composite Design requircs 5 lcvels and the star points define a new high and low
values. With these values as a limit, if a factorial design is created, then it is an inscribcd compositc
design which also requires a 5 level factorial design. In a face centered composite design there are 3
levels of each factor. The star points are in the centre of the faces of the design. The inscribed and the
circumscribed designs are rotatable. But a face centered design is fixed. The largest amount of spacc is

covcred by circumscribed designs and the least by inscribed design.
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Figure 22. Different Kinds of Central Composite Design.

Many authors have used this method to solve up to 120 factors and tested in evaluating the wcapon
system. In the paper by Sanchez and Sanchez [17] the drawbacks of a large full factorial design is
discussed. Owing to this discomfort in solve a highly fractionizcd factorial design is proposed that solves
large designs. These highly fractionated designs are the central composite designs. The authors also show
that their designs is double the size when the factors are in the range of 30-32 and 53-64 but they rcquired
few centre points. With the number of factors considered, there is a variation in the designs. Some work
has bcen carried out in order to recognize these variations. In a paper by Li et al. [12], thc authors
compare the designs based on the variances for both rotatable and non rotatable designs. The numbers of
factors considered are between 6 and 10 with the consideration to axial points. They conclude that the

CCD bascd on a resolution 5 design performs really well and in fewer runs.
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Bjorkman and Zeius [18], discuss the application of this design in their paper. The challenges faced by
the military in a decade to come, with respect to the testing, have been well recognized by the authors in
this paper. Further the authors propose various process capabilities based testing methods such as central
composite designs in order to overcome these challenges. The authors justify the use of this method by

saying that this design would solve large factors with low variance.

This design also finds application in the textile industry. In a paper by Kothari et. al. [19] the authors
use the design in order to understand the factors that affect air jet texturing which forms neps which
reduces the quality of the yarn. Similarly, the designs have been used in the manufacturing industry to
find the optimal factor for the flux cored arc welding and to optimize the design. Similar to the former

paper the authors recognize 4 factors which are used to optimize the design.

Thc Central Composite Designs is a response surface methodology and hence the entire surfacc is
under the study. New work has becn carried out by Hader and Park [48] on these designs to make their
slopes rotatable which reduce the variances in these designs. This rotatability is achieved by adjusting the
distances between the axial points. Sometimes in certain experiments, the factors cannot be changed
casily. But Kowalski ef al. [20] have worked towards developing a better understanding of this problem
and providing a solution to it. Kowalski et al. [20] modified these designs to accommodate a split plot
structure. Here the authors modified the Central Compositc Design which helps in the estimation of
different models based on their mean and variance under a split plot structure taking it a step further.
These designs have also been used to determine the property and structure of certain epoxies. In the wastc
water treatment, these designs have been used to optimize the parameters. Such is the diversification of

the use of these designs.

Non-central composite designs are an attractive alternative to the central composite designs when the
design is asymmetric by the shift of interest after conducting an initial 2 Icvel design. In a paper by

Robert Mee [21], the author discusses this alternative and gives instances to support his study.
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6.4.1 Advantages

e The designs can be run sequcntially.
e They are very efficient as they provide a lot of information on the variables in fewcr runs.
e Thc experimental error is also determined in very few runs.

e Thc CCD’s are very flexible.

6.4.2 Disadvantages

e It’s aresolution 5 design which is higher than some othcr designs.
e  Thc surface plots are not rotatable.

¢ Sometimes the interactions between some variables and square terms are lost.

6.5 Taguchi Methods

Some of the Taguchi methods are also used to solve experimental designs. These are designs
pioneered by Dr. Genichi Taguchi, which have helped in process improvement by improving the

productivity. This method is a philosophy by itself. In itself it has 2 main doctrines:

e To decrease the inherent variation in any process
e To develop a strategy in order to carry out the above stated doctrine.

Some of these strategies could be to identify which of the parameter in the process will help in
improving the strategies. It could also be done by identifying an alternative which will yield the samc or
better results. By far it is one of the most robust dcsigns known in the industry. The noise factors and cost
of failures are incorporated in the designs which ensure customer satisfaction. These dcsigns are used for
optimizing thc design of performance, quality and costs of any equipment. Taguchi method for designing
an experiment is used mainly in manufacturing processes. Figurc 23 bclow givcs a pictorial representation

of the design.
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Figure 23. Taguchi System Representation.

It is one of the highly debated methodologies [22]. In [22] T.N. Goh discusses the issues as to why
some authors support this method and some oppose. He says the argument lies in thc technical merit of
this method. Some authors say that this method has no alternative that could predict the improvement. But
the believers say it is easy to be used even by a person who does not have in depth idea about the
mathematics of the method. Extrcmist also argue that the variations in the environment are not considered
and the design can “hide” the requirements for optimization of thc response and minimization of the
variancc in the design making it counterproductive. But these designs have been widely used and thc
results are hard to ignore which makes it a valid design for consideration in the thesis. Mainly Taguchi

designs can be broadly classified as Orthogonal Arrays and Linear Graphs.

In an orthogonal array experiment the columns of the independent variable are “orthogonal” to each
other. They are often used when there are a number of control factors in the cxperiment. These designs
arc fractionated factorial designs. Orthogonal arrays have to be defined in terms of the number of factors

considered, the levels of the factors and the specific interactions of interest.

Table 11. Orthogonal array eleven two level factors.

Experiment Column
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Number 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

When there is a need to assign the faetors in an orthogonal array, linear graphs are used. These are
substitutes for triangular table, also a Taguehi method. As mentioned in [27] by the author, the graphs
have nodes and lines. The numbers prescnt beside the vertices and the edges correspond to the columns in
the orthogonal array. The vertex of thc graph shows the factor and the edge shows thc column of the

interaction between the eonneeted vertiees.

Figure 24. L8 linear graph.

The operational steps of a Taguchi design is depieted in the flowehart below (Figure 25)
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Problem statement and
defining the objective

-

Listing the response
variable, the noises
and control factors

Planning the
experiment

Running the experiments to see
which parameters have improved.

.

Confirming the precision of the
experiment by running it again

Figure 25. Operational steps of the design.

In the paper by Antony er. al. [23], the authors have used the Taguchi methods in an automotive
industry to develop a new coil. An experiment is designed with 16 trials to study 14 paramcters with onc
interaction. Thc authors [23] follow the stcps of the Taguchi method diligently and come up with optimal
settings for the design parameters that arc very important in making this coil. In conclusion they talk

about the effect of such designs in solving large problems easily in industry.
6.5.1 Advantages

e Docs not consider specification limits but the quality of thc system.

e Error is resubmitted.

e Uses the noise factors in the experiment,
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6.5.2 Disadvantages

e Orthogonal arrays are used without a thought.
e Interactions are not considered.
e There is no modeling but analysis results in the answer.

6.6  Analysis of the Designs

6.6.1 ANCOVA

In the former section of this chapter, the different methods that are used to solve large factor problems
are learnt. Generally, after conducting the experiment, an ANOVA is conducted to find out the variances
in the design. ANCOVA is a method that takes the analysis of variance a stcp furthcr. ANCOVA can be

pictorially dcfincd as:

ANOVA

+

Linear Regression

ANCOVA

Figure 26. ANCOVA pictiorial depection

From Figurc 26 onc can know that ANCOVA has two components embedded in it. Along with a
regular ANOVA, ANCOVA includes linear regression. In order to understand this method better,
covariance necds to be well understood. In simple terms covariance is the degrec through which two
variablcs vary together. A covariate is the source of independent variation that affects thc rcsponse
variablc but was unknown in the beginning of the experiment. This is helpful bccause, it helps in reducing

the unknown variance in the design which aids in estimating the means of groups more precisely.
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Knowing this, ANCOVA can be defined as the method that compares mean values of response variables

between groups when response variable co varics with other continuous variables [24].

6.6.1.1 Formulation
Mathematieally ANCOVA might be represented as
y; = H+oy+ B(x, —x)+¢;
Where

Yy =jth replicate of i level response variable
4= mean value of response variable

a,= u, — u= difference between the means
[ = combined regression eoeffieient

x, = eovariate of the j* replicate observation from the i" level of a factor

x = mean valuc of covariate

¢, = unexplained error assoeiated with "™ replieate obscrvation from the i level factor

6.6.1.2 Application of ANCOVA

Since therc is a covariate used in this method, the residual variation is removed. The method hence can
test whethcer ccrtain factors have effect very easily. It 1s known to statistically more powerful than a onc
way or even a two way ANOVA, sincc it accounts to some variability in the designs. Adding a covariate
to ANOVA reduces the degrees of frcedom of thc design. But it is a dcpendent on there being a
correlation between the covariate and the responsc variable. Adding a covariate which accounts for very
little variancc in the dependent variable might actually reduce the statistical powers if not the power of the

design is very high.

6.6.1.3 ANOVA for ANCOVA

An ANOVA table of ANCOVA is rcpresentcd as shown in Table 12.

CUBRC | Large Factor DOE




Table 12. ANOVA table for ANCOVA

Source Df MS F-Ratio
SS 4 MS,.
Factor A (Adjusted) (p-1) —ed) ==
(p-1) MSRcsidua(adj)
88
Residual (Adjusted) p(n-1)-1 = fResilualladl)
pn=-1-1
Total (Adjusted) pn-2

By using this analysis a statistical control of the crror is obtained which is a strong point of the design.
There is no upper limit in the number of factors that can be considered by this design. But a drawback of
the design is that assumptions nced to be met and thcre necds to be correlation between the covariate and

the rcsponsc variable.

6.6.1.4 Assumptions

The assumptions are as follows:

e Normality

e Homogeneity of variances

¢ Independence

e Linearity

e Covariate values should not be different amongst the group
e Fixed covariate

e Homogenous slopes - These have to be tested for compulsorily
Thus thc designed can be summarizcd as an extension of thc ANOVA whcre covariate is included
which helps in increasing thc statistical power of the experiment with the only limitation being —

assumptions need to be met.
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7 Classification and Recommendation of Designs

Foremost idea of the thesis has been to develop an understanding of the different methodologies that
are used to address the issues of large number of factors. The mathematies behind the design, their
ecomplexity and number of faetors they ean solve, their advantages and disadvantages and the application
of these designs has been discussed. But this has bcen mainly through literature survey. Taking a step
further, these designs have been analyzed and elassified based on the general understanding. Based on
these elassifications a recommendation for the use of these designs has been provided. This

reeommendation ean be used as an aid in the selection process, thus serving as a guideline.

7.1 Classification based on Advantages and Disadvantages

After a thorough literature survey of various cases, the advantages and disadvantages of each design is

listed in the following manner (Table 13):

Table 13. Advantages and dis-advantages of all designs.

Design

Advantages

Disadvantages

Latin square design

Several nuisanee faetors are
handled with these designs
(cither when they need to be
treated separately or when
they should not be combined
in to a single factor)

Fewer numbers of runs.

The variations ean be

eontrolled in 2 direetions.

The efficiency ean be
inereased when eompared to
RCBD.

Economy of samples and

ready analysis.

Number of treatments should be
equal to the number of rcplicates.
The experimental error is likely to
inecrease with the size of the
square.

Smaller squares have fewer
dcgrees of  freedom for
experimental error.

The following interactions eannot
be evaluated:

Rows and eolumns

Rows and treatments

Columns and treatments.
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Plackett-Burman

Design

They give same info as 2*P
resolution I1I design but with
your fewer trials.
It is a sequential
experimentation whieh s
valuable.

By this design the variables
can be cnhanced.

It is a feasible design.

It provides robustness in the
produet.

1t helps in intelligent decision
making.

Helps  in  finding which
variable ean be used to
change the system.

It does not have the power of
2 restrietions, since it is a 4N
design making it more

flexible.

The amount of a priori knowledge
of the experiment is important
while using this design.

Aliasing pattcrn for such a design
is very eomplex.

It is not a great idea to run largc
experiment or to depend on
strategies that do not have the
possibility of resolving complcx
relationships among factors with

only fcw additional runs.

Taguehi methods

Compress the amount of data
requircd to carry out the
experiments.

Give benefits of multiple
simultancous AB split tests.
Allows the testing of a few
pagcs of clements all at once.
Requires far lesser data than a
normal design.

Gives a robust design.

To achieve the objective the
number of trails required to

be carried out is very low.

Though thc size of thc experiment
is larger than a normal design, it is
small when compared to some
other designs.

Requires in depth knowledge of
DOE.

In order to understand the results,
high statistical knowledge is
required.

The variable interactions are not

considercd in this design.
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ANCOVA

Power of the experiment is
higher than the others. This is
beeause there is a reduetion
in error varianec.

By this method residual
variation is redueed.

It is highly powerful when
compared to 1 or 2 way
ANOVA. This is because it
has a greater ability to deteet
and estimate the interactions
(within the group as wcll as
between the groups)

There is availability of
extensions to deal with
measurement  errors  in

eovariatcs.

It does not yield results if the
assumptions are not met at least
approximately.

The  dependent and  the
independent variables should be
lincar in parametcrs. This further
leads to the fact that there should
be correlation bctween  the
covariates and the responsc
variable.

There is an additional cost of
introducing blocking factors.

The bloeking factors that arc
highly correlated with the
dependent variables become hard
to find.

If the blocking factor is poorly
correlated, there is a loss of
power.

This design reduees experimental
error by statistical methods rather

than experimental methods.

Central composite

Design

The design gives highly
aceurate and strong results
because the detection limits
are lowered.

The design provides cqual
preeision for fitted responsc
at the points.
Sueh designs identify
multivariable interactions.

The numbers of trails

eondueted to reach the

They employ 5 levels for each
factor, whieh is higher than some
of the other designs.

At times such designs are not ablc
to determine the interactions
between the variables and the
square tcrms.

The surface plots of sueh designs
are not rotatable making them
give different answers at different

points.
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required  conclusions  are
minimized.

Sueh a  design  also
dctermines  the  different
factor levels that provide
optimum responses.

Also helps to determine the
portion of the response that is
insensitive to changes in
predictor variables.

They fit non linear models.
These designs can bc used to

analyzc data of any kind.

Split Plot Designs

Thc sub unit variance in such
design is far lesser than the
whole unit variance. Thus the
sub unit trcatment factor and
interaction  are  generally
tested with much higher
sensitivity.

Such designs ean earry out
both the whole unit and sub
unit analysis in the same
experiment.

They follow a univarite
design and have repeated
mcasures in time (sub unit)
carry out thc whole unit

analysis.

Less precise  than a  fully
randomized experiment.

Many dcsigns have too few
degrees of freedom to give good
estimates of the main plot
variation.

Analysis beecomes more complex
in cases such as missing data
valuc, existenee of covariates or
while carrying out regression
analyses.

There are 2 kinds of errors and
hence there are many standard
error comparisons.

High variance and fcw replication
of the whole unit lead to poor
sensitivity on whole unit faetors.

Presentations of results are harder.
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From the list above certain inferences of the dcsigns are derived. It can be seen that the designs have

certain common features. The designs have been groupcd further based on these features into classes.

When just the advantages are considered the designs can bc broadly classified as:

e (Class 1A- Economical

e Class 2A- Large amount of information gathcred

e (lass 3A- Number of runs/trails are low

e (lass 4A- Control of variations

e (lass 5A- Aid in decision making

e (Class 6A- Solve Non Linear Modcls

Though thesc are self explanatory, a brief description of them is discussed. As discussed earlier, thcse

designs are generally economical. But this is a very subjective interpretation. Depending on the objectivc

of the experiment and the situation of usc, some of the designs might be more feasiblc than others.

Mostly, a design is economical when its usage at least achicves a breakeven. Somc of the designs take an

additional stride and solve even non linear models. Most of the designs discussed are robust in a certain

way, some based on their ability to control variation in the process and some based on thc amount of

information gathered which is why they become such an important criteria for classification. If thc later is

achieved in thc least amount of runs, the dcsign achieves its efficiency. These designs can be used in

decision making. How useful they are as an aid, becomes another selection criterion. Based on the above

criteria, the following classifications of the designs arc madc (Tablc 14).

Table 14. Classification based on advantages.

Class 1A Latin Square Dcsign, Taguchi Design, Central Composite Design, Split Plots,
Plackett-Burman Design

Class 2A Plackett-Burman Design, Taguchi Design, Split Plots

Class 3A Latin Square Design, Plackett-Burman Design, Central Composite Design, Split
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Plots

Class 4A Latin Square Design, ANCOVA, Split Plots
Class 5A Plackett-Burman Decsign, Taguehi Design, Central Composite Design.
Class 6A Central Composite Design

In order to get a quick idea as to which of these advantages is the most luerative to be considered

while designing an experiment a bar graph is quantified.

@ Number of Designs under
each Class

Class Class Class Class Class Class
1A 2A 3A 4A 5A 6A

Figure 27. Number of designs for under each class/advantages

To give a fair idea of the designs, it is unsettling if only the positive are eonsidered. Therefore, the
disadvantages of these designs also need to be known. Based on the list of disadvantages, the designs

were broadly classified as

Class 1D - Assumptions for the design need to be satisfied

Class 2D - Complexity of the design

Class 3D - Prior knowledge of design needed is high/Domain should be known

Class 4D - Limited analysis of the interactions
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e (lass 5D - High cost

e (lass 6D - High Error

e C(Class 7D - Low degrees of freedom

As we already discussed while classifying advantages this is a very individualistic interpretation. As
these designs are large, they can get very complex as the factors inerease making it hard to understand.
This intern leads to higher cost of the design and some of them are associated with a higher error term
eaused due to lower degrees of freedom. Most of the designs require a good amount of domain
knowledge; the assumptions needed to be satisfied are quite a few. Designs like Latin squares limit
themselves to the main effeets and interaction analysis is not carried out. Hence these act as the
parameters that measure the flip side of the designs. After elassifying the disadvantages into ¢lasses, the

designs are fit into these classes in the following manner (Table 15).

Table 15. Classification based on disadvantages.

Class 1D ANCOVA

Class 2D Plackett-Burman Design, Split Plots

Class 3D Plackett-Burman Design, Taguchi Design, ANCOVA, Split Plots
Class 4D Taguchi Design, Central Composite Design

Class SD Plackett-Burman Design, ANCOVA

Class 6D Latin Square Dcsign, ANCOVA, Split Plots

Class 7D Latin Square Design, Split Plots

A bar graph drawn (Figure 28) will aid in quantification of these disadvantages while designing an

experiment.
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@Number of designs
under each class

Class 1D Class 2D Class 3D Class 4D Class 5D Class 6D Class 7D

Figure 28. Number of designs under each class/disadvantages.

7.2 Classification based on number of factors and complexity of the design

As already stated, the number of factors a design can solve is one of the major reasons the research has
been eonducted. In order to achievc an optimistic result for this study, the classification based on the
numbcr of faetors is earried out. This is a naseent step towards providing some kind of guidelines in order
to achieve that tradeoff between the cost and the information uscd and got from these designs. The larger
the design the cost is higher. So considering the minimum numbcr of factors that can be solved with the

least amount of cffort the dcsigns were classified as

e High (x>15)
o  Medium(10<x<15)
o Low(5<x<10)
where x denotes the number of factors.
Having classificd in this manner, the designs ean be grouped into these classes and a graph is

developed.

e High - Latin Square Design, Split Plot Design, Taguchi designs, CCD
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e Medium - Plackett-Burman
e Low - Fractional Factorial Design
The Figure 29 below gives a quick update on the designs and aids in picking the most suited design for
carrying out the experiment. The numbers of factors vary as high medium and low and the complexity

involved in solving the design varies from low to high.

Many

Latin Square
Designs
Split Plot design
Taguchi Designs

cco

Plackett-Burman Design

Number of Factors

Fractional Factorial Design

FEW
Complexity involved in solving the design

Figure 29. Complexity versus Number of factors.

This is the core of the thesis and thus a recommendation is given based on the designs and their

behavior and features.

7.3 Comparison and Recommendation of DOE Softwares

A statistical analysis ean be carried out only with a help of a software package. The easier and smaller
experiments can be conducted intuitively and results caleulated manually. But as the size of the design
increases the analysis becomes more complex and cannot be performed cfficiently without the help of the
software [25]. The designs considered in this thesis solve large number of factors and are relatively

difficult if not for these software packages. The packages today solve and analyze the designs with ease.
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It is possible for them to carry out these by fitting data into inbuilt mathematical equations which predict
the outcomes. These software packages help in coming up with optimal solutions which make it casy for
enginecrs to carve up some savings in the industry. A comparative table is shown below (Table 16):
Table 16. Comparison of DOE softwares.
Name of the Features Number of Cost
software Factors
Design Ease | 1. Brcakthrough factors for process or Up to 31 For1-2
product improvement. factors in $495.00 [26]
. Helps to set up and analyze general fractional
factorial, two-level factorial, fractional | factorial and
factorial and Plackett-Burman designs. Plackett-
. Numerical optimization Burman
dcsigns
Dcsign . Thc peak of performance with the | Include up to For1-2
Expert process or formulation. 256 runs and $995.00
. Has features of Design Ease along with | up to 8 blocks
in-depth analysis of process factors or for 8 -15
mixture components. factors
. Offcrs rotatable 3D plots to help
visualize the response surface.
. Numerical optimization function present,
which finds the most desirable factor
settings  for  multiple  responses
simultancously.
ANOVA TM | 1. Utilizes a complete set of orthogonal Solves For 1 it costs
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Arrays all the way to an L 108 or
customize your own arrays.
2. Calculations for Dynamic Characteristic.
3. Individual Orthogonal Array Files and 4-
way Analysis of Orthogonal Array or
Single Factor.

4. Auto pooling on V, F and Rho%.

orthogonal
Arraysupto L

108

Euro 995

DOE Kiss | 1. An Excel Add In feature It supports up | Price per copy is
2. Solves Taguchi, Plackett Burman design, | to 26 factors $249.00
Full and Fractional Designs and 1 response
3. Computer Aided Design Selection variable.
Wizard.
4. Custom Designs
5. Surface, Contour, and Intcraction Plots
Statistical 1. Helps pick thc sample sizc. Pricc per copy
sample 2. Picks the best strategy that suits the $40.00
planncr experiment.
ECHIP Handlcs all the aspects of a DOE. Pricc per copy
$1495.00
Minitab I. Easy to use. Price per copy
2. ANOVA, Regression analysis, Statistical $975.00
analysis, Reliability analysis, multi
variate analysis, design of cxperiment,
rcsponsc surface, surface plots etc.
SAS 1. It has all the regular features of thc Varies from
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statistical software along with it they vendor to vendor
havc additional features like to solve

MANOVA and Split Plot Design

SPSS Has all features of SAS with compatibility For one copy
with windows $1600.00

Statistica 1. Comprehensive, user friendly interface, For one copy
more than 11000 functions interactive 3D $1990.00

explorer to name a few

A detailed study of STASTISTICA and MINITAB has been done. Both thesc softwarc packages have
their own positive points and can be used to solve most of the large factor designs. STATISTICA is morc
robust software as it involves all the minute details involve theoretically in a design. But MINITAB is
menu driven making it user friendly software used by most of the designers. Also it is more economical

than the former.

8 Conclusions

A formalized, statistically-rigorous methodology has been proposed for the evaluation of any Data
Fusion process. It is shown that the methodology requires the design of a scparate Data Fusion proccss
that specifically supports the T&E process by (a) providing a mathematical approach to the requirement
to associatc fuscd statc estimates computed by the SUT prototype to truth states, and (b) providing the
architecture and estimation processes for estimating the evaluation metrics of interest. Additionally, it is
shown that thc methodology also rcquires, due to the underlying stochastic nature of the DF proccss,
integration of the methods of statistical experimental design and also, importantly, the associated mecthods
of analysis that employ ANOVA techniques and other statistical analysis methods. Proof of concept
experiments have been carried out to show representative application of the overall mcthods; thesc

experiments and further elaborations of the methodological aspects are described.
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The increased complexity of modern-day fusion-based tracking problems requircs formalization and
consistency in the PE process for fusion-developed estimates. This gets harder for Level 2, 3 and 4 fusion
processes as explained in Section 2.3. Wc conducted empirical studics to bolster our understanding of the
complex interdcpendencies in performance results from changing SUT/Scenario/PE parameters. This
work suggcsts that the nature of the PE approach should build upon our familiarity with the “Fusion Trce”
fusion process design for various applications. This work also shows that the quantitative effccts of

changing PE process techniques/parameters can significantly affect the MOP results.

In the second part of the research the need for large factor experiments was dealt by learning in depth
about some methods that solved this problem. Some of these designs have real potential but have not been
explored as thcy are not well known and they nced a thorough perception. The mechanics behind these
designs are hard and hence these are not very popular. A classification of these designs was carried out
and recommendations were made after a thorough study. A comparative study based on the complexity,
number of factors, the pros and cons has led to a subjcctivc interpretation of the design which can be uscd
as a guideline. Finally the softwarc programs that aid in solving these designs werc discussed and a

comparison of these was made.

This rescarch is a stepping stone in the world of huge intellectual opportunities to solve this non trivial
problem. Thesc topics need to be explored in detail and more specific guidelincs need to be set. The
designs can also be understood in a better way when the results could be quantificd by plotting the
number of runs needed by cach decsign against the number of factors and also by conducting a trend
analysis of the designs. Furthcr an intensive study on thc most suited software can be carried out and a
manual devcloped which can aid experimenters to use these designs and encourages the usc of the designs

and cxploit their potential.
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Appendix

A. L2 and L3 Tier 0 DOE Charts

This section provides the Tier 0 DOE charts conducted in Section S. The three factors SUT Dcsign
Gating Factor, PE Gating Factor and PE Design at two levels each are tested to find which of these factors
affect the MOPs significantly. In Tier 0 we have three sensors on 2 platforms and they do not fuse any
data within or across platform. Hence we have to only analyze track-to-truth associations for each of the
MOPs. The summary of the results is shown in Table 3. Here for each MOP we have the Normal
Probability plot and Pareto chart which summarizes the significant factors. Then for the significant factors

wc plot the main effects plot which tells us how the change in factor affects the MOP. For the significant
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interactions we plot the interaction plot which shows the effect of changc in factor level combination on

MOP.

After taking a look at the summary (Table 3), wc can say that SUT Design Gating Factor is

comparatively more significant than PE Gating Factor and PE Design. SUT Design Gating Factor appears

to be a significant factor in nearly all the Tier 0 DOE runs. So at Tier 0 we must be sensitive towards

selection of SUT Dcsign Gating Factor.

Radar Track 1 to Truth Aspect Consistency:

Normal Probability Piot of the
(response is Aspect, Alpha = .10)

Pareto Chart of the Standardized Effects
(response Is Aspect, Alpha = .10)
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Radar Track | to Truth ESM Consistency:
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Normal Probability Plot of the Standardized Effects
(response Is £SM, Alpha = .10)

Pareto Chart of the Standardized Effects
(response Is ESM, Alpha = .10)
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Radar Track 1 to Truth TTLE Consistency:
Normal Probability Plot of the Standardized Effects Pareto Chart of the Standardized Effects
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Radar Track 1 to Truth Threat Consistency:
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Normal Probabllity Plot of the Standardized Effects Pareto Chart of the Standardized
(response i§ Threat, Alpha = .10) (response Is Threat, Alpha = .10)
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Radar Track 2 to Truth Aspect Consistency:
Normal Probability Plot of the Standardized Effects Pareto Chart of the Standardized Effects
(response Is Aspect_1, Alpha = .10) (response is Aspect_1, Alpha = .10)
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Radar Track 2 to Truth ESM Consistency:

Normal Probability Plot of the Standardized Effects
(response is ESM_1, Alpha = ,10)

Pareto Chart of the Standardized Effects
(response is ESM_1, Alpha = ,10)
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Radar Track 2 to Truth TTLE Consistency:
Normal Probability Piot of the Standardized Effects Pareto Chart of the Standardized Effects
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Radar Track 2 to Truth Threat Consistency:

Normal Probability Plot of the Standardized Effects Pareto Chart of the Standardized
(response is Threat_1, Alpha = .10) (response is Threat_1, Alpha = .10)
- Effect Type Lisss
® ot Significant gl
® » sigrakan [
o [Ty Fater Name c c
A L
o L L]
4 €
l ®
o
o
»
E
(] -
5
1% T T T T T T
3 -2 -1 0 1 2 3 20
Standardired Effect
Main Effects Plot (data means) for Threat_1
x ]
424
42.2 4 /
420 T
g ~—
413
41.6 3
50 150 3
b T
! 4.4
422
42.0 > —
a8
a6 v
1 2
ESM Track 1 to Truth Aspect Consistency:
Normai Probabliity Plot of the Standardized Effects Pareto Chart of the Standardized
(response is Aspect_2, Alpha = .10) {response is Aspect_2, Alpha = .10)
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Malin Effects Plot (data means) for Aspect_2
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ESM Track 1 to Truth ESM Consistency:
Normal Probability Plot of the Standardized Effects Pareto Chart of the Standardized Effects
(response is ESM_2, Alpha = .10) (response is ESM_2, Aiphs = .10)
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ESM Track 1 to Truth TTLE Consistency:

CUBRC| Referenm




Normal Probability Piot of the Standardized Effects Pareto Chart of the Standardized Effects
(response is TTLE_2, Alpha = .10) (response Is TTLE_2, Aipha = .10)
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ESM Track 1 to Truth Threat Consistency:
Normal Probability Plot of the Standardized Effects Pareto Chart of the Standardized Effects
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ESM Track 2 to Truth Aspect Consistency:

Normal Probability Plot of the Standardized Effects
(response is Aspect_3, Aipha = .10)

Pareto Chart of the Standardized Effects
{response is Aspect_3, Alpha = .10)
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