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Summary 

Over the last two and a half years, control strategies were developed to reduce viscous drag in 
turbulent boundary layers, in particular, by expanding on the recent discovery that simple two- 
dimensional, streamwise sinusoidal waves traveling upstream sustain a channel flow with sub- 
laminar drag. This simple open-loop control of wall-bounded blowing and suction modifies the 
Reynolds shear stress distribution to directly reduce drag. This reduction is predicted by linear 
theory and has been confirmed with nonlinear direct numerical simulations (DNS). However, the 
traveling waves also induce instabilities in the channel flow. Channel flow dynamical equations 
linearized about a periodic flow induced by the traveling wave shows unstable modes. For small 
amplitude traveling waves, the linearized dynamics are fairly accurate in predicting the instabili- 
ties. Significant progress has been made in understanding the instability of the flow field induced 
by the upstream traveling wave using Floquet analysis, developing an appropriate linearized dy- 
namical system for which the control design is based, and the implementation of these controllers 
to suppress these secondary instabilities for small amplitude traveling waves. Although the lin- 
earized dynamics are periodic in a fixed or laboratory coordinate frame, the system dynamics 
are time-invariant in a coordinate frame moving with the traveling wave. This allowed an enor- 
mous simplification of the controller syntheses and based on the moving coordinate frame, linear 
quadratic regulators (LQR) are shown to suppress these secondary instabilities. Currently, the lin- 
ear models and the feedback controls designed on them are limited to somewhat small amplitude 
traveling waves. Since even for small amplitude traveling waves, the coupling induced by the 
traveling wave between wave number pairs creates a very large dynamical system. An approach 
to model reduction, which might have enormous benefit in constructing reduced models for large 
amplitude traveling waves for control design, has also been developed during this grant period. 
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1    Introduction 

The ability to control flows, turbulent flows in particular, has great consequences in many science 
and engineering applications. Successful flow control can lead to, among other things, reduced 
drag and increased lift. Agility and maneuverability for military aircraft and weapons can be sig- 
nificantly improved through flow control. Successful flow control requires a thorough understand- 
ing of the underlying physics of the flow under control, efficient control algorithms, and robust 
sensors and actuators, all of which have been less than satisfactory despite the great interest they 
have garnered over the years. Great strides have been made recently through advancements in 
computational fluid dynamics, control theories, and micro- and nano-fabrication technology. A 
better understanding of the role of organized structures observed in boundary layers has led to new 
approaches of controlling theses flows, while a better understanding of the instability of free-shear 
flows has resulted in large control effects with minimal control input. The ability to manufacture a 
large number of sensors and actuators that are capable of sensing and actuating small scales in tur- 
bulent flows, for example, affords a new opportunity for turbulence control, which has previously 
proven to be difficult due, in part, to the inability to control small-scale motions (on the order of a 
micro meter, for example, for commercial airplanes). Modern systems theoretic approach to flow 
control, particularly turbulence control, which has been hindered by the fact that fluid flows are 
nonlinear and high-dimensional systems, provides new possibilities and challenges for flow con- 
trol. In contrast to traditional approaches, in which control input is designed on a trial-and-error 
basis and/or based on the control designer's physical insight into the flow, the systems theoretic 
approach uses the dynamical equations to formulate controls to meet a specified objective. In 
our studies [1-5], we have successfully applied systems theoretic approaches to design optimal 
controllers that substantially reduced drag with wall blowing/suction along the channel wall. 

These controllers are all derived by applying modern control synthesis techniques to the spec- 
tral decomposition of the Navier-Stokes equations, linearized for small perturbations around the 
Poiseuille mean profile. This discretization decouples the dynamics to independent sub-systems by 
discretization spatial wavenumbers. This allows an immediate reduction in control size by simply 
applying controllers to certain sub-systems [3]. Even lacking the nonlinear terms of the channel 
flow, these controls have reduced the viscous drag by 15% to 18% [4]. The controls also lack a 
direct measure for drag reduction, for example, in [4] the control aims to reduce the quadratic of 
the wall-shear stress fluctuations. Other indirect cost criteria result in approximately the same drag 
reduction performance [5]. 

In an effort to move past this apparent performance limit, we began to explore open-loop pe- 
riodic controls, to take advantage of transient drag reduction found in almost all of the feedback 
controllers. During these numerical experiments, we discovered that a simple, sinusoidal wave of 
wall-normal blowing and suction at the walls could not only drive down but sustain drag reduc- 
tion in the channel (See Appendix A). In fact, in DNS initialized with a laminar flow field, the 
upstream traveling wave sustained a flow field with sub-laminar drag characteristics. Furthermore, 
we found that the linear models used in our feedback control synthesis were sufficient to charac- 



terize the relationship of the traveling wave parameters (its speed, direction, amplitude, and spatial 
wavenumber) to the drag reduction that can be achieved. 

While certainly computationally more efficient than DNS, the linear drag reduction prediction 
becomes less accurate with larger amplitude waves; this is reasonable since larger amplitudes 
waves will induce larger amplitude velocities, which then violate the small perturbation assumption 
of the linear model. The linear model also suffers from other limitations. It can only predict 
the sub-laminar drag steady-state flow that is found when the DNS is initialized with a purely 
laminar flow field. With an initially self-sustaining turbulent flow field or a laminar flow field with 
perturbations, the channel flow settles to a different, turbulent equilibrium than the laminar one. 
The linear model cannot predict the turbulent equilibrium, since that equilibrium is most probably 
sustained by nonlinear effects. However, it is troubling that the linear model cannot predict any 
instabilities to explain the transition from laminar to turbulent equilibria. 

As a first step to more accurately characterize the traveling wave induced flow field, Floquet 
analysis is used to derive the dynamics of the perturbations about the periodic base flow (See [6, 
Appendix A]). Specifically, the perturbations are characterized as having the spatial and temporal 
periodicity of the traveling wave. Then, the invariant portion of the dynamics models the stabil- 
ity characteristics of the traveling wave induced flow. Using a 2D Fourier decomposition in the 
streamwise and spanwise directions, the base flow is thus represented as a linear super-position 
of the Poiseuille mean profile as well as velocities (along the entire channel height not just at the 
wall) at the wavenumber of the traveling wave. The governing equations are now coupled among 
perturbations at different wavenumbers. This is in contrast to the linear models previously used, 
which are decoupled by wavenumber. While requiring larger system sizes, this linear model does 
clearly show that the traveling wave induces secondary instabilities in the channel, particularly in 
three-dimensional perturbation wavenumbers. 

While the Floquet analysis provides a linear method by which to characterize the stability of 
the traveling induced velocity, it does not directly provide system equations appropriate for control 
synthesis. Primarily, it ties both the spatial and temporal periodicity to the traveling wave. The 
spectral decomposition method used in our previous studies results in a time-varying system matri- 
ces when applied to the traveling wave induced flow. Due to the size of the coupled dynamics, it is 
prohibitively expensive to calculate the transition matrix to properly identify the temporal periodic 
and time-invariant behavior. However, by discretizing the traveling wave induced channel flow in 
a frame of reference moving with the traveling wave, linear time-invariant (LTI) system equations 
appropriate for control synthesis can be derived. The moving frame isolates only the temporal 
periodicity of the flow. The stability of these linear models match those of the Floquet analysis and 
similarly couple the perturbation at different wavenumbers. For low amplitude traveling waves, we 
have successfully designed and applied linear quadratic regulators (LQR) to suppress the growing 
perturbation energy of the induced instabilities (see Section 4). 

Our study so far demonstrates that for small amplitudes of the traveling wave, we can accu- 
rately analyze and design feedback controls for transition suppression using linear system theoretic 



methods. It is clear that higher amplitude traveling waves produces dramatic drag reduction. How- 
ever, this comes at the cost of requiring more power to implement the traveling wave and results 
in less efficient controllers than other strategies using the same actuation [6, Appendix A]. Fur- 
thermore, we have observed that even with high amplitudes, the traveling wave settles the channel 
flow to two different equilibrium depending on the initial flow state, i.e. turbulent or laminar. Since 
high amplitude traveling waves have such profound effect, further analysis of these flow fields may 
yield optimal feedback controls that can drive the channel flow from the steady-state turbulent flow 
to the sustained sub-laminar drag, or laminar, flows. This would allow the use of lower amplitude 
traveling waves (with their lower power requirements) to achieve sub-laminar flows even when 
starting from a turbulent flow field. Such a system of traveling wave and feedback control would 
represent a highly efficient drag reduction control. 

In the following sections, we provide further details of the work done in our studies. The ob- 
served behavior of upstream traveling waves (particularly in terms of its drag reduction capability) 
is described in Section 2, the linear models that have been derived for analyzing the stability char- 
acteristics of the traveling wave induced flow field are presented in Section 3, the controls derived 
and applied to suppress transition to a turbulent steady-state flow are given in Section 4, and an 
approach to model reduction for nonlinear systems is considered in Section 5. 

2   Upstream Traveling Wave: sub-laminar drag 

Two-dimensional streamwise waves of wall-bounded, wall-normal blowing and suction made to 
travel upstream can reduce skin-friction drag substantially. As can be seen in Figure 1, the effect 
on drag reduction is quite dramatic for large amplitudes of the traveling wave. For this simple, 
open-loop control, wall-normal velocities are introduced at the upper and lower walls: 

^upperCz, *) = ~a cos(kx(x - ct))    and 
t>iower(z, t) =a cos(fcx(a; — ct))    , 

where a is a scalar, c is the wave speed normalized to the mean centerline velocity, and kx is the 
streamwise wavenumber. The blowing and suction are applied on the upper and lower walls in 
varicose mode, where suction (and blowing) occurs at the same streamwise location at both walls. 
By convention, the control on the upper wall has a minus sign to denote blowing (positive sign for 
suction) and the opposite for the lower wall. 

The upstream traveling waves sustains drag reduction by forcing a distribution of the Reynolds 
shear stress favorable for drag reduction. The Fukagata et al. [7, 8] elucidates the drag reduction 
mechanism by relating the skin-friction drag in a fully developed channel flow to the Reynolds 
shear stress: 

(D)00 = (D)e + ^j_ uvydy, (2) 



where (£>)oo represents the total skin-friction drag, (D){ denotes the laminar drag value, Re is the 
Reynolds number of flow centerline velocity, u is the streamwise perturbation velocity, v is the 
wall-normal perturbation velocity, uv denotes the Reynolds shear stress, and y denotes the wall- 
normal direction. The traveling waves drive the integral of the Reynolds shear stress to become 
negative near the upper wall (positive near the lower wall) by inducing u to be phase shifted from v 
in the direction of the traveling wave. This phase shift makes uv negative with upstream traveling 
wave, which in turn induced net mass flux in the opposite direction. This translates to smaller 
pressure gradient to drive the same net mass flux or more mass flux for the same channel pressure 
gradient, which, in a channel flow, translate to less viscous drag. The negative contribution of 
the Reynolds shear stress integral can be approximated by solving the Orr-Sommerfeld equation 
around the Poiseuille channel flow, subject to controls in the form of wall-bounded wall-normal 
velocities [6, Appendix A]: 

x = Ax + ~Bu    , (3) 

where x represents the perturbation state, A the dynamics, B the input matrix, and u the control 
input (see [1-5] for details of this approach). B and u are defined to represent the effect of wall- 
bounded, wall-blowing suction and blowing. We can find the state x, the perturbation velocities, 

Mean drag of turbulent flow 

vw^**w^WVWWAAAAAMWv»^^^NWW 

amp=0.1, laminar flow at t=0 
amp=0.25, laminar flow at t=0 
amp=0.1, turbulent flow at 1=0 
amp=0.25. turbulent flow at t=0 

200 

time 
300 400 

Figure 1: 3D DNS time history of drag at Re = 2000.  Upstream traveling wave 
applied at kx = 0.5, speed —2 (upstream) to initially laminar or turbulent flow. 



at any time for any known control u by the solution to (3): 

x(t) = eAtx(0) + f eATBu(i x(t) = eAf£(0) + f eArBu(r)di 
Jo 

The Reynolds shear stress integral calculated from this linear equation matches the drag reduction 
found in DNS. 

It should also be noted that the power input requirements are also tied to the amplitude of the 
traveling wave. Ignoring the friction that any actuator would have to overcome, we define input 
power as being the work necessary to maintain the traveling wave: Pn = {pw + 0.5 v*,) vw, where 
pw represents the pressure at the wall. Efficiency is defined as the ratio of the mean pressure 
gradient with the traveling wave (Pu*,) plus the input power to the pressure gradient without the 
traveling wave (P0) needed to maintain the same net mass flux through the channel, or 

Mill)   i" ••in 
V =  R       • 

For the cases shown in Figure 1, the efficiencies are 0.76 and 0.81 for the amplitude 0.1 and 
0.25 cases, respectively, with associated drag reduction of 30% and 70% [6, Appendix A]. While 
the drag reduction is dramatic, we see that the input power requirements increase with higher 
amplitudes and the efficiencies are worse than other recent control strategies. For example, the 
opposition control of Choi et al. [9] has an efficiency of 70% with 30% drag reduction. With the 
0.25 amplitude traveling wave, Pwv/Po is expected to be 0.3, which means Pm/P0 is 0.51. This 
means more power is used to pump the fluid in and out of the walls than through the channel itself. 
Once actuation friction (of the fluid through perforated walls, for example) is taken into account, 
the higher amplitude traveling wave efficiencies will only get worse. It seems apparent that lower 
amplitude traveling waves are more desirable in terms of control efficiency. 

Finally, while the linearized Navier-Stokes equations provides a computationally efficient basis 
for analyzing the drag reduction that traveling waves may gain, they are not particularly accurate 
for describing the dynamics of the traveling wave induced flow. In particular, they do show the 
instabilities of the traveling wave induced flow. While the different equilibria between the initially 
laminar and turbulent flows shown Figure 1 could be explained as nonlinear effects beyond the 
scope of any linear model, any growth that transitions the flow from the laminar steady-state to 
the turbulent steady-state should appear as a linear instability. Taking the lower amplitude case 
of Figure 1 as a case study, we find that starting the DNS with a slighdy perturbed laminar flow 
results in transition to the turbulent equilibrium (see Figure 2). This transition is not observed in 
the DNS of Figure 1 since the initial laminar flow field did not introduce perturbations into an 
unstable mode; we have to wait a very long time for round-off error to eventually grow to finite 
amplitudes. With a small perturbation, the transition behavior can be observed sooner and points 
to an instability within the linear regime about the traveling wave induced base flow. 
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Figure 2: Re = 2000 3D DNS with traveling wave of amplitude 0.1 and 
upstream speed of 2 applied to laminar, laminar plus small amplitude 
perturbations, and fully turbulent initial flows. 

3    Linear Modeling of Periodic Flow 

It is clear from the results discussed in the previous section that a more accurate model of the 
traveling wave induced flow is needed. As a first step, we use strictly linear methods to derive such 
a model. Defining the control input u in equation (4) as a simple cosine function as dictated by (1), 
the solution to equation (4) is clearly periodic in time. So, we now assume that the base flow in the 
channel is described as linear super-position of the Poiseuille channel flow and the traveling wave 
induced velocities as found by (4): 

u = U + uc + u'    (streamwise velocity), 

v = vc + v'    (wall-normal velocity), and 

w = wc + w'   (spanwise velocity). 

The "c" subscript is introduced to indicate the velocities found by solving equation (4), i.e. the 
traveling wave induced velocities. Essentially, all the induced velocities are assumed to be of the 
following form (using wall-normal velocity as an example): 

vc = vc(yykx{x~ct) + v*(y)e~ik*{x-ct) (5) 

where vc is an appropriate amplitude function and and v* is its complex conjugate. The mean 
profile, U, is still assumed to be the parabolic profile of the Poiseuille channel flow. Treating 
the traveling wave as a primary disturbance [10], linear dynamical equations are derived for the 



perturbation velocities, u', v', and w', by using Floquet analysis in the manner described by [11,12] 
(using wall-normal velocity as a sample): 

v' — e(iax+i/3z-iwt)    y   einkx(x-ct)Q/   \ (6) 

Here, a and (3 represent perturbation wavenumbers, w the temporal growth (or decay) rate, v(y) is 
an appropriate amplitude function, and kx and c are the same as in (1). The dynamical equations 
that result from using this decomposition are coupled between the perturbation states at different 
2D Fourier wavenumbers: 

- . - /" 
r    ,    -| 

d 
dt 

f_i M_i A_, P-i f_l 
x0 

Xx 
— M0 A0 

Mi 
Po 
Ai   Pi 

XQ 

fl 

. • . : 

(7) 

We introduce subscripts to x to indicate that they are perturbation velocities at different wavenum- 
bers. M, A, and P are square, time-invariant matrices of appropriate size describing the coupling 
dynamics. This is in contrast to the linear model of the Poiseuille channel flow (3) where the 
perturbation states at different wavenumbers are decoupled. 

As done in [11, 12], we truncate the A matrix to ±1 wavenumbers. We find that, for small 
amplitude traveling waves, this completely linear approach results in a linear model that shows 
instabilities. For example, at Re = 5000, a wave of amplitude 0.008 (normalized to the centerline 
velocity of the channel) traveling upstream at a normalized speed of 2 induces an instability at the 
first spanwise perturbation wavenumber. As can been seen in Figure 3, this linear model accurately 
predicts the instability induced by the traveling wave. 

4   Transition Control of Periodic Flow 

The Floquet analysis linear model described in the previous section is not directly usable for control 
synthesis. The Floquet analysis model is primarily interested in describing the stability character- 
istics for any possible perturbation in the flow, while for the control synthesis, we want ordinary 
differential equations that model the dynamics of the entire channel. The subtle but important dif- 
ference is that the latter makes no assumption of the temporal periodicity while Roquet analysis 
recognizes that all perturbations would share the periodicity of the primary disturbance. Of course, 
this will require that the computational box be of sufficient resolution to properly resolve not only 
the perturbation but the traveling wave and its induced velocities. 
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Figure 3: Plot of the log of perturbation energy at first spanwise 
wavenumber for flow at Re = 5000 DNS with traveling wave of 
amplitude 0.008 and upstream speed of 2. DNS initialized on a 
laminar plus small amplitude perturbation flow field. 

If the decomposition method used in our previous studies (as noted in the introduction) is 
applied to the traveling wave induced flow dynamics, we derive a time-varying equation. In order 
to separate the temporal periodicity as per Floquet Theory, we would construct a transition matrix 
and integrate it over an assumed period. In our case, the period would be determined by the speed 
of the traveling wave. However, similar to the results denoted by (6) and (7), these equations are 
coupled for all spatial wavenumbers, thus making the computation of the transition matrix very 
difficult, if not prohibitively expensive. 

However, the above mentioned difficulty can be avoided by considering the spatial 2D Fourier 
decomposition in a reference frame that moves with the traveling wave. This results in linear time- 
invariant state-space equations. We change the coordinate frame such that t' = t, x' = x — ct, 
y' = y, and z' = z. Note that the " ' " is used here to represent the moving frame in relation to the 
static or laboratory frame. This modifies the traveling wave definition to: 

vuppeT(x',t) = —a cos[kxx'))    and 

v\oweT{x',t) =a cos(kxx')) 
(8) 

The 2D Fourier decomposition is now taken in the moving frame, so any perturbation velocity is 
defined as follows (again using the wall-normal velocity as an example): 

N,M 

v'=   J2   v(t',y')einaox'+im/3oz' (9) 
n=-N, 
m=—M 



where Q0 and /?0 represent the fundamental wavenumbers of the discretization and v(t', y') is, 
again, an appropriate amplitude function but now also a function of time. This discretization 
results in state-space system equations in the standard control form: 

x=Ax+Bu    , (10) 

where x are the collection of x at different wavenumbers as in (7), A is the time-invariant dynam- 
ical matrix, u is a similar collection of the u in (3), and B is the time-invariant input matrix that 
couples the input at different wavenumbers. A is quite similar to A in that it demonstrates the same 
stability characteristics and has a similar structure (in terms of non-zero elements). The essential 
difference is in terms of the temporal oscillatory characteristics in the dynamical equations. Using 
the notations introduced in (7), the diagonal elements of A, i.e. A, are displaced by inao c\ (I is 
an identity matrix of with the dimension of A). This shift does not effect the growth or decay rate 
of the perturbations. However, the LTI state-space equations (or system matrices) derived by this 
approach is appropriate for any systems theoretic approach. 

Truncating these coupled system matrices to include 5 perturbation wavenumber states, we 
designed an linear quadratic regulator (LQR) to suppress the induced instabilities observed in 
Section 3. Based on the coupled dynamics of (10) in a moving coordinate frame, the linear- 
quadratic problem is to find a feedback control u that minimizes the quadratic cost 

/oo 

(xTQx + -yuTRu) dr (11) 

subject to (10). Q and R are taken as the identity and 7 is used as a tuning parameter. The solution 
is an optimal control linearily related to the state and this controller is called the linear quadratic 
regulator (LQR). Note that the 3 state truncated system has the same unstable modes as the 5 state 
models. The 5 state models are used as an initial starting point. It may be possible to design an 
effective controller using the 3 state linear models. As a preliminary step, for flow at Re = 5000 
DNS with traveling wave of amplitude 0.008 and upstream speed of 2, we calculated the feedback 
control for the 5 state models. The feedback controller required the solution to the algebraic Riccati 
equation based on the coupled the 5 state model and successfully suppress the instability in DNS 
(see Figure 4). While the result is dramatic in terms of perturbation energy growth, the solution 
to the algebraic Riccati equation (ARE) in the LQR synthesis is now about 12 times larger than 
in our previous studies (based on the 5 state model). It should be noted that the feedback control 
gains found here is periodic in time since the discretization is performed in a moving frame of 
reference. Perturbations and control inputs that are not periodic in the moving frame of reference 
become periodic in the static frame of reference. So while classic LTI control synthesis techniques 
are being used, it is important to keep in mind that the dynamical system, coefficients, and control 
gains are, in fact, periodic in the . 

Experiments where made to significantly increase the amplitude of the traveling wave and we 
succeeded after some time to control the stronger secondary instabilities induced by the traveling 
wave. For the flow at Re = 5000 with a traveling wave of amp = 0.03 c = -2 at (0.5,0), we have 
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Figure 4: Plot of the log of perturbation energy at the first 
spanwise wavenumber for flow at Re = 5000 DNS with trav- 
eling wave of amplitude 0.008 and upstream speed of 2, with 
and without LQR. 

Re • 5000, amp = 0.03 c = -2 kx = 1 

0.1 

0.01 

0001 

 1 1 1  
uncontrolled, no disturbance 

PS mean, gamma » 1e-2 
distorted mean, gamma = 1e-2 

700 900 

time 

Figure 5: Plot of the log of total perturbation energy for flow at Re = 5000 DNS with traveling 
wave of amplitude 0.03 and upstream speed of 2, with and without LQR. 

seen instabilities induced in the linear, coupled-state system for the first 6 spanwise wavenum- 
bers. Initializing the DNS with a Poiseuille flow with randomized perturbations of amplitude 1 e-4 
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Figure 6: Plot of the log of perturbation energy at the kz = 1 for the distorted mean and Poiseuille 
mean at Re = 5000 DNS with traveling wave of amplitude 0.03 and upstream speed of 2, with and 
without LQR. 

demonstrates this instabilities quite nicely, see Figure 5. Three aspects of the higher amplitude 
traveling wave are increase value of the instabilities, the number of spanwise wavenumbers that 
the instabilities appear, and the number of instabilities in at each spanwise wavenumber. For the 
traveling wave of amplitude .03 the first six spanwise wavenumbers had secondary instabilities. 
For each spanwise wavenumber it was assumed that the coupled system matrices were truncated 
to include 5 perturbation spanwise wavenumber states. The controller are "turned on" at t =500. 
The results are shown in Figures 5-11 for all the controllers working together (Figure 5) and then 
showing the effect of each spanwise LQR controller on damping the secondary instabilities for 
spanwise wavenumbers k\ to A;6 (Figures 6-11). Each plot is given as the log of energy verses 
time. In each Figure we compare different weighting values of 7 and linear models based on either 
the steady-state 2D (distorted) mean profile or the Poiseuille mean profile. Plotted in Figure 5 is 
the log of total perturbation energy for controlled flow using LQR for various values of 7 in the 
quadratic cost criterion. The controlled flow are all found in the red strip where the energy of 
the traveling wave dominates. As can be seen in Figures 6-11 the LQG controller damps out the 
secondary instabilities dramatically. 

While the numerical sizes at these low Reynolds numbers remain manageable, the size of the 
controller will need to be carefully considered in any continuing proposed study that attempts to 
suppress larger secondary instabilities generated from larger amplitude traveling waves. 
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Figure 7: Plot of the log of perturbation energy at the kz = 2 for the distorted mean and Poiseuille 
mean at Re = 5000 DNS with traveling wave of amplitude 0.03 and upstream speed of 2, with and 
without LQR. 

5    Model Reduction 

The linear models to represent the traveling wave induced channel flow are seen to be quite large 
and will increase with the traveling wave amplitude. In comparison to the channel flow equations 
in our previous studies, these models will be a minimum three or more times larger. It will be- 
come imperative that these linear models be reduced if they are to applied as real-time feedback 
controllers. An additional criteria for model reduction that can be added relatively easily is observ- 
ability. In order to define observability, we would need to define a measurement equation to the 
dynamical equation, i.e. (10) as an example: 

x=Ax+Bu 
z = Cx + Dfl    , 

(12) 

where z represents the measurement. C is the state measurement matrix, and D is referred to as 
the feedthrough term1. 

In our previous studies, we have already developed a method to make use of controllability 
and observability to reduce the model size, as alluded to in the previous section and shown in [13, 
Appendix C]. The method is finds a balanced realization on a mode by mode basis, by calculating 

'Depending on the measurement and spectral approximation, there may be no feedthrough term [see Appendix D] 
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Figure 8: Plot of the log of perturbation energy at the kz — 3 for the distorted mean and Poiseuille 
mean at Re = 5000 DNS with traveling wave of amplitude 0.03 and upstream speed of 2, with and 
without LQR. 

the modal controllability and observability gramians [3]. It remains to be seen if the approach 
will work with the traveling wave induced channel flow models. Their sheer size will pose some 
numerical challenges. 

Given the limitations of a linear model to approximate nonlinear flows, system identification 
techniques that do identify nonlinear input/output systems are important. These techniques use 
empirical measurements to directly derive models, preferably, of sizes smaller than the computa- 
tional box size of the DNS. One such approach is to use snapshots of the traveling wave induced 
turbulent flow to construct a reduced-order model by a generalized balanced proper orthogonal 
decomposition (POD) scheme [13, Appendix C]. A linear model was constructed first and is pre- 
sented in [13, Appendix C], but nonlinear models have also been considered, where preliminary 
findings indicate good matching of the reduced-order nonlinear system with the original nonlin- 
ear system. The essential nonlinear dynamics of the reduced-order nonlinear system are used to 
guide the controller design. The only draw back to these methods is that the dynamical equations 
derived are something of a black box, having compromised physical intuition, and these approx- 
imation models will vary depending on sampling and a priori assumed sizes. Furthermore, DNS 
simulations would need to be run in order to collect the data needed to obtain the models. 
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6    Conclusions 

In our previous study, we used the three-dimensional Navier-Stokes equations linearized about 
the Poiseuille channel flow as the basis for designing reduced-order controllers. In this study 
these same linear models are sufficient to demonstrate the efficacy of traveling waves, particularly 
upstream traveling waves, of wall-bounded, wall-normal blowing and suction to effect mean prop- 
erties of the flow, such as viscous drag. However, they are insufficient to fully characterize the 
traveling wave induced flow, particularly in terms of stability. Floquet analysis of the perturbations 
around the traveling wave induced flow leads to dynamical equations that can more accurately pre- 
dict induced instabilities as well as the growth rate for small amplitude traveling waves. The Flo- 
quet analysis here ties the spatial and temporal periodicity of the perturbation to the wavenumber 
and speed of the traveling wave. An analogous approach of discretizing the governing equations 
in a moving frame of reference results in LTI system equations that are more appropriate for con- 
trol synthesis. These system matrix equations predict the same stability characteristics as Floquet 
analysis, but only the temporal periodicity is handled by the moving frame decomposition. The 
spatial periodicity is, in essence, handled by the discretization. We show that LQR control, based 
on the moving frame discretization linear model, can suppress the growing perturbation energy of 
unstable modes induced by small amplitude traveling waves. The dynamic models used for control 
are large due to the streamwise coupling of many wavenumbers induced by the upstream traveling 
wave. A model reduction method for nonlinear input/output systems is developed that will allow 
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for efficient controller design. 

15 



Re = 5000, amp • 0.03 c = -2 kx = 1, PS+1e-4 

0.01 

0.001 

0.0001 

1e-05 

1e-06 

1e-07   - 

16-08 

uncontrolled 

distorted mean, gamma = 1e-2 
PS mean, gamma • 1e-8 V>vv\^,*V;Sy; 

600 800 1000 1400 

Figure 11: Plot of the log of perturbation energy at the kz — 6 for the distorted mean and Poiseuille 
mean at Re = 5000 DNS with traveling wave of amplitude 0.03 and upstream speed of 2, with and 
without LQR. 

7    References 

[1] S. S. Joshi, J. L. Speyer, and J. Kim, "A systems theory approach to the feedback stabilization 
of infinitesimal and finite-amplitude disturbances in plane poiseuille flow," Journal of Fluid 
Mechanics, vol. 332, pp. 157-184, 1997. 

[2] L. Cortelezzi, K. H. Lee, J. Kim, and J. L. Speyer, "Skin-friction drag reduction via robust 
reduced-order linear feedback control," International Journal of Computational Fluid Dy- 
namics, vol. 11, no. 1-2, pp. 79-92, 1998. 

[3] L. Cortelezzi and J. L. Speyer, "Robust reduced-order controller of laminar boundary layer 
transitions," Physical Review E, vol. 58, pp. 1906-1910, August 1998. 

[4] K. H. Lee, L. Cortelezzi, J. Kim, and J. L. Speyer, "Application of robust reduced-order 
controller to turbulent flows for drag reduction," Physics of Fluids, vol. 13, no. 5, pp. 1321- 
1330,2001. 

[5] J. Kim, "Control of turbulent boundary layers," Physics of Fluids, vol. 15, pp. 1093-1105, 
May 2003. 

[6] T. Min, S. M. Kang, J. L. Speyer, and J. Kim, "Sustained sub-laminar drag in a fully devel- 
oped channel flow," Journal of Fluid Mechanics, vol. 558, pp. 309-319, 2006. 

16 



[7] K. Fukagata, K. Iwamoto, and N. Kasagi, "Contribution of Reynolds stress distribution to the 
skin friction in wall-bounded flows," Physics of Fluids, vol. 14, no. 11, pp. L73-L76, 2002. 

[8] K. Fukagata, N. Kasagi, and K. Sugiyama, "Feedback control achieving sublaminar friction 
drag," in Proceedings of the 6th Symposium on Smart Control of Turbulence, (Tokyo, Japan), 
pp. 143-148, March 6-9 2005. 

[9] H. Choi, P. Moin, and J. Kim, "Active turbulence control for drag reduction in wall-bounded 
flows," Science, vol. 262, pp. 75-110, 1994. 

[10] R. E. Kelly, "On the stability of an inviscid shear layer which is periodic in space and time," 
Journal of Fluid Mechanics, vol. 27, pp. 657-689, 1967. 

[11] J. M. Floryan, "Stability characteristics of wavy walled channel flows," Physics of Fluids, 
vol. 11, Mar. 1999. 

[12] S. Selvarajan, E. G. Tulapurkara, and V. Vasanta Ram, "Stability characteristics of wavy 
walled channel flows," Physics of Fluids, vol. 11, Mar. 1999. 

[13] A. Or, J. L. Speyer, and H. A. Carlson, "Model reduction of input-output dynamical systems 
by proper orthogonal decomposition," AIAA Journal of Guidance, Control, and Dynamics, 
vol. 31, no. 2, March-April 2008. 

17 



APPENDIX A: Sustained Sub-laminar Drag in a Fully Devel- 
oped Channel Flow 

Published in the Journal of Fluid Mechanics, vol. 558, pp. 309-319, 2006. 


