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Abstract 

In previous research, we documented our evolving research that expanded on and formalized an 

approach to the design of a Performance Evaluation (PE) methodology for Data Fusion (DF)-based 

tactical aircraft systems. We have shown that the design of a PE process for any multi-sensor or multi- 

aircraft fusion-based system involves the design of a separate data fusion process involving association 

and estimation functions for PE purposes per se. Our publications to date have developed the theoretical 

and architectural groundings for this new PE process, and several case studies have been carried out to 

show sample implementations of the principles of this new methodology. In addition, some limited- 

objective parametric experiments have also been carried out that show the application of the new 

evaluation methodology for typical tactical aircraft problems. In this report, we summarize the findings of 

these past works, and show our research efforts related to extending the design and application of this 

methodology to air-to-air engagement problems involving higher-levels of data fusion capability 

(situation and threat estimation) and the employment of electronic warfare systems. The report discusses 

the detailed strategies for data association, metrics estimation, and also the analytical techniques that 

exploit the formality of the methods of Statistical Design of Experiments (DOE) and Analysis of Variance 

(ANOVA) for these fusion applications. At the end we survey and study the various methods available in 

literature to solve the large factor Design of Experiment problem, with a detailed guidelines for 

classification and selection of a proper design. 
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1     Introduction 

Data fusion is an information process involving functional sub-processes that align or normalize the 

data from several input sources (typically sensor data from surveillance and reconnaissance sensors in 

defense applications), associate these data to hypothesized specific entities or events or behaviors in the 

observation space, and then employ these associated or assigned observations toward developing 

improved state estimates regarding those entities or events or behaviors. Data Fusion (DF henceforth) is a 

relatively young technology, having had its start in the 1970's driven largely by the need to manage large 

sensor data volumes from surveillance operations during the Cold War; DF was thus notionalized as a 

kind of "data compression" technique in the formative years of its development. Later, since many DF 

applications involved developing these fused state estimates for human users of various type, a more 

holistic and systemic view of the DF process was developed and the overall process was better defined. 

The process can be described as follows (Figure 1): 

Sl.iiiN in lhv 

World 

Figure 1. Notional Data Fusion Process. 

In the typical defense application context, the state of the Real World is not known but can be 

estimated a priori, in the usual approach to the design of a deductively-based or model-based approach to 

the design of an estimation or inferencing process. This dynamic changing Real World is observed by 

multiple types of sensor systems as noted, and these observations then need to be set into a common 

frame of reference to include e.g., transforming all observations to a common coordinate system, common 
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time base, etc. Then the observation data set needs to be related to the entities and features in the model 

knowledge base; this is done via a Data Association process that employs metrics reflecting the 

"closeness" of any given observation to a modeled entity; this process culminates in the assignment of all 

observations to the various hypothesized entities. The assigned observations are allocated to specific state 

estimation algorithms that are specially designed to exploit the overall information content of the assigned 

observations to generate improved entity state estimates. The usual notion of developing "improved" 

estimates is in the sense of improvements in accuracy but also in the reduction of uncertainty, as all of the 

input can sensibly be treated as random variables, resulting from noisy observations from imperfect 

sensor devices. These estimates, in many but not all applications, are often employed by a human 

user/operator to effect decisions and action-taking, which themselves can possibly change the Real World 

state as noted. Ideally, the DF process is designed as an adaptive feedback process, involving for example 

adaptive, real-time control of the sensors ("sensor management"), or dynamic adaptations to the 

algorithmic processes ("process refinement") as shown above in the notional feedback depicted. 

Evaluation of this process is approached within the framework of comparing estimated states of the Real 

World with the "truth" states of the Real World; truth states are often only known during the Test and 

Evaluation (T&E) phase of the design and development of the prototype DF process, e.g., during 

simulation-based or range-testing of the DF process. 

A very typical application of the DF process is for the case of multisensor-multitarget tracking, i.e., the 

case where multiple sensors are employed to develop data that allows DF-based kinematic state estimates 

(position, velocity, etc) of objects of interest ("targets") to be developed. This is called "Level 1" DF, 

wherein state estimates on single objects are developed; often these LI estimates also include identity 

estimation by fusing the observed entity/feature data to estimate the object class or specific identity type 

(e.g., fighter aircraft or alternately F-16), depending on the specificity needed in any given application. 

While these types of estimates are very useful for military applications, as they aid a commander in 

assessing "where is it?" and "what is it?" more can be done using additional DF methods.  The typical 
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next levels of processing, called "Level 2: Situation estimation", and "Level 3: Threat estimation", then 

leverage from the Level estimates essentially by putting the LI estimates in context, i.e. exploit contextual 

information to develop the situational and threat state estimates. 

2     Developing an Approach to T&E for Data Fusion Processes 

2.1     Addressing the T&E Process for Level 1 Data Fusion-based Tracking Systems 

The design and development of algorithmic techniques for estimating the "best" location and related 

kinematic parameters of moving objects which are observed by single or multiple sensors is a complex 

process. It is complicated in part by the difficulty of obtaining high-quality measurements from sensor 

systems due to underlying sensor limitations regarding precision and accuracy, reliability, etc., from 

natural phenomena that complicate the observing process (weather effects, terrain clutter, etc), and in the 

defense-problems of interest, from the possible use of sensor countermeasures employed (covertly) by an 

adversary. Another complicating factor is the inaccuracy associated with the estimation algorithm being 

used. Virtually all estimation algorithms are model-based, and employ a priori models of target motion, 

sensor errors, system noises etc in order to estimate the target kinematics. The process is further 

complicated in environments consisting of multiple closely spaced targets. As a result, there will be 

differences between the estimated (from the "System Under Test or SUT") and the real ("Truth") picture 

of the composite multi-object kinematic behavior. The goal of a Multi Target Tracking System (MTTS) 

designer is to develop a fusion-based tracking system that yields a composite, estimated kinematic picture 

which is in some sense considered a "good enough" estimate of the composite, true object behavior. 

Hence at various stages in development of a tracking system it is necessary to evaluate the performance of 

the system in order to see how close the system's estimate is to the true picture. This is the fundamental 

issue addressed here: given all the components of a typical tracking system (whose design, as a network 

of separate fusion processing nodes, is often referred to as a "Data Fusion Tree"), along with the 

overarching stochastic characteristics of the problem, on what basis can an equitable approach to 

evaluation of a candidate-design tracking system—the "SUT" ~ be based? This issue is far ranging in that 
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it applies to most multi-target, multi-sensor based tracking systems, although strictly speaking it only 

applies when there is ambiguity in the Data Association process. However, since we lack the knowledge 

to quantify the degree to which Data Association ambiguity affects the need to carefully determine an 

evaluation approach, the concern about this issue extends across a broad range of tracking applications. 

During the process of designing and developing the SUT DF prototype process, the T&E phases 

evolve from concept validation testing to developmental testing; in these phases, and often in later in 

controlled operational testing, the truth states of the "Real World" are known. Presuming the evaluation 

philosophy is based on comparisons between SUT DF process-generated state estimates and the truth 

states, the known truth conditions usually allow for straightforward calculation of the various evaluation 

metrics being employed. Such evaluation techniques presume that there is an ability to relate specific 

SUT-generated state estimates to specific truth states, i.e., that the associability between "Tracks" (the 

SUT-generated track estimates) and "Truth" (the specified Truth states for the given T&E experiments) is 

known. However, conditional on many factors both related to the sensors being employed as well as the 

behavior of the targets and also the specific characteristics of the various algorithms being employed, the 

ability to clearly determine which SUT Track should be compared, for evaluation purposes, with which 

Truth track may often be unclear. Such ambiguities in DF-based tracker algorithm evaluation have been 

known and flagged as evaluation issues as far back as the 90's (e.g., see Refs [1], [2]). However, very 

few papers describing techniques to deal with this problem when evaluating fusion-based trackers have 

been published, and in particular almost no papers (other than our past works) have been published that 

address the T&E methodological issues related to this problem. 

There are a number of types of tracker algorithm pathologies that can arise can give rise to the Track- 

to-Truth association problem. A few cases are shown below in Figure 2. 
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Track Instability 

Track Seduction (Loss) 

rack Seduction (Switch) 

Figure 2. Examples of pathologies in tracker estimates. 

Most of these problems occur as a result of mis-associations of the sensor data to the estimates being 

generated by the tracker algorithm (often based on Kalman Filter-based techniques), such that some of the 

sensor data for given targets are associated to another target, or because a local association or estimation 

error creates a condition where the track is lost, or another example is when two (or "n") targets are truly 

closely-spaced and sensor resolution limits coupled with association errors result in track switching, 

where the estimation process mixes estimates for multiple targets together (this can occur even when 

target identity is also being estimated although such estimates do help in reducing this particular type of 

error). A wide variety of other difficulties can arise even with the most sophisticated and modern tracking 

techniques. Thus, tracker evaluation conditions such as shown in Figure 3 can arise: 
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Tracks (LI Fusion)" and "Truth 
Error = Estimated - Truth 

 Truth Track 

SUT Computed 
Tracks 

Measurements, 
Observations 

Tracking 
Errors 

Clearly Depend on "Track-to-Truth" Association 

Figure 3. Notional evaluation case for fusion-based target tracking process. 

The point of this diagram is that in order to assert that specific tracking errors exist, i.e., that there are 

specific differences between the SUT DF-based track estimates (here shown in black) and the Truth 

tracks (in red), an assertion of which SUT track goes with which Truth track must be made. In the face of 

the many pathological conditions that can arise (e.g., the track fragment in Figure 3, as well as the 

closeness of the computed tracks to the Truth tracks), such associations are not at all easy to assert. As the 

figure indicates on the right-hand side, a many-to-many association problem must be solved to assert the 

SUT Track to Truth track relationships with any confidence. The specific insertion of such steps is one 

specific recommendation of our proposed T&E methodology. Said otherwise, a new Data Fusion process 

must be designed for the specific purpose of testing and evaluating any DF-based tracker. (We will show 

later that this is a requirement for any DF process, including the higher levels of fusion (L2, L3) as 

previously described.) This modified approach to T&E is shown notionally in Figure 4. 
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Figure 4. Separate Data Fusion processes; the Ml DF process and the T&E DF process. 

It should first be mentioned that the approach to constructing any Data Association (DA) approach 

involves three sub-processes as shown in Figure 4: Hypothesis Generation, where the feasible causes of 

any given observation, to include Electronic Warfare techniques i.e., deception, are defined, Hypothesis 

Evaluation, where metrics or scores that reflect the degree of "closeness" of an observation to an estimate 

are defined and calculated, and Hypothesis Selection, where the many-to-many DA or "assignment" type 

problem is solved, culminating in an optimal assignment of the observations to the appropriate state 

estimation (fusion) algorithms for each target. This last step employs what are called "assignment 

algorithms" imported from the field of Operations Research. (The term "hypothesis" here means and 

association hypothesis, i.e., a nominated observation-to-estimate pairing.) 

Along the top of Figure 4 we have the DA and DF process for the System Under Test (SUT); this 

process notionally uses certain Scoring Metrics and Assignment algorithms. This process operates on the 

multi-sensor input stream and produces target track estimates, the SUT Tracks. The T&E DA process, 

notionally employing different types of Scoring Metrics and Assignment algorithms, takes the Truth 

tracks as the definitive associable hypotheses, and calculates the "best" assignments of SUT Tracks to 

CUBRC | Developing an Approach to T&E for Data Fusion Processes 



Truth Tracks. Given those assignments, the tracking errors (basically grounded on differences between 

the estimated states and the Truth states) and any nominated performance metrics can be estimated. As 

pointed out in Figure 4, the values of the performance metrics clearly depend on the computed Track-to- 

Truth association. 

In all of the above, we have been emphasizing that the DF process produces estimates. This is 

because, in the strictest sense, the inputs to the DF processes are the statistically-noisy sensor data having 

stochastic properties. These features have yet other implications for the T&E methodology, namely that 

the stochastic nature of the process needs to be recognized and dealt with in any T&E approach. At least 

when conducting any simulation-based T&E, this implies that (a) the experiments should be designed 

through the employment of the methods of statistical experimental design (aka Design of Experiments or 

"DOE"), and (b) in conjunction with this that Monte-Carlo based replications of any given test condition 

should be done. 

It is recognized by the way that such rigor comes at a price, even when using simulations, and 

especially when doing field tests and the like. It is likely that there has been limited application of these 

formal methods because of the cost implications. As academics however, we feel it is our job to nominate 

rigorous methods so that their application can at least be assessed in any given case. It is only through the 

use of such methods that assertions about the computed metrics can be made with statistical confidence. 

There are other issues regarding the design of the overall T&E process, and a complete discussion of 

them is beyond the scope of this paper. To give one example, there is the issue of the design of the 

overall T&E process for a typical prototype SUT DF process. Any given real DF process will involve a 

complex processing architecture, not a single DF node, because the design of such real systems involves 

various design tradeoff decisions. A typical DF process architecture may appear as that in Figure 5. 
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Figure 5. Representative Data Fusion processing architecture. 

Here we see that the processing flow for a multisensor system involves the usual batching and 

partitioning decisions necessary to evolve an effective and efficient processing approach. It is thus typical 

that tuples of sensor groups are joined in local DF operations (each "F" node above is a fusion operation); 

this is done for various reasons, to include availability of the data, or commonality of the data, etc. The 

point is that there are in any system multiple DF nodes and so the strategy for the design of the T&E DF 

process can become equally complex. Examples of the various strategies that can be applied to the design 

of the T&E DF process are shown in Figure 6. 
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Figure 6. Representative design choices for T&E DF nodal processing. 

Here we see that the T&E-specific DF processing architecture may involve choosing DF nodes that are 

sensor or source specific (e.g., specific to a radar sensor), or a strategy that is time-based where Track-to- 

Truth associations and estimates of metrics are computed at set time intervals, or a strategy that is event- 

driven according to the events occurring in the test scenario. Thus, the assertions regarding the Track-to- 

Truth relations can change over time, or change according to the flow of events, or according to yet other 

choices in the overall T&E DF processing architecture. 

2.2    Addressing the T&E Process for Higher Level Data Fusion-based Tracking Systems 

In this research, we are now looking at the higher levels of fusion, involving the formation of Threat or 

Risk estimates for each friendly aircraft in these scenarios, as developed from the available multi-sensor 

data. In this case we are exploiting the use of the onboard radars and the Electronic Support Measures 

(ESM) sensors that estimate the operating modes of hostile radars. Conceptually, the Actual Risk to a 

friendly aircraft can be thought of as defined by the relationship between an Inherent Risk and the ability 
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to thwart that risk with available countermeasures. The way this notional process is being implemented is 

shown in Figure 7. 

COUNTERMEASURES 

EFFECTIVENESS 

TIME TO 
LETHAL 

ENVELOPE 

Figure 7. Design of the Actual Risk estimation logic. 

For the cases we are examining, the Inherent Risk can be estimated by estimating the Intent and 

Lethality of a given hostile platform. In turn, with the available sensor suite, we can employ that data to 

estimate Intent by examining (a) the Mode of the hostile radar (from the ESM data) and (b) the relative or 

Airborne Intercept aspect or inter-platform geometry, to assess for example whether the hostile is in a 

shoot geometry; this can be estimated from the estimated track data for the hostile and the ownship 

navigation data. We estimate Lethality using a concept called "Time to Lethal Envelope" or TTLE, also 

estimable from the fused kinematic data, and representing a hypothetical worst-case condition where both 

platforms turn directly to each other, with the TTLE being the time it takes to get within maximum hostile 

weapon range. 

The design of Airborne Intercept aspect or inter-platform geometry is shown in Figure 9. The Airborne 

Intercept is calculated based on the truth track of the own ship (blue). The aspect angle is the angle 

formed by the estimated range vector with the estimated velocity vector of the hostile platform (red). The 

Airborne Intercept is the angle formed by the own ship velocity vector and the hostile ship velocity 

vector. (Shown as Tue Al Aspect Angle C and Estimated AI Aspect Angle D in Figure 8) 
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RT = True range 
RE = Estimated range 
A= True aspect angle 
B = Estimated aspect angle 
C = True Al aspect 
D = Estimated Al aspect 

Hostile Ship 
(TTA-based Truth track) 

Hostile Ship 
(Estimated) 

Own Ship 
(Truth trac 

Figure 8. Air Intercept Aspect Geometry 

To calculate the Intent the possible scenarios should be considered. These scenarios are represented in 

Figure 9. Here the range vector is defined to origin at the estimated hostile location and end at own ship 

location. The range vector angle is calculated based on these two locations. There are four possible 

scenarios; based on the Al Aspect angle formed: less than 90°; between 90° and 180°; between 180° and 

270° and between 270° and 360°. There are two possibilities in each of the case and the range angle is 

used to differentiate between a hostile and friendly situation. These possibilities are shown in Figure 9. 
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Figure 9. Air Intercept Aspect Geometry - Possible scenarios 

To further simulate hostile concept of employment or operation (COE/COP) for hostile radar, we use 

the ESM data. The ESM data is estimated using the estimated velocity vector and field of view (FOV) 

[FOV angle is a user input] of the hostile platform (30° around the velocity vector). In Figure 10 we see 

that, hostile H can see platform F] while F2 is out of the FOV range of H. 

Figure 10. Ownship/ Friendly ESM 

There are four possible modes simulated for the hostile radar: 

1.   Unknown: F is not in FOV of H 
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2. Search: When F is in H FOV and both platforms are in an approaching or closing kinematic 

relationship. 

3. Track: When F is in search mode for At] time. 

4. Lock-on: (Figure 11) When F is in Track on mode for At2 time and also reaches within the 

Hostile missile range (Rmax) 

Range Vector 
Hostile Truth track 

Figure 11. Lock-on Mode Declaration Logic 

The ESM sensor is assumed to have long range, 4TT sensitivity. Being passive, the correct calculation 

for the condition that the Friendly has ESM data available to it is based on whether the Friendly is truly in 

the FOV of the Hostile radar (we assume the H ConOp employs the radar actively). Thus, the geometric 

calculations for FOV containment are based on the Hostile Truth track data. To generate True Mode 

according to this logic, go to Confusion matrix to generate Actual Mode Declaration Report (Table 1). 

Table 1 . Actual Mode Declaration Report. 

Actual Mode Declaration 

True Mode (Geometry, Time) 

Search Track Lock-On 

Search P(S|S) P(S|T) P(S|LO) 

Track P(T|S) P(T|T) P(T|LO) 
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Lock-On P(LO|S) P(LO|T) P(LO|LO) 

Unknown P(U|S) P(U|T) P(U|LO) 

To simulate the lethality, we use the concept of "Time to Lethal Envelope" (TTLE). TTLE is the 

hypothetical, worst-case calculation which assumes that both hostile and friendly platforms turn directly 

toward each other at max velocity. TTLE is the time to close to within Hostile missile launch maximum 

range depicted in Figure 12. 

TTA-based 
Hostile Truth Track SUT-estimated Hostile Track 

vTMv** 
•    EH 

R 
R (missile) 

R^ ~15km 
\     \ 

At = Vcomb (RE - Rmax) 

Figure 12. Time to Lethal Envelope (TTLE) 

These Intent and Lethality estimates can be logically fused to assert a level of Inherent Risk. The top- 

level approach is shown in Figure 13. Here we see that the friendly platform sensor data are fed to the 

Level 1 SUT DF process which provides the fused kinematic state estimates on all hostile platforms. The 

ESM data are used to estimate the RF Mode of the hostile radars and the fused kinematic estimates are 

used to construct the Level 2 SUT DF estimate of the "situation", and then the situational estimates are 
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fused using the logic of Fig.9 to provide the Level 3 fused estimate of Inherent Risk.   We are using a 

Fuzzy Logic approach to forming the L3 DF logic for the reasons shown in Figure 13. 

L2, L3 SUT Process Design 

Sensors L2SUT 

/ 
SUT RF Mode 

L1 
SUT 

/ 
SUT Tracks 

And ID 
Declarations 

/ SUT Al Aspect 

\ 
\ 

L1 Tracks SUT TTLE 

Attributes L2 - {Relati on 

Estimated Hi RF Mode 
from Friendly j 

Estimated Hi Al Aspect 
from Friendly j 

Estimated Hi TTLE 
from Friendly j 

"L2 Tracks" 

~\ 

> 

J 

L3SUT 

Inherent Risk = 
Fct (RF, Al, TTLE) 

Design Options 
—Bayesian Network 
—Figure of Merit 
-Fuzzy Logic 
--etc 

, Rationale 
—can deal best w vague data 
--quantitative 
--existing software, experience 
—computationally fast 

L3 - {Inherent Risk (Threat) relations between SUT Hi, Fj} 
"L3 Tracks" 

Figure 13. Top-level approach to higher-level fusion process design. 

There are various design options available to fuse the L2 SUT estimates to get L3 SUT estimate of 

Inherent Risk; like Bayesian Networks, Figure of Merit, etc. Here we use Fuzzy Logic to fuse the L2 

estimates. Fuzzy Logic (FL) is an inferencing methodology that is directed toward vague relationships 

between evidence and assertions. Using natural language statements that contain appropriately-vague 

terms (e.g., "close"), FL provides a quantitative framework for relating the interdependent phrases of 

these expressions. Fuzzy inference is the process of formulating the mapping from a given input to an 

output using FL. Fuzzy inference systems that have been successfully applied in fields such as automatic 

control, data classification, decision analysis, expert systems, and computer vision. Because of its 

multidisciplinary nature, fuzzy inference systems are associated with a number of names, such as fuzzy - 
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rule-based systems, fuzzy expert systems, fuzzy modeling, fuzzy associative memory, fuzzy logic 

controllers, and simply (and ambiguously) fuzzy systems. 

Fuzzy Logic is a useful tool in making decisions in light of information that is imprecise and 

incomplete. Given information collected from multiple sources such as a target's location, aspect, and 

speed, FL can be used to measure the degree of danger of the target without formulating complex 

mathematical equation. The FL functions are more natural for the representation of the feeling of 

incertitude. A very precise information is not expected absolutely, but hope for the greatest possible 

coherence. On the other hand, precise but fluctuating data more usually result from the observation of a 

physical phenomenon. 

Given information collected from multiple sources such as a target's ESM Mode, Air Intercept, and 

TTLE, we measure the degree of Inherent Risk of the target by adopting FL easily without formulating 

the complex mathematical equation. In this research, we adopt FL for measuring the Inherent Risk 

because of a couple of reasons. In certain observation and reporting circumstances, it may not be 

appropriate to represent those variables in the probability domain. That is, the state of these variables does 

not have an associated "crisp" set. For convenience, we suppose that the three SUT estimates have three 

states respectively; these are the type of representations that would come from a reporting or message- 

based input, rather than from the sensors themselves. Unlike the variables in Bayesian Networks, which 

have crisp set, these Aspect and TTLE variables have fuzzy sets. 

Consider an example of measuring the height of all the children in a class. How can we classify the 

height of the children as low, medium or high? If we say a person having height greater than 6 feet is tall, 

then we have a situation where a 5.9 feet person terms out to be of medium height and a person with 

height of 6.1 feet turns out to be in tall group. But in FL a membership function is used to measure the 

degree of membership of the quantitative value (Here, height of a child) in a fuzzy set. 

Fuzzy Logic also has advantage in representing of kinematic and angle data since it uses natural 

language. The fuzzy inference system has membership functions, fuzzy logic operators and if-then rules. 
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There are two types of fuzzy inference systems: Mamdani-type and Sugeno-type. The Mamdani type 

inference system has been adopted in the framework for L3 fusion that is reported herein. 

Table 2. Fuzzy Logic - Threat/Risk Logic Rules 

Al TTLE RF Threat AI TTLE RF Threat 

1 low large Unknown 

or search 

low 15 med low Track high 

2 low med Unknown 

or search 

low 16 med large Lock-on med 

3 low low Unknown 

or search 

med 17 med med Lock high 

4 low large Track low 18 med low Lock high 

5 low med Track med 19 high large Unknown 

or search 

low 

6 low low Track hi 20 high med Unknown 

or search 

low 

7 low large Lock-on med 21 high low Unknown 

or search 

med 

8 low med Lock high 22 high large Track med 

9 low low Lock high 23 high med Track high 

10 med large Unknown 

or search 

low 24 high low Track high 

11 med med Unknown 

or search 

low 25 high large Lock-on med 

12 med low Unknown 

or search 

med 26 high med Lock high 
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13 med large Track med 27 high low Lock high 

14 med med Track high 

Note that the L3 SUT DF process can be thought of as producing "Inherent Risk Tracks", i.e. timewisc 

histories of the estimated level of Inherent Risk, conceptually as much as track as the timewise position 

histories of a physical platform. Note too that the issue of associating estimated Inherent Risk tracks-to- 

Inherent Risk Truth tracks will be a challenge in designing the new T&E DF process to evaluate these 

new estimates. The Inherent Risk Truth tracks are those computed by using the truth values of kinematics 

etc in the track formation. 

2.3    Addressing the T&E Process for Level 4 Data Fusion-based Tracking Systems 

That risk would be mitigated according to the possible employment of Countermeasures (CM) 

available to the friendly platform. Continuing from the T&E framework for Level 2 and 3 Fusion process 

we employ the Level 4 Fusion process as shown in Figure 14. Here we employ electronic countermeasure 

(ECM). Any electronic effort which intends to disturb normal radar operation is referred to as ECM. ECM 

are employed to accomplish improper or delayed target detection, analyst deception or generate false 

positives. There are two classes to CMs, one which actively deny radars to perceive an measurement like 

Jammers, and deceptive CMs like changing trajectory. 
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L3SUT 

Inherent Risk = 
Fct(RF,AI, TTLE) 

1 Fuzzy Logic 
• AFFTC-provided approach 
Other 

L4/RM SUT 

>n Nominator 
If Inherent Risk = X and Mode=m, Al=a, TTLE=t 

Nominate Options CMi, CMk, CMp 

Countermeasure Effectiveness Estimator 
If CMi and (Other Params)—can change Mode, Wpn Eff(AI), 

TTLE(??) I 
Actual Risk Estimator 
If CMi then Actual Risk = ARi 

If CMk then ARk 

CVI Optimizer 
Select CMi 

Figure 14. Top-level approach to level 4 fusion process design 

Here we simulate the situation where the own ship platforms have Self-Screening Jammers (SSJ). 

They are type of self protecting jammers which carry a jammer on the platform like beam jammers. 

Another type of jammer not implemented here is Stand-off jammer which requires an escort vehicle 

which carries the jammer. The details about the jammers parameters were referenced from Mahafza and 

Elsherbeni [49]. Here are some of the terms relevant to the CM implementation [49]: 

P, = Peak Power in Watts = = 50.0e+3 

G = Antenna Gain in dB = 35.0 

A. = Antenna wavelength 

Ar = Antenna aperture 

CUBRC | Developing an Approach to T&E for Data Fusion Processes 



o = 10.0;       % Radar Cross Section in m sqaured 

Br = Radar Operating Bandwidth in Hz = 667.0e+3 

L = Radar Losses in dB = 0.1000 

Pj = Jammer Peak Power in Watts = 200.0 

Bj = Jammer Operating Bandnwidth in Hz = 50.0e+6 

Gj = Jammer Antenna Gain in dB = 10.0 

Lj = Jammer Losses in dB = 0.10 

R = Range 

A single pulse power received by the radar from target is given as: 

_ PtG
2A2pr 

5 " (4TT)
3
/?

4
L 

The power received by the radar from a SSJ jammer at same range is given as: 

PjGjAr 

] = 4nR2BjLj 

Where Ar = — then / = (.'RLB , • A jammer can be identified by its effective operating bandwidth 

P c 
and its Effective Radiated Power (ERP):ERP = -*—*-. Then the Signal to Jammer ratio(S/J) is given as: 

lossj \ 
Pt *(lOioj *a*Bj *(l0 io  j 

4.0 * n * Pj * (10io j * Br * (lOiff) * ((/? * 1000.0)2 
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S/J tells what the effect of the jammer on the radar is. The jamming power from the platform is a one- 

way transmission while the target signal power is a two way transmission. So, the jamming power is 

generally greater than target signal power (S/J < 1). But as the target comes closer there will certain range 

at which S/J ratio equals 1, and it is called as cross-over range and is given as: 

Cross Over Range = \ 

Pt *(lOio j * a * Bj *( 10io 

4.0 * n * Pj * 110io j * Br * (10io j 

1000.0 

So, to remain undetected the platform has to remain at a range higher than cross-over range. The range 

at which the radar can detect and perform proper measurements for a given S/J is called as burn-through 

range. So the logic on CM implemented here is that the own ships try to maintain safe distance from the 

hostile targets. The platform jamming power is in proportion to the target signal power until the platform 

reaches the cross-over range. When the platform reaches the cross-over range and is unable to block the 

target signal, the second counter measure logic sets in. The ownship platform will change its flight plan 

by changing the flying trajectory by a preset angle and try to move out of the hostile field of view (FOV). 

3     Case Study: PE Simulator for AFFTC 

In our earlier work, we have summarized some of the generalized issues when considering the test and 

evaluation of a prototype data fusion process (what we have called the "System Under Test" or SUT). 

We focused on the problem of PE and the "fairness" issue for the distributed data fusion case. In this 

AFFTC application, one type of distributed fusion application will be the case of multiple aircraft 

platforms working cooperatively on a common mission, each performing local or platform-specific fusion 

while also exchanging data and fused estimates to each other. A core evaluation issue herein is the 

assessment of the degree of consistency in the multiple track pictures across the platforms. It is also 

critical to guarantee that the alternative PE network node outputs are consistent, in accordance with a 

consistency specification pertinent to the application. PE nodes perform track-to-truth association to 
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support track accuracy-related or other MoPs, and perform track-to-track association to support platform 

track file consistency-related MoP estimation for two or more internetted platforms (e.g., Joint Strike 

Fighters (JSFs), or the "F-35" aircraft). 

3.1 PE Node Design 

In the PE framework the PE nodes perform 3 necessary functions: (i) data preparation (ii) data 

association and (iii) MoP state estimation. In our Case Study, during data preparation the PE node puts 

tracks and truth information in [x, y\ co-ordinates and common time. Data association performs 

deterministic track-to-truth association and track-to-track association. During data association the 

following three actions are performed: 

(i)      Hypothesis Generation, 

(ii)     Hypothesis Evaluation, and 

(iii)    Hypothesis Selection. 

The PE node uses a Kalman filter for Level 1 MoP state estimation. Using the Level 1 estimates 

the Level 2 and 3 estimates are generated. SUT tracking errors will induce Intent (AI Aspect and ESM 

mode) and Lethality (TTLE) errors.These errors will propagate to a component error in Threat/Risk 

assessment. Note that these are different than Threat errors derived from Threat-to-Truth Threat 

Association. 

3.2 Case Study Measures of Performance for PE 

This overall T&E methodology has been applied to some cases of interest to the Air Force that involve 

DF-capable tactical aircraft. (Many modern-day tactical aircraft have multiple sensor systems and can 

employ DF processes to support the execution of their missions.) Because certain aircraft employment 

concepts involve multiple aircraft cooperating on a given mission, we have recently examined a case 

involving two friendly aircraft engaged in an air-to-air combat environment with six hostile aircraft. From 

a Data Fusion point of view, this involved addressing the T&E issues associated with Distributed Data 

Fusion (DDF), since fusion occurs not only on each friendly aircraft but also between them, since they are 
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intercommunicating, and exchanging both data and fused estimates in a rather complex DDF process. 

The framework of these experiments is shown in Figure 15. 

Fighter aircraft nottonilly exchanging 
Data or fused data 

Figure 15. Framework of Distributed Data Fusion experiments. 

From the point of view of supporting the tactical mission, one critical issue of course if whether there 

is a consistent "track picture" across the two aircraft. It can be seen in Figure 15 that it is typical that 

there are differences in the local target track pictures on each platform which need to be reconciled for 

mission application. In these recent studies then, we studied fused track picture consistency as a function 

of certain factors, looking at both Track-to-Truth and Track-to-Track consistency metrics. 

Figure 15 depicts how the two platforms have their own view of the truth picture based on the on- 

board sensors. There are both "common" pictures and "unique" pictures. Let us assume, for the sake of 

example, that all the on-board sensors see the same targets. Let platform 1 sees 3 tracks (based on on- 

board sensors) which are common to platform 2 and vice versa. The common tracks are shown in red. 

Note that even though both of the platforms see the same targets, their measurements about those 

common targets could be different depending on how the on-board sensors report the measurements. Also 

there are certain targets that are uniquely seen by platform 1 and platform 2; note that some of either the 

common or unique tracks could be false tracks. 

Each of the platforms exchange their track files and data fusion is done upon receipt of this 
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information at each platform. We will explain further how this information is exchanged when we discuss 

Tier 0, Tier 1 and Tier 2 (Section 3.3). We assume that there is no bandwidth limitation in 

communication. We have incorporated more realistic asynchronous (delayed) communication among the 

sensors and the platforms. 

The baseline distributed fusion output is the Consistent Tactical Picture (CTP). The sensor track fde 

"consistency" is computed at each time point as the percentage of matching CTP tracks in the track files 

of each platform. In addition to this measure, the following four higher level consistency metrics have 

been computed: 

/.    Track-to-Track Aspect, ESM and TTLE Consistency: These are Level II metrics which compares the 

Air Intercept, ESM mode and TTLE estimates across platforms. 

2. Track-to-Truth Aspect, ESM and TTLE Consistency: These are Level II metrics which measure the 

accuracy of the Air Intercept, ESM mode and TTLE estimates. 

3. Track-to-Track Threat Consistency: This is a Level III metric which compares the estiamted Threat 

across platforms. 

4. Track-to-Truth Threat Consistency: This is a Level III metric which measures the  accuracy of the 

estimated Threat. 

3.3    Explanation of Fusion Tiers 

Tier 0: (Figure 16) In Tier 0, each of the on-board sensors (Radar, ESM and IRST) fuse their own 

reports. The resultant Tier 0 tracks are then fused together to get the Tier 1 consistent track picture. Here 

the information is not yet shared across the platforms, so the result tends to be less accurate than for 

example the fusion of Tier 0 sensor tracks to the all source CYP. Generally, batching of larger data sets 

for fusion is more accurate; albeit more complex. 
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Figure 16. Tier 0 

Tier 1: (Figure 17) In Tier 1, each of the on-board sensors (Radar, ESM and IRST) share their Tier 0 

track fdes to generate the ownship consistent track picture. This is typically done for each sensor track file 

as it is updated, rather than all sensors at once. The DNN architecture exposes these and many other ways 

to network fusion nodes on a single platform for Tier 1 fusion or on multiple platforms for Tier 2 fusion. 

Figure 17. Tier 1 

Tier 2: (Figure 18) In a typical Tier 2 fusion the Tier 1 track files are fused sequentially as each Tier 1 

track file is updated. A modified form of a Tier 2 fusion network is for each platform to share its own 

CUBRC | Case Study: PE Simulator for AFFTC 



sensor measurements with the other platforms. This can be done one sensor at a time sequentially as each 

sensor scan of data is received. This alternative tends to be more accurate, however at a cost of more 

communications bandwidth and fusion complexity (e.g., due to report propagations for time delays, 

multiple platform coordinate misalignments, internetted ghost tracks, etc.). 

---- 

Figure 18. Tier 2 

4     Experimental Results and Analysis 

The baseline 2 vs. 6 offensive sweep scenario has 6 foe fighters (targets) engaging simultaneously in 

pairs from left and right 45 degrees and center to achieve a simultaneous missile launch against the blues 

(platforms). The blue 1 launches AMRAAM missiles on reds (fighters) 1, 2 and 3, 4 respectively. The 

blue 1 launches AMRAAM for the second time against the surviving red. Then the other blue turns 

towards reds 5, 6 and launches missile. All the red fighters are in a pair staggered formation with the 

trailing fighter off to the left or to the right, sufficient to be not resolvable by blue radar until after the 

final red turn. 

Tier 0: We ran the simulation for all Tiers from time periods 1 to 329 with an interval of 1 time period. 

The time period was 1 second. The baseline 2vs6 offensive sweep scenario has 6 foe fighters coming 

towards 2 blue fighters with the objective of engaging at 10-15 km simultaneously in pairs from ±45 

degrees and center. The blue launch AMRAAM missiles between 20-25 km on 1, 2 and 3, 4, respectively. 
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The second launch by blue 1 against the surviving red 3 occurs at about 10-15 km. Then the other blue 

turns at 5g towards red 5, 6 and launches on 5, 6. All fighters are in a pair staggered formation with the 

trailing fighter off to right and behind sufficient to be not resolvable by blue radar until after the final red 

turn. 

The blue and red fighters are both initially in search mode for each other. Once the reds detect they 

turn off emissions and execute their pre-planned maneuvers to achieve near simultaneous launch on the 

projected blues. The reds all turn on their radars to lock-on to blues just after their last turn towards the 

projected blue position. The reds launch radar guided missiles at their closest blue targets as soon as 

possible. Red 5/6 should pull delaying turns together then turn towards an intercept with US 1 (i.e., 

highest closure rate) once their radar acquires. 

The blues split and turn towards the outside threats to take advantage of their longer range 

AMRAAM shots at each of outside red pairs. They support their launches until both outside reds are 

killed or until second shots are needed. In the baseline scenario shown, US2 achieves 2 kills with its first 

launches then turns towards reds 5/6 that have engaged US1 while taking its second shot at the surviving 

red 4. US1 will leave this second AMRAAM once it has acquired red 4, then pulls defensive maneuvers 

and countermeasures against the reds 5/6 missile launches while US2 completes red 5/6 kills. 

The SUT gate multiplication factor was 5 and 15. The PE gate multiplication factors of 3 and 5, PE 

designs for Vogel and Hungarian based association, expected probability of false tracks, expected 

probability of detection and confidence ID updates. 

Tier 1: Similar to Tier 0, the simulation for Tier 1 was run from time periods 1 to 329 with an interval of 

1 time period. 

Tier 2: The simulation for Tier 2 was run from time periods 1 through 329 at an interval of 1 time period. 

5     Design of Experiments 

When employing DOE test-planning methods, one issue that can arise is the complexity involved in 

designing efficient test plans if there are many independent variables (or "factors", the term used in the 
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DOE literature) whose effects on the DF process under test want to be known. Using traditional DOE 

experimental designs, the number of runs that have to be made will grow exponentially when the number 

of factors is large, and the number of "levels" (specific value settings of the factors) is large ; these go as 

the number of levels raised to the number of factors, or LF. This exponential growth is associated with the 

type of experimental design being employed, called a "factorial" design, which not only allows the so- 

called "main effects" to be discerned from the experiments but also what are called "interaction" effects, 

where knowledge is gained about the effects on the metrics of interest due to interacting effects among 

the factors. If the desire to learn about the interaction effects is relaxed, using a type of experimental 

design called a "fractional factorial" design, the severity of the exponential growth is lessened but can still 

be an issue to deal with. Although we are still studying the strategies for and efficiencies of large factor- 

many level experimental designs, we are now employing a phased approach as shown in Figure 19, where 

we use the fractional designs initially as a screening step to determine those factors which are most 

influential on the metrics, and then the factorial designs to better understand the main and interaction 

effects of the key variables and, if necessary what are called "response surface" methods to understand 

the broad effects of the factors across the levels of interest for the application. 
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Figure 19. Phased experimental design strategy to deal with many factors and levels. 

Perhaps the most important aspect of this formalized approach is that the post-test analysis 

procedures, generally falling under the title of "Analysis of Variance" or "ANOVA" procedures, allows 

the assessments of the results to be done with statistical significance. That is, assertions of the type that 

"the hypothesis that there is an effect of factor X on metric Y can be rejected with 95% statistical 

confidence" can be made as a result of the combined utilization of DOE test designs and ANOVA 

analysis methods. We planned a Design of Experiments (DOE) scheme for the PE MoPs. We conducted 

these tests on Tier 0, Tier 1 and Tier 2. We decided on the following factors to setup the DOE: 

• Scenario Factors (Fixed): 

- Offensive Sweep 2vs6 Air-to-Air 

• PE Factors: 

- Design (Association) 

Vogel Approximation (PE 1), and 

Hungarian based association (PE 2) 
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- Gating Factor:    3 and 5 

System under test (SUT) Design Factors: 

- Gating Factor:    5 and 15 

So this yields a 2k or 23 full factorial design. We used MINITAB to perform the DOE runs. The full 

factorial design details are as follows: 

Factors: 3 

Levels: 2 

(A) SUT Design Gating Factor 

(B) PE Gating Factor 

(C) PE Design 

Base Design: 3, 8 

Runs: 80 

Replicates: 10 

Blocks: 1 

Center pts (total): 0 

All terms are free from aliasing. The factors and interactions that are significant for various MoPs are 

denoted by 'S'. Table 3, Table 4 and Table 5 show the summary of the DOE run results for Tier 0, 1 and 2 

respectively. In addition to these DOE runs, we ran another set of full factorial runs to see the effect of 

communication tiers on the various MoPs. We added another factor, (D) Tier, with two levels: Tier 1 and 

Tier 2. Table 6 shows the significant factors and their interactions for the various MoPs. The detail DOE 

charts are given in Appendix A, B, C and D. 

Table 3. Tier 0 DOE run summary 

A B C AB AC BC ABC 

Track 1 to Truth Radar Aspect Consistency 

ESM Consistency 
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TTLE Consistency 

Threat Consistency s 

Track 2 to Truth Radar Aspect Consistency S 

ESM Consistency s s 

TTLE Consistency s s s 

Threat Consistency s 

Track 1 to Truth ESM Aspect Consistency s s 

ESM Consistency 

TTLE Consistency s s 

Threat Consistency s s s 

Track 2 to Truth ESM Aspect Consistency 

ESM Consistency s s 

TTLE Consistency s s 

Threat Consistency s 

Track 1 to Truth IRST Aspect Consistency 

ESM Consistency s 

TTLE Consistency s 

Threat Consistency 

Track 2 to Truth IRST Aspect Consistency 

ESM Consistency 

TTLE Consistency 

Threat Consistency s 

Table 4 . Tier 1 DOE run summary 

A B C AB AC BC ABC 
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Track to track Aspect 

ESM 

TTLE 

Threat S 

Track 1 to truth Aspect s s 

ESM s 

TTLE 

Threat 

Track 2 to truth Aspect s s 

ESM s 

TTLE S s 

Threat S 

Table 5 Tier 2 DOE run summary 

A B c AB AC BC ABC 

Track to track Aspect s 

ESM 

TTLE s 

Threat s 

Track 1 to truth Aspect S s 

ESM s s s s s 

TTLE s s s 

Threat s 

Track 2 to truth Aspect s 

ESM s 
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TTLE 

Threat S s 

Table 6 . Inter Tier 1 and 2 DOE run summary. 

A B c D AB AC AD BC BD CD ABC ABD ACD BCD ABCD 

Track 

to track Aspect 

ESM S s s s s 

TTLE S 

Threat S s 

Track 1 

to truth Aspect S s s s s s s s S s 

ESM s s s s 

TTLE s s s 

Threat s S 

Track2 

to truth Aspect s S 

ESM s s s s 

TTLE s 

Threat s 

The concept of analyzing the design for L4 design is really difficult. According to the Countermeasure 

logic implemented in Section 2.3, the estimated tracks generated will be significantly different than the 

truth track. The countermeasure logic suggests that jam the radar signal from the hostile platform, until 

the hostile reaches the cross-over range (S/J =1). After that the ownship changes its current trajectory to 
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get out of the FOV of the hostile platform. Due to this countermeasure implementation the true threat will 

be different that the estimated threat and will hence forth have different tracks. To check for the change in 

S/J consistency over the truth and estimated tracks and the DOE charts are shown in Appendix E. 

The statistical design shown here deals with very small number of factors. But in case of large number 

of factors we will need humongous number of runs to analyze the statistical design under study. We need 

to change our approach or find a new method to handle the increasing number of factors. In following 

section we have elaborated large factor DOE (Design of Experiment). 

6     Large Factor DOE 

Here we are trying to achieve a tradeoff between the number of factors, their levels and the cost of 

carrying out the experiment. As the former increase, the cost increases. In a full factorial design we 

analyze all the factors at all levels which have large number of runs. For example in a 2 level full factorial 

design with 5 factors a minimum of 32 runs need to be carried out. This makes it impractical to carry on 

with such an experiment. Generally this is the major reason experimenters opt for a fractional factorial 

design where information is obtained very easily and in fewer runs. But it is a highly confounded design. 

A lot of information is lost because of this confounding. As interactions are confounded with the main 

effect it becomes very unclear as to which is the factor that is responsible for the effect. 

Goals of large factor design In order to overcome the shortcomings of a fractional factorial design, 

certain designs tend to the large number of factors and are economical and produce optimal results in very 

less time. The goals of such designs can be listed as: 

• Lower number of trails with variations of multiple factors. 

• Finding the separation of effects due to individual factors and interactions. 

• Keeping a vertical balance 

These designs have fewer runs and some of them even incorporate variations in them. They try to keep 

main effects separate from the interactions and find the influences of each of these on the experiment by 
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solving them individually. They also try to maintain same number of runs at all levels of each factors. 

From some of Taguchi methods to other individual ones achieve these goals with ease where they solve 

right from 14 to 100 factors. The following subsections discuss these methods in detail. 

6.1     Latin Square Design 

A Latin Square design is used when there is a need to compare the treatments and to control up to 2 

known sources of variation. As the other designs these were also first used to design agricultural 

experiments (Figure 20). The fertility trends were seen to run up and down and across the field. In such a 

scenario if there were 4 fertilizers used, then the field would be divided into 16 smaller plots by running 4 

horizontally and 4 vertically. So when a Latin square design is used in such a scenario, the Latin square 

design will allocate the four different types of fertilizers in these plots with each type occurring only once 

in a row and column. 

Figure 20. Example of a Latin square design applied in the field of agriculture. 

In the early 70's researchers such as Finney [28][29], Federer [30], Freeman [31][32][33] and 

Addleman [34] explored on the concepts of generalizing the Latin Square designs and called them F 

square designs. Hedayat and Seiden [5] studied this concept in detail. In F square designs instead of the 
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number appearing once in a row and a column, the number appears same number of times in the rows and 

columns. So these designs are explored to develop an understanding of them. 

In a Latin square design the domain is needed to be known before hand. The factors of interest have 

more than two levels. These factors are also known well before hand. Each of these factors appears only 

once in each row and column. One of the most striking feature of such a design is that there are negligible 

or no interactions at all. It is one of the more complex designs. But it provides good results by making 

sure that the main effect of one factor does not bias the main effect of other factors. Unconfounded main 

effects are also derived in this design. Nuisance factors are used as blocking factors. The blocking is 

carried out in order to randomize the design. Lindquist argues that in a single Latin square design, the 

main effect is confounded with the interactions of the other two factors and also with the triple 

interaction. He also stresses that the residual of such a design is of ambiguous nature. The error is much 

lesser than that in a randomized block design (RBD) because there is a blocking factor used. The most 

common sizes of this design are 5x5 and 8x8, where a 5x5 design is shown in Table 7. 

Table 7. A 5X5 Latin square design. 

A B C D E 

B C D E A 

C D E A B 

D E A B C 

E A B C D 

These designs have also been used in the field of medicine for cross over trials (suggested by 

Armitage and Berry [35]). This concept was further studied by Clark O Neil et al. [36] where they 

investigated 10 products on each of the patients. Since it needed to be orthogonal, 10 patient sets were 

chosen and a complete analysis was carried out. The benefits of using this design in a cross over trial were 
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discussed in the paper by Kramer and Glass [6]. This design has also been used in the field of psychology, 

though very rare. In a paper by Gatio [7], the author discusses the inherent defects in the significance tests 

of a Latin square design when interactions occur under four conditions namely: 

• One random variate model 

• Two random variates model 

• Three random variates model 

• Four random variates model 

Significance tests were carried out on all these conditions for all the effects and their interactions. The 

author concludes that before using this design, the user must get familiar with all the scenarios under 

which significant results are produced by this design. Also he says that in a psychological study, mainly 

the first two scenarios are prevalent. Information technology is also not very far from the other fields in 

the use of this design. 

In the field of computer science, this design has been particularly used in compiler testing. Robert 

Mandl [8] uses this design to verify that evaluation of the operators on the enumerating values in ADA is 

correct even if these values were in ASCII code. The author illustrates this by using an example from a 

test. He concludes that the design provides comparatively great results in form of information for the 

amount of effort one puts in. He even feels it is quite a cost effective solution. The other common 

applications of these designs have been in the field of animal nutrition, insecticide field trials and even 

greenhouse effects. There are two variations of this design. But a detailed analysis is out of the scope of 

the thesis. 

• Graeco Latin Square Design - It is a kxk design just like the Latin square design but the 

information gathered from this design is more than just a normal Latin square design. For example 

if a 3x3 design is considered one can evaluate the main effects of four 3 level factors in just 9 runs. 
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• Hyper Latin Square Design - It is also a kxk design similar to the Graeco Design but differs from 

it as it uses more number of blocking factors. For example if a 4x4 design is considered one can 

evaluate main effects of five 4 level factors in just 16 runs. 

6.1.1 Advantages 

• Several nuisance factors are handled with these designs either when they need to be treated 

separately or they should not be combined in to one factor. 

• Numbers of runs are very small. 

• At least two sources of variation are controlled. 

6.1.2 Disadvantages 

• It should be a square design as in the number of levels of each blocking variable must equal the 

number of levels of the treatment factor. 

• A major assumption made by this design is that there are no interactions between the blocking 

variables and between the main variable and a blocking variable. 

• The degree of freedom associated with the error term is relatively small for a small design. 

• If the number factors are more, the design tends to get bigger and the error term associated gets 

lager. 

• If there are any missing values then the design becomes statistically too complex. 

• The following interactions cannot be evaluated: 

• Rows and columns 

•     Rows and treatment factors 

• Columns and treatment factors 

CUBRC | Large Factor DOE 



6.2    Plakett-Burman Design 

During the initial stage of experimentation when there is minimal knowledge of the problem in hand, 

screening experiments are conducted in order to find the major factors in few runs. Until 1946, the most 

common design used to conduct these screening experiments was the fractional factorial design. But R.L. 

Plackett and J.P. Burman in their famous paper "The Design of Optimal Multifactorial Experiments" 

described a new economical and efficient design for screening experiments. The design was named after 

them. In an un-replicated fractional factorial design the number of runs is restricted as a power of 2 

whereas in a Plackett-Burman design the number of runs is treated as a multiple of 4, hence making it 

economical in obtaining the factors in fewer runs. This design is used only when main effects are of 

importance because the main effects are highly confounded with 2 factor interactions. There is no 

defining relation because interactions are not identically equal to the main effects. They are resolution 111 

design known as saturated main effect. For example just 12 runs would be needed for up to 11 factors. 

Table 8 . The six-factor Plackett-Burman Design usec in the first conjoint study. 

Factor No/ contrast A B C D E F 

1, 12 b U 15 u IT Is U lio 111 

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

2 -1 -1 -1 -1 -1 1 1 1 1 1 

3 -1 -1 1 1 1 -1 -1 -1 1 1 1 

4 -1 1 -1 1 1 -1 1 -1 -1 1 

5 -1 1 1 -1 1 1 -1 -1 1 -1 

6 -1 1 1 1 -1 1 1 -1 1 -1 -1 

7 -1 1 1 -1 -1 1 -1 1 -1 

8 -1 1 -1 1 1 1 -1 -1 -1 1 
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9 1 -1 -1 1 1 1 -1 1 1 -1 -1 

10 1 1 1 -1 -1 -1 -1 1 1 -1 1 

11 1 1 -1 1 -1 1 -1 -1 -1 1 1 

12 1 1 -1 -1 1 -1 1 -1 -1 1 -1 

1[ represents the ilh contrast and lTln consist of interaction effects 

There are 2 kinds of Plakett-Burman designs - geometric and non geometric. It is a geometric PB 

design when the number of runs can be depicted as a power of 2 if not it is non geometric. The design is 

distribution of equal number of pluses and minus in a column. For each of the n-1 columns, the design 

allows the contrasting of data by taking the difference between the averaged data opposite to these signs. 

In the geometric designs, the columns are orthogonal. But in a non geometric design, the contrast columns 

are mutually orthogonal but at the same time they can be correlated to contrast columns of the 

interactions. Due to this the major factors may not even show up on the radar making the analysis 

inaccurate. Even though there is such a complex alias structure, the design under some circumstances 

works and also estimates the interactions simultaneously which other designs are unable to do. 

In order to analyze the complexity of the alias structure formed in this design, many authors have 

proposed various methods. During screening experiment, based on the assumption that only some factors 

are the cause of variation in the experiment (Box and Meyer [37]) and that for an interaction to be 

significant, the corresponding main effects also should be significant, Hamada and Wu [38] proposed one 

such method in which they contrast the main effects and two factor interactions orthogonally to the ones 

found by standard methods. But their design is limited to 2 factor interactions. Some studies by Hynen 

[39] showed that due to aliasing in the design unwanted two factor interactions would appear if the major 

factors were more in number. Box and Meyer [40] also proposed a method which employed Bayesian 

methodology in order to determine if the factor is a major factor or not. In the paper by Tyssedal and 
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Samset [9], the authors try to make the PB design more robust design by trying to overcome the 

shortcomings. They provide an alternative method for analyzing the design by understanding the alias 

structure and by finding consistency between the analysis and the projection properties of the PB design 

[10]. 

The Plackett-Burman designs have seen light in various fields of research and practical applications 

for screening. In the paper by Devos et al. [11] the authors use this design to calibrate partial least square 

regression model which was being used to test six polyclinic aromatic hydrocarbons and compare it with 

the ones calibrated using collinearity. They conclude that the results obtained by using this design are 

optimal. This design can easily solve more than 27 factors in just 28 runs. Plackett Burman design has 

also been used in the field of Biotechnology to find the effect of the medium in xylanase production using 

a 12 trial design [41] (Li et al.). 

Tyssedal and Samset [9] use a 12 run 9 response non geometric PB design to make an injection 

moulding environment, where 15 to 20 variables are considered while producing a new plastic 

component. It is seen to be a more cost effective solution and also cycle times are reduced. The design is 

also used to obtain significant parameters rapidly and objectively in a thermal process which synthesizes 

compounds. 

Another application of these designs has been in agriculture to find the main extraction factor that 

affected the yield and quality of pectins in chicory root. The authors decided to use a two level design 

with 17 factors and 20 experiments because they faced a problem as there were too many factors and were 

unsure of the settings which produced optimal results [13]. 

One of the main applications of these designs is in the simulation experiments. They help in screening 

out the important factors used in simulating the design. They are used in setting up and analyzing the 

computer architecture simulation experiments. The solution was proposed to use such a design as the 

authors observed that the processor simulation does not follow any particular statistical method and the 

results are not in any confidence levels. Taking this concept further, Vanderster et al. [15] use this design 
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to optimally select the parameters for a knapsack metascheduler which provides a way to systematically 

allocate policies on a computational grid. 

A Plackett Burman design generally produces a saturated design. In order to solve these saturated 

designs a new method called Fixing Effects and Adding Rows (FEAR) has been discussed in a paper by 

Heyden et.al. [14] Here the authors have described a model by adding zero effects rows to the model 

matrix after which the largest estimated effect is fixed in order to examine the factor effects accurately. 

This method helps in estimating the effects of the factors. With a set of data values, a comparison between 

FEAR and the conventional Multiple Linear Regression method was carried out and from the results it 

can be seen that the new proposed method performs better than the conventional method of regression 

because the main effects that are significant are estimated more accurately in FEAR than when compared 

to Multiple Linear Regression. If the PB design is complete then the error is very less even if not they are 

insignificant and the design produces satisfactory results [14]. 

6.2.1 Advantages 

• Economical for detecting large main effects (assuming that all the interactions are negligible in 

comparison with few important main effects). 

• Due to the confounding the negligible impact is averaged and information may be obtained about 

significant interactions. 

6.2.2 Disadvantages 

• Due to confounding, the presence of a large interaction may distort the effect of an individual 

factor. 

6.3    Split Plot Designs 

Split Plot designs are one of the most robust designs found. Though Taguchi's approach is also robust; 

the size of the experiment is large and needs a large number of trails. Recognizing this drawback, Box and 

Jones [42] suggested the use of Split Plot designs, which save the number of runs and even provide 

additional information Split plot designs are an extension for randomized block designs. These designs 
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are used in an industrial application when there are moments where various factors (processing and set 

up) and levels are difficult to understand or the experiment is more expensive or it is a very laborious and 

time consuming experiment. To overcome these problems, the re ordering of runs is carried out which 

results in a Split Plot Design. Instead of carrying out experiments and then reordering it into a Split Plot, 

the design can be used in the first place. Many a times this goes unnoticed. In a paper by Kowalski and 

Potcner [16], there are guidelines to recognize a Split Plot diagram. They say that these designs have three 

main characteristics: 

1. The levels of the factors are not random and are reset after each run. 

2. For each factor the size of the experiment varies. 

3. The random assigning of the treatment combinations to the experimental unit is not allowed. 

Though large in size these are cost effective design as shown by Webb et al. [44]. Also in the paper by 

Bisgaard [43], there is a cost model for such a design along with examples. These illustrations also show 

a reduction in the runs and additions in the information obtained. 

There are 2 levels or as Goos and Jones [45] say strata in these designs. The experimental runs are 

divided amongst these strata. The upper stratum is made up of whole designs and the lower stratum 

consists of subplot runs. The whole plots are a group of runs where the factor which is difficult to change 

remains constant. This nomenclature of the strata came to existence as these designs were like many other 

designs used in agriculture originally. For example; the use of the fertilizer or an irrigation method as one 

of the factors that can be applied to the large sections of land called whole plot came to be known as the 

whole plot factor and the factor associated with variety of seed to be ploughed in various sections of this 

land by splitting it into sub plots came to be known as the subplot factor. Such a design is used only when 

there are many stages in the experimental design. There can be reordering of designs within these strata 

which give rise to split- split- plot diagrams. The most common example used while understanding this 

method is the production of cheese, a case study by Schoen [46]. There is not much literature to 
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understand the details of a three stratum experiments. However, details on how to design and analyze two 

level factorial and fractional factorials are provided by Bisgaard [43]. 

There are a few additional assumptions that an experiment needs to meet before the use of Split Plot 

Design. They are: 

1. There are two or more independent variables such that one is a non repeated measure treatment or 

between-block treatment and there is at least one repeated, or within-block treatment. 

2. The number of combinations of treatment levels is greater than the desired number of observations 

within each block. 

3. If repeated measurements are used on factors, then each block will consist of only one factor; if not 

there will be more factors. 

4. The sequence for administering the repeated measures levels in combination with each level of the 

non repeated measures treatment is randomized independently for each block. 

The Split Plot Design is one where a factor is subjected to all levels of some treatments but only one 

level of the other treatments. These designs combine both the features between the plots as well as within 

the plots. This feature helps in saving the number of runs and thus a large amount of information is 

gathered very efficiently. The first level factors are randomly assigned to the whole units depending on 

the whole unit design. The second level factors are assigned to the sub units randomly within each whole 

unit according to the rules of Randomized complete block design (RCBD). Thus the entire design is 

randomized. It would not be too harsh to say a good understanding of the domain is needed in order to use 

this design. 

Al 

Table 9. Example of a 3x2 Split Plot Design. 

A2 A3 

Bl B2 Bl 

B2 Bl B2 
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Table 10. Randomization of the 3x2 design shown above. 

Al A2 A3 

Bl Bl B2 

B2 B2 Bl 

When an ANOVA is conducted on such a design, it is seen to have two error terms. The first error 

corresponds to the pooled variation between the factors within the groups and the other corresponds to the 

pooled interaction of the treatment with factors in each block. This happens because there are two 

separate randomizations that occurred when the experiment was run [16]. According to Kowalski and 

Potcner [16] in a Split Plot Design one needs to be sure that there is a true replication in the whole plot 

factor. 

From the varied literature, the applications of this design can be seen in 

1. Experiments in which the each factor has a need for different number of experimental units. 

2. Experiments where one factor needs to be more sensitive than the other. 

3. Experiments where there is a need to introduce new factors unexpectedly. 

6.3.1 Advantages 

• The sub plot's treatment factor and interactions are tested to a generally high sensitivity than the 

whole plot because the variance in the former is much higher than in the variance in the latter. 

• Experiments with a large number of whole plots and lesser number of sub plots can be conducted in 

a single experiment. 

• Factors may be added with minimal additional cost. 

• It is a design where whole units are subjected to repeated measuring and these repeated measures 

are the sub plots. 

6.3.2 Disadvantages 

The design is very robust however there are a few shortcomings which are listed below. 
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• The existence of two error terms causes complicated analysis as there are many standard error 

comparisons. 

• The sensitivity of the whole plot is poor as there is high variance and few replications associated 

with it. 

6.4    Central Composite Design 

Generally during the Design of an Experiment, mean models are estimated by assuming that a design 

is homogeneous. Central Composite Designs are the second design type discussed so far which are used 

in screening experiments. It was proposed by Box and Wilson in 1951 [47]. These designs are an 

extension of the factorial designs. When either the full or fractional factorial designs are embedded with 

centre points and axial points or star points; a Central Composite Design is formed (Figure 21). The 

centre points are experimental runs in the design whose values correspond to the median values in the 

factorial design and the design is usually replicated along this centre. The axial or star points however are 

the points which aid in the rotation of the design by adding curvature to the design, mainly by including 

the upper and lower median values of the two factorials. 

+ 

Figure 21. Formation of a central Composite design. 

A second order central composite design is an alternative design to a 3 level fractional factorial design 

or a 3k design. As k increases the design size is greatly reduced in a Central Composite Design (CCD). As 

a known fact such a design contains twice the number of star points as the number of factors present in it. 

Like in a factorial design one can choose the value for high and low levels, in a composite design the 
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values are represented by these star points. There are different kinds of Central Composite Designs based 

on the position of the star points. They are: 

• Circumscribed composite design 

• Inscribed composite design 

• Face centered composite design 

A Circumscribed Composite Design requires 5 levels and the star points define a new high and low 

values. With these values as a limit, if a factorial design is created, then it is an inscribed composite 

design which also requires a 5 level factorial design. In a face centered composite design there are 3 

levels of each factor. The star points are in the centre of the faces of the design. The inscribed and the 

circumscribed designs are rotatable. But a face centered design is fixed. The largest amount of space is 

covered by circumscribed designs and the least by inscribed design. 
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ccc 

CCF 

CCI 

Figure 22. Different Kinds of Central Composite Design. 

Many authors have used this method to solve up to 120 factors and tested in evaluating the weapon 

system. In the paper by Sanchez and Sanchez [17] the drawbacks of a large full factorial design is 

discussed. Owing to this discomfort in solve a highly fractionized factorial design is proposed that solves 

large designs. These highly fractionated designs are the central composite designs. The authors also show 

that their designs is double the size when the factors are in the range of 30-32 and 53-64 but they required 

few centre points. With the number of factors considered, there is a variation in the designs. Some work 

has been carried out in order to recognize these variations. In a paper by Li et al. [12], the authors 

compare the designs based on the variances for both rotatable and non rotatable designs. The numbers of 

factors considered are between 6 and 10 with the consideration to axial points. They conclude that the 

CCD based on a resolution 5 design performs really well and in fewer runs. 
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Bjorkman and Zeius [18], discuss the application of this design in their paper. The challenges faced by 

the military in a decade to come, with respect to the testing, have been well recognized by the authors in 

this paper. Further the authors propose various process capabilities based testing methods such as central 

composite designs in order to overcome these challenges. The authors justify the use of this method by 

saying that this design would solve large factors with low variance. 

This design also finds application in the textile industry. In a paper by Kothari et. al. [19] the authors 

use the design in order to understand the factors that affect air jet texturing which forms neps which 

reduces the quality of the yarn. Similarly, the designs have been used in the manufacturing industry to 

find the optimal factor for the flux cored arc welding and to optimize the design. Similar to the former 

paper the authors recognize 4 factors which are used to optimize the design. 

The Central Composite Designs is a response surface methodology and hence the entire surface is 

under the study. New work has been carried out by Hader and Park [48] on these designs to make their 

slopes rotatable which reduce the variances in these designs. This rotatability is achieved by adjusting the 

distances between the axial points. Sometimes in certain experiments, the factors cannot be changed 

easily. But Kowalski et al. [20] have worked towards developing a better understanding of this problem 

and providing a solution to it. Kowalski et al. [20] modified these designs to accommodate a split plot 

structure. Here the authors modified the Central Composite Design which helps in the estimation of 

different models based on their mean and variance under a split plot structure taking it a step further. 

These designs have also been used to determine the property and structure of certain epoxies. In the waste 

water treatment, these designs have been used to optimize the parameters. Such is the diversification of 

the use of these designs. 

Non-central composite designs are an attractive alternative to the central composite designs when the 

design is asymmetric by the shift of interest after conducting an initial 2 level design. In a paper by 

Robert Mee [21], the author discusses this alternative and gives instances to support his study. 
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6.4.1 Advantages 

• The designs can be run sequentially. 

• They are very efficient as they provide a lot of information on the variables in fewer runs. 

• The experimental error is also determined in very few runs. 

• The CCD's are very flexible. 

6.4.2 Disadvantages 

• It's a resolution 5 design which is higher than some other designs. 

• The surface plots are not rotatable. 

• Sometimes the interactions between some variables and square terms are lost. 

6.5    Taguchi Methods 

Some of the Taguchi methods are also used to solve experimental designs. These are designs 

pioneered by Dr. Genichi Taguchi, which have helped in process improvement by improving the 

productivity. This method is a philosophy by itself. In itself it has 2 main doctrines: 

• To decrease the inherent variation in any process 

• To develop a strategy in order to carry out the above stated doctrine. 

Some of these strategies could be to identify which of the parameter in the process will help in 

improving the strategies. It could also be done by identifying an alternative which will yield the same or 

better results. By far it is one of the most robust designs known in the industry. The noise factors and cost 

of failures are incorporated in the designs which ensure customer satisfaction. These designs are used for 

optimizing the design of performance, quality and costs of any equipment. Taguchi method for designing 

an experiment is used mainly in manufacturing processes. Figure 23 below gives a pictorial representation 

of the design. 
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Control factors 

Characteristic 

Noise factors 

Figure 23. Taguchi System Representation. 

It is one of the highly debated methodologies [22], In [22] T.N. Goh discusses the issues as to why 

some authors support this method and some oppose. He says the argument lies in the technical merit of 

this method. Some authors say that this method has no alternative that could predict the improvement. But 

the believers say it is easy to be used even by a person who does not have in depth idea about the 

mathematics of the method. Extremist also argue that the variations in the environment are not considered 

and the design can "hide" the requirements for optimization of the response and minimization of the 

variance in the design making it counterproductive. But these designs have been widely used and the 

results are hard to ignore which makes it a valid design for consideration in the thesis. Mainly Taguchi 

designs can be broadly classified as Orthogonal Arrays and Linear Graphs. 

In an orthogonal array experiment the columns of the independent variable are "orthogonal" to each 

other. They are often used when there are a number of control factors in the experiment. These designs 

are fractionated factorial designs. Orthogonal arrays have to be defined in terms of the number of factors 

considered, the levels of the factors and the specific interactions of interest. 

Table 11. Orthogonal array eleven two level factors. 

Experiment Column 
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Number 2 3 4 5 6 7 

1 1 1 1 1 1 1 

2 1 1 2 2 2 2 

3 2 2 1 1 2 2 

4 2 2 2 2 1 1 

5 2 1 2 1 2 1 2 

6 2 1 2 2 1 2 1 

7 2 2 1 ] 2 2 1 

8 2 2 1 2 1 1 2 

When there is a need to assign the factors in an orthogonal array, linear graphs are used. These are 

substitutes for triangular table, also a Taguchi method. As mentioned in [27] by the author, the graphs 

have nodes and lines. The numbers present beside the vertices and the edges correspond to the columns in 

the orthogonal array. The vertex of the graph shows the factor and the edge shows the column of the 

interaction between the connected vertices. 

Figure 24. L8 linear graph. 

The operational steps of a Taguchi design is depicted in the flowchart below (Figure 25) 
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Problem statement and 
defining the objective 

Listing the response 
variable, the noises 
and control factors 

/ Planning the   N> 
S.      experiment    / 

Running the experiments to see 
which parameters have improved. 

Confirming the precision of the 
experiment by running it again 

No 

STOP 

Figure 25. Operational steps of the design. 

In the paper by Antony et. al. [23], the authors have used the Taguchi methods in an automotive 

industry to develop a new coil. An experiment is designed with 16 trials to study 14 parameters with one 

interaction. The authors [23] follow the steps of the Taguchi method diligently and come up with optimal 

settings for the design parameters that are very important in making this coil. In conclusion they talk 

about the effect of such designs in solving large problems easily in industry. 

6.5.1    Advantages 

• Does not consider specification limits but the quality of the system. 

• Error is resubmitted. 

• Uses the noise factors in the experiment. 
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6.5.2    Disadvantages 

• Orthogonal arrays are used without a thought. 

• Interactions are not considered. 

• There is no modeling but analysis results in the answer. 

6.6    Analysis of the Designs 

6.6.1    ANCOVA 

In the former section of this chapter, the different methods that are used to solve large factor problems 

are learnt. Generally, after conducting the experiment, an ANOVA is conducted to find out the variances 

in the design. ANCOVA is a method that takes the analysis of variance a step further. ANCOVA can be 

pictorially defined as: 

ANOVA 

+ 

Linear Regression 

ANCOVA 

Figure 26. ANCOVA pictiorial depection 

From Figure 26 one can know that ANCOVA has two components embedded in it. Along with a 

regular ANOVA, ANCOVA includes linear regression. In order to understand this method better, 

covariance needs to be well understood. In simple terms covariance is the degree through which two 

variables vary together. A covariate is the source of independent variation that affects the response 

variable but was unknown in the beginning of the experiment. This is helpful because, it helps in reducing 

the unknown variance in the design which aids in estimating the means of groups more precisely. 
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Knowing this, ANCOVA can be defined as the method that compares mean values of response variables 

between groups when response variable co varies with other continuous variables [24]. 

6.6.1.1 Formulation 

Mathematically ANCOVA might be represented as 

yij=M + al+/3(xiJ-x) + £iJ 

Where 

yij=jt replicate of i' level response variable 

/u = mean value of response variable 

or, = //,-//= difference between the means 

P = combined regression coefficient 

Xjj= covariate of the jth replicate observation from the ith level of a factor 

x = mean value of covariate 

£•,. = unexplained error associated with jth replicate observation from the ith level factor 

6.6.1.2 Application of ANCOVA 

Since there is a covariate used in this method, the residual variation is removed. The method hence can 

test whether certain factors have effect very easily. It is known to statistically more powerful than a one 

way or even a two way ANOVA, since it accounts to some variability in the designs. Adding a covariate 

to ANOVA reduces the degrees of freedom of the design. But it is a dependent on there being a 

correlation between the covariate and the response variable. Adding a covariate which accounts for very 

little variance in the dependent variable might actually reduce the statistical powers if not the power of the 

design is very high. 

6.6.1.3 ANOVA for ANCOVA 

An ANOVA table of ANCOVA is represented as shown in Table 12. 
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Table 12. ANOVA table for ANCOVA 

Source Df MS F-Ratio 

Factor A (Adjusted) (P-1) 
SS1(adj) 

(P-1) 

MSA(adJ) 

^"^Reudualadj) 

Residual (Adjusted) p(n-l)-l °"Rc.vK/iiaWy> 

p{n-\)-\ 

Total (Adjusted) pn-2 

By using this analysis a statistical control of the error is obtained which is a strong point of the design. 

There is no upper limit in the number of factors that can be considered by this design. But a drawback of 

the design is that assumptions need to be met and there needs to be correlation between the covariate and 

the response variable. 

6.6.1.4   Assumptions 

The assumptions are as follows: 

• Normality 

• Homogeneity of variances 

• Independence 

• Linearity 

• Covariate values should not be different amongst the group 

• Fixed covariate 

• Homogenous slopes - These have to be tested for compulsorily 

Thus the designed can be summarized as an extension of the ANOVA where covariate is included 

which helps in increasing the statistical power of the experiment with the only limitation being - 

assumptions need to be met. 
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7     Classification and Recommendation of Designs 

Foremost idea of the thesis has been to develop an understanding of the different methodologies that 

are used to address the issues of large number of factors. The mathematics behind the design, their 

complexity and number of factors they can solve, their advantages and disadvantages and the application 

of these designs has been discussed. But this has been mainly through literature survey. Taking a step 

further, these designs have been analyzed and classified based on the general understanding. Based on 

these classifications a recommendation for the use of these designs has been provided. This 

recommendation can be used as an aid in the selection process, thus serving as a guideline. 

7.1    Classification based on Advantages and Disadvantages 

After a thorough literature survey of various cases, the advantages and disadvantages of each design is 

listed in the following manner (Table 13): 

Table 13. Advantages and dis-advantages of all designs. 

Design Advantages Disadvantages 

•    Several nuisance factors are •    Number of treatments should be 

handled  with  these  designs equal to the number of replicates. 

(either when they need to be •    The experimental error is likely to 

treated   separately   or  when increase   with   the   size   of  the 

they should not be combined square. 

in to a single factor) •    Smaller    squares    have     fewer 

•    Fewer numbers of runs. degrees       of      freedom       for 

Latin square design •    The     variations     can     be experimental error. 

controlled in 2 directions. •    The following interactions cannot 

be evaluated: 

•    The     efficiency     can     be o    Rows and columns 

increased when compared to o    Rows and treatments 

RCBD. o    Columns and treatments. 

•    Economy   of   samples   and 

ready analysis. 
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•    They give same info as   2( ~p) •    The amount of a priori knowledge 

resolution III design but with of the  experiment  is   important 

your fewer trials. while using this design. 

•    It        is        a        sequential •    Aliasing pattern for such a design 

experimentation    which    is is very complex. 

valuable. •    It is not a great idea to run large 

•    By this design the variables experiment   or   to   depend    on 

can be enhanced. strategies that  do not  have  the 

•    It is a feasible design. possibility of resolving complex 
Plackett-Burman 

•    It provides robustness in the relationships among factors with 

Design product. 

• It helps in intelligent decision 

making. 

• Helps    in    finding    which 

variable   can   be   used   to 

change the system. 

• It does not have the power of 

2 restrictions, since it is a 4N 

design     making     it     more 

flexible. 

only few additional runs. 

•    Compress the amount of data •    Though the size of the experiment 

required   to   carry   out   the is larger than a normal design, it is 

experiments. small  when compared to  some 

•    Give   benefits   of   multiple other designs. 

simultaneous AB split tests. •    Requires in depth knowledge of 

•    Allows the testing of a few DOE. 

Taguchi methods pages of elements all at once. •    In order to understand the results, 

•    Requires far lesser data than a high    statistical    knowledge    is 

normal design. required. 

•    Gives a robust design. •    The variable interactions are not 

•    To achieve the objective the considered in this design. 

number of trails required to 

be carried out is very low. 
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•    Power of the experiment is •    It does not yield results if the 

higher than the others. This is assumptions are not met at least 

because there is a reduction approximately. 

in error variance. •    The       dependent       and       the 

•    By    this    method    residual independent variables should be 

variation is reduced. linear in parameters. This further 

•    It  is highly powerful when leads to the fact that there should 

compared   to   1   or  2   way be     correlation     between     the 

ANOVA. This is because it covariates    and    the    response 

has a greater ability to detect variable. 

ANCOVA 
and estimate the interactions •    There   is  an  additional   cost  of 

(within the group as well as introducing blocking factors. 

between the groups) •    The   blocking   factors   that   are 

•    There     is     availability     of highly     correlated     with     the 

extensions    to    deal     with dependent variables become hard 

measurement       errors       in to find. 

covariates. • If the blocking factor is poorly 

correlated, there is a loss of 

power. 

• This design reduces experimental 

error by statistical methods rather 

than experimental methods. 

•    The    design    gives    highly •    They employ 5  levels for each 

accurate  and  strong  results factor, which is higher than some 

because the detection limits of the other designs. 

are lowered. •    At times such designs are not able 

Central composite •    The   design  provides   equal to    determine    the    interactions 

Design 
precision for fitted response 

at the points. 

between the variables and the 

square terms. 

•    Such       designs       identify •    The surface plots of such designs 

multivariable interactions. are   not   rotatable   making   them 

•    The     numbers     of     trails give different answers at different 

conducted    to     reach     the points. 
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required     conclusions     are 

minimized. 

•    Such       a       design       also 

determines     the     different 

factor   levels   that   provide 

optimum responses. 

•    Also helps to determine the 

portion of the response that is 

insensitive   to   changes    in 

predictor variables. 

•    They fit non linear models. 

•    These designs can be used to 

analyze data of any kind. 

•    The sub unit variance in such •    Less     precise     than     a     fully 

design is far lesser than the randomized experiment. 

whole unit variance. Thus the •    Many    designs    have    too    few 

sub unit treatment factor and degrees of freedom to give good 

interaction     are     generally estimates    of   the    main    plot 

tested    with    much    higher variation. 

sensitivity. •    Analysis becomes more complex 

•    Such designs can carry out in  cases   such  as  missing  data 

Split Plot Designs 
both the whole unit and sub value, existence of covariates or 

unit   analysis   in   the   same while   carrying   out    regression 

experiment. analyses. 

•    They    follow    a    univarite •    There are 2 kinds of errors and 

design   and   have   repeated hence there are many  standard 

measures in time (sub unit) error comparisons. 

carry   out   the   whole   unit •    High variance and few replication 

analysis. of the whole unit lead to poor 

sensitivity on whole unit factors. 

•    Presentations of results are harder. 
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From the list above certain inferences of the designs are derived. It can be seen that the designs have 

certain common features. The designs have been grouped further based on these features into classes. 

When just the advantages are considered the designs can be broadly classified as: 

Class 1A- Economical 

Class 2 A- Large amount of information gathered 

Class 3 A- Number of runs/trails are low 

Class 4A- Control of variations 

Class 5A- Aid in decision making 

Class 6A- Solve Non Linear Models 

Though these are self explanatory, a brief description of them is discussed. As discussed earlier, these 

designs are generally economical. But this is a very subjective interpretation. Depending on the objective 

of the experiment and the situation of use, some of the designs might be more feasible than others. 

Mostly, a design is economical when its usage at least achieves a breakeven. Some of the designs take an 

additional stride and solve even non linear models. Most of the designs discussed are robust in a certain 

way, some based on their ability to control variation in the process and some based on the amount of 

information gathered which is why they become such an important criteria for classification. If the later is 

achieved in the least amount of runs, the design achieves its efficiency. These designs can be used in 

decision making. How useful they are as an aid, becomes another selection criterion. Based on the above 

criteria, the following classifications of the designs are made (Table 14). 

Table 14. Classification based on advantages. 

Class 1A Latin Square Design, Taguchi Design, Central Composite Design, Split Plots, 

Plackett-Burman Design 

Class 2A Plackett-Burman Design, Taguchi Design, Split Plots 

Class 3A Latin Square Design, Plackett-Burman Design, Central Composite Design, Split 
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Plots 

Class 4A Latin Square Design, ANCOVA, Split Plots 

Class 5A Plackett-Burman Design, Taguchi Design, Central Composite Design. 

Class 6A Central Composite Design 

In order to get a quick idea as to which of these advantages is the most lucrative to be considered 

while designing an experiment a bar graph is quantified. 

r 

• • ••• 
1 1 1 • I Number of Designs under 

each Class 

Class   Class   Class   Class   Class   Class 

1A        2A        3A        4A        5A        6A 

Figure 27. Number of designs for under each class/advantages 

To give a fair idea of the designs, it is unsettling if only the positive are considered. Therefore, the 

disadvantages of these designs also need to be known.   Based on the list of disadvantages, the designs 

were broadly classified as 

• Class 1D - Assumptions for the design need to be satisfied 

• Class 2D - Complexity of the design 

• Class 3D - Prior knowledge of design needed is high/Domain should be known 

• Class 4D - Limited analysis of the interactions 
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• Class 5D - High cost 

• Class 6D - High Error 

• Class 7D - Low degrees of freedom 

As we already discussed while classifying advantages this is a very individualistic interpretation. As 

these designs are large, they can get very complex as the factors increase making it hard to understand. 

This intern leads to higher cost of the design and some of them are associated with a higher error term 

caused due to lower degrees of freedom. Most of the designs require a good amount of domain 

knowledge; the assumptions needed to be satisfied are quite a few. Designs like Latin squares limit 

themselves to the main effects and interaction analysis is not carried out. Hence these act as the 

parameters that measure the flip side of the designs. After classifying the disadvantages into classes, the 

designs are fit into these classes in the following manner (Table 15). 

Table 15. Classification based on disadvantages. 

Class ID ANCOVA 

Class 2D Plackett-Burman Design, Split Plots 

Class 3D Plackett-Burman Design, Taguchi Design, ANCOVA, Split Plots 

Class 4D Taguchi Design, Central Composite Design 

Class 5D Plackett-Burman Design, ANCOVA 

Class 6D Latin Square Design, ANCOVA, Split Plots 

Class 7D Latin Square Design, Split Plots 

A bar graph drawn (Figure 28) will aid in quantification of these disadvantages while designing an 

experiment. 
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I Number of designs 
under each class 

Class 1D Class 2D Class 3D Class 4D Class 5D Class 6D Class 7D 

Figure 28. Number of designs under each class/disadvantages. 

7.2    Classification based on number of factors and complexity of the design 

As already stated, the number of factors a design can solve is one of the major reasons the research has 

been conducted. In order to achieve an optimistic result for this study, the classification based on the 

number of factors is carried out. This is a nascent step towards providing some kind of guidelines in order 

to achieve that tradeoff between the cost and the information used and got from these designs. The larger 

the design the cost is higher. So considering the minimum number of factors that can be solved with the 

least amount of effort the designs were classified as 

• High (x> 15) 

• Medium(10<x<15) 

• Low(5<x<10) 

where x denotes the number of factors. 

Having classified in this manner, the designs can be grouped into these classes and a graph is 

developed. 

• High - Latin Square Design, Split Plot Design, Taguchi designs, CCD 
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• Medium - Plackett-Burman 

• Low - Fractional Factorial Design 

The Figure 29 below gives a quick update on the designs and aids in picking the most suited design for 

carrying out the experiment. The numbers of factors vary as high medium and low and the complexity 

involved in solving the design varies from low to high. 

Latin Square 

Designs 

Split Plot design 

Taguchi Designs 

Plackett-Burman Design 

Fractional Factorial Design 

Complexity involved in solving the design 

Figure 29. Complexity versus Number of factors. 

This is the core of the thesis and thus a recommendation is given based on the designs and their 

behavior and features. 

7.3    Comparison and Recommendation of DOE Softwares 

A statistical analysis can be carried out only with a help of a software package. The easier and smaller 

experiments can be conducted intuitively and results calculated manually. But as the size of the design 

increases the analysis becomes more complex and cannot be performed efficiently without the help of the 

software [25]. The designs considered in this thesis solve large number of factors and are relatively 

difficult if not for these software packages. The packages today solve and analyze the designs with ease. 
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It is possible for them to carry out these by fitting data into inbuilt mathematical equations which predict 

the outcomes. These software packages help in coming up with optimal solutions which make it easy for 

engineers to carve up some savings in the industry. A comparative table is shown below (Table 16): 

Table 16. Comparison of DOE softwares. 

Name of the Features Number of Cost 

software Factors 

Design Ease 1. Breakthrough   factors   for   process   or Up to 31 For 1 - 2 

product improvement. factors in $495.00 [26] 

2. Helps  to  set  up  and  analyze  general fractional 

factorial, two-level  factorial,  fractional factorial and 

factorial and Plackett-Burman designs. Plackett- 

3. Numerical optimization Burman 

designs 

Design 1. The   peak   of   performance   with   the Include up to For 1 - 2 

Expert process or formulation. 256 runs and $995.00 

2. Has features of Design Ease along with up to 8 blocks 

in-depth analysis of process factors or for 8-15 

mixture components. factors 

3. Offers    rotatable    3D    plots    to    help 

visualize the response surface. 

4. Numerical optimization function present, 

which  finds the most desirable  factor 

settings       for      multiple      responses 

simultaneously. 

ANOVA TM 1. Utilizes a complete set of orthogonal Solves For 1 it costs 
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Arrays all the  way to an L   108 or orthogonal Euro 995 

customize your own arrays. Arrays up to L 

2. Calculations for Dynamic Characteristic. 108 

3. Individual Orthogonal Array Files and 4- 

way Analysis of Orthogonal Array or 

Single Factor. 

4. Auto pooling on V, F and Rho%. 

DOE Kiss 1. An Excel Add In feature It supports up Price per copy is 

2. Solves Taguchi, Plackett Burman design, to 26 factors $249.00 

Full and Fractional Designs and 1 response 

3. Computer    Aided     Design     Selection variable. 

Wizard. 

4. Custom Designs 

5. Surface, Contour, and Interaction Plots 

Statistical 1. Helps pick the sample size. Price per copy 

sample 2. Picks  the  best  strategy  that  suits  the $40.00 

planner experiment. 

ECH1P Handles all the aspects of a DOE. Price per copy 

$1495.00 

Minitab 1. Easy to use. Price per copy 

2. ANOVA, Regression analysis, Statistical $975.00 

analysis,    Reliability    analysis,    multi 

variate analysis, design of experiment, 

response surface, surface plots etc. 

SAS 1. It  has  all the  regular features of the Varies from 
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statistical software along with it they 

have additional  features  like  to  solve 

MANOVA and Split Plot Design 

vendor to vendor 

SPSS Has all features of SAS with compatibility 

with windows 

For one copy 

$1600.00 

Statistica 1. Comprehensive, user friendly interface, 

more than 11000 functions interactive 3D 

explorer to name a few 

For one copy 

$1990.00 

A detailed study of STASTISTICA and MINITAB has been done. Both these software packages have 

their own positive points and can be used to solve most of the large factor designs. STATISTICA is more 

robust software as it involves all the minute details involve theoretically in a design. But MINITAB is 

menu driven making it user friendly software used by most of the designers. Also it is more economical 

than the former. 

8     Conclusions 

A formalized, statistically-rigorous methodology has been proposed for the evaluation of any Data 

Fusion process. It is shown that the methodology requires the design of a separate Data Fusion process 

that specifically supports the T&E process by (a) providing a mathematical approach to the requirement 

to associate fused state estimates computed by the SUT prototype to truth states, and (b) providing the 

architecture and estimation processes for estimating the evaluation metrics of interest. Additionally, it is 

shown that the methodology also requires, due to the underlying stochastic nature of the DF process, 

integration of the methods of statistical experimental design and also, importantly, the associated methods 

of analysis that employ ANOVA techniques and other statistical analysis methods. Proof of concept 

experiments have been carried out to show representative application of the overall methods; these 

experiments and further elaborations of the methodological aspects are described. 
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The increased complexity of modern-day fusion-based tracking problems requires formalization and 

consistency in the PE process for fusion-developed estimates. This gets harder for Level 2, 3 and 4 fusion 

processes as explained in Section 2.3. We conducted empirical studies to bolster our understanding of the 

complex interdependencies in performance results from changing SUT/Scenario/PE parameters. This 

work suggests that the nature of the PE approach should build upon our familiarity with the "Fusion Tree" 

fusion process design for various applications. This work also shows that the quantitative effects of 

changing PE process techniques/parameters can significantly affect the MOP results. 

In the second part of the research the need for large factor experiments was dealt by learning in depth 

about some methods that solved this problem. Some of these designs have real potential but have not been 

explored as they are not well known and they need a thorough perception. The mechanics behind these 

designs are hard and hence these are not very popular. A classification of these designs was carried out 

and recommendations were made after a thorough study. A comparative study based on the complexity, 

number of factors, the pros and cons has led to a subjective interpretation of the design which can be used 

as a guideline. Finally the software programs that aid in solving these designs were discussed and a 

comparison of these was made. 

This research is a stepping stone in the world of huge intellectual opportunities to solve this non trivial 

problem. These topics need to be explored in detail and more specific guidelines need to be set. The 

designs can also be understood in a better way when the results could be quantified by plotting the 

number of runs needed by each design against the number of factors and also by conducting a trend 

analysis of the designs. Further an intensive study on the most suited software can be carried out and a 

manual developed which can aid experimenters to use these designs and encourages the use of the designs 

and exploit their potential. 
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Appendix 

A.      L2 and L3 Tier 0 DOE Charts 

This section provides the Tier 0 DOE charts conducted in Section 5. The three factors SUT Design 

Gating Factor, PE Gating Factor and PE Design at two levels each are tested to find which of these factors 

affect the MOPs significantly. In Tier 0 we have three sensors on 2 platforms and they do not fuse any 

data within or across platform. Hence we have to only analyze track-to-truth associations for each of the 

MOPs. The summary of the results is shown in Table 3. Here for each MOP we have the Normal 

Probability plot and Pareto chart which summarizes the significant factors. Then for the significant factors 

we plot the main effects plot which tells us how the change in factor affects the MOP. For the significant 
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interactions we plot the interaction plot which shows the effect of change in factor level combination on 

MOP. 

After taking a look at the summary (Table 3), we can say that SUT Design Gating Factor is 

comparatively more significant than PE Gating Factor and PE Design. SUT Design Gating Factor appears 

to be a significant factor in nearly all the Tier 0 DOE runs. So at Tier 0 we must be sensitive towards 

selection of SUT Design Gating Factor. 

Radar Track 1 to Truth Aspect Consistency: 

Normal Probability Plot of the Standardized Effects 
(response is Aspect, Alpha • .10) 

Standardized Effect 

Pareto Chart of the Standardized Effects 
(response Is Aspect, Alpha - .10) 

1.666 

0.0       0.2       0.4       0.6       0.8       1.0       1.2       1.4       1.6       1.8 

Main Effects Plot (data means) for Aspect 
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Radar Track 1 to Truth ESM Consistency: 
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Probability Plot of the Standardized Effects 
(response is E5M, Alpha - .10) 

Pareto Chart of the Standardized Effects 
(response is ESM, Alpha - .10) 

  1.666 

c- 

ABC 

«• 

AB | 
B 

AC 

BC 

0 0      0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
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Radar Track 1 to Truth TTLE Consistency: 

Probability Plot of the Standardized effects 
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Normal Probability Plot of the Standardized Effects 
(response is Threat, Alpha » .10) 

Pareto Chart of the Standardized Effects 
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Radar Track 2 to Truth ESM Consistency: 

Normal Probability Plot of the Standardized Effects 
(response Is ESM 1, Alpha • .10) 
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Radar Track 2 to Truth Threat Consistency: 

Normal Probability Plot of the Standardized Effects 
(response Is Threat_l, Alpha = .10) 

Par eto Chart of the Standardized effects 
(response is Threat..!, Alpha • .10) 
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Main Effects Plat (data means) for Aspect.2 
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ESM Track 1 to Truth ESM Consistency: 

Normal Probability Plot of the Standardized Effects 
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Normal Probability Plot of the Standardized Effects 
(response is TTL£_2, Alpha - .10) 

Pareto Chart of the Standardized Effects 
{response Is TTLE^2. Alpha - .10) 
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ESM Track 1 to Truth Threat Consistency: 

Normal Probability Plot of the Standardized Effects 
(response is Threat_2, Alpha = .10) 
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ESM Track 2 to Truth Aspect Consistency: 

Probability Plot of the Standardized 
(response is Aspert.3, Alpha - .10) 
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ESM Track 2 to Truth ESM Consistency: 
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ESM Track 2 to Truth TTLE Consistency: 

Normal Probability Plot of the Standardized Effects 
(response Is TTLE_3, Alpha = .10) 

Pareto Chart of the Standardized Effects 
(response Is m£_3, Alpha - .10) 
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ESM Track 2 to Truth Threat Consistency: 
Normal Probability Plot of the Standardized Effects 
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1RST Track 1 to Truth ESM Consistency: 

Normal Probability Plot of the Standardized Effects 
(response Is ESM_4, Alpha - .10) 
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1RST Track 1 to Truth TTLE Consistency: 
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Normal Probability Plot of the Standardized Effects 
(response Is TTL£ 4, Alpha - .10) 

Pareto Chart of the Standardized Effects 
(response Is TTLf 4, Alpha - .10) 
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IRST Track 1 to Truth Threat Consistency: 

Normal Probability Plot of the Standardized Effects 
(response Is Threat_4, Alpha * .10) 
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1RST Track 2 to Truth ESM Consistency 
Probability Plot of the standardized 

(response Is ESM 5, Alpha - .10) 
Pareto Chart of the Standardized Effects 

(response k ESM 5, Alpha - .10) 
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IRST Track 2 to Truth Threat Consistency: 

Probability Plot of the Standardized Effects 
(response is Threat. 5, Alpha • .10) 
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B.      L2 and L3 Tier 1 DOE Charts 

This section provides the Tier 1 DOE charts conducted in Section 5. The three factors SUT Design 

Gating Factor, PE Gating Factor and PE Design at two levels each are tested to find which of these factors 

affect the MOPs significantly In Tier 1 we have three sensors on 2 platforms and they fuse data within 

platform (not across platform). So we have to analyze track-to-truth and track-to-track associations for 

each of the MOPs. The summary of the results is shown in Table 4. Here for each MOP we have the 

Normal Probability plot and Pareto chart which summarizes the significant factors. Then for the 

significant factors we plot the main effects plot which tells us how the change in factor affects the MOP. 

For the significant interactions we plot the interaction plot which shows the effect of change in factor 

level combination on MOP. 
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After taking a look at the summary Table 4, we can say that PE Design is comparatively more 

significant than PE Gating Factor and SUT Design Gating Factor. PE Design appears to be a significant 

factor in nearly all the Tier 1 DOE runs. So at Tier 1 we must be sensitive towards selection of PE Design 

Track To Track Aspect Consistency: 
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Main Effects Plot (data means) for ESM 
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Probability Plot of the Standardized Effects 
(response Is Threat, Alpha * .10) 

Pareto Chart of the Standardized Effects 
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Track 1 to Truth Aspect Consistency: 

Normal Probability Plot of the Standard! zed Effects 
(response Is Aspect_l, Alpha - .10) 

Pareto Chart of the Standardized Effects 
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Track. 1 to Truth ESM Consistency 
Probability Plot of the standardized Effects 

(response Is ESM_1, Alpha • .10) 
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Paretn Chart of the Standardized effects 
(response rs ESM_l, Alpha - .10) 

Lett 

c 

ABC- 1 
B- 

A. 

AC- 1 
BC 

AB. 

Standardized Effect 

49.6 

49.4 

49.2 

•J 49.0 

I   48.8 

Main Effects Plot (data means) for ESM   1 

i i 

1 50 150 

• «* 
•M 

49-0' 

«.«• 

Track 1 to Truth TTLE Consistency: 
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Track 1 to Truth Threat Consistency 
Normal Probability Plot of the Standardized Effects 

(response is ThreaLl, Alpha » .10) 
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Pareto Chart of the Standardized Effects 
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Track 2 to Truth ESM Consistency: 

Probability Plot of the Standardized 
(response is ES*L2, Alpha - .10) 
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Pareto Chart of the Standardized Effects 
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Main Effects Plot (data means) for TTLE_2 
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Track 2 to Truth Threat Consistency: 
Probability Plot of the Standardized 
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C.      L2 and L3 Tier 2 DOE Charts 

This section provides the Tier 2 DOE charts conducted in Section 5. The three factors SUT Design 

Gating Factor, PE Gating Factor and PE Design at two levels each are tested to find which of these factors 

affect the MOPs significantly. In Tier 2 we have three sensors on 2 platforms and they fuse data within 

and across platforms. So we have to analyze track-to-truth and track-to-track associations for each of the 
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MOPs. The summary of the results is shown in Table 5. Here for each MOP we have the Normal 

Probability plot which summarizes the significant factors. Then for the significant factors we plot the 

main effects plot which tells us how the change in factor affects the MOP. For the significant interactions 

we plot the interaction plot which shows the effect of change in factor level combination on MOP. 

After taking a look at the summary Table 5, we can say that PE Design is comparatively more 

significant than PE Gating Factor and SUT Design Gating Factor. In this case some of the two way 

interactions involving PE Design are significant which suggests that fusing data across platforms reduces 

the discrepancies in the input data. 
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Probability Plot of the Standardized Effects 
(response is ESM, Alpha - .10) 

Pareto Chart of the Standardized Effects 
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Track to Track Threat Consistency 
Normal Probability Plot of the Standardized Effects 

(response is Threat. Alpha • .10) 
Pareto Chart of the Standardized Effects 

(response Is Threat, Alpha - .10) 
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Track 1 to Truth ESM Consistency: 
Probability Plot of the Standardized Effects 

(response Is ESMJ, Alpha • .10) 
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Main Effects Plot (data mean*) for TTLE_ 1 
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Probability Plot of the Standardized Effects 
(response is Aspect_2, Alpha » .10) 

Pareto Chart of the Standardized Effects 
(response is Aspect_2, Alpha = .10) 
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Normal Probability Plot of the Standardized Effects 
(response is TTL£_2, Alpha - .10) 

Chart of the Standardized Effects 
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D.      L2 and L3 Inter Tier DOE Charts 

This section provides the Inter Tier DOE charts conducted in Section 5. The four factors SUT Design 

Gating Factor, PE Gating Factor, PE Design and Tier Level at two levels each are tested to find which of 

these factors affect the MOPs significantly. In Inter Tier we have three sensors on 2 platforms and they 

fuse data within and across platforms (Tier 2) and just within platform (Tier 1). So we have to analyze 

track-to-truth and track-to-track associations for each of the MOPs. The summary of the results is shown 

in Table 6. Here for each MOP we have the Normal Probability plot which summarizes the significant 

factors. Then for the significant factors we plot the main effects plot which tells us how the change in 

factor affects the MOP. For the significant interactions we plot the interaction plot which shows the effect 

of change in factor level combination on MOP. 

After taking a look at the summary Table 6, we can say that factor "Inter Tier" is comparatively more 

significant than PE Gating Factor, PE Design and SUT Design Gating Factor. In this case the DOE table 

suggests that fusing data across platforms reduces the discrepancies in the input data. 
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(response is Aspect, Alpha • .10) 
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Main effects Plot (data means) for Aspect 
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Track To Track ESM Consistency: 

Normal Probability Plot of the Standardized Effects 
(response Is ESM, Alpha - .10) 

Pareto Chart of the standardized effects 
(response Is ESM, Alpha - .10) 
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Track To Track TTLE consistency: 
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Probability Plot of the Standardized 
(response Is TTLE, Alpha - .10) 
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Track To Track Threat Consistency: 

Normal Probability Plot of the Standardized Effects 
(response Is Threat, Alpha - .10) 
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Track 1 to Truth Aspect Consistency: 

Normal Probability Plot of the Standardized effects 
(response B Aspect_l, Alpha - 10) 
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Pareto Chart of the Standardized Effects 
(response is Aspect 1, Alpha • .10) 
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Track 1 to Truth ESM Consistency: 

Normal Probability Plot of the Standardized Effects 
(response is ESM^l, Alpha - .10) 
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Track 1 to Truth TTLE Consistency: 

Probability Plot of the Standardized Effects 
(response Is TTIE_1, Alpha - .10) 
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Track 1 to Truth Threat Consistency: 

Normal Probability Plot of the Standardized Effects 
(response is Threat.!, Alpha • .10) 
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Main Effects Plot (data means) fi >r Threat^l 

SUT DE genre; 

m 

35- 

30- 

25- 

Staple                       Vogel 5 

Pe de«jn Tier 

40- 

35- 

30- 

25 

Track 2 to Truth Aspect Consistency: 

Normal Probability Plot of the Standardized 
(response is Aspect_2, Alpha = .10) 
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Pareto Chart of the Standardized 
(response is Aspect_2, More • .10) 
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Track 2 to Truth ESM Consistency: 
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Probability Plot of the Standardized Effects 
(response is ESM_2, Alpha = .10) 

Pareto Chart of the Standardized Effects 
(response is ESM. 2, Alpha - .10) 
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Track 2 to Truth TTLE Consistency: 

Probability Plot of the Standardized Effects 
(response is TTl£_2, Alph» • .10) 
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Track 2 to Truth Threat Consistency: 

Normal Probability Plot of the Standardized Effects 
(response is ThreaO, Alpha • 10) 
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E.      L4 Tier 0,1, 2 and Inter Tier DOE Charts 

This section provides the Inter Tier DOE charts conducted in Section 5. The four factors SUT Design 

Gating Factor, PE Gating Factor, PE Design and Tier Level at two levels each are tested to find which of 

these factors affect the MOPs significantly. In Inter Tier we have three sensors on 2 platforms and they 

fuse data within and across platforms (Tier 2) and just within platform (Tier 1). So we have to analyze 

track-to-truth and track-to-track associations for each of the MOPs. The summary of the results is shown 

in Table 6. Here for each MOP we have the Normal Probability plot which summarizes the significant 

factors. Then for the significant factors we plot the main effects plot which tells us how the change in 

factor affects the MOP. For the significant interactions we plot the interaction plot which shows the effect 

of change in factor level combination on MOP. 
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After taking a look at the summary Table 6, we can say that factor "Inter Tier" is comparatively more 

significant than PE Gating Factor, PE Design and SUT Design Gating Factor. In this case the DOE table 

suggests that fusing data across platforms reduces the discrepancies in the input data. 

Tier 0 Radar 1 to Truth S/J ration Consistency 

I Plot of the Standardized Effects 
l is Radarl_Truth. SJ .Consistency, Alpha • .10) 

Pareto chart of the Standardized effects 
(response is Radarl_Truth_SJ_Consistencyr Alpha - .10) 
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Tier 0 Radar 2 to Truth S/J ration Consistency: 

Normal Plot of the Standardized Effects 
(response is RaoV2_Trutfi^_S]_ConststBncy, Alpha = .10) 
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Main Effects Plot for Raoar2  Truth  SJ, Consistency 
Data Means 
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Tier 0 ESM 1 to Truth S/J Ratio Consistency: 

Normal Plot of the Standardized Effects 
(response is EMl_Tnjth^S3_Consistercv, Alpha = .10) 
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Pareto Chart of the standardized Effects 
(response Is ESMl_Truth_S]_ConslstencY, Alpha = .10) 
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Tier 0 ESM 2 to Truth S/J Ratio Consistency: 
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Normal Plot of the Standardized Effects 
(response Is ESM2 JYuth SJ Consistency, Alpha - .10) 

Pareto Chart of the Standardized Effects 
(response is ESM2_Truth_5J_Cortsistency, Alpha • .10) 
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Tier 0 IRST 1 to Truth S/J ration Consistency: 

Normal Plot of the Standardized effects 
(response Is BS1XTruth_SJ Consistency, Alpha - .10) 
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Tier 0 IRST 2 to Truth S/J ration Consistency: 

Normal Plot of the Standardized Effects 
(response is RST2_Trutti_SJ_C0nsistency, Alpha » .10) 
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Tier 1 Track To Track S II Consistency: 

Normal Plot of the Standardized Effects 
(response is Tradc_To_Trad(_SJ_Corsistency, Alpha = .10) 

Pareto Chart of the Standardized Effects 
(response is Track_To_Track_SJ_Consstency, Alpha * .10) 
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Tier 1 Track 1 To Truth S/J Consistency: 

Normal Plot of the Standardized Effects 
(response Is Tr»cU_To_Trum_SJ_Consisttncy, Alpha = .10) 
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Tier 1 Track 2 To Truth S/J consistency: 

Normal Plot of the Standardized Effects 
(response is Track2_To_Tnjth_SJ_Consistency, Alpha = .10) 
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Main Effects Plot for Track2_To Truth_SJ_Consistency 
Data Means 

Gatrig Factor PE Gating factor 

0.885 V 
0.880 N^ 
0.875- " \^ 
0.870 - N. 

» 
50                             150 3                             5 

°t CO*' 
0.885 • 

0 880- ^\ 
0.875 - '^^ 
0.870 - ^ 
0.865 

Tier 2 Track to Track S/J Consistency: 

Normal Plot of the Standardized Effects 
(response Is Track_To_Track_SJ_Conslstercv, Alpha - .10) 
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Tier 2 Track 1 To Truth S/J Consistency: 
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Normal Plot of the Standardized Effects 
(response is Trackl_To_Truth_SJ_Consistency, Alpha = .10) 
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Tier 2 Track 2 to Truth S/J Consistency: 

Normal Plot of the Standardized Effects 
(response B Track2jrojrnjth_SJ_Consistency, Alpha = .10) 
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Inter Tier Track to Track S/J Consistency: 
Normal Plot of the Standardized Effects 

(response Is Track to Track SI consistency. Alpha * .10) 
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Inter Tier Track 1 to Truth S/J Consistency: 

Normal Plot of the Standardized Effects 
(response is Trackl to Troth SJ Consistency, Alpha = .10) 

91 •        y 
"» m   / 
80 */ 
*)- 
• 
50- 

40- 

30- 

»- 

• • • • 

• /•> 

S- •0 

Effect Type 

• Not Signer ant 

• StgniYanl 

Pareto Chart of the Standardized Effects 
(response s Trackl to Truth SJ Consistency, Alpha = .10) 

1.656 
D- 1 
A- 1 
C- 

CD- 1 
AD- 

ACD- 

AC- 1 
ABC- 1 
BCD- 1 

AFJCD- 1 
ABO- 

l 
1 

c i 2 3 4 

Factor Name * Gatmg Fact• 

•i Pf Gating 'a.i» ( Pf cork) 

0 Tlar 

CUBRC I References 



0.87 

O.M 

0.81 

0.78 

0.75 

0.87 

0.84 

0.81 

0.78 

0.75 

Main Effect! Plot for Trackl to Truth SJ Consistency 
Data Means 

Gating Factor PE Gating factor 

^ 

"^ 
50                             150                                                               5 

PEcode Ter 

^ \ 

^ \ 

Inter Tier Track 2 to Truth S/J Consistency: 

Normal Plot of the Standardized Effects 
(response Is Track?, to Truth SJ Consistency, Aloha - .10) 
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