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1. EXECUTIVE SUMMARY 
 
The ProActive INTellience (PAINT) program as a whole is exploring the hypothesis that 
simulation models of target dynamics of interest can be algorithmically explored to allow more 
rapid and accurate discovery of diagnostic probes that will reveal the actual functions of target 
systems and the intentions of their leaders, compared to current manual methods. The Lockheed 
Martin Advanced Technology Laboratories (LM ATL) effort provides the Probe Strategy 
Development, as shown at the top of the program-developed diagram in Figure 11. 
 
 

 
Figure 1: Overall PAINT functional architecture showing the LM Probe Strategy Development 

 
 
The objective of the PAINT team’s past year’s efforts was to construct two models of an 
example target system, consisting of a pathways model (interconnected process segments that 
require resources and time to execute), leadership and social network models controlling a 
resource flow model and execution of segments in the pathways model. Furthermore, the PAINT 
team designed strategies that were represented as probes consisting of one or more actions that 
were ultimately implemented as changes to the model inputs. The degree to which the outputs of 
the two models differ in response to a probe is considered the diagnosticity of the probe. The 
goal of the LM ATL Strategy Engine is to discover highly diagnostic probes through efficient 
search in the input space of highly complex models. 
 
 
 

                                                 
1 Demonstration 3 (D3) Plan, BASELINE, Ed Waltz, BAE Systems, September 8, 2008. 
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The challenge was to find an efficient search method that could discover robust strategies that 
discriminate among important model outcomes in a domain with many complex parameters. In 
particular, it was found that the models’ landscapes are represented by rough multidimensional 
surfaces with many scattered maxima. The most appropriate search method was determined to be 
the Genetic Algorithm (GA). 
 
The LM ATL team designed and developed the Strategy Engine, consisting of a Controller and 
an Optimization Engine as shown in Figure 2. The Optimization Engine generates probes and 
injects them into the models through the Controller. The Controller runs the hypothesis models, 
retrieves the measure of diagnosticity (fitness value) from the Hypothesis Comparator and passes 
a fitness value to the Optimization Engine. The Optimization Engine evolves the probes using 
built-in operators and heuristic rules developed by LM ATL. This process continues until the 
number of iterations (generations) reaches the predetermined threshold. 
 

 
Figure 2: The Strategy engine uses a GA to search the probe space 

 
There are many metrics, but the top three were the:  
• Growth of the fitness function which is correlated with improving diagnosticity of the probes.  
• Number of iterations needed to discover and converge to most significant maximum. 
• Balance between Exploration versus Exploitation: keep extensive search strategy while 

improving the discovered probes. 
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The LM ATL team has shown the effectiveness of using the GA search method, combined with a 
flexible controller to perform optimization functions in the PAINT Strategy Engine. We were 
able to develop a domain specific GA with unique collection of operators and selection functions 
which demonstrated very high efficiency in evolving the probes. The steady increase in the 
diagnosticity measures as the probes were tested on the models is shown in Figure 3. The 
number of possible strategies for this particular set up is shown in the circle on the left. The 
displayed strategy consisted of four actions that affected ~15 parameters that were set to 
particular values by the GA. This is a result that would have been extraordinarily difficult and 
time consuming, if not impossible, to find using other, more simple methods (Monte Carlo). 
Typically, after about 1200 iterations, diagnosticity of the probes was improved by factor of 
three (from 14,000 to 42,000). The analysis of the best probe evolution tracks indicates that a 
good balance between Exploration vs. Exploitation (keeping an extensive search strategy while 
improving the discovered probes) has been achieved.  
 

 
Figure 3: The GA produced results that would have been difficult to find using other methods 

 
A few of the other areas of research, more of which are detailed in the report, include: 

• Understanding how to measure the third metric: Exploration vs. Exploitation. 
• Exploring the nature of the probes that were discovered, including their relation to actual 

actions that could have been taken in the real world and observable indicators. 
• Automation of some of the work needed to maintain the GA once it has been instantiated 

in a domain of interest.  
• Probe Identification—experimental runs identify actionable parameters that can be 

understood as probe inputs. 
• Increased efficiency in searching for probes and sophistication of probes—improved 

seeding of algorithms. 
• Support for conditional probes, or strategies that consist of multiple probes. 
• Development of visualizations that is more user-oriented. 
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2. INTRODUCTION 
 
The PAINT program as a whole is exploring the hypothesis that simulation models of target 
dynamics of interest can be algorithmically explored to allow more rapid and accurate discovery 
of diagnostic probes that will reveal the actual functions of target systems and the intentions of 
their leaders, compared to current manual methods. The LM ATL effort provides the Probe 
Strategy Development, as shown at the top of the program-developed diagram in Figure 1. 
 
The objective of the PAINT team’s past year’s efforts was to construct two models of an 
example target system, consisting of leaders who control pathways (interconnected process 
segments that require resources and time to execute). These models correspond to two different 
conceptual hypotheses as shown in Figure 4. 
 
 

 
Figure 4:  The LM ATL Probe Strategy Development seeks to develop probe strategies that differentiate 

between model hypotheses 
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The team of LM ATL and BAE is specifically addressing the search for diagnostic responses 
using our Probe Strategy Development effort for PAINT (Figure 1). In other words, we are 
searching for sets of model inputs to the system that will cause the two models to produce 
different outputs, thus differentiating them. The degree to which they are differentiated by the 
inputs identifies the diagnosticity of the inputs. To support discussion and development of these 
searches, the team has made the following definitions1: 

• “Probing Strategy: High-level approach to conduct a conditional test of a target by 
stimulation (e.g., “Weaken ability to perform, cause correction”).” This will be referred 
to simply as a “strategy.”  

• “Probe: A specific operational activity to stimulate the target—as an element of a 
strategy (e.g., “Restrict access to capital and materials by sanctions”).” There may be 
more than one probe necessary to implement a probing strategy. 

• “Probe Implementing Action: Detailed model inputs to implement a probe (e.g., “reduce 
available scientists by 50%; reduce operating capital and material by 25%”).” This map 
directly to changes in the model parameters. 

 
Our approach is to generate strategies that provide significant diagnosticity (are able to 
differentiate the models) through: 

• Strategy Decomposition and Algorithm Selection: 
- Researchers run studies to understand the solution space and identify candidate 

strategy decompositions and search algorithms. 
- Researchers implement selected search algorithm(s) and provide controls and 

visualizations to support user input/guidance. 
• Strategy Assessment: 

- User runs strategy search algorithm, examines results and provides focus for next 
set of searches. 

- System will include (although this is not yet implemented) sampling over input 
uncertainty to ensure that selected strategies are not near “danger” zones where 
small changes in inputs cause large changes in the outputs. 

 
Under Strategy Decomposition, we determined that the GA was most appropriate to conduct the 
search in this complex, multi-dimensional space with many local maxima. Under Strategy 
Assessment, we ran the algorithm on the two models and discovered probes that were highly 
diagnostic. The uncertainty issues were handled by Carnegie Mellon University (CMU), 
therefore we did not do sampling over the input uncertainty, but rather used the CMU output that 
considered the uncertainty and included it in the fitness function. 
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The DGP leverages the LM Strategy Engine Core, consisting of the core GA Engine as the 
optimizer, and a Controller that interfaces to the PAINT Models through the Strategy API on the 
BAE backplane, as shown in Figure 5.  
 

 
Figure 5: the Flexible Controller interfaces to the Models through the Strategy API, transparently handling 

changes to the models and actions for the GA Optimizer 
 
The Strategy Engine, combined with the PAINT models instantiated on the BAE backplane, 
produced a capability that has never been available to the intelligence community. Specifically, 
they enable the analyst to:  

• Intelligently explore wide ranging actions that could be taken on indeterminate situations. 
• Discover counterintuitive solutions through combinations of probes and probe 

parameters.  
• Illuminate characteristics of the situation that help separate the hypotheses in a timely 

fashion. 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES  
 
3.1 Selection and Implementation of the Genetic Algorithm (GA) 
 
It is clear that in the case of finding probes/strategies using the Strategy Engine we have a typical 
global optimization problem with a multidimensional function in a very large search space. The 
function is generated by the response of a complex model to a particular set of parameter/input 
values. This space is by no means a nice smooth space. Therefore, we can immediately eliminate 
the classical methods like gradient descent, simplex, and quasi-Newton methods. These do not 
do well on rough surfaces with many local maxima. 
 
Through running and observing the model outputs, we have been able to confirm our original 
assumption that the search landscape is represented by a rough multidimensional surface with 
scattered multiple maxima. There are many popular techniques for global optimization search for 
that kind of function. All of the methods are stochastic in nature and designed to avoid being 
trapped by local maxima. Some of these are: Simulated annealing, Stochastic tunneling, Particle 
swarm optimization, Ant colony optimization, Bees algorithm, and Evolutionary Computing 
(including GA and Evolutionary strategy). 
 
The last class of methods, from our point of view, represents most of the powerful, flexible and 
efficient optimization techniques. The GA is not a single technique, but rather a large family of 
techniques. Its flexibility lies in the large number of methods that can be used to generate the 
"next" generation of probes. In other words, given that we are able to develop the proper 
smart/sophisticated operators, heuristic rules, flexible constraints, and human interaction with the 
ongoing search process, the navigation through the complex search space will be very efficient 
and productive. The GA will work, on average better than these other techniques. The Co-PI on 
this program, Dr. Sergey Malinchik, co-authored a book on this subject (Malinchik, 2004)2. 
 
A criticism leveraged against the GA is that creating domain specific chromosome structures, 
operators, selection rules and other attributes is more of an art than a science, and that done 
poorly, can lead to unsatisfactory results. We believe that we are responsive to this criticism 
through the development of a GA toolkit that provides valuable (visual) insight into the progress 
of the GA as it is evolving new solutions that assists in the design. In future versions, it will also 
enable the user to have reasonable control over the mutation range of genes, fitness function, and 
constraints weights. The ability of the user to view the results of a current generation and hand 
select candidates to guide the search, provides a powerful human aspect to the process.  
 
 
 
 

                                                 
2 Bandte, Oliver, Malinchik, Sergey, “ A Broad and Narrow Approach to Interactive Evolutionary Design – An 
Aicraft Design Example”, Springer Berlin/Heidelberg, June, 2004. 
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The key to the success of the GA is the careful selection of the operators and the search space 
representation. For the DGP, we designed a chromosome, which is essentially a probe, to contain 
between one and five different actions. Each action is characterized by a set of genes that are the 
parameters. Each action contains its own specific parameters, as well as a start time and duration. 
Figure 6 provides an example of a chromosome and several genes. 
 

 
Figure 6: Genes for the “Assign Role” and the “Set Supply Chain Attractiveness 2” actions 

 
The GA operators are used to manipulate the chromosomes and genes that are used to produce 
the next generation (offspring) of the GA evolution. Figure 7 shows three types of operators that 
were used. For each new generation, one of the operators is randomly selected with equal 
weighting. Further research would be required to determine if a different operator selection 
algorithm would produce better/faster results. 
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Figure 7: Three different GA operators that were used to produce the next generation of probes 

 
3.2 Controller 
 
The block diagram of the system is shown in Figure 2.  The Controller runs in conjunction with 
the BAE Model Backplane and the two Hypothesis models. The primary focus for the Controller 
architecture was to provide flexibility to reduce the amount of recoding needed as the models, 
the actions and their parameters changed. This allowed us to run the GA on almost continuous 
releases of the code. We also implemented a module that randomly selected and modified actions 
that we used until the GA was available. This early capability helped find several issues with the 
modeling and action code/data. The controller allows a developer who is not familiar with the 
Model Backplane or how to run the models within (initializing, making a plan based on probes, 
etc.) to easily modify probes, run the model using these probes, and finally access the fitness 
value. A developer only needs to have basic knowledge of collections in Java, which the probes 
are stored in as a List, as opposed to the detailed and large hierarchical class structure of the 
Strategy Engine’s API for modifying probes. 
 
The Controller has simple API commands to initialize and run the PAINT models, insert a plan 
(set of probes) and acquire results. The plan parameters can be generated by the GA, or any other 
mechanism that generates the appropriate data. Therefore, should we decide to use a different 
search algorithm, we simply swap out the GA and swap in the new algorithm.  
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The operation of the system is as follows: 
• Initializing the Controller: 

- Locates and acquires hypothesis models on the Backplane based on the model’s 
name. 

- Loads and stores the model’s possible actions with the action’s parameters into a 
collection using our ModelLoader: 

– ModelAction contains the action (probe) data and the associated 
parameters (ModelParameter). 

– ModelParameter contains the parameter data.  
– Both ModelAction and ModelParameter contain randomize functions for 

time and value data, if the GA is not available. 
• Modifying Actions and Parameters:  

- The Actions and Parameters are sent to the GA module where they are modified 
according to the selected operators. The GA modifies the parameters simply by 
using the “set” function based on the type of parameter (numeric or enumeration). 

- Actions not used are removed from the Action collection. 
- Actions used are sent back to the controller.  

• Running the models through the Controller: 
- Based on the final actions chosen, the action collection is converted into a PAINT 

Strategy Service’s Plan: 
– The Plan is then written to the backplane using the Strategy API. It is 

executed as each model runs. 
- Once the models are finished, the controller then executes the fitness evaluation 

function and stores the fitness result for the GA to access. 
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4. RESULTS AND DISCUSSION 
 
We developed a variety of metrics that measure how efficiently the GA is performing its search, 
and how widely the GA search is covering the space. The metrics shown in Table 1 were 
developed in July 2008. An additional metric called “Exploration vs. Exploitation,” i.e., how to 
keep extensive search strategy across the space while improving the discovered probes was 
added in January 2009.  
 
 

Table 1: Indicates that the GA is a viable solution for searching the probe space 

Draft Metrics for the LM Strategy Engine Phase I 
Goal Sample: Jan 2009 

Number of strategies evaluated (N): This is a very 
raw number—you might evaluate 10M strategies and 
find none that are diagnostic. Also, over time, a lower 
number might mean a more efficient system. This 
metric can be affected by: 
• Improvement from seeding.  
• Time to evaluate probes – depends on the time it 

takes the models to execute.  
• Time required for users to intervene.  

150 in a 
session 

1200 with no user intervention 

Number of useful strategies found/number 
evaluated: 
• How many different results does the system suggest 

that the user contemplates? 

2% N/A Although the probes 
provided increased fitness, we 
did not have the SME input to 
determine the usefulness/ 
actionability. 

Number of additional factors considered in search: 
• Such as cost, risk, number of people involved, time 

to complete, etc. 
• Very dependent on the data being available. 

0 0  

Diagnosticity (D): How well are we differentiating 
between the systems: 
• Percent increase over time on “similar” systems- 

This has a “moving target” problem—we will need 
to characterize the systems and make adjustments 
for the change in the system in order to come up 
with a compelling measure for this. 

• Complexity of probes may improve diagnosticity. 
• Number of probes tested might also. 
• Ability to discover good diagnostic measures. 

0% The diagnostic measure is the 
fitness value from the CMU 
model. Early tests started out at 
about 18,000 for the fitness 
value. Final best value was 
around 41,000. Complexity of 
probes improved diagnosticity. 
We were limited to one probe, 
although we could have 
multiple actions per probe. 

Robustness (R): The ratio of robust strategies to 
total strategies: 
• By evaluating more probes, you are more likely (but 

not guaranteed) to find more robust ones. How do 
we avoid “refinding” non-robust probes? 

• May be improved by some type of filtering based on 
known cliffy areas. 

1% This measure was incorporated 
into the CMU model fitness 
function, and is not available 
separately at this time. 
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Acceptance (A): Where does the user fall on the 
spectrum of completely allowing the tool to provide 
probes to not using the tool at all, we will develop the 
following factors into a metric  
• Number of times the tool is invoked. 
• Number of redirections by the user—need to 

understand this, whether more or less is better? 
• Number of times analyst uses the results. 
• Number of times the analyst lets the system suggest 

strategies (see next metric). 

Low- 
New, not 
used to it, 
interface 
may not 
be 
friendly 

This metric cannot be evaluated 
until there are users involved 

Number of new useful strategies discovered/ 
strategies used (the – “oh, I didn’t think of that” 
factor): 
• This is the reverse of the current method where the 

user tells the system what the parameters of the 
probes are. Here, the system finds combinations of 
inputs that are highly diagnostic, then the user or the 
system and the user discover strategies that cause 
those input combinations. 

• The value is the number of strategies the system 
develops for which the user can determine an 
operational equivalent.  

0 This was not a phase I task. 

Number of “identifiable” strategy clusters  in the 
Strategy Library (nPSL): 
• Basically, the number of Strategies that are 

statistically different from each other in the library 
based on a multi-dimensional locality measure that 
we will define. 

• Highly dependent on system stabilization (or things 
won’t cluster). 

• This will assist in your seeding capabilities, so a 
higher number of clusters means more granularity 
and possibly faster convergence. 

0 This was not a phase I task. 

 
We were not yet able to determine the operational values for all of these metrics at this time. 
Certainly, the speed with which we can develop a set of probes is a key to the success of any 
search algorithm. This value is dependent on the performance of the models (how long it takes to 
execute the models once) as well as how many iterations are needed for the GA to converge to a 
good answer (typically thousands of runs). The ability to seed the GA to a promising search area 
could reduce the number of runs needed. This activity, scheduled in a later phase, would have 
built up a library of probes and responses from which a smart algorithm could pick a reasonable 
starting point for the GA, as opposed to a random starting point. 
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Figure 8: The right side shows the steadily increasing value of the fitness function as the GA evolves ever 

better probes 
 
 
We have made significant progress, to the point that we were major contributors to the prototype 
demonstration. In Figure 8 we show the results of one of the highly diagnostic probes that were 
discovered by the GA. On the left side in Figure 8 is shown the set of possible 35 probes (small) 
circles arranged along the large circle), given that we were allowing four actions per probe from 
a total of seven available probes. Each probe (consisting of four actions where each action is 
characterized by three to four parameters) represents the subspace of the whole search space. 
During the search process the best current probe is marked by the radial line. The right side in 
Figure 8 shows the progress of the GA optimizer. The y-axis is the fitness (diagnosticity) of the 
solution while the x-axis is the iteration of the evaluation. The actual diagnosticity value of over 
41,000 was reached in only about 1200 iterations starting from the value of about 15,000. Given 
more time, it is possible that a probe would have been found that produced even better 
diagnosticity. The actual real-world value needed for the diagnosticity to be operationally useful 
has not yet been determined. 

 
As mentioned earlier, the GA will perform better than any of the other search algorithms when 
measured based on convergence rate, simply because it is an adaptive search method with an 
intelligent search algorithm that will always perform better than random. 
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5. CONCLUSIONS 
 
Our Strategy Engine uses a Genetic Algorithm to develop probes (sets of model input values) 
and a Controller to interface the GA to the two PAINT models. The Controller design 
successfully abstracted the complexity of the Strategy API away from the GA, creating a 
modular environment that can be easily applied to additional problems.  
 
We were able to develop a domain specific GA with unique collection of operators and selection 
functions which demonstrated very high efficiency in evolving the probes. Typically, after about 
1200 iterations, diagnosticity of the probes was improved by factor of three (from 14,000 to 
42,000). The analysis of the best probe evolution tracks indicates that a good balance between 
Exploration vs. Exploitation (keeping an extensive search strategy while improving the 
discovered probes) has been achieved.   
 
Working with the GA in a modeling and simulation environment consisting of brand new models 
is a challenge. We have been involved in several similar programs and are well aware that the 
models are constantly being updated. These updates are usually not limited to the internal 
algorithms, but often changes/adds/deletes inputs, outputs and parameters. This makes it 
challenging for the GA developer because in order to build a good GA, one must have both 
knowledge of the model parameters, to define the representation of the search space 
(chromosomes and genes) as well as the generated fitness function, to understand the most 
effective use of the operators (mutation, etc.). By taking many versions of the models as they 
evolved, we were able to gradually learn about the models solution space and improve on the 
GA, even though the models were not yet completed. 
 
In general, our work demonstrated that the GA-based probe search and optimization technique is 
a very effective and promising approach allowing us to improve quickly existing solutions and 
produce completely new counter-intuitive results 
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6. RECOMMENDATIONS 
 
This program opened up many avenues of research as follows: 
• How much of the expertise of designing the GA can be captured and made available as an 

assistant to the user: The use of the GA remains elusive to many due to the complexity of 
designing the solution space representation and the operators. It appears that once there is a 
reasonable representation, that an intelligent assistant could aid in tuning the GA. 
Furthermore, the assistant may even be able to run analysis on the models, and given 
information about which parameters are available to it, might even be able to assist in the 
design of the GA. 

• Improved performance through intelligent seeding of GA: It may be possible to 
intelligently seed the GA by finding historical situations that are similar to the current 
situation in which an action was taken that produced desirable results. This would require 
the development of a library of linked situations, actions and results, as well as a method to 
measure the “closeness” of the historical situation to the current situation, and the 
“closeness” of the historical result to the current result. 

• Improvement through weighting of operators: In the experiments that we did, the operators 
were weighted equally. However, additional experimentation would be expected to yield an 
unequal weighting that would provide faster convergence, while still satisfying the 
Exploration vs. Exploitation metric (see next). 

• Exploration vs. Exploitation: This metric, which compares the amount of effort the GA is 
expending in searching different areas of the solution space vs. deeply exploring a 
particular bump in the space has rather broad implications. Too little searching around the 
space means there is a high probability that an important part of the space is not being 
explored. Too much searching means there is not enough local exploitation of interesting 
areas. Finally, there is no current expression of how to measure this ratio, and what 
qualifies as a good ratio. 

• Improved performance through human interaction: Research has been done that indicates 
that putting a human in the loop to help focus the selection of the next generation of probes 
can greatly improve the convergence time of the GA. This capability has been used in 
previous work, but we were not able to include it in the time that we had. 

• User-oriented visualization and relationship to the real world: The current visualization is 
oriented towards the understanding of the fitness function and its value. This value needs to 
be tied in a meaningful way to the user that indicates the state of the models that produced 
the fitness function. This would require some very close interaction with the user, to 
understand how they want to view such models, and also, what observables are available to 
the user in the real world and how they relate to the models and to the fitness function. 
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8. LIST OF ACRONYMS 
 
 
 
CMU Carnegie Mellon University 

DGP Dynamic Gaming Platform 

GA Genetic Algorithm 

IARPA Intelligence Advanced Research Projects Activity 

LM ATL Lockheed Martin Advanced Technology Laboratories 

PAINT ProActive INTelligence 

 




