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Scour and Burial Mechanics of Objects 
in the Nearshore 

Scott A. Jenkins, Douglas L. Inman, Michael D. Richardson, Thomas F. Wever, and Joseph Wasyl 

Abstract—A process-based, numerical, hydrodynamic vortex 
lattice mine scour/burial model (VORTEX) is presented that 
simulates scour and burial of objects of arbitrary shape resting 
on a granular bed in the nearshore. There are two domains in the 
model formulation: a far-field where burial and exposure occur 
due to changes in the elevation of the seabed and a near-field in- 
volving scour and transport of sediment by the vortices shed from 
the object. The far-field burial mechanisms are based on changes 
in the equilibrium bottom profiles in response to seasonal changes 
in wave climate and accretion/erosion waves spawned by fluxes of 
sediment into the littoral cell. The near-field domain consists of 
one grid cell extracted from the far-field that is subdivided into a 
rectangular lattice of panels having sufficient resolution to define 
the shape of the object. The vortex field induced by the object is 
constructed from an assemblage of horseshoe vortices excited by 
local pressure gradients and shear over the lattice panels. The 
horseshoe vortices of each lattice panel release a pair of vortex 
filaments into the neighboring flow. The induced velocity of these 
trailing vortex filaments causes scour of the neighboring seabed 
and induces hydrodynamic forces on the object. Scour around 
the object and its subsequent movement into the scour depression 
contribute to burial, while far-field changes in local sand level 
may increase burial depth or expose the object. Scour and burial 
predictions of mines and mine-like objects were tested in field ex- 
periments conducted in the nearshore waters off the Pacific coast 
of California at Scripps Pier, the Gulf Coast of Florida at Indian 
Rocks, and off the Atlantic coast of Massachusetts at Martha's 
Vineyard. Model predictions of mine scour and burial are in 
reasonable agreement with field measurements and underwater 
photographs. 

Index Terms—Cones, cylinders, fluid flow, hydrodynamics, mine 
burial, sediments. 

I. INTRODUCTION 

SCOUR and scour marks are the erosional and accretionary 
bedform patterns that occur near objects that are on or near a 

sediment bed. Any form that locally concentrates vorticity near 
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the bed can elevate bed shear stress and initiate onset of grain 
motion, leading to local bed scour including mounds and de- 
pressions on the bed itself. Once initiated, a pattern of scour 
may spread down current in the form of a growing field of cur- 
rent ripples, while vortex ripples under wave action may spread 
both against and with wave propagation from a single initiating 
irregularity in the bed [l]-[3]. 

Scour and burial of objects under unidirectional flow have 
been widely studied by engineers with an emphasis on piles of 
bridges and piers that protrude from the sediment bed, e.g., [4] 
and [5], Scour is referred to as local when it results from the 
effects of structures on the flow pattern, general when it would 
occur irrespective of the presence of a structure, and is termed 
clear water scour when the bed upstream of the structure is at 
rest (e.g., [6]). In sedimentology, the interest has been directed 
toward the pattern of scour around individual objects, referred to 
as scour marks (e.g., [7] and [8]) or as obstacle marks [9], [10]. 
A recent review of scour and burial mechanics and nomencla- 
ture is given in [1]. 

There have been relatively few detailed studies of the scour 
and burial of mines, and the observations that have been made 
are separated by decades, with little intervening attention. A 
number of studies were carried out in the 1950s following World 
War II; e.g., Scripps Institution of Oceanography [11], Chesa- 
peake Bay Institute [12], the U.S. Naval Electronics Laboratory 
[13], and Narragansett Marine Laboratory [14]—[ 16]. Although 
few studies were carried out during the Cold War, several studies 
were initiated following the Gulf War (e.g., [17]-[20]). A sum- 
mary of mine burial studies and how their findings apply to 
present tactics is found in [21]. 

Observations show that burial is sensitive to the type of 
bottom sediment and the nature of the fluid forcing, and the 
size and shape of the object. Mines planted in areas of muddy 
sediments may sink upon impact and disappear into the mud. 
In contrast, mines planted in areas of sand, gravel, and rock un- 
dergo little burial upon impacting the bottom. This distinction 
has led to the two general categories of mine burial, impact 
burial and subsequent burial. This paper considers only the 
latter. Studies of mines placed on sandy bottoms show that 
subsequent burial occurs through a series of scour events fol- 
lowed by rolling or sliding of the mine into the scour depression 
[Fig. 1(a)]. However, burial can also result from net changes 
in the bottom elevation termed far-field burial [Fig. 1(b)]. 
Typically, far-field burial involves changes in the equilibrium 
bottom profiles associated with seasonal changes in wave 
climate [22]. High-energy winter waves cause erosion of the 
bar-berm portion of the profile, exposing mines close to shore, 
and accretion of the shorerise profile, causing burial of mines 
further offshore [Fig. 1(b)]. The reverse response can occur 
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100 —-    wave propagation 

low wave: burial 
high wave: exposure 

high wave: burial 
low wave: exposure 

Fig. 1.   Scour-burial mechanics: (a) near-field scour-roll burial sequence and 
(b) cyclical far-field burial exposure from seasonal profile change (from [21]). 

with reestablishment of summer equilibrium beaches during 
periods of mild wave climate. In addition, the equilibrium 
profiles can shift on/offshore in response to divergence of drift 
or changes in the volume of littoral sediments as a consequence 
of river sediment yield and associated accretion/erosion wave 
phenomena [23]. 

II. MODEL 

A. Architecture 

Burial processes consist of two distinct types: near-field and 
far-field (Fig. 1). These operate on significantly different length 
and time scales. Near-field burial processes occur over length 
scales of the order of the mine dimensions and on time scales 
of a wave period, primarily governed by scour mechanics. In 
contrast, far-field processes involve changes in the elevation of 
the seabed with cross-shore distances of hundreds of meters that 
may extend along the coast for kilometers. Far-field time scales 
are typically seasonal with longer periods due to variations in 
climate and travel time of longshore sediment fluxes associ- 
ated with accretion/erosion waves (e.g., [23]). These processes 
are coupled together in an architecture diagrammed by the flow 
chart shown in Fig. 2 and referred to as the vortex lattice mine 
scour and burial model (VORTEX) [11], [24]. 

The far-field processes and inputs are found above the orange 
line in Fig. 2 while the near-field processes and inputs are below 
the green line. 

As with any boundary value problem, the solution follows 
from specifying initial conditions, forcing functions and the 
boundary conditions, from which the response is computed 
using a set of process-based algorithms. This computational 
sequence proceeds in Fig. 2 from the top down, with the set 
of forcing functions and initial conditions bundled together in 
a module shown by the pink shaded box at the top of the flow 
chart, while boundary conditions (beige box) and response 
(blue box) modules of the far-field are found in the pathways 
below that. The far-field response modules are upstream of the 

near-field modules in the computational flow chart because the 
far-field processes determine the fluid forcing and elevation 
of the sand bed around the object, essential to specifying the 
near-field boundary value problem. 

The forcing function module (pink box) provides time series 
of waves (code #2), currents (code #3), and sediment flux (code 
#4). Waves and currents are derived either from direct obser- 
vation [25], [26], or from forecast models such the National 
Oceanic and Atmospheric Administration (NOAA) wave watch 
(WW-III) model [25] or the U.S. Navy's distributed integrated 
ocean prediction system (DIOPS) [27]. The source for the flux 
of river sediment is based on the United States Geological 
Survey (USGS) monitoring data from its Hydrologic Bench- 
mark Network and the National Stream Quality Accounting 
Network [28]. If these kinds of site-specific records are not 
available, then the forcing function module is configured to ac- 
cept proxy records based on a geomorphic coastal classification 
system [21] represented by the orange shaded oval (code #1) in 
Fig. 2. 

The wave and current forcing provides excitation applied to 
the deep water boundary of the far-field computational domain 
while the sediment flux is applied to the shoreline boundary. 
These boundaries are specified in the boundary conditions 
module (beige box) in Fig. 2, where the far-field computational 
domain is assembled from a series of boundary-conforming 
control cells (Fig. 3), using bathymetric data from the National 
Ocean Survey (NOS) and the USGS [28] as compiled by the 
National Geophysical Data Center [29]. 

With these forcing functions and boundary conditions, the 
far-field response module (blue box) computes the spatial and 
temporal evolution of the fluid forcing and bottom elevation 
along the cross-shore profiles of each control cell [Fig. 3(c)]. 
These cross-shore profiles are comprised of the following three 
matching segments: 1) the stationary profile that extends from 
the deep-water boundary inshore to closure depth hc, where pro- 
file changes become vanishingly small, 2) the shorerise profile 
that continues from closure depth to the wave break point, and 
3) the bar-berm profile that begins at the break point and ends at 
the berm crest. The stationary profile is invariant with time and 
is given by the regional bathymetry. Bottom elevation changes 
along the nonstationary profiles of the shorerise and bar-berm 
[Fig. 4(a)] are computed by code #10 in the far-field response 
module (blue box) using equilibrium profile algorithms after 
[30]-[34]. The stationary and nonstationary profiles are inter- 
polated to create a Cartesian depth grid within each control cell 
on which simultaneous refraction and diffraction patterns are 
computed by code #6 using algorithms from [35] and [36] to 
specify fluid forcing by shoaling waves. Fluid forcing by cur- 
rents in the far-field are computed in code #7 where wave-in- 
duced streaming and mass transport are based on algorithms 
after [37]-[39] and shallow-water tidal currents follow from al- 
gorithms after [40]. 

Fluid-forcing time series and bottom elevations computed in 
the far-field response module are throughput to the near-field 
response modules shown below the green line in Fig. 2. The 
far-field throughput is applied to the local seabed boundary 
conditions module (gray box). These local boundary conditions 
include the following two types: 1) the slope and the elevation 
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Fig. 2.   Architecture of VORTEX. 

of the seabed plane around the object base derived by code # 11 
from location in the far-field control cell and 2) the shape file 

of the mine in question (code #12). These two local boundary 
conditions are used to generate lattice panels by code #13 
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Fig. 3.  Computational approach for modeling shoreline change (after [1]). 
(a) Accretion/erosion wave, (b) Coupled control cells, (c) Profile changes. 

that define the object and bedform of the surrounding seabed 
[Fig. 5(a)]. The lattice is the computational domain of the 
near-field scour-burial processes in which the method of the 
embedded vortex singularities (vortex lattice method) is ap- 
plied in code # 14 using algorithms after [41 ]-[43]. This method 
employs horseshoe vortices embedded in the near-bottom 
potential wave oscillation to drive local sediment transport 
in code #15 based on ideal granular bed load and suspended 
load equations after [44]-[46]. A horseshoe vortex is specified 
by code #14 for each lattice panel during every half-cycle of 
the wave oscillation as shown schematically in Fig. 5(a). The 
horseshoe vortices release trailing pairs of vortex filaments 
into the local potential flow field that induce downwash on the 
neighboring seabed [Fig. 6(b)], causing scour with associated 
bed and suspended load transport as computed by code #15. 
This scour action by trailing vortex filaments can be seen 
occurring in nature in Fig. 5(b). 

The lattice generation in code #13, the horseshoe vortex gen- 
eration in code #14, and the sediment transport computations 
in code #15 are implemented as a leapfrog iteration in a time- 
stepped loop shown by the red and blue pathway arrows at the 
bottom of Fig. 2. The leading time step (red arrow) computes the 
strength of the horseshoe vortex filaments generated by the pres- 
sure gradients and shear setup over the lattice panels of the com- 
bined body-bedform geometry of the previous (lagging) time 
step. The bed and suspended load transport induced by these 
filaments results in an erosion flux from certain neighboring lat- 
tice panels on the seabed and a deposition flux on others, based 
on image lifting line theory [Fig. 6(a)] as first applied in [47] 
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Fig. 4. Mechanics of far-field burial, (a) Envelope of profile change gives 
critical mass, (b) Volume of critical mass from elliptic cycloids, (c) Cross-shore 
variation in thickness. 

to a mobile sedimentary boundary. The erosion and deposition 
fluxes of the leading time step are returned in the computational 
loop to the lattice generator (blue arrow) where those fluxes are 
superimposed on the lattice geometry of the lagging time step. 
That superposition produces a new lattice geometry for imple- 
menting the next leading time step. By this leapfrog iterative 
technique, an interactive bedform response is achieved whereby 
the flow field of the leading time step modifies the bedform of 
the lagging time step; and that modified bedform in tum alters 
the flow field of the next leading time step. This lead and lag 
arrangement is based on the fact that the inertial forces of gran- 
ular bed near incipient motion are large compared to those of 
the fluid [44]; hence, the flow field responds faster to a change 
in bedform than the bedform can respond to a change in flow 
field. 
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bound vortices 
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Fig. 5. Vortex lattice method, (a) Lattice and horseshoe vortex system, 
(b) Horseshoe vortices inducing sediment transport in nature (photo courtesy 
of K. Millikan). 

B.   Far-Field Burial 

Far-field burial is controlled by broadscale changes in the 
nonstationary portion of the cross-shore profile located between 
closure depth and the berm-crest [Fig. 1(b)]. Here, the profile 
changes between various states of thermodynamic equilibrium 
that depend on incident waveheight Hoo, period T, sediment 

grain-size D. and littoral sediment volume V, as detailed in [34]. 
Variations in HX,T, and D cause the profile to change shape 
as shown in Fig. 4(a), while changes in local sediment volume 
AV will shift the profile either onshore (AV < 0) or offshore 
(AV > 0) as shown schematically in Fig. 3(c). The equilib- 
rium profile for the shorerise C2 and bar-berm Ci segments of 
the nonstationary bathymetry are calculated from the elliptic cy- 
cloid solutions and closure depth relations in [34]. 

Integration of the elliptic cycloid equations over the range in 
wave climate gives a volume envelope containing all possible 
changes of the equilibrium profile, referred to as the critical 
mass envelope. The volume of the envelope applicable to mine 
burial will depend upon what is known about the time history of 
waves since the mines were deployed. When changes in wave- 
height are known or can be estimated, then the envelope will 
be for that range in waveheight. In Fig. 4(a), this volume of the 
critical mass envelope is shown as the gray-shaded region that 
envelopes all the equilibrium profiles for incident waveheights 

('UAKSKSl-AVhNlilNC. 

Fig. 6. (a) Image method for vortex-induced velocity at any point near the bed 
(image plane) due to the horseshoe vortex system of an arbitrary lattice panel 
[Fig. 5(a)]. The real vortex of the lattice panel is diagrammed in magenta and 
the image vortex is in green, (b) Schematic in the cross-wake plane of a pair of 
vortex filaments trailing out of the page [Fig. 5(a)]. 

ranging 1 m < Hoo < o m. The critical mass envelope is calcu- 
lated from the elliptic cycloid solutions Ci and £2 by 

d<2 V. -UmdxdH+ IS^dxdH     (1) 

where x is the cross-shore coordinate taken positive in the off- 
shore direction. When the integration in x is carried over the full 
length of the cycloids, Vc becomes approximately 

rA(hr)
2A (^-\ (2) -4/ L   \2.1  /   "oo \ (he)        [ — ) 

where 

hc = 

A = 

Kr.Hr, 
I), sinh khr 

22/5i/l/5((T2/fl7)l/5_ 

In (2), hc is the closure depth as given by [34], -0 is a nondimen- 
sional empirical parameter, D2 is the shorerise median grain 
size, D„ is a reference grain size, a = 27r/T is radian frequency, 
A is the shoaling factor relating breaker height to incident wave- 
height A = Hoo/Ht for a shoaling airy wave, g is acceleration 
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of gravity, and 7 is a factor relating the depth of wave breaking 
hb to breaker height Ht = 7/it with Kc ~ 2.0, tji ~ 0.33, 
and D„ ~ 100 /tm. Fig. 4(b) shows that the volume of sand 
contained in the critical mass envelope is a monotonically in- 
creasing function of the waveheight. Because the cycloid solu- 
tions also have grain-size dependence, there is a unique solu- 
tion for the volume of critical mass for any arbitrary selection 
of the grain size in the bar-berm D\ and the shorerise D2- The 
application of critical mass is extended to a variety of coastal 
types by the choices of D\ and D2 in the curves shown in 
Fig. 4(b) and (c). Here, the sand size selections are proxies 
for several coastal types in the geomorphic coastal classifica- 
tion system [21] contained in code#l of Fig. 2, including: mar- 
ginal sea coast (Rockport, TX), collision coast (Torrey Pines and 
Scripps Beach, CA), and trailing-edge coast (Duck, NC). 

Mines residing within the envelope of critical mass are sub- 
ject to seasonal exposure and burial in accordance with wave 
climate variation. Mines that impact or scour below the crit- 
ical mass envelope are permanently buried, while those planted 
seaward of the critical mass envelope, i.e., seaward of the clo- 
sure depth, are subject only to gradual or partial burial by scour. 
The cross-shore thickness £c(x) of the seasonal critical mass 
envelope in Fig. 4(c) gives the maximum potential burial due to 
far-field processes at any arbitrary on/offshore location inshore 
of closure depth. When critical mass thickness exceeds the ver- 
tical dimension of a mine, £c(x) also determines the maximum 
burial depth, since scour processes vanish once the top of a mine 
matches the elevation of the seabed. 

While the critical mass envelope accounts for far-field burial 
due to changes in shape of the equilibrium shorerise and bar- 
berm profiles, mines can also become buried by on/offshore 
shifts of those profiles associated with variation in the local 
volume of littoral sediment. The local sediment volume varies 
in response to the net change of the volume fluxes q between any 
given control cell and its neighbors, referred to as divergence of 
drift = <7in - <jout [see Fig. 3(b) and (c)]. The mass balance of 
the control cell responds to a nonzero divergence of a drift with 
a compensating shift Ax in the position of the equilibrium pro- 
file [23], [48]. This is equivalent to a net change in the beach 
entropy of the equilibrium state [34]. The divergence of drift is 
given by the continuity equation of volume flux, requiring that 
dq/dt be the net of advective and diffusive fluxes of sediment 
plus the influx of new sediment J. The rate of the change of 
volume flux through the control cell causes the equilibrium pro- 
file to shift in time as 

Ax(t) = 
1 

Ay(Zl + hc] 1 a 
dy 

dq 
dy -$+*« 

(3) 

where e is the mass diffusivity, V is the longshore drift after 
[33], J is the flux of sediment from river sources, Ay is the 
alongshore length of the control cell, and Z\ is the maximum 
run-up elevation from Hunt's formula [49]. River sediment yield 
./ is calculated from streamflow Q, based on the power law for- 
mulation of that river's sediment rating curve after [50], or 

where 7 and u> are empirically derived power law coefficients 
of the sediment rating curve from best fit (regression) analysis 
[50]. When river floods produce large episodic increases in ,7, a 
river delta is initially formed. Over time, the delta will widen and 
reduce in amplitude under the influence of surf diffusion and ad- 
vect down-coast with the longshore drift, forming an accretion 
erosion wave [Fig. 3(a)] that can cyclically bury and reexpose 
mines as it propagates through the mine field [21], [23]. 

C. Near-Field Burial 

Near-field burial is controlled by bedform changes associated 
with scour induced by the presence of the object. To simulate 
these bedform changes, the object and adjacent seabed is sub- 
divided into a set of panels (lattice) as shown in Fig. 5(a). The 
vortex field induced by the object is constructed from an assem- 
blage of horseshoe vortices, with a horseshoe vortex prescribed 
for each panel. This computational technique is known as the 
vortex lattice method and has been widely used in aerodynamics 
and naval architecture; see discussions in [41]. For any given 
ith panel in the lattice, the horseshoe vortex consists of a bound 
vortex T„ that contains all of the vorticity generated on the sur- 
face of a panel, and a pair of trailing vortex filaments +I\ and 
—T, that discharge vorticity from the panel into the flow, causing 
a vertical wake. The trailing vortex filaments scrub the seabed 
and induce scour and suspension of bottom sediment as shown 
schematically in Figs. 5(a) and 6(b). For oscillatory flow, the 
vortex filaments must be specified for each half-cycle of motion. 

The circulation of the vortex T„, bound to the panel, is calcu- 
lated from the boundary layer velocity shear [51], [52] 

T-1! LHWT d'dz   <5) 

where 8 is the boundary layer thickness, 5 is the half-width of 
the lattice panel, 3£ is the real part operator and the shear of 
the near-bottom flow, du/dz, is prescribed from perturbation 
solutions for the wave/current boundary layer profile after [38], 
[39], [51]—[53] having the general analytic form 

u^e*1 (1-e 

(2) +11 
*e-a* + (1 - §i) e-°" - fe 
+ (§-iK2r/6-i + §> 

(6) 

J = iQu (4) 

where M
(1

) is the local oscillatory velocity amplitude from the 
potential flow at the top of the boundary layer uS1** = V<^>, and 
«(2) = 3V(M*

1
^)

2
/8(T is the steady streaming at the top of the 

boundary layer. The potential flow over the object V<f> is calcu- 
lated using the method of tesseral harmonics forced by the local 
waveheight HQ after [54] and [55]. Those solutions depend on 
the local refraction/diffraction results and elevation of the bed 
plane as throughput from the far-field response module and are 
repeated with each cycle through the near-field time-stepped 
loop (Fig. 2). The radian frequency of the wave oscillation is 
IT and the boundary layer profile is given by a = (1 + i)r/8 in 
terms of the local surface normal coordinate r. Complex conju- 
gates are denoted by an asterisk (*). 
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The boundary layer thickness used to evaluate (5) and (6) is 
derived from [56] by finding for each panel the local solutions 
to the transcendental equation 

30<5 
log 

30(7 
= 1.2 

2Z, 
(7) 

where Z, is the elevation of the ith panel above the seabed 
and d0 is twice the amplitude of the potential oscillation (or- 
bital diameter) above the boundary layer. The factor do/Zi in 
(7) accounts for lowest order inertial effects associated with 
the wave orbital velocity amplitude um as represented by the 
Keulegan-Carpenter number TVKC = um/aL = d0/(2Zi) 
when the characteristic length scale is taken as L ~ Zi. 

The trailing vortices consist of right/left pairs whose circula- 
tion have equal but opposite rotation +I\ versus — T, [Figs. 5(a) 
and 6(a)]. To prevent these vortices from inducing normal flow 
through the bottom plane, there is a set of image vortices beneath 
the bottom plane [Fig. 6(a)]. The mathematical representation of 
the trailing vortex filaments from a panel is derived from lifting 
line theory in ground effect according to [57] and [42]. Taking 
x as the stream-wise coordinate along the axis of wave propa- 
gation, y as the cross-stream component (parallel to the wave 
crests) and z measured vertically upward from the undisturbed 
seabed plane, the horseshoe vortex for the zth panel in the lattice 
is represented by 

Ti = 

(z-Z,-b')(y+S) 
x^/x^ + (y + sy2 + (z-Z, (z-z,-b'y- 

Air 
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(8) 

where 1/ is the displacement thickness representing the portion 
of the potential flow adjacent to the panel that must be indented 
to account for the singularity of the horseshoe vortex. The first 
three lines of (8) represent the bound vortex and its image; the 
next two lines are the +T, trailing vortex filament [right side 
of Fig. 6(b)] and its image, while the last two lines are the —r, 
trailing vortex filament [left side of Fig. 6(b)] and its image. As 
the pair of trailing vortex filaments extends downstream, the cir- 

culation rn decreases due to diffusion of vorticity. This is repre- 
sented schematically in Fig. 6(a) by the increasing diameters of 
the rotational paths. Mathematically, the decay of trailing vortex 
filaments in ground effect due to vorticity diffusion is prescribed 
by [43] as 

r„ = TJ(X) (9) 

where the perturbation series of the decay function can be 
written 

rNAx 
f(x) 

M(1) + U 
dx. 

(10) 
Here, N is the number of lattice panels. From [43], the displace- 
ment thickness b' in (8) can be approximated by 

b' =  f    (1 - ^ J dz Si 1.344& (11) 

The release of trailing vortex filaments from each panel in 
Fig. 5(a) causes scour of the neighboring seabed. When viewed 
in any cross-wake plane [Fig. 6(b)] each pair of filaments in- 
duces a downwash flow that converges on the seabed and re- 
sults in lateral bedload scour. Assuming ideal granular sedi- 
ment transport physics after [44] and [45], the bedload scour 
transport rate is proportional to the cube of the vortex strength 
T;, and inversely proportional to the cube of the grain-size D. 
Beyond the lateral extent of the bedload scour, the vortex fila- 
ments induce an upwashing flow of the suspended load, which 
for ideal granular sediments is proportional to Yj/D4. Adopting 
the oscillatory waveform of the ideal granular transport relations 
from [46], the bedload scour rate for any given vortex filament 
(i-vortex) is given by 

n>, 
ebCDPr* 

D3(tcmtp-u0/\u\ 

while the suspended load scour is 

.     _ ssCDprf\Ti\ 
D*(W„ - u/3) 

(12) 

(13) 

where et is the bedload transport efficiency, e, is the suspended 
load transport efficiency, Co is the seabed drag coefficient which 
is a function of bed roughness, W„ is the settling velocity for 
any given sediment grain-size bin represented by a characteristic 
grain diameter D, and /3 is the local slope of the seabed. 

The bed and suspended load transport rates from (12) and 
(13) are calculated every half-cycle of motion and summed over 
N(t) number of lattice panels that make up the portion of the 
object above the seabed. The vortex-induced disturbance acting 
on the seabed is 

7V(t) 

(14) 

This disturbance generates increments of erosion and deposition 
flux, depending on the sign of (12) and (13), that are accumu- 
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Fig. 7.  Canonical scour patterns simulated by VORTEX model using frustums: (a) unidirectional current scour, (b) oscillatory wave scour, and (c) oscillatory 
wave scour with multiple interacting bodies. 

lated each half-cycle of motion and mapped back into a revised 
lattice following the time-stepped loop diagrammed by red and 
blue pathways at the bottom of Fig. 2. The number of exposed 
lattice panels on the object N{t) varies with each time step de- 
pending on the distribution of erosion and deposition fluxes over 

the lattice, and also with changes in the elevation of the seabed 
due to profile changes occurring in the far-field. 

Simulations of scour produced by the vortex lattice method 
are shown in Fig. 7 for a body of revolution. This particular sim- 
ulation is based on a frustum having the dimensions of a Manta 
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mine , with a base diameter of 98 cm, a top diameter of 43 cm, 
and a height of 43 cm. The grain size in each case was assumed 
to be 250 urn. In Fig. 7(a), steady currents of 40 cm/s produced 
an asymmetric bedform with a scour depression on the down- 
stream side of the mine bounded by shadow ridge pairs. Bed 
accretion occurs on the upstream side of the mine where the ap- 
proaching flow separates from the bed forming an arc of stagna- 
tion crescents. These are well-known features of current scour 
and obstacle marks found in river beds and desert dunes [7]. In 
Fig. 7(b), simulated scour due to oscillatory waves is found to be 
more symmetric for a frustum at 4-m depth under 1.25-m-high 
waves with a period of 10 s. The scour depression is slightly 
deeper on the down-waveside of the frustum where maximum 
scour depths are 14 cm as compared to 10 cm on the up-wave- 
side. Similar wave-induced scour marks are found at the base of 
ocean pier piles and rocky outcrops in sandy shorezones [ 1 ], [9]. 
When the same wave conditions in Fig. 7(b) are superimposed 
on two frustums in close proximity as in Fig. 7(c), the simulated 
scour is significantly increased on both the up- and down-wave- 
sides of the objects. The smaller of the two frustums in Fig. 7(c) 
has the dimensions of a very-shallow-water (VSW) marker (de- 
signed to neutralize the Manta mine). Despite its smaller size, 
the additional vortex filaments introduced by the VSW marker 
have increased maximum scour depths to 16 cm on both the 
up- and down-wavesides of the Manta. Enhancement of scour 
by two or more bodies in close proximity has been observed 
along the edges of cobble beds in otherwise sandy shorezones 
[1], [9], [10]. From these examples, it appears that the vortex 
lattice method when applied in ground effect over a bed of ideal 
granular sediment can make realistic 3-D simulations of scour 
for both unidirectional and oscillatory flows. 

III. FIELD-VALIDATION EXPERIMENTS 

Field-validation experiments were conducted at three coastal 
environments in the geomorphic coastal classification system 
contained in code #1 ofFig. 2, namely: 1) a collision coast repre- 
sented by the Scripps Pier site in La Jolla, CA, 2) a marginal sea 
coast represented by the Indian Rocks site off Tampa, FL, and 
3) a trailing-edge coast represented by the Martha's Vineyard, 
MA. These sites provided examples of three of the five coastal 
types included in the geomorphic coastal classification system 
[21]. VORTEX model simulations at these sites used wave, cur- 
rent, grain size, and bathymetry data measured in situ to ini- 
tialize the forcing functions and boundary conditions modules 
(Fig. 2). Free parameters used in the scour computations were 
based on published empirical estimates appropriate to the mea- 
sured forcing, grain size, and bed roughness. The seabed drag 
coefficient Cry was based on the empirical relation of [58] and 
[59] while the bed and suspended transport efficiencies £b and 
es were specified from [44] and [45]. 

A.  Scripps Pier Experiments 

The Scripps Pier experiments involved 43 deployments of a 
Manta mine at a 6.1-m depth between January 2002 and July 
2003. Each deployment had 24-h duration during which time 
continuous wave monitoring was conducted by the coastal data 
information program (CDIP) [26]. The overhead boat hoist 
crane at the seaward end of Scripps Pier was used to deploy 
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Fig. 8. Scripps Pier Manta mine burial experiments from 43 deployments: 
(a) daily mean local rms waveheight, (b) partially buried Manta mine at 6.1-m 
depth, and (c) 24-h percent burial depth from plumb line measurements (+) 
versus VORTEX model simulation. 

and recover the mine as well as measure burial depth. The boat 
hoist cable was fitted with a 100-lb weight that functioned as a 
plumb line after deployment of the mine. A pointer gage was 
fixed to the bottom end of the plumb line allowing the elevation 
of the top of the Manta to be precisely measured relative to the 
stationary pier deck. Plumb line measurements of mine eleva- 
tion were performed immediately after deployment and again 
just before recovery 24 h later. The changes in the elevation 
of the mine between the two plumb line measurements gave 
an estimate of the subsidence of the mine. This simple scheme 
repeated 43 times during a 1.5-y period provided controlled 
measurements of burial for a defined sample interval in a 
variety of wave conditions including ten Pacific storms. During 
this period, the median grain size varied between 210 and 
235/im. The nearest pier pile was 9.1 m away from the mine in 
a direction transverse to the wave propagation. 

The variation in the local daily root-mean-square (rms) wave- 
height Ho during the deployment period is shown in Fig. 8(a), 
producing scour patterns during mild wave conditions (H ~ 
1 m) like those in Fig. 8(b) that qualitatively resemble the 3-D 
model simulation in Fig. 7(b). When burial depth is expressed 
as a percentage ratio of mine subsidence to the physical height 
of the mine, a monotonically increasing relationship is found 
between burial and daily rms waveheight over a 24-h period 
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[Fig. 8(c)]. The model simulation shown as the red line in Fig. 8 
used fixed values for wave period and grain size (T = 12 s and 
D = 225 /im) that represented the mean values over the 1.5-y 
observational period. Despite the fact that period and grain 
size did vary among the 43 observations, the single-parameter 
relationship between waveheight and burial was found to 
provide useful information. The regression coefficient between 
measured burial and the single parameter burial simulation 
was found to be r2 = 0.78, suggesting that simple rule of 
thumb relationships might be established between burial and 
waveheight, at least for short periods of time in shallow water. 

B.  Indian Rocks 

The Indian Rocks Beach experiment utilized the acoustic 
instrumented mine (AIM) series of cylindrical mine shapes de- 
veloped by the U.S. Naval Research Laboratory. With onboard 
acoustic and pressure sensors, this mine had self-recording ca- 
pabilities for wave monitoring and burial depth. The particular 
mine used for comparisons to VORTEX model simulations 
was the AIM-3, measuring 2.032 m in length and 0.533 m in 
diameter |60], [61]. The AIM-3 was deployed at 15-m depth of 
water off Indian Rocks Beach, FL, where the seabed consisted 
of a well-sorted quartz sand having a median grain size of 
133/jm. Deployment occurred on January 8, 2003 and recovery 
on March 16, 2003. During that time, four traveling cold fronts 
crossed over the test site producing short period storm waves 
of up to 3-m local rms waveheight [60], [61]. 

Fig. 9(a) shows the continuous waveheight variation mea- 
sured by the pressure sensor in the AIM-3 mine over the 
deployment period as reported by [61]. The storm waves from 
the four cold fronts are clearly evident. While maximum wave 
periods of 8 s were recorded during these storms, the mean 
wave period was typically only 5 s during the intervals of mild 
waves between the storms. This contrasts with the collision 
coast environment at Scripps Pier, where the shortest period 
storm waves were 8 s, the mean was 11 s, and the storm wave 
periods were 13-15 s. This contrast reflects the fetch limitations 
of a marginal sea environment. Because the near-field compu- 
tations run on half-cycle time step intervals, these short period 
waves more than doubled the number of time steps required to 
run the VORTEX model at Indian Rocks. 

The measured burial responses to the short period waves at 
Indian Rocks are shown in Fig. 9(b). Measurements from four 
individual AIM mines are compared here to the percent burial 
depth simulation of the VORTEX model that was derived from 
wave measurements by the AIM-3 mine. While the AIM mea- 
surements show continuous variation in burial, the VORTEX 
model simulates a series of episodic burial events coincident 
with the longer period storm waves. Furthermore, the AIM mea- 
surements show several cycles of partial reexposure that the 
VORTEX model totally misses. The suspected reason for this 
miss is the offshore location of the Indian Rocks test that is sea- 
ward of closure depth. Here, the far-field equilibrium profile al- 
gorithms of VORTEX that might otherwise predict reexposure 
fail to function. The broadscale bed elevation changes that oc- 
curred at Indian Rocks and led to the cyclical variation of burial 
in Fig. 9(b) were most likely due to current forcing [60], [61]. 
These currents were not included in the forcing function inputs 
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Fig. 9. Mine burial (based on subsidence below seabed plane) during Indian 
Rocks Beach experiment (January 8.2003-March 16.2003). (a) Waves over test 
site measured by AIM-3 mine, (b) Comparison of burial data versus VORTEX 
simulation of AIM-3. 

to VORTEX. Regardless, the VORTEX simulation of burial for 
the AIM-3 mine is in close agreement with the data by the end 
of the deployment. Over the full length of the period of record, 
the regression coefficient between measured burial and burial 
simulation was found to be r2 = 0.83. 

In Fig. 10(a), an underwater photograph of the AIM-4 mine 
from [61] is compared with the VORTEX simulation of the 
scour/deposition pattern around the AIM-3 mine circa 1200 h 
into the deployment. Because the burial data of the AIM-4 and 
AIM-3 mines tend to track one another closely at this time in 
Fig. 9(b), the photograph is believed to be a reasonable proxy of 
the bedform around the AIM-3. The most notable feature in both 
the photograph and model simulation is the depositional ridge in 
the middle of the mine. This occurs because the induced velocity 
of the vortex ensemble over a cylinder on the seabed produces 
a net downwash in the middle of the cylinder (analogous to a 
wing) that promotes rapid settling and deposition of sediment 
that was scoured and suspended by the strong vortex filaments 
shed from the ends of the cylinder. 

C. Martha's Vineyard 

In the Martha's Vineyard experiment, the VORTEX model 
burial simulations were performed on the smaller self-recording 
cylindrical mine shape developed by the Forschungsanstalt der 
Bundeswehr fiir Wasserschall und Geophysik (FWG). These 
mines measure 1.5 m in length and 0.47 m in diameter [62]. 
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Fig. 10.   Scour and deposition pattern around AIM mines at Indian Rocks, FL. 
(a) Diver photograph from [61]. (b) VORTEX model simulation. 

Unlike the AIM mines, these mines utilized optical diodes 
rather than acoustic sensors to measure burial. Because of 
this, the FWG mines measure percent of surface area of the 
mine that is buried. The particular mine used for comparisons 
with the VORTEX model is the Boyevaya Mashina Pekhoty 
(BRM)-F5 mine deployed on October 1, 2003 at the 12-m 
depth of water on a coarse sand bottom with median diameter 
estimated to be 450 /tm. The mine was aligned in an east-west 
direction, generally parallel to the crests of incident waves from 
the south-south-east (SSE). Due to a build up of barnacles, 
over its optical diodes it ceased functioning on March 2, 2004. 

The VORTEX model was initialized with high-resolution 
bathymetry obtained from the multibeam sonar scans of the 
test site just before deployment of the mines. Wave and current 
forcing for the model was derived from in situ measurements 
by the Martha's Vineyard Coastal Observatory (MVOC), [62]. 
The waveheight record during the deployment from [63] is 
shown in Fig. 11 (a) and the amplitudes of the predominant tidal 
currents are in Fig. 11(b). It is apparent from Fig. 11(a) that a 
high-energy wave climate prevailed at the Martha's Vineyard 
test site, particularly during the first half of the experiment 
(October 2003-January 2004). A total of 27 storms produced 
waves at the 10-m water depth with significant waveheights 
greater than 2 m. Of those 27 storms, seven produced local 
rms waveheights exceeding 3 m. Superimposed on these storm 
waves were tidal currents averaging 25 cm/s with spring tide 
maximums exceeding 40 cm/s [Fig. 11(b)]. 

To make comparisons with the BRM-F5 burial data VORTEX 
was configured to write a running count of the number of lat- 
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Fig. 11. Martha's Vineyard Coastal Observatory (MVCO, Edgartown. MA) 
mine burial measurements and simulation (Martha's Vineyard, September 30. 
2003-April 6, 2004). (a) The rms local waveheight from [62]. (b) Current am- 
plitude from [62]. (c) Percent of mine surface area buried (BRM-F5 self-regis- 
tration mine data versus VORTEX model simulation). 

tice panels that were buried after each time step. A comparison 
between measurements and simulation of the percentage of the 
total surface area of the mine that became buried is shown in 
Fig. 11(c). Both the observations and the simulation show that 
the mine became rapidly buried with the early onset of the winter 
storm waves. Thereafter, burial proceeded more slowly as only 
about 25% of the mine surface area produced any disturbance 
to the ambient flow. While the data and model simulation are at 
variance by as much as 25% surface-area burial during certain 
intervals of the experiment, the regression coefficient taken over 
the entire period of record is nonetheless r2 = 0.88. 

IV CONCLUSION 

A numerical model has been developed that simulates the 
scour and burial of objects on the seabed based on far-field 
formulations of bottom elevation change and near-field formu- 
lations of bedform change using vortex lattice methods in an 
image system. While the model is computationally intensive, 
requires rather extensive input files, and is disadvantaged by 
long computational run times, it is capable of realistic 3-D 
simulations of the scour field for a variety of body geometries 
and flow conditions, including both steady and complex peri- 
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odic motion (Figs. 1, 7, and 10). The model contains far-field        [21] 
burial algorithms that can predict both burial and exposure 
due to broadscale changes in the nearshore bathymetry as a 
consequence of wave climate and the variability of littoral        [22] 
sediment supply. This allows the model to map out regions 
of the nearshore where cyclical burial/exposure is likely and 
quantify the degree of such burial/exposure as a function of        [23] 
a specific location in the nearshore. The model can also be 
used in sensitivity analyses to evaluate which forcing functions 
and boundary conditions exert a leading order effect on scour [24] 
and burial (Fig. 8). The model was tested in the following 
three distinct coastal types: a collision coast in the Southern r25i 
California Bight, a marginal sea coast in the Gulf of Mexico, 
and a trailing-edge coast in New England. The regression coef-        I26l 
ficients between measured burial and model simulation ranged 
0.78 ^ r2 ^ 0.88, with the poorest results occurring when an [27] 
incomplete set of forcing functions was provided to the model. 
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