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Summary of Significant Findings. 

In a) 1, we articulate via an example from reliability, the difference between the notions 
of probability, chance, likelihood, vagueness, belief and plausibility. To the best of our 
knowledge, it is the only document that carefully makes a distinction between these 
intertwined notions, and states clearly what each of these terms mean and when to use 
them. 

In a) 2, we introduce the notion of a vague system; i.e. a system that can simultaneously 
exist in more than one state. This is done via the mathematics of many valued logic. The 
traditional approach in system theory is via binary logic; it is limited in scope. 

In a) 3, we make the important argument that when predicting remaining life, what 
matters most is the likelihood, not the probability model. This paper digs deep into the 
meaning ofconditional probability and shows how one can arrive upon different 
predictions. 

In a) 5, we address the important practical question of what should the coverage 
probability for a prediction interval be. Should it be 90%, 95%, or something else? We 
argue that this is a problem in optimal decision making, a matter that has been totally 
overlooked. 

In a) 7, we introduce a new fundamental notion, namely that of & hazard potential. We 
argue that items fail when suitably chosen stochastic processes hit the hazard potential. 
The chosen stochastic processes depend on the environment in which units and systems 
operate. 

In a) 9, we harness the thesis of a) 7 to argue that degradation is an abstract notion, but its 
observable markers are things like crack growth, wear, and CDA cell counts. We then 
make clear the meaning of competing risks and view them as stochastic processes. This 
is a chance in the manner in which one thinks of competing risks and degradation. 

In b) 1, we summarize our research over the past several years, much, if not all, supported 
by the ONR, in reliability and survival analysis, and systems survivability. This book, we 
think is unique because it represents a paradigm shift in how one should think about 
reliability and survivability, and because unlike the existing books on the subject, it 
dwells into uncharted territories on several fronts. The point of view taken here is 
Bayesian and notions like the failure rate, survival, and systems integrity are interpreted 
from this perspective. The book also discusses the use of expert testimonies and 
information theoretic notions in failure data analysis and the design of life tests. 
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In our day-to-day discourse on uncertainty, words like belief, chance, plausible, likelihood and probability are commonly encountered. 
Often, these words are used interchangeably, because they are intended to encapsulate some loosely articulated notions about the 
unknowns. The purpose of this paper is to propose a framework that is able to show how each of these terms can be made precise, 
so that each reflects a distinct meaning. To construct our framework, we use a basic scenario upon which caveats are introduced. 
Each caveat motivates us to bring in one or more of the above notions. The scenario considered here is very basic; it arises in both 
the biomedical context of survival analysis and the industrial context of engineering reliability. This paper is expository and much of 
what is said here has been said before. However, the manner in which we introduce the material via a hierarchy of caveats that could 
arise in practice, namely our proposed framework, is the novel aspect of this paper. To appreciate all this, we require of the reader a 
knowledge of the calculus of probability. However, in order to make our distinctions transparent, probability has to be interpreted 
subjectively, not as an objective relative frequency. 

Keywords: Belief functions, biometry, likelihood, plausibility, quality assurance, reliability, survival analysis, uncertainty, vagueness 

1. Probability and chance 

1.1. Introduction: Statement of the problem and objectives 

Consider the following archetypal problem that commonly 
arises in the contexts of biomedicine, engineering and the 
physical sciences. 

Suppose that at some reference time t, the "now time," 
YOU are asked to predict the time to failure T of some 
physical or biological unit. The capitalized YOU is to em- 
phasize the fact that it is a particular individual, namely 
yourself, that has been asked to make the prediction. To fa- 
cilitate prediction, you examine the unit carefully and learn 
all that you can about its genesis: how, when and where it 
was made. You denote this information by 7i(t), for history 
at time r. In the case of biological units, 7i(r) would pertain 
to genetic and/or medical information. Suppose, as is gen- 
erally true, that based on fi(r) you conclude that prediction 
with certainty is not possible. Consequently, you are now 
faced with two options: walk away from the problem, or 
make an informed guess about T. 

Suppose that you choose the second option and are pre- 
pared to make guesses about the event (T > /), for some 
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t > 0. In reliability, t > 0 is known as the "mission time." 
There are several additional caveats to this basic problem 
that go into forming our overall framework; these will be 
presented in Sections 2 and 3. In Section 2, we introduce 
the caveat of data, and in Section 3 the caveat of surrogate 
information. 

To keep the mathematics simple, you introduce a counter, 
say X, and adopt the convention that X = 1 (a "success") 
whenever T > t, and X — 0 (a "failure"), otherwise. Thus, 
the events (T > t) and (X = 1) are isomorphic; however, 
there is a loss of granularity in going from T to X. This 
is because X continues to equal one, even when T > t + a, 
for any and all a > 0. With the introduction of A', informed 
guesses about (T > t) boil down to informed guesses about 
(X = 1). But what do we mean by an informed guess, and 
how shall we make this operational? Do the terms proba- 
bility, chance and likelihood constitute an informed guess, 
or does each of these terms connote a distinct notion? Fur- 
thermore, do these terms cover all the scenarios of uncer- 
tainty that one can possibly encounter or are there sce- 
narios that call for additional notions such as "belief" 
and "plausibility"? The aim of this paper is to show that 
each of the above terms encapsulates a distinct notion, 
so that their indiscriminate use should not be a matter of 
course. 

0740-817X0 2009 "I1E" 
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1.2. Personal probability: Making guesses operational 

By informed guess, we mean a quantified measure of your 
uncertainty about the event (X = 1) in the light of H(x), and 
subsequent to a thoughtful evaluation of its consequences. 
Now, it is generally well acknowledged that probability is 
a satisfactory way to quantify uncertainty, and to some, 
such as Lindley (1982), the only satisfactory way. There 
are several interpretations of probability (c.f. Good (1965)). 
The one we shall adopt is personalprobability, also known as 
subjective probability. Here, you quantify your uncertainty 
about the event (X = 1), based on H(r), by your personal 
probability denoted: 

PY{X = V,H(z)). CD 
The subscript indexing P emphasizes the fact that the spec- 
ified probability is that of a particular individual, namely, 
you. For convenience, we set r =0 and denote H(0) by sim- 
ply H. Henceforth, we also omit the subscript associated 
with P, so that Equation (1) is written: 

P{X=\;H)=p, (2) 

where 0 < p < 1. The/? so specified is a personal probabil- 
ity because it is not unique to all persons; more important, 
it can change with time for the same individual. This is be- 
cause the background history for this person also changes, 
and it is the history that plays a key role in specifying a per- 
sonal probability. Thus, an informed guess is tantamount 
to specifying a/?, where/) is a personal probability. 

To make an informed guess operational, that is, to make 
a pragmatic use of it, we need to interpret p. For this we 
appeal to De Finetti (1974) who proposed that/? represent 
the amount you—the specifier of p—is willing to stake in 
a two-sided bet (or gamble) about the event (X = 1). That 
is, should X turn out to be one, you receive as a reward 
one monetary unit against the p staked out by you. Should 
X turn out to be zero, then the amount staked, namely 
p, is lost. By a two-sided bet, we mean the willingness to 
stake/? for the event (X = 1), or an amount (1 —/?) for the 
event (X — 0). That is, you are indifferent between the two 
gambles: one monetary unit in exchange for/? if (X = 1), 
or one monetary unit in exchange for (1 — p) if (A' = 0). It 
is useful to bear in mind that in keeping with the spirit of 
the individual nature of personal probability, the amount 
p represents your stake. For the same event (X = 1), your 
colleague may choose to stake a different amount /?, with 
p / p. It is also important to note that with p interpreted 
as a gamble, the bet will only be settled when X reveals 
itself. Thus, bets can only be made operational for events 
that are ultimately observed. We do not consider here the 
disposition of the second party in the bet; we assume that 
the second party is willing to accept any bet put forth by 
you. 

Thus, to summarize, in the context of this paper, the word 
"probability" is used to denote the amount an individual 
is prepared to stake in a two-sided bet about an uncertain 

event. This probability can be specified based on H alone, 
and it is not essential that W contain data on items judged to 
be similar to the item in question. That is, personal probabil- 
ities can be specified without the benefit of having observed 
data. 

1.3. Chance or propensity: A useful abstraction 

Whereas specifying a personal probability can be done 
solely by introspection considering K, amore systematic ap- 
proach, which involves breaking the problem into smaller, 
easier problems, begins with invoking the law of total prob- 
ability on the event (X = 1; H). Specifically, for some un- 
known quantity9, 0 < 9 < l,andanentity;T(0;7f), whose 
interpretation is given later in Section 1.4: 

P(X=\;H) 
Jo 

1\9;H)TI(9;H)<19,     (3) 

= / P(X = 1 | 9)n(9;H)d9, (4) 
Jo 

if you assume that X is independent of H given 6. That 
is, were you to know 9, then knowledge of H is unneces- 
sary. The meaning of 6, known as a parameter, remains to 
be discussed, but for now we state that in the language of 
personal probability, Equation (3) implies an extension of 
the conversation from P(X = 1; H) to P(X = 1 | 9; H). The 
idea here is that after invoking the assumption of indepen- 
dence, you may find it easier to quantify your uncertainty 
about (X = 1) were you to know 9, than quantifying the 
uncertainty based on H. Whereas the dimension of H can 
be very large, the dimension of 9 is one. Thus, the role of 
the parameter 9 is to simplify the process of uncertainty 
quantification by imparting to X independence from 7i. 

In Equation (4), the quantity P(X =1 | 9) is known as a 
probability model for the binary X. Following Bernoulli, 
you let P(X = 1 \9) = 9, where P(X = 1 | 9) represents 
your bet (personal probability) about the event (X = 1) 
were you to know 9. This brings us to the question of what 
does 9 mean? That is, how should we interpret 01 

The meaning of 9 was made transparent by De Finetti 
(c.f. Lindley and Phillips (1976)) in his now famous theorem 
on binary exchangeable sequences. Loosely speaking, this 
theorem says that if a large number of units judged similar 
to each other (the technical term is exchangeable) and to 
the unit in question were to be observed for their survival 
or failure until t, and if Xi — 1 if the ith item survived until 
t (Xj — 0 otherwise), then: 

: lim 'yii, 
n->oo n *—i 

(5) 

that is 9 is the average of the Xfi, when the number of Xts is 
infinite. De Finetti refers to this 9 as a chance or propen- 
sity. Note that there is no personal element involved in 
defining 9, other than the fact that 9 derives from the be- 
havior of exchangeable sequences, and exchangeability is a 
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judgment. What you judge to be exchangeable may not sit 
well with your colleagues. Because 8 connotes the limit of 
an exchangeable binary sequence, 6 can be seen as an ob- 
jective entity. More important, since 8 cannot be actually 
observed {n in the Equation (5) is infinite), we claim that 
chance is an abstract construct. It is a useful abstraction 
all the same, because in writing P(X —\ | 6) = 8, you are 
saying that your stake on the uncertain event (X = 1) is 9, 
were you to know 8. But no one can possibly tell you what 
9 is, and this is what leads us to the next section. But before 
we do so, it may be of interest to mention a few words about 
two other interpretations of 9. 

One is due to Laplace, who in keeping with the scientific 
climate of his time, and being influenced by Newton, was 
concerned with cause and effect relationships. Accordingly, 
to Laplace, 0 was the cause of an effect, namely, the event 
(A' = 1). The second interpretation of 9 stems from the rel- 
ative frequency interpretation of probability. Indeed, here 
9 is taken to be the probability that X = 1. 

Finally, even though the notion of chance introduced 
here has been in the context of binary variables, a parallel 
notion also exists for other kinds of variables. 

1.4. Probability of chance: Taking chances with chance 

Since 9 is unknown, and in principle can never be known, 
you are uncertain about 6. In keeping with the dictum that 
all uncertainty be described by probability, you let Py(& < 
9; H) encapsulate your bet on the event (0 < 6). Here, in 
keeping with standard convention, all unknown quantities 
are denoted by capital letters and their realized values by 
the corresponding small letter; thus our use of 0 and 8. 
Since © can take all values in the continuum (0,1), we shall 
assume that Py(& <8;H) is "absolutely continuous," so 
that its density at 9 exists, for 0 < 9 < 1. We denote this 
density by ny(9; H) and interpret it as 

n(9;n)d9^P(0 <© <9+d9;7i). 

For convenience, the subscript Y has been dropped. 
Thus, n{9; 7i)d9 is approximately your personal proba- 

bility that the unknown chance 0 is in the interval [9,9 + 
d9). Since 9 will never be known, the bet on 0 cannot 
be settled. However, since n{9;H) goes into determining 
P (X = 1; H)—see Equation (6) below—and since bets on 
{X = 1;K) can be settled, Tt{9;H) can also be interpreted 
as a technical device that helps you specify your bet on an 
observable. 

With the above in place, plus the fact that in our case 
P{X = 1 | 0) = 0, Equation (4) becomes: 

P(X =l;7Q=p -jf Jo 
9xn(0;H)d9. (6) 

Equation (6) above is noteworthy. It embodies: (i) a per- 
sonal probability about the event (X — 1)—the left-hand 
side; (ii) a chance 0 taking the value 8; and (iii) a per- 

sonal probability about the chance 0 belonging to the 
interval [9,9 + d9]—the entity n(9;H)d9. This equation 
helps us make transparent the difference between probabil- 
ity, chance and the probability of chance. 

There is another angle from which Equation (6) can be 
viewed. This comes from the fact that the right-hand side of 
Equation (6) is your expected value of 0, the expected value 
being determined by your n(9; H). Denoting this expected 
value by EY(Q), we have: 

P(X=l;H)=p = EY(®), 

implying that your personal probability for the event (X = 
1) is your expected value of the chance 0 with respect to 
TT(9;H), your personal probability about chance. 

2. The likelihood of chance 

2.1. Introducing the caveat of data 

We supplement the framework of the basic problem of Sec- 
tion 1.1 by introducing our first caveat. Suppose that in ad- 
dition to H(r), you also have at hand the binary xi,.. .,x„, 
where xt = 1 if the life-length of the rth item has actually 
been observed to exceed t, and x, = 0, otherwise. The n 
items that go into constituting the data x = (JCI ,..., xn) 
are judged by you, prior to observing the x, to be similar 
(or exchangeable) to the item in question. What can you 
now say about the unobserved XI In other words what is 
your prediction for the event (X = 1) in the light of H(T) as 
well as x? Certainly, the observed x should help you sharpen 
your prediction. Consequently, you are now called upon to 
assess P(X = 1; x, TC). 

One possibility would be to think hard about all that 
you have at hand, namely, x and H, and then simply spec- 
ify P(X = 1; x, 7i) as p*, where p* e (0, 1). Here p* encap- 
sulates your bet on the event (X = 1) in the light of x 
and H. If p" happens to be identical to the p of Equa- 
tion (2), then you are declaring the opinion that the data 
x has not had a sufficient impact on your beliefs for you 
to change your bet from your original p. From a philo- 
sophical point of view, there is nothing in the theory of 
subjective probability that stops you from specifying a p* 
by introspection alone. However, from a computational 
point of view, it is efficient to proceed formally along the 
lines given below, because introspection to specify p* sub- 
sequent to having specified p may lead to an inconsistency 
(technically incoherence). By incoherence, we mean a sce- 
nario involving a gamble in which "heads I win, tails you 
lose." 

2.2. Bayes' law: The mathematics of changing your mind 

To address the scenario presented in Section 2.1, you start 
by pondering the matter of assessing your uncertainty about 
(X = 1), in the light of H, were you to know (but do not 
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know) the disposition of X\ X„; here Xt•• = 1, if the 
rth item judged to be similar to the item in question has 
a life-length that exceeds t (Xt = 0, otherwise). That is, 
what would be your P(X = 1 \X\ X„, H)1 To address 
this question, you follow the same line of reasoning used to 
arrive upon Equation (4), that is, extend the conversation 
to 9, and obtain 

P(X = \\XU...,X„;U)= f P(X=] \9,Xu...,Xn) 
Jo 

xjr(6\Xu...,X„;7f)d9, 
-l 

P(X=l\9)x JT(9\XU ...,Xn; H)d9, 
Jo 

f Jo 
9x71(9^ Xn;H)d9. (7) 

The second equality is a consequence of your judg- 
ment that X is independent of X\,..., X„, were you to 
know 9, and the third a consequence of choosing P(X = 
1 | 9) = 9 as a probability model for X. The quantity 
n(9\Xi,..., Xn;H) is the probability density at 9 of your 
P{@<9\XU...,X„;-H). 

To obtain n{9\X\ Xn\K) you invoke Bayes' law; 
thus: 

n{9\Xu • • •, X„;H) oc P(Xt,..., X„ \9;7i)xn(9\H) 
n 

= I~[/'(Jr, = x/|0)xjr(0;?Of    (8) 

by the multiplication rule, and by the independence of the 
Xts from each other, were you to know 9, and with x, = 1 
or 0. For P(Xj — x, \ 9), you once again choose Bernoulli's 
model, so that /»(*, = x, \ 9) = 0*(1 - 0)1-*. 

With the above in place, you now have: 
n 

n(9\Xi Xn;K)<xY\{9x'{\-9)l-x>)n(9;K).    (9) 
i=l 

Since n(9,7i) encapsulates your uncertainty about © in 
the light of H alone, and n(9\X],..., X„; H) your uncer- 
tainty about it were you to be provided additional informa- 
tion via the X\,..., Xn, we say that Bayes' law provides a 
mathematical prescription for changing your mind about 
the unobservable 9. Once Equation (9) is at hand we may 
incorporate it in Equation (7) to write: 

PiX^WXi Xn-H) 
• i 

I   9 T\ \9X'(\ - 9)l~x'}jr{9; H)<19, [of\{9-{ 
J0      i=l 

(10) 

as a prescription of how to change your mind about the 
event (X = 1) itself. 

2.3. Likelihood function: The weight of evidence 

There are two aspects of Equations (8) to (10) that need 
to be emphasized. The first is that the left-hand sides of 

these equations pertain to conditional events, namely the 
proposition that "were you to know the disposition of the 
XiS,i= 1,..., n"; that is, supposing you were provided with 
the realizations of each Xj. The second feature is that they 
inform the reader as to how you express your uncertainties 
(or bets) about 0 and X respectively, once the Xts reveal 
themselves as xt. Implicit to this bet is your particular choice 
of probability models P(X = x \ 9) and P(Xt = x, | 9), i = 
1 n. 

In actuality, however, the XjS have indeed revealed them- 
selves in the form of data, as X = (x\,..., xn), where each 
x, is known to you as being one or zero. In view of this, 
the left-hand sides of Equations (8) to (10) should be re- 
written as n(9;x{ xn,H) and P(X = l;xu ...,x„,H) 
respectively. But more significant is the fact that the quan- 
tity P{Xt = Xi | 9) of Equation (8) can no longer be inter- 
preted as a probability. This is because the notion of prob- 
ability is germane only for events that have yet to occur, or 
for events that have occurred but whose disposition is not 
known to you. In our case, Xj is known to you as x,- = 1 or 
xi = 0, thus P(Xj = xi | 9) is not a probability. So what does 
the quantity P{Xi = Xi\9) = 9X<{\ - 9)l~Xl, with x,- fixed as 
zero or one, and 9 unknown, mean? Similarly, in the context 
of Equation (9) with r — Y2"^] x,, what does the quantity: 

~\{ex>(\ -0)'--"} =er(\-9y (ii) 

with n and r known, but 9 unknown, mean? Note that r is 
the total number of successes. 

As a function of 0, with n and r fixed, the quantity 
9T{\ - 9)"~T is called the likelihood function of 9; it is de- 
noted, £y(0; n, r), the subscript, which will henceforth be 
dropped, signaling the fact that like probability, the like- 
lihood function is also personal. Since £(9;n,r) is not a 
probability, the likelihood function, even though it is de- 
rived from a probability model, is not a probability. It can 
be viewed as a function that assigns weights to the differ- 
ent values 9 that 0 can take, in the light of the known 
n and r; these latter quantities can be viewed as evidence. 
Thus, the likelihood function can be interpreted as a func- 
tion that prescribes the weight of evidence provided by the 
data for the different values that chance 0 can take. For ex- 
ample, with n = r = 1, £,{9; n — r — 1) = 9; this suggests— 
see Fig. 1—that with n = r = 1, more weight is given by 
the likelihood function to the large values of 9 than to the 
smaller values. 

To summarize, the expression P(X/ — x,- | 9) = 9X'{\ - 
9)l~Xl, specifies a probability of the event (Xt — x() when 
Xi is unknown, and 6 is assumed known; whereas with 
Xi known as x„ it specifies a likelihood for the unknown 
9. With x known, Equation (10) when correctly written 
becomes: 

P{X=l;x,H)cx f 9(9r(\-9)n~')xn(9;H)d9.   (12) 
Jo 
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C(B; n = r = l)      1 
or Weight 

0 1 

Fig. 1. The likelihood function with n = r = 1. 

*-   Values of d 

Anomaly 
Detected 

Anomaly 
Not Detected 
(Y = 0) 

Fig. 2. Effect of anomalies on survival. 

Item Survives 
To Time t 

Item Fails 
By Time t 
(*-0) 

Equation (12) is interesting. It encapsulates, as we read 
from left to right, the four notions we have introduced thus 
far: personal probability (the left-hand side); chance (the 
parameter 0); the likelihood of chance (the quantity #r(l — 
6)n~r); and the probability of chance (the quantity n{9; H)). 

Note also that the right-hand side of Equation (12) is 
the expected value of a function of®, namely, the function 
©r+1(l — ®y~r. Thus, we may say that the effect of the data 
x is to change your bet on the event (X = 1) from Ey(Q) to 
£y(0'+,(l -©)"-')• 

3. Imprecise surrogates: motivation for vagueness 
and belief 

In Section 1 we outlined a problem that is the focus of our 
discussion, and in Section 2 we added a feature to it by 
bringing in the role of data. The notions used in Sections 1 
and 2 are probability, chance and likelihood. Are these the 
only ones needed to address all problems pertaining to un- 
certainty? Are there circumstances that pose a challenge to 
us in terms of being able to lean on these notions alone? If 
so, what are these, and under what scenarios do we need to 
go beyond what has been introduced and discussed? The 
purpose of this section is to address the above and related 
questions. But first we bring into play our second caveat 
and explore the circumstances under which the notions of 
probability, chance and likelihood will suffice to address 
this caveat. The caveat in question pertains to the presence 
or not of detectable anomalies during inspection, quality 
control and other diagnostic testing functions. 

3.1. Anomalies: A surrogate of failure 

To keep our discussion simple, suppose that in order to 
assess your uncertainty about the event (X = 1), you have 
at your disposal Ti and also a knowledge of the presence or 
the absence of a detectable anomaly. An anomaly could be a 
visible defect, or noticeable damage, or some other suitable 
indicator of imperfection. Anomalies could be present and 

yet not be detected. We denote the presence of a detected 
anomaly by letting a binary variable Y take the value one; 
the absence of a detectable anomaly by letting Y = 0. The 
presence of an anomaly does not necessarily imply that X 
will be zero; similarly, its absence is no assurance (to you) 
that X will be one; see Fig. 2. Rather, like the Xi,.... X„ of 
Section 2, the presence or absence of a detectable anomaly 
helps you sharpen your assessment of the uncertainty about 
(X=\). 

Suppose then, that Y = y has been observed, with y — 1 
or 0, and that you are required to assess P(X = l;y, Ti). A 
simple way to proceed would be to treat y as a part of Ti, 
and upon careful introspection specify: 

P(X=l;y,Ti)=p,    0<p<l, 

as your bet on the event (X = 1). The p above is like the 
p of Section 1, in the sense that ifp=p, then y has had 
no effect on your disposition about (X = 1). There is, of 
course a more systematic way to incorporate the effect of y 
into your analysis, and this involves a use of the likelihood. 
To see how, start by pondering the matter of assessing your 
uncertainty about the event (X = 1), in the light of Ti, were 
you to know (but do not know) the disposition of Y. This is 
what was also done in Section 2.2. That is, you ask yourself 
what P{X o 11 Y; Ti) should be? By Bayes' law: 

P(X = l\Y;Ti) a P(Y = y\X = l;Ti) x P(X = l;7i), 

v = 1 and 0. For P(X = 1; Ti) you may use yourp of Equa- 
tion (2). To proceed further, you need to specify a probabil- 
ity model for Y, conditional on (X = 1). That is, you need 
to specify P(Y = l\X = l;Ti)andP(Y = 0\X = l;H);this 
is tantamount to specifying a joint distribution for X and 
Y. Once this can be done, you have: 

P(X= l\Y;Ti) oc P(Y = y\X = \;Ti)xp. (13) 

However, in actuality, Y has been observed as y — 1 or 
v = 0. Consequently, Equation (13) becomes 

P(X = 1; v, Ti) a L(X = l;y, H) x p. (14) 
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where C(X = \;y,7f) is your likelihood function for the 
unknown event (X = 1) in the light of the evidence y and 
H. The probability model P[Y = y\X = l;U) helps you 
specify the likelihood. Equation (14) says that your bet on 
the event (X = 1) in the light of y and 7i, is proportional 
to your bet on (X — 1) based on 7i alone, multiplied by 
your likelihood. The approach prescribed above is more 
systematic than the one involving the specification of p 
based on introspection alone, because it incorporates the/? 
of Equation (2). A key point to note is that C(X = \;y, H) 
is the likelihood of an observable event; it is not the like- 
lihood of chance 0 discussed in Section 2.3. Should you 
prefer to work with the likelihood of chance, then you must 
introduce chance into your pondering. To do so, you may 
proceed as follows: 

know X or 0, respectively. Of these, the former may be easier 
to assess than the latter, since it is based only on observables. 
We shall therefore focus on the case P(Y = y\X;H), and 
refer to it as a postmortem probability model. 

3.2. Eliciting postmortem probabilities: Potential obstacles 

The material of Sections 1 and 2 required of you the spec- 
ification of P(X = x j 0) and n(6; U), for x = 1 or 0. For 
the former, Bernoulli's model is a natural choice; for the 
latter, a beta density with parameters a and /3 is a choice 
with much flexibility. Thus, for 0 < 0 < 1: 

P(X = x | 9) = 9X{\ - 6>)1_\ 

and 
!> + £), 

P{X=l\Y;7i)= f P(X=l\d,Y;?€)x7T(9\Y;H)d9, jr(6>;H) = n(9;a,fi) = r^r^" '0 
3-1 

which extends the conversation to 6, as was done to arrive 
at Equation (3). If you now assume that (X = 1) is inde- 
pendent of both Y and TL, were you to know 9, and assume 
Bernoulli's model, then: 

j   9 xn( 
Jo 

P(X= l\Y;H)= I   0 xn(0\Y;H)d0. (15) 
Jo 

But by Bayes' law: 

7r(9\Y;n) <x P(Y = y \ d;H) x 7T(0;H).        (16) 

Consequently, to proceed further, you need to specify a 
probability model for the anomaly Y, were you to know 
0, and also n(0; H), an entity that has already appeared in 
Sections 1 and 2. Since Y has in actuality been observed (as 
v = 1 or v = 0 ), Equation (16) becomes: 

7t(9;y, H) oc C(9; v, H) x n(9;H), 

where L{0,y, H) is the likelihood function of the chance ©, 
in the light of H and evidence about the anomaly y. With 
the above in place Equation (15) becomes: 

/' h 
P{X= l;y,H)<x /   9 x C(9\y,K) x 7t(9;n)d9. 

Jo 
To compare the above equation with Equation (14) (their 
left-hand sides are the same), we note that since p = £(©), 
Equation (14) may also be written as 

P(X = 1 ;y,7{) oc /   6 x C{X = \;y,TC) x n(0;7{)d0. 
Jo 

The last two equations signal the fact that in order to 
incorporate the effect of the detected anomalies into the 
assessment of your uncertainty about (X = 1), you should 
be prepared to either specify the likelihood of (X = 1) in 
the light of y (and H), or the likelihood of 9 in the light of 
y (and H), whichever is more convenient. To specify these 
likelihoods, you may want to specify P(Y — y\X — \;H) 
or P(Y = v | 6;H), probability models for Y, were you to 

Coming to the scenario of Section 3, you are required 
to specify the above, and also a model for the postmortem 
probability P{Y = .H* = x; H), for x, y = 1 or 0. The lat- 
ter could pose two difficulties. The first is that you should 
be able to probabilistically relate detectable anomalies and 
failure; Fig. 2 with the direction of the arrows reversed 
could provide guidance. The second—a bigger problem— 
can arise because of the fact that the absence or the presence 
of any trait which qualifies as an anomaly may not be easily 
determined. For example, both a surface scratch and a dent 
qualify as defects, but the former could be less deleterious 
to an item's survival than the latter. Also, at what point 
does a rough scratch get labeled as a dent? The classifica- 
tion of an anomaly is therefore not crisp, so that the event 
"anomaly" is not well defined. It is this lack of crispness 
that motivates a consideration of "vagueness" as another 
aspect of uncertainty quantification; more on this will be 
said in Section 4. 

One manifestation of this absence of crispness is that re- 
sponses to questions for eliciting postmortem probabilities 
tend to be unhelpful. The following two responses from an 
actual scenario are illustrative. 

1. "If the unit works, there is a less than 20% chance that 
we would have detected an anomaly. If it does not, we 
would be seeing something 20-40% of the time." 

2. "If it works, that means that it was well manufactured. 
If it does not, then it means that it was handled poorly 
when it was shipped." 

Clearly, pinning down postmortem probabilities from 
statements like the two above is not possible. At best state- 
ment 1 can provide bounds on the postmortem probabili- 
ties, and statement 2 has no probabilistic content whatso- 
ever. Yet statements 1 and 2 provide information, albeit not 
in the form required by the calculus of probability. 

To summarize, as long as the event "anomaly" is well de- 
fined so that one is able to precisely specify the postmortem 
probabilities, the development of Section 3.1 can be used, 
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and to do so all that one needs are the notions of proba- 
bility, chance and likelihood. Once difficulties of the type 
discussed above come into play, postmortem probabilities 
cannot be elicited. When such is the case, the notions of 
"vagueness" and "belief" enter the arena of uncertainty 
quantification. We emphasize that we do not see these no- 
tions as a prelude to supplanting probability; rather, they 
enhance probability by making its use more encompassing. 
However, to some, like Zadeh (1978), the notion of vague- 
ness invites alternatives to probability, a matter upon which 
we disagree. 

4. Harnessing vagueness: Uncertainty quantification 
under imprecision 

What do we mean by the term "vagueness"? Is it synony- 
mous with the term "imprecision"? How do vagueness and 
imprecision enter the arena of uncertainty quantification? 
These are some of the questions that we aim to address 
in this section. We shall use the scenario of anomalies dis- 
cussed in Section 3 as a point of discussion. 

classifying a defect as being an anomaly or not, and also 
an unwillingness (of the specialist) to assign probabilities 
to the uncertainty of classification. 

To summarize, fuzzy sets are those whose boundaries are 
not well defined, and imprecision pertains to an inability 
to place with certainty every element of a set, such as TZ, 
into its fuzzy subset such as A. That is, imprecision is a 
consequence of vagueness. 

The Kolmogorov axiomatization of probability is devel- 
oped on the premise that probability measures be defined on 
sharp sets ((c.f. Billingsley (1985), p. 20)). Thus, the appear- 
ance of fuzzy sets requires of us ways to develop approaches 
whereby probabilities can be endowed to fuzzy sets as well. 
A strategy for doing so is via the introduction of "mem- 
bership functions" which, though not probabilistic, can be 
seen as a subject matter specialist's classification "probabil- 
ities." Membership functions are discussed in Section 4.2 
and their use for inducing probabilities on fuzzy sets dis- 
cussed in Section 4.3. As a final reminder, it is important 
to keep in mind that the material of Sections 4.2 and 4.3 
will not come into play if the event "anomaly" can be well 
defined. 

4.1. Fuzzy sets and the uncertainty of classification 

As a preamble, recall that in Section 3.1, Y was a binary 
variable taking values v = Oorv = 1, with Y = 0(1) denot- 
ing the absence (presence) of a detectable anomaly. Declar- 
ing that Y = 0 or 1 is often a judgment call, which does not 
encapsulate the degree of the anomaly. In this section we 
refine the above process by introducing some granularity to 
the values v that Y can take. To do so, we let Y denote some 
undesirable characteristic of the item in question that can 
be quantified—for instance the depth of a scratch—and al- 
low Y to take a continuum of values y in some well-defined 
range, say 1Z = [0, M], where M is specified. Let A, a subset 
of It, be the set of all vs that lead to the assessment that the 
item in question has an anomaly. Now if there exists a value 
y* such that for any y > v* an anomaly is declared, then A 
is called a crisp (or a sharp) set; crisp to reflect the fact that 
A has well-defined boundaries. Consequently, any y can be 
placed with precision in the set A, or its complement. Crisp 
sets are said to adhere to the law of the excluded middle, 
in the sense that any y either does belong or does not be- 
long to A. However, if it is not possible to identify a y* of 
the kind described above, then a boundary of A is not well 
defined. Consequently, we are unable to classify the mem- 
bership of certain ys in A with definitiveness (or precision). 
Such ys can simultaneously belong and not belong to A. 
Sets which exhibit the property of having boundaries that 
are not sharp are said to be fuzzy. Fuzzy sets do not ad- 
here to the law of the excluded middle. In the context of the 
scenario considered here, one may not be able to classify, 
with definiteness, certain defects as being anomalies. That 
is, there could arise, in practice, scenarios in which there is 
an uncertainty (in a subject matter specialist's mind) about 

4.2. The membership function of a fuzzy set 

The membership function of a fuzzy set A encapsulates the 
degree to which any y ell belongs to A. It is denoted by 
Pjrfy\ for every y. It is important to note that fij(y) is not 
a probability, because £ P/fOO neec' not De one' however, 
it is often the case that 0 < MiOO 5 1, for all y. Opera- 
tions with fuzzy sets, such as unions, intersections and com- 
plements are facilitated by the membership function. Like 
probability, the membership function is subjectively speci- 
fied, and may change from person to person. The member- 
ship function of a crisp set is an identity function; i.e., if A is 
a crisp set, then fx.j[(y) — 0 for y < y* and Hj(y) = 1, oth- 
erwise. For the scenario of anomalies considered here, with 
v encapsulating the magnitude of a defect, MiOO would be 
of the form illustrated in Fig. 3. Small values of y would 
certainly not be viewed as an anomaly and large values cer- 
tainly would. For the intermediate values of y, fi^(y) shows 
the extent to which y would be judged (by one particular 
individual) to be an anomaly. 

4.3. Endowing probabilities to fuzzy sets 

By endowing probabilities to fuzzy sets we mean assess- 
ing our personal probability that Y belongs to A in the 
light of the membership function ju-iO')- For this we first 
need to assess our personal probability that Y reveals it- 
self as y—that is our probability that the outcome of Y 
is y—and our personal probability that the revealed y be- 
longs to A. Supposing Y to take discrete values, we de- 
note the above personal probabilities by Py{ Y - y) and 
Py(y e A) respectively. The need for this latter probability 
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Fig. 3. Membership function of a fuzzy set A. 
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Equation (19) forms the basis of assessing the item's sur- 
vival probability when the presence of an anomaly is ac- 
tually declared, but not the extent of the defect that is be- 
lieved to result in an anomaly. That is, we are not given the 
value ofj>. In this case P{Y & A\X = \;p.A(y)) is viewed as 
the likelihood and thejeft-hand side of Equation (19) be- 
comes P(X = \;Y e A, ft), the required probability. Con- 
sequently, Equation (19) leads us to 

P(X = \;Y e i, W) oc £(A* = 1; Y e A,nA(y)) x p, 
(20) 

which is our personal probability that (X = 1), given the 
presence of an anomaly that is vaguely specified. 

entails a philosophical argument whose roots can be traced 
to Laplace. By interpreting p.A(y) as a likelihood function 
and invoking Bayes' law, Singpurwalla and Booker (2004) 
go through some standard technical manipulations to eval- 
uate the constants of proportionality and to argue that: 

Py{YeA;nA(y)) 
1- E AUO)        P\(y e A) 

-i-i 
Py(Y = y).   (17) 

See Equation (10) of Singpurwalla and Booker (2003). 

4,4. Assessing failure probability with imprecisely 
specified anomalies 

With Equation (17) in place, it is a relatively straightforward 
matter to obtain an analogue of the postmortem probability 
when the classification of anomalies is imprecise, as 

P(YeA\X;u.A(y)) 

1 E i+ MiOO xPiyiA) 
PA<y)      Piy e A) 

P(Y = y\X), (18) 

where for convenience the subscripts associated with all the 
Ps have been omitted. The key difference between Equa- 
tions (17) and (18) is in the last term. The former entails an 
unconditional probability for Y; the latter, a conditional 
probability that Y reveals itself as y, given X, the dispo- 
sition of an item's status—surviving or failed. Note that 
P( Y — y | X) is like the postmortem probability of Sec- 
tion 3.1, save for the fact that Y can now take a range of 
values y, instead of it being zero or one. 

To assess an item's survival probability were an impre- 
cisely specified anomaly to be declared as Y € A, we con- 
sider the analogue of Equation (13). Specifically, we have: 

P(X = 1\Y e A;H) ex P(Y e A \ X = \;u--A{y))xp, 
(19) 

where the middle term is given by Equation (18), and as 
before, p is our prior probability that (X = 1). 

5. A reason to believe 

Sections 3 and 4 required of us the specification of a con- 
ditional probability P( Y = y \ X = x; ft) and the member- 
ship function fiA(y), y e [0, M], as a way of dealing with 
vagueness and anomalies. What if vagueness and other rea- 
sons create an unwillingness to specify the conditional prob- 
ability but a willingness to specify a marginal probability 
P{Y = y;ft)1 

The notion of "belief" was introduced by Dempster 
(1967) as a way of dealing with such partial specifications. 
Dempster's development is articulated via a key feature of 
axiomatic probability theory, namely, that in order to in- 
duce probability measures from a probability measure space 
to another measure space it is necessary that the mapping 
from the former to the latter be a many-to-one map. As an 
example, a random variable is a many-to-one map. Conse- 
quently, its probability distribution function can be induced 
from the probability measure space on which the random 
variable is defined. When the mapping is a one-to-many 
map—as is the case with our anomaly (see Fig. 2)—the in- 
duced measure will no more be a probability measure. For 
a more detailed appreciation of this argument, we refer the 
reader to Wasserman's (1990) excellent exposition; parts of 
it are reproduced in the Appendix. The induced measure not 
being a probability measure, alternate labels for it become 
germane. Dempster's choice of a label is Basic Probability 
Assignment (BRA). 

With respect to the problem at hand, suppose that we are 
able to elicit personal probabilities of the type P( Y = y; ft), 
y = 1 or 0, as pa and (1 — pa) respectively. Given />a, and the 
mapping of Fig. 2, how may we describe our uncertainty 
about the survival (or failure) of the item to time f ? That 
is, how may we express our uncertainty about the event 
(X = x) for x = 1 or 0? 

The "belief function" approach of Dempster starts by 
noting that the mapping from Y=y to X = x is a one-to- 
many map. In particular, if T denotes the mapping from the 
r-space to the Z-space, then r(Y = \) = {X = \, X = 0}. 
That is, the singleton (Y = 1) maps into the set {X = 1, X = 
0} via the map T; in other words, I' is a set-valued map, 



20 Singpurwalla and Wilson 

similarly with r( Y = 0). However, in order to make the 
essence of our development more transparent, we suppose 
that r(7 = 0) = {X = 1). This means that the absence of 
an anomaly is tantamount to the item's success. In other 
words, the mapping from Y = 0 to the .Y-space is a one-to- 
one map. Consequently, in Fig. 2, the arc joining the nodes 
(Y = 0) and {X = 0) needs to be removed. 

With the above in place, the next step in the development 
of the belief function approach is to induce measures of un- 
certainty from the Y-space to the A'-space. Recall, that it is 
only the 7-space that has been endowed with probability as 
the measure of uncertainty. Since the A'-space has only two 
elements, {X = 1) and (X = 0), T(X), the measure space 
(i.e., the set of all sets) generated by X, has four elements, 
namely: 

T{X) = Ifoh [X=l),{X = 0),{X=l,X = 0}}. 

With F(Y=l) = {X=l,X=0} and r(7 = 0) = (* = 
1), the induced measure, say m, on F(X) will be of the 
form: m(<p) = 0, m{X = 1) = P(Y = 0) = 1 - p&, m{X = 
0) = 0andm{A'= 1, X = 0} = P(Y = 1) =pK. Recall that 
in Dempster's terminology, the w(»)s constitute a BPA. It is 
easy to verify that m possesses the following two properties: 
m(<f>) = 0, and for F e F(X~), 7L,FSJ-(X) 

m(F) = ' • However, 
m is not countably additive and thus is not a probability 
measure. To make m a probability measure we should be 
prepared to apportion pa between the events (X — 1) and 
(* = 0). 

Once the BPAs are in place, the belie/function induced 
by the map F on F(X) is defined , for any F,G e J-(X) as 

bel(F> = £>(G)> 
(7CF 

and bel(F) is then considered as a quantified measure of 
uncertainty about F. Thus for our problem at hand be\(X = 
1) = l - p„ whereas bel(A' = 0) = 0; also, be\{X = 1, X = 
0} = 1-/V 

Dempster has also introduced the dual of the belief 
function, called the plausibility function, where for any 
F e f{X): 

p\(F) = 1 - belCO; 

Fc is the complement of F. For our problem at hand p\(X = 
1) = 1, whereas p\(X = 0) = /?a. 

To make these ideas operational, that is, to make a prag- 
matic use of them, we need to interpret bel(») and pl(»). 
Using bets, bel^ = 1) is the most you are willing to pay 
for a bet on (X = 1): if bel(X = 1) = 1 — pa, you are will- 
ing to pay at most 1 — p& to receive one monetary unit if 
(X = 1). p\(X = 1) is (1—the most you are willing to pay 
for a bet on (X = If): if p\(X = 1) = 1, you are not willing 
to pay anything to bet on (X = l)c = (X = 0). However, as 
pointed out by a referee, Walley (1991) has argued that it is 
misleading to interpret the belief and plausibility functions 
as betting rates. 

5.1. Summarizing "beliefs" 

By way of a closure, we claim that the notion of belief, or its 
dual plausibility, comes into play when joint probabilities of 
the type P( Y = 1, X = I; W) cannot be elicited, and when 
the marginal probabilities of the type P(Y = \;H) = p& 
cannot be apportioned in a one-to-many map. Intuitively, 
the uncertainty measure bel(») seems reasonable; it can be 
seen as a lower bound on probability. When the mapping 
under discussion is a one-to-one or a many-to-one, belief 
and probability agree, and thus the belief function will obey 
the rules of probability. We may conclude by saying that 
there is a price to be paid for not being able to elicit the 
required conditional probabilities, and the price is to for- 
sake the notion of probability and its accompanying virtues. 
Dempster has also proposed rules for combining uncertain- 
ties, the details about which can be found in Shafer (1976) 
or in Wasserman (1990). 
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Appendix 

Belief and plausibility 

In order to gain an appreciation of the notion of "belief" 
and its dual "plausibility," it is best that we start off with a 
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look at the essentials of how to measure theoretic probabil- 
ity. This we do below via the following seven steps, each of 
which serves as a prelude to the next step. We assume of the 
reader some familiarity with these steps. From Step 8 and 
onwards, our discussion highlights arguments necessary to 
motivate the notions of belief and plausibility. 

Step 1. Let (ft, -F(ft), a) be a probability measure space, 
with co as an element of ft, and it assessed for all 
members A of J"(fi). 

Step 2. Let (X, T(X)) be some measure space with x as 
an element of X. This is our space of interest. 

Step 3. Let B c X; since F(.X) is a a -field generated by 
X,Bt f(X). 

Step 4. Our aim is to endow the space (X, F{X)) with a 
measure that encapsulates our uncertainty about 
any B, where B c X, or about a singleton x, where 
x e X, should X have countable elements. Ideally, 
our measure of uncertainty should be a probabil- 
ity. 

Step 5. The measure that we endeavor to endow 
(X, T(X)) with, should bear some relationship to 
the measure /A. This is because we have been able 
to assess probabilities on the space (ft, .F(ft)); i.e., 
we are prepared to place bets only on members of 
•Hft)- 

Step 6. In order to be able to do the above, we should 
connect the spaces (ft, -7-"(ft), /z) and (X, T(X)). 
This connection can be made in several ways, two 
of which are indicated below: 
(i) a mapping from ft as the domain, to X as the 

range, or 
(ii) a mapping from ft as the domain, to T{X) as 

the range. 
Step 7. The standard approach is 6 (i) above; this is what 

leads us to the notion of a real-valued random vari- 
able, say Z. 

Specifically, we take X to be the real line 
R, or a countably infinite set of integers / = 
{0,±I,±2,...}, or a countably finite set of 
integers IN = {0, ±1,..., ±N). When X = K, 
T{X) = B(X)—the Borel sets of R. When X = IN, 
then T{X) is the power set of IN- 

Suppose that X = K. Then Z is a mapping with 
domain ft and range R. Furthermore, Z is a many- 
to-one map from i2 to R. Specifically, for every a> g 
ft, there is one and only one Z(co), and Z{a>) € R. 
However, we do allow for the possibility that for 
any two (or more) coi, coi e ft, Z{co\) == Z{coi). 

Now, a (fortunate) consequence of the many- 
to-one map Z is that such a map is able to induce 
a probability measure, say a*, on (X, ^(X)) (or to 
put it more correctly on (R < ^"(R))). Specifically, 
for any a e R, the set (Z(co) < a) e TiX), and 

u.*{Z(w) < a) = u.{u> € ft : Z(o) < a), 

is a probability measure of the set (Z(w) < a). 
Consequently, we now have a probability measure 
space (X, T(X), u.*) in addition to our original 
probability measure space (ft, ?(&), it). 

Thus with a many-to-one map, we are able to 
describe our uncertainties about events of interest 
in ^(X) via a probability /x*, with it* being based 
on fi. 

Step 8. Suppose now that the connection between the 
spaces («, T(Sl), fi) and (X, T(X)) is established 
via a mapping r whose domain is Q (as before) 
but whose range is T(X) instead of X. That is, 
SlT^-F^X). More specifically, for every w e Q., 
r(w) = B, where B e T(X). 

If we assume that the above mapping is many- 
to-one, in the sense that every co e ft gets mapped 
to one and only one set B (where B may or may 
not be a singleton), then this mapping is known as 
a many-to-one set-valued map. When such is the 
case r is also able to induce a probability measure, 
say M", on the space (F(X), T^X)), ii"), where 
T(F(X)) is a a -field of sets generated by T{X). 
Consequently, for any set C e ^(^(X)): 

u"(Q - u.{co e ft : V(w) = C). 

Thus, to summarize, a many-to-one set-valued 
map is also able to induce a probability measure 
u,** on the space (F{X), ^(^[x))), assuming that 
the latter space is of interest to us. But what about 
the space (_X, T{X))1 This after all, is our space of 
interest. 

Step 9. The fact that r is a many-to-one set-valued map 
on ^F(X) is tantamount to the fact that T is a many- 
to-many point-valued map on X. In particular, if 
X = R and T(X) = B(R), then r is a many-to- 
many real-valued map on R. Consequently, for 
every weft, F(co) can take any and all values 
in an interval, say X, where X e B(R). Inducing 
a probability measure on I or any subset of I 
boils down to smearing /x(<u), the probability mea- 
sure on co, over I. How should this measure be 
smeared? What if one is unwilling to specify a 
strategy for smearing (or distributing) u.(a>) over 
J? When such is the case we are unable to induce a 
probability measure from the space (ft, ^(ft), u.) 
to (X, T(Xy). As a consequence, an alternative 
measure called plausibility, abbreviated pl(»), has 
been proposed on F(X). But before examining 
pl(»), it may be useful to better articulate this mat- 
ter of smearing u.(co) by looking at a special case 
of I, namely an 1 consisting of a countable num- 
ber of elements, say two; denote these by {xi, X2}. 
Suppose that r ' {x\, x2] = co; then u.(co) is the in- 
duced probability measure of {x\, x2\. However, 
to induce a probability measure on x\ or x2, we 
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need to split (apportion) fj.(co) in some logical and 
meaningful manner. 

To summarize, whenever the map connecting 
two measure spaces is a many-to-one set-valued 
map, or a many-to-one point-valued map, a prob- 
ability measure can always be induced from the 
domain space to the range space. Probability mea- 
sures cannot be induced when the mapping is a 
one-to-many, or a many-to-many, point-valued 
map, unless additional assumptions are made. 
When such assumptions cannot be made, a com- 
promise has to be struck and upper and lower 
probabilities enter the foray of uncertainty assess- 
ment. These are discussed below. 

Step 10. Consider the subset B of X. Suppose that there 
does not exist an induced probability measure 
from ($2, F(Q.), p.) to B. That is, fi and co e Si, 
such that r(a>) = B. 

Now consider a set C e f(JF{X)) with the fea- 
ture that C n B ^ <f>; suppose that C is the only 
set in F{F(X)) that intersects with B. Since C e 
T(T{X)), M"(C) is known. Let cox, cm co„ be 
such that V((Ot) — C, i—\ n. Then, the plau- 
sibility of B, denoted pl(B) is the (probability) 
measure pl(#) = n\co\,..., to,,}. Alternatively put 

pl(B) = p.{u> a Q; r(w) = C and B n C f- <p}. 

The above expression generalizes when more than 
one set intersects B. For example, suppose that 
B n Q # 4>, for i = 1,..., fc, with C, e .F(.F(.Y))- 
Then: 

pl(5) = /^{w e fi; r(«) = C, and 
BDQ^cb, i=\ A:}. 

Since there are several sets C,- that intersect with 
B, there are overlapping cos in the definition of 

pl(S). Consequently, it is also called an "upper 
probability." 

Step 11. A notion dual to pl(«)    in a sense to be explained 
later—is bel(»); here 

\xl(B)=n{o> e S2,r(co)=Ch C, c B, i=l, .*}. 

Bel(£) is a lower probability, with 0 < bel(#) < 
pl(B) < 1. Also, bel(fl) = 1 - pK^). 

The measures pl(») and bel(») are not probabil- 
ity measures in the sense that: 

bel(A UB)> bel{A) + bel(5); 

i.e., because of an overlap of cos, bel(») is super- 
additive. 
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Summary 

The state of the art in coherent structure theory is driven by two assertions, both of which are 
limiting: (1) all units of a system can exist in one of two states, failed or functioning; and (2) at 
any point in time, each unit can exist in only one of the above states. In actuality, units can exist in 
more than two states, and it is possible that a unit can simultaneously exist in more than one state. 
This latter feature is a consequence of the view that it may not be possible to precisely define the 
subsets of a set of states; such subsets are called vague. The first limitation has been addressed via 
work labeled 'multistate systems'; however, this work has not capitalized on the mathematics of 
many-valued propositions in logic. Here, we invoke its truth tables to define the structure function 
of multistate systems and then harness our results in the context of vagueness. A key contribution 
of this paper is to argue that many-valued logic is a common platform for studying both multistate 
and vague systems but, to do so, it is necessary to lean on several principles of statistical inference. 

Key words: Consistency profile; likelihood function; membership functions; reliability; probability; 
maintenance management; natural language; degradation modeling; decision making and utility. 

1 Introduction and Overview 

The calculus of coherent systems, innovated by Birnbaum et al. (1961) has served as av 

mathematical foundation for a theory of systems. Here, one explores the effect that a system's 
components have on the system. The bulk of the effort, however, has been devoted to the case 
of binary states with precise classification. That is, the components and the system can (at any 
point in time) be in one of two unambiguously defined states, functioning or failed. In actuality, 
items can function in degraded states, and these could be a discrete set or a continuum of states. 
An example of the former is a load-sharing system, like a transmission line for power with r 
strands. As the strands break, the rope transitions from its ideal load carrying capability to its 
complete disintegration (Smith, 1983). An example of the latter is a precipitator for reducing air 
pollution whose cleaning efficiency ranges from (almost) 100 to 0% (Matland & Singpurwalla, 
1981). Systems that can exist in more than two states are called multistate systems. 

There are two interrelated aims to this paper. The first is to contribute to the mathematics 
of multistate systems with precise classification via many-valued logic. To set the stage for 
this, we overview some key notions and results in the reliability theory of binary systems. 

© 2008 The Authors. Journal compilation © 2008 International Statistical Institute. Published by Blackwell Publishing Ltd, 9600 Garsington Road, 
Oxford OX4 2DQ, UK and 350 Main Street, Maiden, MA 02148, USA. 
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Section 1.2 is archival; however, Section 1.3 is current in the sense that it incorporates the view 
that, when discussing system reliability, one needs to distinguish between probability (which is 
personal) and propensity (which is physical), and that the assumption of the independence is 
conditional upon propensities. The second aim of this paper is to argue that multivalued logic also 
provides a framework for assessing the reliability of binary or multistate systems with imprecise 
classification. Imprecision (or vagueness) is articulated in Section 1.4; Section 1.5 is a guide to 
the rest of this paper. 

1.1 Preamble: Notation and Terminology 

Consider a system with n components. The system and each of its components can exist in 
several states in <S C [0, 1]. Let Xi,i = I, ... , n denote the state of component / at time r > 
0, and denote X = (Xi, ... , X„). Binary systems are those for which S — {0, 1}, where 1 (0) 
denotes a functioning (failed) state. The state of the system is a function of X, called the 'structure 
function'. We denote by <£(X) the structure function for a binary system. The structure function 
for a system with multiple states will be denoted by \J/(X). We assume that the component and 
system states belong to the same set <S; e.g. Xt e <S and 0(X) e S. However, it is possible that 
the Xj 's belong to [0,1] whereas 0(X) can only take values in {0,1}. 

1.2 The Calculus of Binary Systems with Precise Classification 

The following is an overview of the calculus of binary systems (Barlow & Proschan, 1975); 
we generalize this construction in Sections 3 and 4. Let S — {0, 1} with Xt = 1 (0) if component 
/ functions (fails), i = 1 n; similarly, 0(X) : Sn -» S equals 1 (0) if the system functions 
(fails). 0 is a binary coherent system if (1) <j> is non-decreasing in each argument of X, and (2) 
each component is relevant. Examples of binary coherent systems are a series system, a parallel 
redundant system, and a A-out-of-n system. The dual of a binary coherent system <p(X) is defined 
as <j>D(X) =\-<f>{\~ X), where 1 - X = (1 - Xu 1 - X2,..., 1 -Xn). Any binary structure 
function $ with n components can be decomposed as $(X) — X, <j>{\i, X) + (1 — Xi) 0(0,-, X), for 
allX, i = 1 ft; this is later referred to as the pivotal decomposition. The following notation, 
definitions and theorems are conventional (Barlow & Proschan, 1975): 

X-Y = (Xi.YuX2-Y2,...,Xn-Ynl 

XUY = (X]UY], X2UY2, ...,XnU Y„), 

where** U Yt = 1 - (1 - A^)(l - Yt)ti = 1, 2,... , n. 

THEOREM 1: For any binary coherent system 0, 0s(X) = H^i x> ^ 0P9 < ]A"=i %i = 
MX). 

THEOREM 2: For any binary coherent system </>, 

</>(XLIY)>0(X)Ll«KY) (1) 

and 

0(X • Y) < 4>(X) • </>(¥), (2) 

with equality holding in equation (1) (equation 2) if and only if the structure function <p is 
<pp(<ps)- Proofs of Theorems 1 and 2 can be found in Barlow & Proschan (1975). 

International Statistical Review (2008), 76,2,247-267 
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1.3 Reliability of Binary Systems 

Suppose that the Xt 's are exchangeable, and that/?, is the propensity of Xi being 1; that is, /?, = 
lim^oo rc' ' [cf. Lindley & Singpurwalla (2002) or Spizzichino (2001)]. Then, conditional 
on pi, our subjective probability thatX* = 1 ispt, i = 1,..., n. Unconditionally, P(Xj = 1) = 
/o Pin(Pi)dpi — E(/>;), where 7r(/>,) encapsulates our uncertainty about the propensity/?,; i.e. 
n(pi) is our subjective probability of/?,-. The notions of propensity and subjective probability are 
articulated in de Finetti's theorem on exchangeable Bernoulli sequences; see Lindley & Phillips 
(1976). 

Much of the literature on the reliability of binary coherent systems is conditional on/?,-. An 
exception is Lynn et al. (1998), in which the analysis is based on averaging outpi pn with 
respect to a joint distribution. 

Conditional on p = (p1;... ,pn), the reliability of the system is a function of p, say /z(p), but 
only if them's are (conditionally) independent; i.e. (1) given p = (p\,P2, • • • ,pn),Xt and^Q are 
independent, V i jtj, and (2) givenpt,Xt is independent ofpj, V^' -£ i. Consequently, P(<p(X) — 
l|p) = £0KX)|p) = A(p). 

Analogues of the pivotal decomposition and Theorems 1 and 2 follow, asserting that the 
reliability of any binary coherent system is bounded below (above) by that of a series (parallel) 
system, if the Xt 's are conditionally (given p) independent, and redundancy at the component 
level is superior to redundancy at the system level when the systems are connected in parallel; 
vice versa if in series; see Barlow & Proschan (1975). 

1.4 Vaguen ess or Imprecision 

For purposes of discussion, consider a generic element of S = [0, I], say x. At any point, we 
may be able to inspect the system and declare that ^(X) = x. If we are able to place this x in a 
well-defined subset of S, then we say that the states of the system can be classified with precision. 
There are scenarios, however, where the identification of a state can be done unambiguously, but 
the classification cannot; this is the case of classification with 'vagueness'. 

In the context of coherent systems, vagueness is not synonymous with uncertainty of 
performance. Uncertainty of performance is lack of knowledge about the future state of the 
system, e.g. will the system be functioning 5 hours from now? Vagueness pertains to uncertainty 
about classification, i.e. an inability to place any outcomes in a subset of S because the boundaries 
of the subset cannot be sharply delineated. Some examples illustrate this point. 

Suppose that S = {0,1,..., 10}, with each element representing a state in which the system 
can exist, ranging from the ideal at 10, to the undesirable at 0. Then what is the subset of 'good 
states' in S? This subset is not well defined; for example, is 7 a good state? If S were to be 
partitioned into 'good' and 'bad' states, such partitioning being a feature of natural language 
(Zadch, 1965), would 5 qualify as a good state or a bad state? More likely, 5 qualifies as both 
a good state and a bad state. Thus if V(X) = 5, then the state of the system is simultaneously 
good and bad. As another scenario, consider an automobile that has 3000 miles on it. Should 
this automobile be classified as a 'new' or a 'used' car? The question of classification arises in 
the contexts of setting insurance rates, taxation and warranties. The subset of miles that go into 
classifying a car as being 'new' is not sharply defined; it is imprecise. Most cars sold as being 
new have anywhere from 20 to 100 miles—perhaps even more—on them. In actual practice, 
decisions are often made on the basis of vague knowledge that is relevant, e.g. decisions about 
health care, maintenance and replacements (see Section 6). As another illustration, medical 
treatments are based on classification of 'high blood pressure' or 'bad cholesterol,' and such 
classifications fluctuate due to the subjectivity of interpretation between 'good' and 'bad'. The 
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philosopher Black (1939) gives examples from other sciences. Of historical note is the famous 
example of Schrodinger's Cat [cf. Pagels (1982), p. 125] from quantum physics. Schrodinger's 
thought experiment pertains to a cat in a sealed radioactive box in outer space which, according to 
one school of thought, is simultaneously alive and dead. Examples from the statistical sciences 
wherein vague knowledge is relevant are most likely to arise from the behavioral and social 
contexts, such as inferences based on political polling, and medical decisions based on a quality 
of life questionnaire (Cox et ai, 1992), wherein responses almost always tend to be vague. 

The existing theory of both binary and multistate coherent systems with precise classification 
as its underlying premise is unable to deal with the types of scenarios mentioned above. Some 
other concerns have been voiced by Marshall (1994). One idea, namely to classify states by more 
than one criterion, precedes ours and we applaud him for this foresight; it makes a case for 
the viewpoint espoused here. 

1.5 Overview of Paper 

In Section 2, we give a synopsis of many-valued logic to include its connectives of negation, 
conjunction, disjunction, implication, and equivalence. In Section 3, we extend the material of 
Section 1.2 to the case of multistate systems; i.e. for those components and systems where <S 
consists of more than two elements. Here, we invoke Lukasiewicz's (1930) many-valued logic to 
define the structure function of multistate systems, and arrive upon results that are in agreement 
with those currently available. The material of Section 3 serves two purposes. One, it shows how 
many-valued logic provides a common platform via which the material on multistate systems 
can be seen. Second, it sets the stage for developing the material of Sections 4 and 5, which is 
entirely new. A use of many-valued logic is unlike that used by Baxter (1984), El-Neweihi et al. 
(1978) and Griffith (1980), whose development centres around binary logic. 

Sections 4 and 5 pertain to the scenarios wherein the classification of component and system 
states is vague. In both sections, S consists of two vague subsets, and these serve as an analogue 
to binary state systems with precise classification. A key tool here is the 'consistency profile' 
introduced by Black (1939). Zadeh's (1965) 'membership function' parallels the notion of a 
consistency profile. The harnessing of Lukasiewicz's many-valued logic with Black's consistency 
profile provides a vehicle for the treatment of vague coherent systems. To do so, however, we 
need to lean on aspects of statistical inference and the statistical treatment of expert testimonies. 

Section. 6 relates the material of Sections 4 and 5 to decision making in maintenance 
management using natural language. Section 7 concludes the paper. 

2 Many-valued Logic: An Overview 

Binary logic, upon whose foundation the theory of coherent structures has been developed, 
pertains to propositions that adhere to the 'Law of Bivalence' (or the 'Law of the Excluded 
Middle'): all propositions are either true or false. Lukasiewicz (1930) recognized the exis- 
tence of propositions that can be both true and false simultaneously, and thus modified the 
calculus of binary propositions to develop a calculus of three-valued propositions. Alternatives 
exist to Lukasiewicz's three-valued logic; however, for us, Lukasiewicz's proposal is most 
appealing. 

It is important to distinguish between the calculus of probability and the calculus of 
three-valued logic. Probability pertains to the quantification of uncertainty about events (or 
propositions) that adhere to the Law of Bivalence. Thus we have, as a part of the calculus of 
probability, the axiom of additivity. On the other hand the calculus of many-valued logic is based 
on a rejection of the Law of Bivalence. The two are therefore different constructs. 
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Table 1 
(a) Truth Table for Lukasiewicz s Y A z. (b) Truth Table for Lukasiewicz S Yv Z. 

YAZ 
Values of 

Proposition Z YvZ 
Values of 

Proposition Z 

0 1/2 ! 0 1/2              1 

Values of                   0 
Proposition Y            1/2 

1 

0 
0 
0 

0 
1/2 
1/2 

0 
1/2 

1 

Values of 
Proposition Y 

0 
1/2 

1 

0 
1/2 
1 

1/2              1 
1/2              1 

1                1 

Consider two propositions Y and Z, each taking one of three values: 0, | and 1. The negation 
of Y is Y' = 1 — Y, as proposed by Lukasiewicz (1930). When the proposition Y takes the value 
1 (0) in a truth table, it signals the fact that the proposition is true (false) with certainty. Values 
of Y intermediate to 1 and 0 signal an uncertainty about the truth or the falsity of Y. The value 
j is chosen arbitrarily for convenience; any value between 0 and 1 could have been chosen. The 
other logical connectives in the three-valued logic of Lukasiewicz are conjunction, disjunction, 
implication and equivalence, denoted (Y A Z), (Y V Z), (Y -> Z) and (Y = Z), respectively. 
The truth tables for the first two are given in Table 1, and we refer the interested reader to 
Malinowski (1993) for further details. Generalizations from the three-valued to the many-valued 
case to incorporate propositions that are true or false with various degrees of uncertainty are 
straightforward. 

3 Invoking Many-Valued Logic for Multistate Systems 

3.1 Introduction 

The aim of this section is to generalize the case of binary systems with precise classification 
to systems that can exist in multiple {m + 1 with m > 1) states. The states are labeled *-,j = 
0, 1, 2,..., /n,with 1 representing a perfect state and 0, the state of total collapse. The intermittent 
states of degradation range from ^^ to i where -i is the state which is penultimate to the total 
failure of the system. Thus, the range of states now takes the form <S = {£; j — 0, 1, 2,..., m] 
and, by allowing m to be infinite, we are able to consider a continuum of degraded states, in 
which case, S C [0, 1]. With S so defined for both the components and the system, what would 
be the meaningful choices for the structure function when the system has a series, parallel, or 
&-out-of-« architecture? 

In the past, several proposed definitions of multistate systems have been made. An overview 
of these is in El-Neweihi et al. (1978) and in Baxter (1984), which to the best of our knowledge 
represents the latest endeavors. Considering the fact that these papers appeared over 20 years 
ago, one may sense that a satisfactory answer to the above question is available. This may not be 
true, however, because all the proposed approaches reduce to a representation in terms of binary 
states and, thus, an adherence to binary logic. As an example, Baxter (1984), following Barlow 
& Proschan (1975), defines the structure function of a multistate system in terms of the system's 
'min-path' and 'min-cut' sets, notions which can have an interpretation only within the context 
of binary systems. By contrast, our proposal here is to use Lukasiewicz's many-valued logic as 
a basis for defining the structure function of multistate systems. 

Lukasiewicz's motivation for introducing a third value, namely |, and his calculus of three- 
valued logic was prompted by an uncertainty about the truth or the falsity of a proposition. The 
number \ did not reflect—in any sense—-a degree of uncertainty. Whereas Lukasiewicz did not 
appear to have any motivation for his many-valued logic other than the need to generalize, the 
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degree of uncertainty interpretation provides a vehicle for extending the three-valued logic. With 
this in mind, we may ask whether Lukasiewicz's calculus can be directly imported to the scenario 
of multistate systems when the degraded states can be specified with precision? Our examples 
of Table 1 illustrating the three-valued logic suggest that this can be done. More importantly, our 
results are consistent with those given in El-Neweihi et al. (1978). Consequently, the Lukasiewicz 
logic can be seen as providing a rationale for the existing results on multistate systems, a rationale 
that has been missing. 

3.2 Definition and Structural Properties 

LetXi denote the state of component i, i = 1,..., n, and ty = i>(X) the state of the multistate 
system ;X — (XU... ,Xn). Them's and i/r(X) take values in «S = {£,j =0,1 m). 

Definition I: (Griffith, 1980) \jr is a multistate coherent system if 

1. \}f is non-decreasing in each argument of X, 
2. for each i= 1,2,... ,n, there exist states 0 < a, < 6/ < m and a state vector (•,, X) such 

that 

<M<*(H; 
that is, each component is relevant, and 

3. V(-) = - where L = (L L \m    l\ 

Properties 1 and 3 of Definition 1 are consistent with those of Barlow & Wu (1978), El-Neweihi 
et al. (1978) and Natvig (1982). Property 2 generalizes the notion of relevance. 

To use the logic of many-valued propositions for multistate systems, it is necessary to order 
the state vector X. Since each Xt e {„,j — 0,1,..., m), we order them's by the values they 
take. Specifically, let 0 < Xi\:n) < X(2M) < • • • < XQM) < •• < X(n-.n) < 1 denote the ordered 
vectors, i.e. X^„) is the weakest of all the n components and X^nn^ the strongest. Consequently, 
from Table 1(a), the structure function of a series system is ifrs — min,- Xt = X^:„y, that is, 
the performance of a multistate series system is no better than the performance of its weakest 
component. If n = 2, and if each Xt can take only three values {0, \, 1} with - denoting the 
degraded state, then Table 1(a) with Y A Z replaced by V'sOO and Y (Z) replaced by X\{X{) 
gives us a table for the states of the system, given the states of the components. Figure 1(a) 
displays the state of </>s(X) — <j>s{X\, X2) when X\ and^G take binary values, 0 and 1. In contrast, 
Figure 1(b) shows the behaviour of i/sOQ when X\ and.^ are allowed to take all values in the 
unit interval, showing the effect of continuously degrading components on the structure function. 
Clearly, ^s(X) provides more granularity than <fo(X). 

For a parallel redundant system, ifp(X) — max tXi = X(„„y, see Table 1(b). This suggests that 
the performance of a multistate parallel system is no worse than the performance of its strongest 
component. In the three-valued case, the entries of Table 1(b) provide us with a table for the 
states of the system given the states of the components, when n — 2. The state of <pp(X) when 
X\ and X2 take binary values, 0 and 1, is displayed in Figure 2(a). In contrast, Figure 2(b) shows 
the behaviour of\jfp(X) when X\ andX? take all values in [0,1]. Again, iffp(X) provides more 
granularity than ^>^(X). 

For multistate ^-out-of-n systems, we define ^K(X) = X(„-k+\:n)', this definition ensures 
consistency among systems, i.e. n-out-of-n systems are denoted irs(X) and l-out-of-/i systems 
are denoted irp{X). Interestingly, our set-up and definition of a multistate coherent system 
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0.1,0 (i.i.D 

*s(W> 
%{xvx2) 

(0.1,0. 

(1,0.0) 

(0.0,0) 

(a) 

Figure 1. (a) Two-component binary system, 0s(X). (b) Two-component system, ^s(X), with continuously degrading 
components. The coordinates are labeled (X\, Xj, <f>s{X)) and {X\, X2, <l's(X)), respectively. 

(l.l.l) 

#w: 
(0.1.1) 

w.^)„ n.0,1) 

(o.o.o) X[ 

(a) (b) 

Figure 2. faj Two-component binary system, $p(X). (b) Two-component system, ifrp(X), with continuously degrading 
components. The coordinates are labeled (X\,X2, 0/>(X)) and (X\, X2, \frp(X)), respectively. 

permits the definition of a dual of a binary coherent system to hold. The dual of a £-out-of-« 
system is V^(X) = uV(„_t+i:n)(X), an (n — k + l)-out-of-n system. 

In Lemma 1, the pivotal decomposition for binary structure functions is generalized for (m + 
1) precise categories through consideration of their associated indicator variables. 

LEMMA 1: The following identity holds for every n-component multistate structure function x/s 
with precise classification: i/r(X) = ]C7=o ^r[(^)i"> X\I[x,=i-\->for ' = '> • • • > n where \x=^-\ = 

1(0) if Xi - iiXt * i).   , 

Proof. Any multistate structure function, V(X) can be decomposed into a representation that 
considers the f-th component separately from the remaining (n — 1) components. In particular 
for the multistate component, Xi takes only one value from {0, JJ, ~, • • •, ^jd-, 1} The result 
follows. 

Theorems 1 and 2 of Section 1 can be generalized for multistate coherent systems. To do so, 
we introduce the following additional notation. For X = {X\,..., X„} and Y = {Yi,... ,Yn}, 
X < Y ifXj < Yi for each i — 1,..., n. As 8 generalization of Theorem 1, we have: 
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THEOREM 3: Let iff be a multistate coherent system of order n; i.e. ty has n components. Then 
X0:n)<f(X)<Xin;n). 

THEOREM 4: Let \jf be a multistate coherent system of order n. Then 

^(XvY)>f(X)vf(Y), (3) 

and 

f(XAY)< tfr(X) A ^(Y). (4) 

The equality in (3) and (4) hold for all X and Y if and only if the system's architecture is parallel 
and series, respectively. 

Thus, for a multistate coherent system, equation (3) reiterates the result that, structurally, 
component-level redundancy is superior to system level redundancy, and vice versa in equa- 
tion (4). Theorems 3 and 4 and Lemma 1 are also in El-Neweihi & Proschan (1984). They are 
stated here for completeness. 

Since X^-„) — ^s(X) andX(„:„) = isp(X), we have the result that the structure function of 
any multistate coherent structure is bounded by the structure functions of multistate series and 
parallel systems. 

3.3 Multistate System Reliability under Precise Classification 

Suppose that the component state vectors X\, ... , Xn are (conditionally) independent and 
identically distributed with P{Xt = £• | Pj+\) = Pj+\, fori= 1,... ,«andy' = 0,..., m, where 
Pj+i > 0 and X!T=o A/'+i — 1- That is, each Xt has a multinomial distribution over [~',j — 
0,1, 2,..., m} with parameter pj+\, j = 0,..., m. Let p = (p\,..., pm+\). Clearly for each 
j, P(ifr(X) — J-) depends on p alone, since the Aj's are assumed to be conditionally (given p) 
independent. Thus, we let P(i(r(X) = — | p) = hj(p), where hj is some function of p. Suppose 
that the architecture of tfr is a (n — k + l)-out-of-« system. Then 

hjffl = P (V«-*+i(X) = I 

Example 1: Let m,n — 2. Therefore, we consider a two-component system with three possible 
states: total failure (0), degradation (|), and perfect functioning (1), with associated probabilities 
P\,p2, and pi, respectively. Then, the probability that the parallel system is totally failed is 
ho(p) — P(ifp(X) = 0 | p) = p\. i.e. the parallel system is totally failed when all its components 
are totally failed. The probability that a series system totally fails is /JO(P) = P(^s(X) = 0 | 
p) = 2pi/?2 + 2/>i/?3 -I- p\\ thus, a series system fails completely when at least one component 
is totally failed. 

When X\,..., Xn are independent but not identically distributed, we may generalize the above 
properties by introducing P(Xt — -L \ ptJ+l) = pijJtX, j — 0,..., m where for each ;', pij+, > 0 
and 527=0 P'j+i ~ * • ^e define ps = (p«,,..., p/„+I) to be the reliability vector associated with 
the i-th component and p = (pi, • • • , pn)- Given the conditional independence of the X§% a 
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(n — k + l)-out-of-n system has 

i;(p) = ?L+!(X)=J 
P m 

=£(n£>)(n !>.)-£( n x>)( n E'4 
a     \iey. 6=1        / \/eJrj6=y+2       / a     \ .€(7-1). 6=1       / \ie(J-l)i 6=y+1       / 

where Ja is the subset of (1, 2, ..., n) where at least lc components are performing within level 
j- and J'a is the complement of/fl. Similarly, (J — l)a is the subset of (1,2,... ,n) where at least 
k components function within level ^— and (J — \)'a 'a is the complement of (J — l)a. 

Lemma 2 provides the pivotal decomposition for the reliability function, A,(p). 

LEMMA 2: The following identity holds for the pivotal decomposition of hj(p): 

Pi.u. for j = 0,...,m;i = l,...,n, (5) Mp)=y>y (-) -p 

wtere A, [(£),, p] = P(^(X) = ± \Xt = £, p). 

Proof. Follows from the Law of Total Probability. 

4 Components with Imprecise State Classification 

Binary state systems with precise classification were overviewed in Section 1.2, and the 
concept of vagueness introduced in Section 1.4. Sections 4 and 5 serve to combine these two 
notions to develop a mechanism for the treatment of vague coherent systems, with Section 4 
devoted to the case of components in vague states, and Section 5 to the case of coherent systems 
in vague states. 

The terms 'coherence' and 'vagueness' may seem contradictory; however, they do not pertain 
to the same object. The first is associated with the truth values of logical connectives, whereas 
the second pertains to the partitioning of a set into subsets. We start with some background on 
vagueness and then discuss approaches for quantifying it. 

4.1  Vagueness: General Background 

Vagueness has been discussed by philosophers like Bertrand Russell, and by physicists like 
Albert Einstein. To Russell (1923), 'all language is more or less vague' so that the Law of the 
Excluded Middle 'is true when precise symbols are employed but it is not true when symbols 
are vague, as, in fact, all symbols are.' Black (1939) recognized the inability of binary logic 
to satisfactorily represent propositions that are neither perfectly true nor false. He attempted to 
rectify this by analyzing the concept of vagueness in order to establish an 'appropriate symbolism' 
by which binary logic can be viewed as a special case. Unlike Lukasiewicz (1930), who was 
also concerned about the Law of the Excluded Middle, Black did not introduce three-valued 
propositions. Rather, he defined a vague proposition as one where the possible states of the 
proposition are not clearly defined with respect to inclusion, and introduced the mechanism of 
'consistency profiles' as a way of treating vagueness. Black's consistency profile is a graphical 
portrayal of the degree of membership of some proposition in a set of imprecisely defined 
states, with 1 representing absolute membership in a state and 0 an absolute lack of membership. 
Precise propositions are treated via step functions as consistency profiles, and vague propositions 
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(a) (b) 

Figure 3. Example of Consistency Profiles: (a) for a precise set. (b) for a vague set. The consistency profile is 0 after x* 

Table 2 
Membership table for precise set, A\ , versus fuzzy set, Ai. 

x                         1               2 3                4 S 6 7 8 9 10 

fiAl(x)              0              0 
fiA7(x)               0               0 

0                0 
0               0 

0 
0 

0 
0.2 

1 
0.5 

1 
0.9 

1 
1 

1 
1 

by consistency profiles that tend gradually from one extreme to another; see Figure 3. The 
scaling between 0 and 1 is arbitrary; other convenient limits could have been used. Further, the 
consistency profile which is specified by an individual, or a group of individuals, need not be 
unique. 

4.2 Membership Functions and Probabilities of Fuzzy Sets 

Black's (1939) consistency profile precedes Zadeh's (1965) membership function. For each x, 
a normalized membership function 0 < /XA(X) < 1 describes a belief of containment of x in a set 
A. When \iA (X) — 1 or 0, A is a crisp (or precise) set; when 0 < HA(X) < I, A is a fuzzy set. To 
illustrate the concept of a fuzzy set, consider 

Example 2: LetA\ = {x e {1,2,..., 10} | x > 7}. For any specified x, there is no ambiguity as 
to whether x belongs toA\ or not. By definition, (AAX

X
) 

= 1 when x = 7, 8, 9, or 10; otherwise, 
it is zero (see Table 2). Thus A \ is a precise set, since fu,Al (x) = 1 or 0. By contrast, consider the 
set A2 — {x e {1, 2, ... , 10} I x is large}. The term 'large' is vague; thus, we cannot precisely 
ascertain the containment of any x in Ai. A possible membership function for A2, /i^2(x), is 
given in Table 2; this assignment is not unique. 

For fuzzy sets, A and B in a basic set M, with membership functions (AA(X) and /xfl(x) 
respectively, Zadeh (1965) defined set operations that parallel those of precise sets. For any 
x in a given basic set M, 

1. ^AuB(x)-max[ixA(x), fiB(x)], 
2. HAnB(x) = mm[nA(x),fiB(x)], 
3. fiA>(x) = 1 - fJ-A(x), 
4. /icfi^ p,A(x) < nB(x), and 
5. A = B <» IJLA(X) = (J,B(x). 

Thus, the union of fuzzy seisA and B is the fuzzy set,4 U B, whose membership function is max 
[fiA(x), fiB(x)]; similarly for the intersection and the complement. There is a parallel between 
operations with fuzzy sets and the conjunction and disjunction connectives of Lukasiewicz 
(1930). In Section 5.1, we use these operations to define structure functions of vague binary 
state systems. Thus, we claim that Lukasiewicz's logic provides a unifying framework via which 
both multistate as well as vague systems can be studied. 
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4.2.1 Probabilities of fuzzy sets 

In the context of this paper, statistical inference plays a key role. This role comes into effect 
when we endow a probability measure for a fuzzy set, say A. There are two key ideas that drive 
this development, namely that (1) vague sets are a consequence of one's uncertainty about the 
boundaries of sharp sets, and (2) the membership function (1A(X) '

S
 to be interpreted as data (or 

information) whose role is to help induce a likelihood function, just like the role of an observation 
in traditional statistical inference. The above ideas can be best exposited by envisioning the 
scenario of expert testimonies and information integration that has gained current popularity in 
statistical practice (cf. Reese et al. 2004). 

Accordingly, we consider the actions of D, an assessor of probabilities (or a decision maker), 
who quantifies his (her) uncertainty about any outcome ofX, say x, being classified in A via a prior 
probability no(x e A). The thesis here is that all uncertainties, including those of classification, 
be quantified via probability. In order to sharpen the prior probability, D consults an expert, 
say Z, and elicits from Z a membership function IAA(.

X
)- This /x^x) can be seen as additional 

information about the nature of JC'S membership in^f, and de facto serves a role analogous to that 
of observed data in statistical inference about outcomes. In essence, observed data are evidence 
about outcomes whereas membership functions are evidence about classification. In principle, 
D may consult several experts and elicit from each membership functions as a way to further 
sharpen the analysis. 

With PLA(X) at hand, D constructs his (her) likelihood function that x e A; we denote this 
likelihood by C[x e A, LIA{X)]. The construction of this likelihood follows standard statistical 
procedures for formally incorporating expert testimonies, and should include things such as 
D's view of the expertise of Z and, in the case of several experts, correlations between them 
(cf. Lindley, 1991; Clarotti & Lindley, 1988). Since C[x e A;/iA(x)] is D's likelihood that Z 
declares HA(X) when x e A, the specification of this likelihood is a subjective exercise on the part 
of D. Conventionally, in statistical inference, likelihoods for unknown parameters are prescribed 
via probability models (for outcomes) using the observed data as fixed quantities. By contrast, 
what we have done here is prescribed a likelihood about classification using the membership as 
a fixed entity, but without the benefit of a probability model. In so doing, we have interpreted 
the likelihood in a broader sense, namely as a weighting function (Basu, 1975). In addition to 
C[x e A; /x^(x)l, D also needs to specify C[x £ A; fj,A(x)], which is D's likelihood that x £ A 
when Z declares a IXA(X), and Pz>(x) which is D's subjective probability that an outcome x will 
occur. Thus D needs to specify two probability measures it D(X) and n D(x e A), one for outcomes 
and one for classification, and two likelihoods, C[x 6 A; HA(X)] and C[x ^ A; fiA(x)]. 

With the above in place, D uses standard statistical methodology involving B ayes'Law, Bayes' 
Factors, and prior to posterior odds (cf. Kass, 1993) to obtain a probability measure for a fuzzy 
set A (cf. Singpurwalla & Booker, 2004) as 

^l CeA;fiA(x)     nD(x e A)_ 

Equation (6) above is the essence of the material of this section; it is to play a key role in 
what is to follow. In obtaining the above, we have leaned heavily on the statistical notion of 
likelihood and the likelihood ratio. Equation (6) simplifies if D chooses to use Z's declared 
[IA(X) as the sole basis for constructing his (her) likelihood, so that C[x € A; M^(x)] = IXA(X), 

and C[x £ A;^iA(x)] = 1 — /AA(X)- In this case, 

PD(X). (6) 

PD[X&A;nA{x)] = Y, 1 
V       HA(X)J 

-i-l 
TtD(x j A) 

nD(x 6 A) 
PD(X). (7) 
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4.2.2 The role of precise and fuzzy data in vague systems 

In equations (6) and (7), PD(X) encapsulates D's prior uncertainty about an outcome x. Were 
D to have at his (her) disposal x = (JCJ, ..., x„), data on X, then PD (X) would get replaced by a 
posterior probability, say PD(X; X). The calculation of this posterior would be a routine exercise 
were D to invoke a probability model for outcomes, and were the actual observations X\,... ,x„ 
sharp (i.e. precisely stated). What must D do to update PD(X) if the data x is itself fuzzy? 

To address this question, we first need to clarify as to what one means hy fuzzy data, a term 
that has appeared in several book and article titles; see, for example Bertoluzza et al. (2002), and 
Viertl (2006). If by fuzzy data, we mean imprecision of observation (i.e. observation error), then 
the treatment of such data can be routinely handled via standard statistical technology, provided 
that an error distribution can be specified. The literature on 'calibration' adequately deals with 
this issue; see, for example, Huang (2002). If by fuzzy data, we mean a statement such as 'the 
outcome does or does not belong to the fuzzy set^', then the incorporation of such information 
for updating PD(X) is no more a standard matter. In other words, when the actual value taken by 
X, say xt, is not declared, but what is declared is whether the actual value belongs or not to A, 
an assessment of PD(X~, observed value belongs (does not belong) to A) poses a challenge. This 
can be addressed if a likelihood for X— x, with the knowledge that the 'observed value belongs 
(does not belong) to A' can be specified by D. The specification of such a likelihood will entail 
several issues such as who provides D the said knowledge, Z or someone other than Z. If it is 
Z, then H-A(X) provides some guidance to D about specifying the likelihood. If it is someone 
other than Z, then D needs to contemplate the knowledge provider's actions. These and other 
issues remain to be addressed, including the matter of calibrating Z and updating membership 
functions. 

4.3 Components in Vague Binary States 

The notion that units can exist in states that are vaguely defined was introduced in 
Section 1.4. Specifically, let X denote the state of a component at some time r > 0, and let 
X take values in<S = {x;0<x<l}, with one representing the perfectly functioning state. 
Consider Q c S, where Q = {x;x is a 'desirable' state}. Suppose that interest centres around 
X G Q. Suppose also that we are unable to specify an x* such that X > x* implies that X <^Q 
and, otherwise, X £ Q. Thus, the boundary of Q is not sharp; i.e. Q is a fuzzy set. Let /xg(x) 
be the membership function of Q. Figure 4 illustrates plausible forms for \ig(x). Interest may 
centre around Q for several reasons, a relevant one being a desire to use 'natural language' for 
communication with others on matters such as repair and replacement. Another possibility is 
that it may not be possible to observe the actual value of x, but one may be able to make a general 
statement about the state of the component. 

The complement of Q, say Qc, is that fuzzy set whose membership function is 1 — /xg(x). It 
is important to note that, if another subset 8c<5 was defined as B = {x; x is an 'undesirable' 
state}, then Qc may or may not be B unless /xs(x), the membership function of B, was such that 
fj,B(x) = 1 — ng(x). In principle, one is free to choose a /xs(x) that need not bear a relationship 
to [Xg(x). For example, in Figure 4(a), /x#(x) is symmetric to fig(x), whereas in Figure 4(b), 
/xg(x) and jig{x) are not symmetric. There is precedent in the statistical sciences for choosing 
asymmetric likelihood functions. For example, one need not specify likelihood functions that 
are symmetrical for competing hypotheses. 

Example 3: An assessor D wants to assess the probability that a component will be in a 
'desirable' state Q at some future time r. That is, D wishes to specify PD[X G Q; \ig{x)\, where 
a membership function of the form jj,g(x) — x4, 0 < x < 1 has been elicited by D from an expert, 
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V /' 
>c(x) 

/ \A<X>= l-^0(x) 

X 1 
(a) 

•        ^00 

Figure 4. Membership functions of Q and B: (a) Symmetric case, (b) Asymmetric case. 

PD{X) 

03 1.0 

Figure 5. Component state at time r, p£>(*). 

Po(xeg) Pi(xeg) 

0.6 0J IJO 

Figure 6. Two possible prior forms ofclassifying X = x, P\(x e Q)and Pi(x 6 Q), supplied by the assessor D. 

Z. Suppose that PD(X), D'S personal probability that the state of the component at time r will be x 
is of the form given in Figure 5; it is a Beta(6,2) density. Furthermore, suppose that .D's belief that 
nature will classify any x in Q, namely PD(X e G),is of the general form illustrated in Figure 6 with 
the label, P\{X e Q). Then, it can be seen—via equation (7)—that Po[X € Q; n-g(x)] — 0.6605. 
As a consequence, PD[X £ Q; ^c(x)] — 1 - 0.6605 = 0.3395. By contrast, suppose now that, 
if D were to specify PD(X e Q) via the label Pt(x e Q) of Figure 6 and keep everything else the 
same; then PD[X e Q\ Me(^)] would increase to 0.7486. Thus, even a small change in the form 
of PD(X € Q) produces a noticeable change in D's final answer. 

4.4 Reliability of Components in Vague Binary States 

We say that a component's state is 'vague and binary' if interest centres around a single vague 
set of the kind Q or B in our illustrations. As was mentioned before, we should bear in mind that, 
in general, Qc need not be B and vice versa, unless of course Q and B are precise sets. For Q = 
{x; x is a 'desirable' state} and iig(x) specified, it is reasonable to define the reliability of the 
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component as Pp[X e G~, fj.g(x)]. Equation (6) can now be used to evaluate this probability. With 
B = {x; x is an 'undesirable' state}, and /ig(x) specified, we may define the unreliability of the 
component as PD[X 6 B; ju-5(x)]. We could have also defined the unreliability of the component 
as PD[X G G

C
\ MaOOL where Qc is that fuzzy set whose membership function equals I — y.g(x). 

With either choice for the definition of unreliability, we see that, when a component's state is 
vague and binary, its unreliability is not necessarily the complement of its reliability! This result 
is in contrast to that of binary coherent systems. 

Example 4: The case of components that can exist in precise binary states can be en- 
compassed within the above framework; fi-g(x) = 1 for x > x* and TVD(X e Q) = 1 if x > 
x*, and zero otherwise. Furthermore, B = Qc, thus PD[X € G,Hg(x)] = 1 — FD(X*) and 
PD[X 6 B,(ig(x)] — PD[X £ G;^g{x)] = FD(X*), where Fp(x*) is the cumulative distribution 
function (cdf) associated with/?£>(*) evaluated atx*. 

5 Binary State Systems with Imprecise Classification 

The purpose of this section is to extend the development of Section 4.3 on binary state 
components with imprecise classification to the case of binary state, n-component systems with 
imprecise classification. By 'binary state systems with imprecise classification', we mean those 
systems whose component states are vague and binary, and whose structure functions satisfy 
the logical connectives of Lukasiewicz; see Section 2. Our motivation for choosing this as a 
definition of structure functions is that the structure functions of binary state coherent systems 
with precise classification are exactly the membership functions of certain precise sets. The 
case of multistate systems with imprecise classification, though not discussed here, follows by 
analogy. 

5.1 Structure Functions as Membership Functions of Precise Sets 

Let Xi be the state of component i taking a particular value Xt, i = 1, ... , n. Suppose that 
each Xt can take values inS = [x; 0 <x < I}. Let G\ = {x,-; x,- is a 'desirable' state}, Gi c S. 
Let jUgr,.(x,) denote the membership function of {?,-, z = 1,..., n. For now, suppose that Q-, is 
precise for all i. That is, for each i, there exists an x* such that (ig,(xi) — 1(0) when x,- > x* 
(x, < x*). For ease of notation, this section focuses solely on the subspace £?,; therefore, we use 
Hi(xi) to denote the representation of the above membership functions, with the understanding 
that the membership function assigned is dependent on the fuzzy classification, Qx, which itself 
depends on component i. For the remainder of this paper, we let C[X £ Qu /i,(x)] = 1 — iii(x) 
and C[X £ G^(X)\ M^CO] = 1 — M0(x)(x), where 0(X) is as defined in Section 1.2. 

Let X = (X\, ... , X„) and suppose that the n components are in series. Thus the system's 
structure function is 1 if and only if x, > x* for all / = 1, ..., n. However, x,- > xf implies that 
fii(xi) ~ 1 for each i. Thus we may write 

n 

MX) = Tl to(Xd = nrinM*/)] = At(i:»)(X), (8) u 
where ^i(i:n)(X) is the membership function of the intersection of the n precise sets Qi, i = 
1,..., n. Thus, the structure function of a series system with precise classification can also be 
interpreted as the membership function of the intersection of n precise sets. Similarly, if the 
n components were to be connected in parallel redundancy, then the structure function of the 
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system would be 
n 

4>P(X) = TJ miXt) = max[/z,(^/)] = /V«)(X), (9) 

which is the membership function of the union of Qi, i == 1,..., n. Finally, for a ft-out-of-« 
system, we could write 

^(X)   M-  ir&i#*«)>*• (10) 
[ 0,    otherwise. 

Whereas the relationships of equations (8) and (9) have an interpretation within the calculus of 
fuzzy sets, equation (10) does not. Sums of membership functions are not a part of the calculus 
of fuzzy sets. We therefore seek an alternate way of expressing <fo:(X). We do this as follows. 

Suppose that the ^j(Xj) terms are relabeled so that fi/\ „)(X) is the minimum and jU.(n;n)(X) is 
the maximum; i.e. /Z(i:„)(X) < M(2:«)(X) < < ;u,(n_*+1:n)(X) < < /z(n;n)(X). Since each 
fii(Xt) is either zero or one, the above ordering will result in equalities for many of the above 
terms. Once the above is done, we see that 0A:(X) = /U.(„_A+I:„)(X). Thus, in general, the structure 
function of a &-out-of-« system is the membership function of the precise set intersecting the k 
smallest Gi sets. 

5.2 Structure Functions of Vague Binary State Systems 

Motivated by the material of the previous section, we define the structure function of series, 
parallel, and A:-out-of-fl systems whose component states are vague and binary as 

<t>s(X) = min[ju.,(X,)] = ^(I:n)(X), 
i 

<pP(X) = max[iXi(Xi)] = /x(n:n)(X), and 
t 

0tf(X) = ^(„_A + l:„)(X). 

These structure functions are identical to those for the case of binary precise sets, except that 
now, (ii(Xi) is a membership function of an associated vague set Q(, i = 1,..., n. 

Finally, if 7TD(X, e Q{) denotes D's probability that a particular xt gets classified in Gi, then by 
analogy with equation (7), we have 

w «*'*'»-Jt^-O" 553) 
nD{XiiG,V 

dPD{Xi), (11) 

where PD{XI) is D's probability that X, < xh 

Our development thus far has assumed that the membership functions fii{xt), i = 1, ... , «, 
are all distinct. Simplification occurs if /!,(*,) = //.(*) for i = 1, ... , n. We limit our attention 
to the case of series and parallel systems because more complicated systems, such as networks 
can be represented as a combination of series-parallel systems. 

5.3 Reliability of Vague Binary State Systems 

If the state of each component in a system is a desirable state, will the system itself be in 
a desirable state? The answer to this question need not be in the affirmative. This is because 
requirements on the system could be more stringent than those on each component of the system. 
This is unlike the case of binary state systems with precise classification wherein a series system 
is judged to be reliable if all its components are reliable. Thus, there are two possible ways in 
which the reliability of a vague coherent system can be defined. The first is to assume that a 
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series system is reliable if all its components are in a desirable state. The second is to require that- 
for a system to be judged reliable, its state—say x—be a desirable state. Specifically, we require 
that x e G(j>(K), where G^QQ = {x; x is a 'desirable' system state} and G<j>(X) C S. Associated with 
G<t>QQ is its membership function, (iffaaix). Similarly, in the case of a parallel system, we have 
two possibilities for defining reliability—the first one being that the system is reliable if at least 
one of its components is in a desirable state, and the second being the requirement that its state 
x € G$(X)- We simplify notation by letting JU-^JQOO — Hgm(x) ^d focusing the discussion on 
the subspace G(-y 

For assessing reliability, let us consider the first case for series and parallel systems. Assuming 
the Xi 's independent, the reliability of a series system would be Y\"=\ [PD [Xi e Gi', M-i (*;)]] where 
Po[Xi e GilHi(xi)] is given by equation (11). The reliability of a parallel redundant system 
is PD({J1=I[XI € Gi}', fJ-i(xi), i = 1, ..., n); it can be evaluated by the Inclusion-Exclusion 
formula of probability (Feller, 1968). The computations simplify when the Xi 's are assumed 
identically distributed. The case of k-out-of-n systems follows along similar lines. 

With regard to the above, a question arises as to what we mean by independence of the Xt 's, 
when the Xi's take values in a vague set. In the context of equation (11), Xt zndXj,i^j, will be 
judged independent if 

Pn{Xi < xt, Xj < xj) = PD(X, < x,) • PD(Xj < Xj), and if 

PD(XI e Git xj e Gj) = PD(xi e Gi) • PD(xj e Gj) and 

PD(Xi  i Gi,Xj  i Qj) = PD(X<  i Gi) • PD(Xj  i Gj)- 

The more interesting case is the second one, wherein a system is reliable if the state in which 
it resides is a desirable one. We start with the case of a series system with structure function 
0S(X). Its reliability is PD(<ps(X) e G<j,s(X)', Mtf-sPoOO] which, from equation (11), is of the form 

Jx L     V     /^(x)W/ 
dPD(x), 

TtD(x e Gfopc))-. 
(12) 

where JTD(X e ^(X)) is D's probability that x is classified in G<ps(X) were <ps(X) — JC, and PD(X) 

is D's probability that 0,j(X) < x. 
Since#s(X) = min, t^,(Xi) = /Z(|:„)(X), we obtainPD(X) as follows: 

PD{<t>s&) >x)= PD(nU)(X) > x) 

= PD<JM(Xi)>x, i = l,...,n) 

= PD{X{ > ixj\x), i-\,...,n), 

= XI PD[XJ > /JL]~\X)], if Z,'s are assumed independent,        ^   ' 
/=i 

,-i/ where ju.J" (-) denotes the inverse of £t,(-). Subsequently, dPo(^) can be obtained. If the X,'s 
cannot be judged independent with respect to D's distribution for the Xi's, we need to specify 
a joint distribution for these, such as Marshall & Olkin's (1967) multivariate exponential, or 
any of its variants. In the case of parallel systems, the development will proceed along similar 
lines, save that now PD(X) will be obtained via Y\l=i PD[XJ < fi~ (x)]. Finally, the case of 
(n — k+ l)-out-of-n would follow by considering the distribution of the &-th order membership 
function, ix{k:n){x). 

Example 5: Consider a two-component series system where the component performances are 
independent and identically distributed. D wishes to assess Pp[cps{X) e Gfotx)', fJ-<t>s(X)(x)]. The 
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first option is to compute the product of the component probabilities. Let (igt (x) ~ x2, and PD{X) 

and Pp(x G Gi) be as shown in Figures 5 and 6, respectively, for i = 1, 2. Then, Po[<PsQ^) € 
^S(X); A^SPQM] — 0.6232. The second option is to compute the system reliability directly, 
through the use of Z's membership function for the entire system. Supposing that the expert 
holds a stronger standard for the system to be in a desirable state than that for the compo- 
nents, we let HfoQoix) = xi0. Meanwhile, D considers PD(X) and PQ(X € Gi) as specified in 
Figures 5 and 6 for </>s(X), implying that PD[(ps(X) e G^m; /Afc(X)C0] = 0.4321. Thus, by 
holding the system to a more stringent standard, Z)'s assessment of the system reliability is lower 
when considered directly, as opposed to that when using a more relaxed membership function 
to represent belief at the component level. 

6 Maintenance Management in a Vague Environment 

Examples 3-5 illustrate how D is able to assess the probability that the state of a unit will 
be in a 'desirable' state, or its complement. Why would D be interested in such a probability 
instead of the probability that the state of the unit will be x, 0 < x < 1? Reasons were given in 
Section 4.3, the one pertaining to communication using 'natural language' being the most 
relevant. This point is best underscored via the scenario of maintenance wherein one must decide 
whether to repair, replace, or simply continue to monitor the unit. In practice, judgments about 
maintenance are not based on assessments of uncertainty about x; they are based on conjectures 
about whether or not the unit will be in a 'desirable' state. 

Consider the following: a unit is required to perform service for some time period. The unit 
can exist in one of three states: Q (for good), B (forbad), and A (for acceptable). When the unit is 
in state Q, the utility to D provided by the unit is U{ff); analogously, we define U{A) and U. (B). It 
is reasonable to suppose that U(A) < U{Q) and, in principle, —U(B) could be greater than U{Q), 
i.e. the cost for being in state B could dominate the reward for being in state Q. With the above 
in place, D's problem is to make a decision whether to replace the unit, denoted 71, or to repair 
the unit, denoted M., or do nothing, denoted M. There is a cost associated with each of these 
three actions, and these arc denoted —U(7Z), —U(M), and —U{M), respectively. Presumably, 
-U{N) < -U(M) < -U(7l). Which of the above three actions should D take? 

The problem is solved by using maximization of expected utility (MEU) [cf. Lindley (1991), 
p. 58]. The decision tree of Figure 7 facilitates an implementation of this recipe; the rectangle 
represents D's decision node and the three circles denoted R\, R2, and ^3 represent the three 
nodes corresponding to the three actions 71, M and M, respectively. Each (random) node results 
in one of three outcomes, * = Q, A or B, and these are portrayed in Figure 7 only for the node 
Rj. At the terminus of the tree are the utilities. For example, U{M, G) denotes the utility to D, 
when D's decision is to monitor the unit and the outcome is G- 

The MEU principle requires that, at each random node, D compute an expected utility of 
an action that leads to that node. For this, D needs to assess the probabilities that at r, the 
state of the unit will be in G, A, and B, respectively. These probabilities would depend on three 
ingredients: membership functions of the kind /i*(x), /X^(JC), and /xg(x); D's prior probability 
that an x is classified (by nature) in G, A, and B (i.e. Po(x €*).• = G, A, B), and PD(X), D'S 

subjective probability that the state of the unit will be x. Since 2^»=g A B PD(
X
 
e *) — U-D need 

only specify any two probabilities. Once these are at hand, D invokes equation (7) to obtain 
the required probabilities. All of the above is straightforward except that PD(X) depends on the 
action that D takes. Both repair and replacement actions tend to right-skew the form ofPD(x) 
toward one. Thus, with respect to the illustration of Figure 5, a repair action will tend to shift the 
probability mass closer to one, and moreso with replacement. To summarize, the impact of Z)'s 
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(Replace Unit) 

D's Decision 
Node 

U{%Q) 

U{%A) 

U{%®) 

(Repair Unit) 

Figure 1. D's decision tree for maintenance actions. 

actions on D's probabilities of the state of the unit are reflected only in PD(X). The membership 
functions and the classification probabilities are unaffected. To denote such a dependence, we 
shall replace the PD(X) of equation (7) by PD(x;»), and PD[X e *; /x*(;c)] by PD(X £ *', M*(*)> •) 
for • = 11, M and //;•* = Q, A, B. 

Whereas the development in Sections 4 and 5 pertained to the binary case involving two 
vague sets B and Q, our example here involves three vague sets A, B, and Q, and their respective 
membership functions, /x.(x), • — A, B and Q. Of these, only ^A{X) warrants comment since 
the general nature of the other two has been discussed before; see Figures 4(a) and (b). It is 
reasonable to suppose that the general form of AMOO is either bell-shaped or an inverted U. 

Finally, a question arises as to whether jU^(x), /x/?(x), and iig{x) can take any arbitrary form 
independent of each other. The answer to this question is in the negative because the membership 
functions go to determine the quantities PD[X e A;(IA(X)], PQ[X e B; IJLB(X)] and PD[X e 
Q; rig(x)\, and these must sum to one. Thus, D needs to ensure coherence of the membership 
functions just like how D needs to ensure a coherence of the classification and state probabilities. 
Since D elicits membership functions from Z, it is incumbent on D to ensure that membership 
functions do not lead to results that violate the countable additivity axiom of probability. This 
important point has not been addressed in Singpurwalla & Booker (2004). 

The utilities at the terminus of a tree, U{N, Q), U(N', A) and U{N, B) are straightforward to 
write out. Thus, for example, U{M, G) = U(M) + U{Q), which is the sum of the disutility due to 
monitoring and the utility of the unit being in state Q. Similarly, U{M, B) = U(Af) + U(B), and 
U{N, A) — W(A0 + U{A). With this in place, we compute the expected utility at each node. 
Thus, for example, U(J\f), the expected utility at node R3 isU(N) — J2*=Q,A,B ^(^, *) • PD(X e 
*; fii,(x), Af)> where PD(X € *;fit(x),N) is the right-hand side of equation (7) with Po{x) 
replaced by PD(x;M); similarly, the other terms ofU(J\f). The expected utilities at nodes i?i 
and i?3 are analogously computed as H(1Z) and U(M), respectively, mutatis mutandis. Once the 
above are done, Z)'s maintenance decision is to choose that action for which the expected utility is 
a maximum. Thus, for example, if U{M) > U{R) > U(M), thenZ)'s decision would be simply 
to do nothing. 

How does the above material differ from that which is currently available in the literature 
on maintenance planning? The current literature would require each node to be binary and, 
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to compute the expected utility at each node, all we need is the probability that x > x*. This 
probability can be had once D specifies PD(X; •), • = 1Z,Af and M. By contrast, we allow an 
x to exist in three vaguely defined sets, and allow x to simultaneously exist in more than one of 
these. The advantage is flexibility and a facility to entertain an analysis that facilitates natural 
language communication. Further, in the existing literature, uncertainties are assessed about 
times to failure via probabilistic failure models, and failure is viewed as a sharply defined event. 
Consequently, the analysis is forced into a binary framework. By contrast, our uncertainties are 
focused on x which can encapsulate degradation of a unit. 

7 Summary and Conclusions 

The term 'complex stochastic systems' is well entrenched into the vocabulary of statisticians, 
though it generally pertains to a use of the Markov Chain Monte Carlo method. This paper takes 
a broader view of this term by embedding within it the theory of vague coherent structures. 
This theory, which is generally associated with work in applied probability and reliability is 
germane to statisticians, especially those whose focus is on biostatistics, genetics, graphical 
models, and neural nets. With that in mind, we have devoted Section 1 to an overview of the 
key notions and ideas of binary state systems whose two states can be precisely delineated. 
The mathematics which drives the development of results for such systems is binary logic. In 
Section 1, we also set the stage for the material of Sections 4 and 5 by introducing the idea 
of imprecise or vague sets. The need for such sets has been acknowledged by physicists, 
philosophers, and logicians. More recently, their need has also been recognized by those involved 
in decision making and natural language processing. Section 2 is devoted to multivalued 
logic in the context of multivalued propositions. The focus here is on the connectives of 
conjunction and disjunction; these connectives can be used to define the structure function 
of multistate systems, a topic treated in Section 3. In Section 3, it is assumed that the 
classification of states is precise. This topic has been covered before via the literature on 
multistate reliability; however, what is new here is the departure from binary logic to multivalued 
logic. 

Sections 4 and 5 impart to this paper a feature that is novel. Specifically, they pertain to the 
development of reliability for components and systems whose state space is vague. In actuality, 
vague state spaces are more realistic than the usual zero-one states, which are an idealization. In 
Sections 4 and 5, we also show that the usual notions of reliability do not always hold when the 
state space is vague. For example, the unreliability of a unit is not one minus its reliability, and 
that there is more than one way to define system reliability. 

There is another aspect of this paper that warrants comment. In the existing theory of coherent 
structures with precise classification, statistical principles have no role to play. All that is needed is 
the calculus of probability. By contrast, when dealing with vague systems, membership functions 
and consistency profiles create a role for the likelihood function and, in so doing, mandate a 
consideration of the principles of Bayesian statistical inference. 

The illustrative examples of Sections 4 and 5, and the maintenance management architecture 
of Section 6 should give the reader an inkling of the practical import of the material here. For 
example, in maintenance and replacement actions pertaining to decision making uncertainty, the 
usual strategy is to assume that the state space is binary—functioning and failed. In actuality, 
functioning can occur at different levels whose boundaries cannot be sharply delineated. Thus, 
it makes more sense to study maintenance and replacement when the state space is vague for, in 
actuality, this is how such decisions are made. 
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Resume 

L'etat de l'art dans la theorie de structure coherente est guide par deux assertions qui sont tous deux limitants : (1) 
toutes les unites d'un systeme peuvent exister dans un de deux etats, defaillant ou fonctionnant; et (2) a n'importe quel 
moment, chaque unite peut seulement exister dans un des susdits etats. En realite, les unites peuvent exister dans plus de 
deux etats et c'est possible qu'une unite puisse simultanement exister dans plus d'un etat. Cette derniere caracteristique 
est une consequence de l'opinion qu'il ne soit peut-etre pas possible de definir avec precision les sous-ensembles d'un 
ensemble d'etats; on appelle de tels sous-ensembles vagues. La premiere restriction a ete adressee par les methodes 
appelees "systemes multi-etats"; pourtant, ces methodes n'ont pas pris avantage des mathematiques sur les propositions 
multivalues en logique. Ici, nous invoquons ses tables de verite pour definir la fonction des systemes multi-etats et 
exploiter ensuite nos resultats dans le contexte d'ambigui'te. Une contribution cle de ce papier est d'argumenter que la 
logique de plusieurs values est une plateforme commune pour etudier tant les systemes multi-etats que les systemes 
vagues, mais pour faire ceci, il est necessaire de se baser sur plusieurs principes d'inference statistique. 
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Abstract 

Assessing conditionals based on any specified probability model is straightforward and unique when the conditioning 
event is in the subjunctive mood; that is, supposing that the conditioning event were to occur. The matter becomes 
problematic, however, when the conditioning event actually does occur as observed data, and thus becomes a reality. We 
illustrate this point by considering a commonly occurring scenario in the actuarial sciences, engineering reliability, survival 
analysis, and in general, any type of an activity that involves filtering. We argue that there could be more than one way to 
bet on residual life. Our message is that it is the likelihood—not Bayes' Law—which is the tail that wags the dog! 

This paper should appeal to both probabilists and statisticians who are interested in foundational issues. It has been 
written to honour Richard Johnson whose Editorship of Statistics and Probability Letters has provided a platform for 
dialogue between probabilists, statisticians, and those who strive to be both. 
© 2007 Elsevier B.V. All rights reserved. 

Keywords: Actuarial science; Conditionalization principle; Double slit experiment; Filtering; Forecasting; Likelihood; Reliability; Survival 
analysis 

1. Introduction 

In the process of using marker data to assess the lifetime of an item experiencing failure due to ageing, we 
were confronted by a dilemma that sneaked upon us as a matter of course (see Singpurwalla, 2006a). It turns 
out that the scenario leading to the dilemma is quite common and can arise when addressing practical issues of 
conditioning in the actuarial, the engineering, and the biomedical sciences. Stripped to its essentials, the 
scenario goes as follows. 

Suppose that an item's lifetime Misjudged to have a distribution function G{x) = P(X^x), and a survival 
function G(x) = 1 — G(x) = P(X>x). We suppose that lifetime can be continuously monitored so that x^Q. 
Were this item supposed to survive until x, its residual (or remaining) lifetime will be X — x. We are required to 
make statements of uncertainty about (X — x), so that actuarial, engineering, or medical decisions about the 
item can be made. That is, we are required to specify P(X — x>u\X>x), for all w>0. Our interpretation of 
probability is de Finnetian (see de Finetti, 1937), in the sense that probability reflects one's disposition to a 
two-sided bet. Thus, probability assessments can be seen as a device for hedging our bets on the item's 
survival, or some other unknown quantity of interest, such as parameters in probability models. 
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A solution to the problem posed is elementary and unique, given a distribution function G. Specifically, for 
any w>0 

P{X-X>ulX>x) = P(X>X + u]X>x) = P^>/J-^^±^. (1.1) 

Suppose now, that instead of the subjunctive, "were the item to survive until x", we are told that the item 
actually did survive to x. That is, the event (X>x) is no more an uncertain event; (X>x) has now become 
observed data. What then would our assessment of the uncertainty about the residual life (X — x) be? In other 
words, how would we bet on the event (X — x>u), for M>0? Would it continue to be G(x + u)/G(x), or could 
it be something else? If the latter, would the number to bet be unique? For a discussion of these and related 
questions, one may visit Freedman and Purves (1969). A more recent discourse on the different kinds of 
conditional beliefs is in Joyce (1999, Chapter 6). 

Intuitively, it seems that there ought to be some distinction between looking at (X>x) as a possibility, 
versus looking at it as a fact that is revealed as data. Thus, G(x + u)/G(x) need not be the correct answer. Yet 
many individuals when faced with this problem would simply mimic the steps leading to Eq. (1.1) and continue 
to declare G(x + u)/G(x) as their answer. In doing so they do not appear to be making a distinction between 
(X > x) as a supposition versus a reality. Alternatively put, they may be failing to recognize the connotation 
that in a conditional probability statement, the word "given" does not indicate a fact; rather it indicates a 
supposition that the conditioning event is true. Thus, are those who declare G(x + u)/G(x) as their answer— 
irrespective of the character of the conditioning event—in error, or is there a rationale for their answer? 

We claim that the rationale cannot completely be within the calculus of probability, because the notion of 
probability—at least from a subjectivistic point of view—is germane only when the disposition of all events in 
question is unknown. Thus, for example, it may not make sense to say that the probability that a coin with 
heads on both faces when flipped will land heads, is one. This is because the disposition of the outcome is 
known before the flip. Consequently, a two-sided bet on the outcome heads has to be $1, which will be 
exchanged for a $1 when the coin lands heads, which it will. The two-sided bet of $1 is thus meaningless. The 
rationale therefore must come from concepts in statistics wherein the notion of a likelihood plays a signal role. 
By all accounts the notion of a likelihood appears to be alien to probability theory. 

In what follows wc point out that there are both philosophical and technical arguments which support 
G(x + u)/G(x) as an answer, but that this answer is one among other possible answers. This is the main point 
of this article. Arguments about conditioning are common among philosophers of science. That such 
arguments could also be relevant to reliability, survival analysis, filtering, and forecasting seems to not have 
been recognized. 

2. Answer(s) to the question 

2.1. Reassessment and the principle of conditionalization 

Some individuals when faced with the matter of assessing P(X — x>u) with (X>x) as observed data, may 
chose to re-assess all probabilities treating the factual event (X>x) as a part of background history; that is, 
they would start from ground zero, even if the observed (X >x) is not a surprise. Diaconis and Zabell (1982) 
label a process like this, complete reassessment; however, the driving premise considered by the above authors 
is different from the one we are discussing here, in the sense that the observed event is considered to be a 
surprise. In a re-assessment one essentially starts all over again from scratch and possibly even rejects G as the 
underlying probability model. The answer that one obtains may therefore not necessarily be G(x + u)/G(x). 
Reassessment is a perfectly legitimate step; its main danger is the risk of incoherence (i.e. a lack of 
consistency). We therefore do not pursue here this line of reasoning and do not advocate reassessment as a 
strategy. 

To ensure coherence one may proceed formally by invoking Bayes' Law as an inferential mechanism, using 
(X>x) as data. These are two directions from which this can be approached, one general, the other specific. 
These we describe in Sections 2.2 and 2.3, respectively, wherein we point out that there need not be a unique 
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answer to the question posed, and that under a certain assumption, G(x + u)/G(x) will indeed be one of 
several possible answers. 

But there is another, more philosophical, argument that supports G{x + u)/G{x) as a correct answer. This 
argument, known as the Principle of conditionalization (cf. Howson and Urbach, 1989, p. 68), proceeds as 
follows: 

Prior to observing (X>x) as factual data, we had declared that G(x + u)/G(x) would represent our bet (or 
personal probability) on the event (X - x>u), for some w>0, were the event (X>x) turns out to be a fact. 
Now that (X> x) has revealed itself as being actually true, we shall act as we had declared, and thus G{x + 
u)/G(x) would continue to be our bet. As suggested by a reviewer, another way to articulate the principle of 
conditionalization is, to assert that "if I say I am going to do something, I will do it". 

Those who subscribe to a complete reassessment by starting all over from scratch, may reject the principle of 
conditionalization on grounds that the actual occurrence of the event (X > x) has changed their psychological 
disposition so dramatically from their disposition under the supposition that (X>x), that they can no more 
subscribe to G as their model of uncertainty. They then seek an alternate to G, say H as a model for assessing 
(X — x). This point was made by Ramsey (1931) (cf. Diaconis and Zabell, 1982) who stated that 

[The degree of belief in p given q] is not the same as the degree to which [a subject] would believe p, if he 
believed q for certain; for knowledge of q might for psychological reasons profoundly alter his whole system 
of beliefs. 

Diaconis and Zabell (1982) also cite other, more modern, references that mention the above issue; these are 
Hacking (1967), de Finetti (1972, p. 150; 1975, p. 203), Teller (1976), and Freedman and Purves (1969). 

Additionally, there also happens to be empirical evidence from quantum mechanics that rejects the 
conditionalization principle vis-a-vis the "double slit experiment". This experiment has now become a classic 
thought experiment for its clarity in expressing the central puzzles of quantum mechanics. In its original 
version, performed by the English scientist Thomas Young sometime around 1805, the experiment consisted 
of letting light diffract through two slits producing fringes on a screen. The goal of the experiment was to 
resolve the question as to whether light is composed of particles or waves. The current versions of the 
experiment arc performed with electrons instead of light (cf. Jonsson, 1974). Such experiments have shown 
that the probability (as assessed via the relative frequency) of some event, say B, when an event A always 
occurs is not equal to the conditional probability of B given A found from an experiment in which A occurs in 
some replications and the complement of A occurs in other replications. This tantamounts to a negation of the 
principle of conditionalization. 

2.2.  Using Bayes' Law, directly 

The clearest, and perhaps the most natural way to address the question posed is via a use of Bayes' Law. But 
to better articulate the workings of this law in the present context, we introduce the convention (see 
Singpurwalla, 2006b) that for two events A and B, P(A\B) denotes the conditioning (or supposition) that B is 
true, whereas P(A; B) denotes the fact that B is actually true. With the above convention in place, our problem 
boils down to assessing P(X >x + u\ X> x). The answer is given by Eq. (2.2). But the arguments leading to 
this equation entail a transition from purely probabilistic considerations to the statistical ones, and these may 
be helpful to re-iterate. 

To assess P(X>x + u\X>x), one way to start is by considering the proposition P(X>x + w|X >x), which 
by Bayes' Law leads us to the inverse relationship 

P(X>x + u\X>x) oc P(X>x\X>x + u)P(X>x + «), (2.1) 

where "oc" denotes proportional to. Eq. (2.1) is an honest-to-goodness probability statement. 
However, since (X>x) has been observed as data, the middle term of Eq. (2.1) does not make sense as a 

probability. Instead, it is the likelihood of the event X>x + u with X>x fixed. We denote this likelihood by 
Z£(X>x + u;X>x). Similarly, P(X>x + u\X>x) must now be written as P(X>x + u;X>x). In writing 
^C(X>x + u;X>x) we interpret X>x + u,u>0,asa hypothesis and X>x as data. This interpretation is not 
conventional in the sense that in statistical inference likelihoods are generally functions of unknown 
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parameters, not unknown events. However, as stated by Edwards (1992, p. 12), the likelihood can be regarded 
as a function of the hypotheses or of the parameters. A treatment of the question posed involving the use of 
a parametric model which results in the likelihood being a function of the parameter will be discussed in 
Section 2.3. 

With the above in place, Eq. (2.1) now becomes 

P(X>x + u;X>x)cx£C(X>x + u;X>x)P(X>x + u). (2.2) 

The last term of the above expression, being an unknown quantity, is G(x + u). 
According to Basu (1975, 1982), when Fisher (1912) rediscovered the Gaussian notion of likelihood, he 

looked upon it as "a scale of comparative support lent by the data to various possible values of 6 [an unknown 
parameter]"; also see Edwards (1992, p. 221). This interpretation of likelihood is (symmetrically) different 
from the conventional interpretation in which the likelihood tells us which hypothesis better supports the data 
(cf. Edwards, 1992, p. 9). The point of view that we adopt here is the former. Having done so, we are—in 
principle—free to choose the functional form of the likelihood function as we see fit. Suppose then, that the 
likelihood is taken to be a constant, say 1, over all values of x + u, with x fixed; see Fig. 1. Note that this choice 
will also be in keeping with the conventional use of the likelihood. Then Eq. (2.2) would become 

P(X>x + u;X>x)cx 1   P(X>x + u), 

which when normalized yields P(X>x + u)/P(X>x) = G{x + u)/G(x) as an answer. Thus, implicit to the 
answer given by those who subscribe to the principle of conditionalization (i.e. those who mimic the steps to 
assess conditional probability) is the assumption of a constant likelihood! 

Since one is free to choose the functional form of the likelihood, what if the likelihood was chosen by us, see 
Fig. 1, to be some other function of u, say exp(-w), for u > 0? Our assessment of P(X > x + u; X > x) would be 
different; namely, it would be cxp(-u)G(x'+u)/G(x). This means that it is the form of the likelihood that 
dictates how we would bet on residual life. The standard answer G(x + u)/G(x) arises only under the special 
case of a constant likelihood. 

The constant likelihood encapsulates a user's disposition of indifference with respect to the observed X>x. 
A decreasing likelihood one of conservatism. The form of likelihood can therefore be given a behaviouristic 
justification. 

2.3.  Using Bayes' Law, conventionally 

By a conventional use of the Bayes Law we mean the introduction of a parametric model into the analysis 
followed by a prior to posterior transformation of our uncertainty about the parameters. When we do so, an 
argument similar to the one of Section 2.2 can be made, and possibly with more transparency, because of the 
concrete nature of the set-up. Suppose then,  that  P(X^x\6) = G(x\d), where f?>0 is some unknown 

13 
+ 

O 
o r: 

£   Constant Likelihood 

Exponentially decaying 
Likelihood 

*- Values of x + u 

Fig. 1. Likelihood of event (X>x + u) with (X>x) fixed. 
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parameter. Using standard arguments involving the law of total probability, we may write 

P(X^x + u\X^x) = IP(X^x + u\X^x,d)n(d\X^x)d8, 
Je 

where by Bayes' Law 

n(9\X^x) ex P(X^X\8)TI(9); 

n{8) is our prior distribution of 8 > 0. 
With the event (X^x) as data, the above relationship can be written as 

P(X^x+u;X^x)=  (P{X^x+u\8;X^x)n{9;X^x)d8 (2.3) 

with 

%{9; X > x) ex St(6; X ^ x)n{8); (2.4) 

J?(9;X^x) is the likelihood of 9, with X^x taken to be fixed, known, and also assumed to be credible. 
Were we to subscribe to the principle of conditionalization, then SC(8;X^x) will be prescribed by our 

chosen model G(x\9). If otherwise, we are free to choose any other meaningful form for Jz?(0; X^x), and thus 
our answers to P(X^x+ u;X^x) could be different. The example below illustrates this point. 

Let G(x\9) = 1 — exp(—9x), an exponential distribution with mean 1/9, 8>0, and let our prior on 9 be a 
gamma distribution with scale (shape) parameter 1 (k). This is a natural conjugate prior for 8, though any 
other prior will also do. Then 

P(X>x + u;X>x) =   f    P(X^x + u\0;X^x)n(8;X^x)dO 
Jo 

TOO 

=   /    e-u9n(0;X^x)dd, 
Jo 

and 

n(8;X^x) ex J£,(8\X>x)cT08k-'i/r{k). 

When $£{8; X^x) — t~6x—which is what the principle of conditionality would mandate, and which is what 
is conventionally done—then it can be verified that the posterior distribution of 9 is also a gamma with scale 
[shape] (x+ l)[k]; i.e. 

7t(0; X^x) = e-^+'^-'Cx + \)k/r(k). 

It now follows that 

P(X^x + u;X^x)-   /    e^'e-8*'11*-— (x+l)kd9 
Jo >(k) 

x + u+[J 

As an aside if the prior on 9 were taken to be an improper prior, n(9) = 1, 8 > 0, then 
P(X^x-\-u;X^x) = (x/(x+ u)). This assessment of residual life is similar, but not identical, to that of 
Eq. (2.5) with k = 1. 

Suppose now that one were to not subscribe to the principle of conditionality and chose J*?(0; X^x) = c; i.e. 
the likelihood is a constant c>0. Then the posterior of 8 would equal its prior, and Eq. (2.5) would become 
(u+\)~k. Here the effect of x vanishes, because in choosing a flat likelihood one essentially says that 
irrespective of what x is, an equal weight is given to all values of 8. Clearly, this choice for a likelihood is not 
appealing. However, the following choice for i£(9\ X^x) appears to be a more sensible alternative. 

Suppose that instead of choosing J£(8; X >x) = exp(—0x)—a decreasing function of 9—one were to choose 
S£{9;X^x) = exp(—9flx), for some /?>0. The likelihood would still be a decreasing function of 9, but the rate 
of decrease would vary, depending on the value of /?; see Fig. 2. 
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exp(-epx), p> 1 

exp(-Bx) 

exp(-epx), p<1 

Values of 9 

Fig. 2. Likelihood of 0 with X>x fixed. 

For P>0, Eq. (2.5) would become 

P(X^x + u;X^x) = 
Px+l 

Px + u+l 
(2.6) 

so that the introduction of a /? in the likelihood tantamounts to assigning a weight /? to the observed value of x. 
This in some scenarios could be a desirable feature to have, say when the accuracy (i.e. the credibility) of the 
observed x is suspect. The choice /?;> (<)1 would inflate (deflate) x, and this in turn would cause the likelihood 
to decay faster (slower) than the conventional exp(—6x). Since 6 is the reciprocal of the mean time to failure, 
accentuating large values of 0, as the choice ft < 1 would tend to do, boils down to accentuating small values of 
the mean time to failure and thence small values of the residual life. Similarly with /J> 1. The choice /? = 1 
encapsulates full faith in the observed x and also an adherence to the principle of conditionality. Eqs. (2.5) and 
(2.6) support our claim that the introduction of a parametric model increases the transparency of the point we 
are trying to make. 

2.3.1. Discussion: the advantage of parametric models 
Parametric models are used because they facilitate a coherent updating of the assessed uncertainties via a 

mechanistic application of Bayes' formula. The example of Section 2.3.2 underscores this point. By contrast, 
the direct approach of Section 2.2 requires of the user a fresh specification of the likelihood every time new 
evidence becomes available. This process, besides being cumbersome, has the danger of leading one to 
incoherence should one not be thoughtful about one's specifications. The disadvantage of parametric models 
is that the chosen model may not be an accurate reflection of reality. All the same the computational 
advantage offered by parametric models outweighs the disadvantage of misspecification, and thus their 
common use. 

2.3.2. Application to survival time data on winding life 
To illustrate the workings of the material of this section we consider here some service life data on "field 

windings" of generators given by Nelson (2000). The data below, abstracted from Nelson (2000, Table 1), 
consists of months in service of failed and unfailed windings. The 16 ranked failures and survival times—with 
the former tagged by an asterisk—in months are 

31.7*, 39.2*, 57.5*, 65.0,65.8% 70.0*, 75.0,75.0,87.5,88.3,94.2,101.7,105.8*, 109.2,110.0*. and 130.0. 

Observe that seven out of the 16 field windings have experienced failures and of the nine that have not the 
largest (smallest) service life is 130 (65) months. Suppose that for the purposes of planning for maintenance, 
we are interested in the probability of any one of the surviving units not failing for an additional u>0 months. 
For the sake of discussion let us pick the unit with the largest accumulated life. That is, we need to assess 
P(X 5= 130 + u\ d), where d denotes the life history data given above. 
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Based on Likelihood 
with p<1 

Based on Likelihood 
with p=1 

250 375 
Values Of U 

Fig. 3. Probability of the longest surviving unit surviving an additional u months. 

Assuming that P(X ^x\9) = exp(—6x), with a gamma prior for 9 with scale (shape) parameter 1(&), it can be 
verified that under an adherence to the principle of conditionality, the posterior distribution of 6 is also a 
gamma with scale (£"' *i + Ei U + 1). and shape k + n, where EiT ** 's tne sum °ftne m survival times and 
J2" U is the sum of the n failure times. When such is the case, we have—as an analogue to Eq. (2.5) -the result 
that for any unfailed unit, that has experienced a service life of x, 

P(X> x + «;•) Er*' + E7'/ + i k+n 

(2.7) 

Eq. (2.7) when invoked—for k = 5—in the context of the surviving unit with an accumulated service life of 
130 months and the life history data given above yields, for w$=0, 

P(X^l30 + u;d) 
1306.9 

1306.9 + u 

12 

(2.8) 

A plot of P(X^ 130 + «;d) versus u, for w>0, is shown as the bold faced curve of Fig. 3. 
Were the principle of conditionality not adhered to and the likelihood function be modulated by the 

constant /?>0, then our analogue to Eq. (2.6) would be 

P(X^x + u;») 
jB(£7*.- +Ei'.-) + «+! 

k+n 

(2.9) 

Eq. (2.9) when invoked in the context of the scenario leading up to Eq. (2.8) for fi = \ and 2 would result in the 
dotted curves of Fig. 3. Our assessed survival probability depends on the form chosen for the likelihood. In 
principle, likelihood plays a more crucial role than the prior, because whereas the prior gets updated with new 
evidence, the likelihood stays put from the start. 

3. Conclusion 

The innocuously simple problem of assessing conditional probabilities can get riddled with issues, both 
philosophical and technical, when the conditioning event becomes a reality. The cleanest way to approach it is 
through Bayes' Law. When this is done it can be seen that the standard answer arises as a special case under 
the assumption of a constant likelihood. Other forms of the likelihood will lead to other answers. Since the 
choice of a likelihood is an assessors prerogative—just like the choice of a probability model—there is no 
unique and correct way to bet on residual life. However, the traditional answer (presumably the one that will 
be subscribed to by card carrying probabilists) will be the correct and unique answer, but only when its 
argument is sheltered under the philosophical (or behaviouristic) principle of conditionalization. 
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Abstract: The notion of quality of life (QoL) has recently received a high 
profile in the biomedical, the bioeconomic, and the biostatistical literature. This 
is despite the fact that the notion lacks a formal definition. The literature on 
QoL is fragmented and diverse because each of its constituents emphasizes its 
own point of view. Discussions have centered around ways of defining QoL, ways 
of making it operational, and ways of making it relevant to medical decision 
making. An integrated picture showing how all of the above can be brought 
together is desirable. The purpose of this chapter is to propose a framework that 
does the above. This we do via a Bayesian hierarchical model. Our framework 
includes linkages with item response theory, survival analysis, and accelerated 
testing. More important, it paves the way for proposing a definition of QoL. 

This is an expository chapter. Our aim is to provide an architecture for 
conceptualizing the notion of QoL and its role in health care planning. Our ap- 
proach could be of relevance to other scenarios such as educational, psychomet- 
ric, and sociometric testing, marketing, sports science, and quality assessment. 

Keywords and Phrases: Health care planning, hierarchical modeling, infor- 
mation integration, survival analysis, quality control, utility theory 

26-1    Introduction and Overview 

A general perspective on the various aspects of the QoL problem can be gained 
from the three-part paper of Fitzpatrick et al. (1992). For an appreciation of the 
statistical issues underlying QoL, the recent book by Mesbah, et al. (2002) is a 
good starting point. In the same vein is the paper of Cox et al. (1992) with the 
striking title, "Quality of Life Assessment: Can We Keep It Simple?" Reviewing 
the above and other related references on this topic, it is our position that QoL 
assessment can possibly be kept simple, but not too simple! To get a sense as 
to why we come upon this view, we start by selectively quoting phrases from 

369 ' 
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(i) "Many instruments reflect the multidimensionality of QoL," Fitzpatrick 
et al. (1992). 

(j) "Summing disparate dimensions is not recommended, because contrary 
trends for different aspects of QoL are missed," Fitzpatrick et al. (1992). 

(fc) "In health economics QoL measures have ... more controversially (be- 
come) the means of prioritizing funding," Fitzpatrick et al. (1992). 

(I) "The best understood application of QoL measures is in clinical trials, 
where they provide evidence of the effects of interventions," Fitzpatrick 
et al. (1992). 

There is a variant of the notion of QoL, namely, the quality adjusted life 
(QAL). This variant is designed to incorporate the QoL notion into an anal- 
ysis of survival data and history. A motivation for introducing QAL has been 
the often expressed view that medical interventions may prolong life, but that 
the discomfort that these may cause could offset any increase in longevity. The 
following four quotes provide some sense of the meaning of QAL. 

(m) "QAL is an index combining survival and QoL...," Fitzpatrick et al. 
(1992). 

(n) "QAL. is a measure of the medical and psychological adjustments needed 
to induce an affordable QoL for patients undergoing problems," Sen (2002). 

(o) "QAL is a patients' survival time weighted by QoL experience where the 
weights are based on utility values - measured on the unit interval," Cole 
and Kilbridge (2002). 

(p) "QAL has emerged as an important yardstick in many clinical studies; 
this typically involves the lifetime as the primary endpoint with the in- 
corporation of QAL or QoL measures through appropriate utility scores 
that are obtained through appropriate item analysis schemes," cf. Zhao 
and Tsiatis (2000). 

26.1.2    Overview of this chapter 

The above quotes encapsulate the essence of the QoL and its variant, the QAL. 
They indicate the diverse constituencies that are attracted to a QoL metric and 
the controversies that each constituency raises. For our objectives, the quotes 
provide ingredients for proposing a definition of QoL and developing a metric for 
measuring it. As a first step, it appears to us that any satisfactory discourse on 
QoL should encompass the involvement of three interest groups, the clinicians, 
the patients (or their advocates), and an economic entity, such as managers of 
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Figure 26 
of QAL). 

O'a Utility K(d.c) 

1. V's decision tree using QAL consideration (the unifying perspective 

The quantities 6{V), 9(C), and 0(7?) are explained later in Sections 26.3 
through 26.5. The hexagon denotes V's decision node and the triangle is a 
random node 7£. At the decision node V takes one of several possible actions 
available to V; let these actions be denoted by a generic d. At 7c, we would see 
the possible outcomes of decision d. The quantity U(d, c) at the terminus of the 
tree represents to V the utility of a decision d when the outcome is c. With 
medical decisions it is often the case that d influences c. 

The quantity Q{T>) is V's QoL assessed by V subsequent to fusing the inputs 
of V and C; Q(V) e [0,1]. Let P(X > x) denote V's survive! junction; this is 
assessed via survival data history on individuals judged exchangeable with V, 
plus other covariate information that is specific to V. Together with P(X > x) 
and 0(V), V is able to assess V's QAL. There are two strategies for doing this. 
One is through the accelerated life model whereby QAL(x) = P(XQ(D) > 
x). The other is via a proportional life model whereby QAL(x) = {P(X > 

I))i/Q(I)). Note that the QAL metric is, like the survival function, indexed by 
x. The effect of both of the above is to dampen the survival function of the 
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Figure 26.2. Envelope showing the range of values for p(0;-,/3ij-). 

such omnibus questions generate a response on a multinomial scale, but here we 
assume that V's response takes values in the continuum [0,1], with 1 denoting 
excellent. Let 6{T) denote Vs response to an omnibus question. 

2C.3.1    The case of a single dimension: X>'s assessment of Oj 

Given the responses Xj = (xij,... , xjy) t° a set of k questions pertaining to 

dimension j, the likelihood of 8j and/3;- = (/3j.,... ,/Jj. ) under the Rasch model 

(26.1) 

for 9j 6 [0,1] and -co </3y < • •• < f3kj < +oo. 
If we suppose, as is reasonable to do so, that 6j and /?7- are a priori inde- 

pendent with ir(6j) and n[/3j) denoting their respective prior densities, then 

by treating j3j as a nuisance parameter and integrating it out, the posterior 

distribution of 9* is 

JPj ~   ~ ~     ~ 
(26.2) 

The question now arises as to what should TT(8J) and TT(PJ) be? In order to 

answer this question we first need to ask who specifies these priors, V, C, or 
VI The answer has to be either C or V, because V cannot satisfy a prior and 
then respond to a questionnaire. Furthermore, in principle, these priors have to 
be Vs priors because it is Vs decision process that we are describing. Thus, 
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The quantity L(8(D)]8(P),8(C)) denotes P's likelihood that V will declare 
a 9(P), and C will declare a 5(C), were 9(D) to be a measure of Vs overall 
quality of life. This likelihood will encapsulate any biases that P and C may 
have in declaring their 6(P) and 8(C), respectively, as perceived by P, and also 
any correlations between the declared values by V and C. The nature of this 
likelihood remains to be investigated. The quantity TT-D(8(D)) is P's prior for 
8(D), and following our previous convention, we assume that it is uniform on 
[0,1]. This completes our discussion on P's assessment of 6(D). It involves a 
8(P), 8(C) and connotes information integration by V at one level. 

26.4.2    Encoding the positive dependence between the 6jS 

One way to capture the positive dependence between the 0,-s is through mixtures 
of independent sequences. Specifically, we suppose, as if is reasonable to do so, 
that given 9(D) the 6jS are independent, with 0j having a probability density 
function of the form f-p(6j\8(D)), j = l,...,m. The subscript V associated 
with / denotes the fact that the probability density in question is that of V. A 
strategy for obtaining fx>(8j\8(D)) is described later, subsequent to Equation 
(26.5). 

With TTD(8J\XJ), j — l,...,m, and 5rp(0(P)) at hand, P may extend the 

conversation to 8(D) and obtain the joint distribution of 8\,..., 8m as 

Pv(8u...,9m;xjl,...,xjrn,8(V),6(C)) 

=    J P(8l,...,8m\8(V);x1,...,xm)*v(9(V))dd(D);        (26.4) 
B(V) 

in writing out the above, we have assumed that the XjS, j — l,...,m, have 

no bearing on 8(D), once 8(P) and 8(C) have been declared by V and C, re- 
spectively. Applying the multiplication rule, and supposing that the ZjS, i ^ j 

have no bearing on 9}, j = 1,... ,m, the right-hand side of the above equation 
becomes 

/"   m 

J Y[fv(d3\e(v>>z3)«vm)M(v)- (26-5) 
fl(-c) i"1 

We now invoke Bayes' law to write 

MBjld^-xj) oc /©(0(2?)|0j;£)>TD(*j;2i). 

where ft>(8(D)\6j\Xj) is P's probability density of 8(D) were P to know 6j, 

and in the light of Xj. A strategy for specifying this probability density is to 

suppose that 8(D) is uniform and symmetric around 83, with endpoints 8j ± t, 
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There could be other possible ways for defining QoL. A few of these would 
be to consider minify), maxj(6j), or mearij(8j), and to let QoL be a quantity 
such as 

QoL = Pz>(min(0j) > a) 
i 

for some a € [0,1]. Whereas the proposed definition(s) are appropriate in all 
situations, it is not clear whether a unique definition of QoL is palatable to all 
constituents. We see some merits to having a unique yardstick. 

26.6    Summary and Conclusions 

In this chapter we have proposed an approach for addressing a contemporary 
problem that can arise in many scenarios, the one of interest to us coming from 
the health sciences vis-a-vis the notion of "quality of life.1' What seems to be 
common to these scenarios is information from diverse sources that needs to 
be integrated, considerations of multidimensionality, and the need to make de- 
cisions whose consequences are of concern. Previous work on problems of this 
type has been piecemeal with statisticians mainly focusing on the frequentist 
aspects of item response models. Whereas such approaches have the advantages 
of "objectivity"', they do not pave the path of integrating information from mul- 
tiple sources. The approach of this chapter is based on a hierarchical Bayesian 
architecture. In principle, our architecture is able to do much, if not all, that is 
required by the users of QoL indices. The architecture also leads to a strategy 
by which QoL can be defined and measured in a formal manner. The current 
literature on this topic does not address the matter of definition. This chapter is 
expository in the sense that it outlines an encompassing and unifying approach 
for addressing the QoL and QAL problem. The normative development of this 
chapter has the advantage of coherence. However, this coherence is gained at 
the cost of simplicity. Some multidimensional priors with a restricted sample 
space are involved, and these remain to be articulated. So do some likelihoods. 
Finally, there is the matter of computations. However, all these limitations are 
only of a technical nature and these can eventually be addressed. We are con- 
tinuing our work on such matters, including an application involving real data 
and real scenarios. The purpose of this chapter was to show how a Bayesian 
approach can address a contemporary problem, and the overall strategy that 
can be used to develop such an approach. The novel aspects of this chapter 
are: the conceptualization of the QoL problem as a scenario involving three 
groups of individuals, a structure whereby information from several sources can 
be integrated, and a definition of the notion of QoL. 
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Choosing a Coverage Probability for Prediction Intervals 

Joshua LANDON andNozer D. SINGPURWALLA 

Coverage probabilities for prediction intervals are germane to 
filtering, forecasting, previsions, regression, and time series 
analysis. It is a common practice to choose the coverage proba- 
bilities for such intervals by convention or by astute judgment. 
We argue here that coverage probabilities can be chosen by de- 
cision theoretic considerations. But to do so, we need to spec- 
ify meaningful utility functions. Some stylized choices of such 
functions are given, and a prototype approach is presented. 

KEY WORDS: Confidence intervals; Decision making; Filter- 
ing; Forecasting; Previsions; Time series; Utilities. 

1. INTRODUCTION AND BACKGROUND 

Prediction is perhaps one of the most commonly undertaken 
activities in the physical, the engineering, and the biological sci- 
ences. In the econometric and the social sciences, prediction 
generally goes under the name of forecasting, and in the actuar- 
ial and the assurance sciences under the label life-length assess- 
ment. Automatic process control, filtering, and quality control, 
are some of the engineering techniques that use prediction as a 
basis of their modus operandus. 

Statistical techniques play a key role m prediction, with re- 
gression, time series analysis, and dynamic linear models (also 
known as state space models) being the predominant tools for 
producing forecasts. The importance of statistical methods in 
forecasting was underscored by Pearson (1920) who claimed 
that prediction is the "fundamental problem of practical statis- 
tics." Similarly, with de Finetti (1972, Chaps. 3 and 4), who 
labeled prediction as "prevision," and made it the centerpiece 
of his notion of "exchangeability" and a subjectivistic Bayesian 
development around it. In what follows, we find it convenient to 
think in terms of regression, time series analysis, and forecast- 
ing techniques as vehicles for discussing an important aspect of 
prediction. 

Joshua Landon is Post Doc, and Nozer D. Singpurwalla is Professor, Depart- 
ment of Statistics and Department of Decision Sciences, The George Washing- 
ton University, Washington, DC 20052 (E-mail: n02er@gwu.edu). Supported 
by ONR Contract NOOO14-06-1-0037 and the ARC- Grant W911NF-05-1-0209. 
The student retention problem was brought to our attention by Dr Donald 
Lehman. The detailed comments of three referees and an Associate Editor have 
broadened the scope of the article. Professor Fred Joust made us aware of the 
papers by Granger, and by Tay and Wallis. 

We start by noting that inherent to the above techniques is 
an underlying distribution (or error) theory, whose net effect 
is to produce predictions with an uncertainty bound; the nor- 
mal (Gaussian) distribution is typical. An exception is Gard- 
ner (1988), who used a Chebychev inequality in lieu of a spe- 
cific distribution. The result was a prediction interval whose 
width depends on a coverage probability; see, for example, Box 
and Jenkins (1976, p. 254), or Chatfield (1993). It has been a 
common practice to specify coverage probabilities by conven- 
tion, the 90%, the 95%, and the 99% being typical choices. In- 
deed Granger (1996) stated that academic writers concentrate 
almost exclusively on 95% intervals, whereas practical fore- 
casters seem to prefer 50% intervals. The larger the coverage 
probability, the wider the prediction interval, and vice versa. But 
wide prediction intervals tend to be of little value [see Granger 
(1996), who claimed 95% prediction intervals to be "embarass- 
ingly wide"]. By contrast, narrow'prediction intervals tend to 
be risky in the sense that the actual values* when they become 
available, could fall outside the prediction interval. Thus, the 
question of what coverage probability one should choose in any 
particular application is crucial. 

1.1 Objective 

The purpose of this article is to make the case that the choice 
of a coverage probability for a prediction interval should be 
based on decision theoretic considerations. This would boil 
down to a trade-offbetween the utility of a narrow interval ver- 
sus the disutility of an interval that fails to cover an observed 
value. It is hoped that our approach endows some formality to a 
commonly occurring problem that seems to have been tradition- 
ally addressed by convention and judgment, possibly because 
utilities are sometimes hard to pin down. 

1.2 Related Issues 

Before proceeding, it is important to note that in the context 
of this article, a prediction interval is not to be viewed as a confi- 
dence interval. The former is an estimate of a future observable 
value; the latter an estimate of some fixed but unknown (and of- 
ten unobservable) parameter. Prediction intervals are produced 
via frequentist or Bayesian methods, whereas confidence inter- 
vals can only be constructed via a frequentist argument. The dis- 
cussion of this article revolves around prediction intervals pro- 
duced by a Bayesian approach; thus we are concerned here with 
Bayesian prediction intervals. For an application of frequentist 
prediction intervals, the article by Lawless and Fredette (2005) 
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is noteworthy; also the book by Hahn and Meeker (1991, Sect. 
2.3), or the article of Beran (1990). 

A decision theoretic approach for specifying the confidence 
coefficient of a confidence interval is not explored here. All the 
same, it appears that some efforts in this direction were em- 
barked upon by Lindley and Savage [see Savage (1962), p. 173, 
who also alluded to some work by Lchmann (1958)]. By con- 
trast, a decision theoretic approach for generating prediction in- 
tervals has been alluded to by Tay and Wallis (2000) and devel- 
oped by Winkler (1972). However, Winkler's aim was not the 
determination of optimal coverage probabilities, even though 
the two issues of coverage probability and interval size are iso- 
morphic. Our focus on coverage probability is dictated by its 
common use in regression, time series analysis, and forecast- 
ing. 

Finally, predictions and prediction intervals should not be 
seen as being specific to regression and time series based mod- 
els, in general they will arise in the context of any probability 
models used to make previsions, such as the ones used in relia- 
bility and survival analysis [see Singpurwalla (2006), Chap. 5]. 

2. MOTIVATING EXAMPLE 

Our interest in this problem was motivated by the following 
scenario. For purposes of exposition, we shall anchor ou this 
scenario. •-•,... 

A university wishes to predict the number of freshman stu- 
dents that will be retained'to their sophomore year. Suppose that 
N is the number of freshman students, and X is the number re- 
tained to the sophomore year; X < N. Knowing N, the univer- 
sity wishes to predict X. The prediction is to be accompanied 
by a prediction interval, and the focus of this article pertains to 
the width of the interval. The width of the interval determines 
the amount of funds the university needs to set aside for meet- 
ing the needs of the sophomore students. The wider the interval, 
the greater the reserves; however, large reserves strain the bud- 
get. By contrast, the narrower the interval the greater is the risk 
of the actual number of sophomores falling outside the inter- 
val. This would result in poor budgetary planning due to insuf- 
ficient or excessive reserves. Thus, a trade-off between the risks 
of over-budgeting and under-budgeting is called for. 

The student retention scenario is archetypal because it arises 
in several other contexts under different guises. A direct parallel 
arises in the case of national defense involving an all-volunteer 
fighting force. Meaningful predictions of the retention of trained 
personnel are a matter of national security. A more classical sce- 
nario is the problem of inventory control wherein a large volume 
of stored items ties up capital, whereas too little inventory may 
result in poor customer satisfaction or emergency actions; see, 
foT example, Hadley and Whitin (1960, Chap. 4). Another (more 
contemporary) scenario comes from the Basel II accords of the 
banking industry. Bank regulators need.to assess how much cap- 
ital a bank needs to set aside to guard against financial risks that 
a bank may face; see Decamps, Rochet, and Roger (2004) for an 
appreciation. From the biomedical and the engineering sciences 
arises the problem of predicting survival times subsequent to a 
major medical intervention or a repair. 

In all the above scenarios, the width of the prediction interval 
is determined by the nature of an underlying probability model 
and its coverage probability. This point is best illustrated by a 
specific assumption about the distribution of the unknown X, 
this is done next. But before doing so, it is necessary to remark 
that neither the literature on inventory control, nor that on Basel 
II accords, addresses the issue of optimal coverage probabilities. 
In the former case, a possible reason could be the difficulties 
associated with quantifying customer dissatisfaction. 

2.1    Distributional Assumptions 

Suppose that the (posterior) predictive distribution of X ob- 
tained via a regression or a time series model is a normal (Gaus- 
sian) with a mean n and variance a1, where n and a2 have 
been pinned down; the normal distribution is typical in these 
contexts. Then, it is well known [see De Groot (1970), p. 228] 
that under a squared error loss for prediction error, (i is the best 
predictor of X. For a coverage probability of (1 — a), a predic- 
tion interval for X may be of the form fx ± zajio. Here za/2 is 
such that for some random variable W having a standard normal 
distribution, P(W > za/2) = a/2. 

The qudstion that we wish to address in this article is, what 
should a be? A small a will widen the prediction interval dimin- 
ishing its value to a user. Indeed, a — 0 will yield the embar- 
rassing (-co, +oo) as a prediction interval. By contrast, with 
large values of a, one runs the risk of the prediction interval not 
covering the actual value (when it materializes). Thus, we need 
to determine an optimum value of a to use. To address the ques- 
tion posed, we need to introduce utilities, one for the worth of a 
prediction interval, and the other, a disutility, for the failure of 
coverage. 

3. CANDIDATE UTILITY FUNCTIONS 

Utilities are a key ingredient of decision making, and the prin- 
ciple of maximization of expected utility prescribes the deci- 
sion (action) to be taken; see, for example, Lindley (1985, p. 
71). Utilities measure the worth of a consequence to a deci- 
sion maker, and disutilities the penalty (or loss) imposed by a 
consequence. With disutilities, a decision maker's actions are 
prescribed by the principle of minimization of expected disutil- 
ities. The unit of measurement of utilities is a "utile." However, 
in practice utilities are measured in terms of monetary units, 
such as dollars, and this is what we shall assume. 

In the context of prediction, we make the natural assump- 
tion that, in principle, one prefers a prediction interval of width 
zero over any other prediction interval. This makes the utility of 
any prediction interval of nonzero width a disutility. Similarly, 
the failure of any prediction interval to cover an observed value 
results in a disutility. Following Winkler (1972), the two disu- 
tilities mentioned above are assumed to be additive, though this 
need not be so. Thus, for the scenario considered here, one en- 
deavors to choose that value of a for which the total expected 
disutility is a minimum. 
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Figure 1.    The disutility of noncoverage. 

3.1 The Disutility of a Prediction Interval 

The width da of a prediction interval of the type described 
in Section 2.1 is da = 2za/20\ here the coverage probability is 
(1 — a). Let c(da) be the disutility (or some kind of a dollar 
penalty) associated with a use of da. Clearly c(da) should be 
zero when da — 0, and c(da) must increase with da, since there 
is a disadvantage to using wide intervals. A possible choice for 
c(da) could be 

c{da)=dg, (1) 

for fi > 0. When fi < 1, c(da) is a concave increasing func- 
tion of da, and when fi > \,c(da) is convex and increasing in 
da. The choice of what fi must be depends on the application. In 
certain applications, such as target tracking, fi < 1 may be more 
desirable than fi > 1; in others, such as econometric forecast- 
ing, a convex disutility function may be suitable. The choice of 
(3.1) for a disutility function is purely illustrative. The proposed 
approach, is not restricted to any particular choice for c(da). 

3.2 The Disutility of Noncoverage 

A possible function for the disutility caused by a failure of 
the prediction interval to cover x, a realization of X, can be 
prescribed via the following line of reasoning. 

Suppose that Ua — ft + za/20 is the upper bound, and La — 
fi—za/2cr,(he lower bound of the (1 —a) probability of coverage 
prediction interval. Let L(da,x) denote the disutility or penalty 
loss (in dollars) in using a prediction interval of width da when 
X reveals itself as x. Then L(da, x) could be of the form 

L(da,x) = 0, 

h(La-x), 

x > Ua, 

La < x < Va, 

x < La, 

(2) 

where f\ and fi are increasing functions of their arguments, 
which encapsulate the penalty of x overshooting and under- 
shooting the prediction interval, respectively. 

As illustrated in Figure 1, the said functions will generally 
be convex and increasing because a narrow miss by the interval 
will matter less than a large miss. Furthermore, these functions 
need not be symmetric. For example, as shown in Figure 1, the 
penalty for undershooting the interval is assumed to be more 
severe than that of overshooting. 

33   The Expected Total Disutility 

With c(da) and L(da,x) thus specified, there remains one 
caveat that needs to be addressed. When the a is chosen, the 

value of x is not known and thus L(da,x) needs to be aver- 
aged over the possible values that x can take. This is easy to 
do because the predictive distribution of X has to be specified. 
Accordingly, let 

R(da) = Ex[L(da,x)], (3) 

be the expected value of L(da, x). In decision theory, R(da) is 
known as the risk function; it is free of X. R{da) encapsulates 
the risk of noncoverage by an interval of width da, with R(da) 
decreasing in da. 

Since c(da) is devoid of unknown quantities—indeed da is a 
decision variable—the matter of taking an expectation of c(da) 
is moot. We may now combine c(da) and R(da) to obtain the 
total expected disutility function as 

D(da)=c(da) + R(da). (4) 

As mentioned before, the additive choice, albeit natural, is not 
binding. We choose that value of a for which D(da) is a mini- 
mum. This is described next. 

4. CHOOSING AN OPTIMUM COVERAGE 
PROBABILITY 

To make matters concrete, suppose that c(da) — y/d^, so 
that the fi of Equation (1) is 1/2. Also, since da = 2za/io, 
Ua — /' + zu/2<; can be written as Ua — ft + du/2\ similarly, 
La = ft -da/2. 

For the f\ and fi of Equation (2), we let f\ (x — Ua) — 
(x - Ua)

2/A0 and f2(La - x) = (La - xf/\0. These choices 
encapsulate a squared-error disutility, and make f\ and fi 
asymmetric with respect to each other Writing Ua and La in 
terms of da, we have f(x — Ua) = (x — ft — da/2)2/40, and 
f2{La-x) = (fi-da/2-x?/\Q. 

To compute the risk function of Equation (3) we need to 
specify ft and a2 of the normal distribution of X. Based on a 
Bayesian time series analysis of some student retention data, 
these were determined to be fi — 2140 and a2 = 396. With the 
above in place, we may compute the total expected disutility as 

D{da)^JTa + R(da), 

where 

f+da/2 

(x-fi-dg/2)2 

40 
f{x)dx 

M-da/2 

+ 
/ 

(M-da/2-xY 

10 
f(x)dx, 

where f(x) is the probability density at x of a normally dis- 
tributed random variable with mean fi and variance a2. 

The computation of R(da) has to be done numerically, and a 
plot of D{da) versus da, for da > 0, is shown in Figure 2. 

An examination of Figure 2 shows that D(da) attains its min- 
imum at da  =62. This suggests, via the relationship da  = 
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Figure 2.    Total expected disutility versus da • 

2za/2cr with a2 = 396, and a table look up in the standard 
normal distribution, that the optimal coverage probability for 
this scenario is 0.88. Using coverage probabilities other than 
0.88 « 0.90, say the conventional 0.95 or 0.99 would yield a 
wider interval but the utility of such intervals would be less than 
that provided by the 0.90 coverage probability. 

5. GENERALITY OF THE APPROACH AND SOME 
CAVEATS 

The proposed approach is general because it rests on the sim- 
ple principle of minimizing D(da), the total expected disutility 
function—Equation (4). If D(da) attains a unique minimum, 
then a unique optimal coverage probability can be arrived upon. 
If the minimum is not unique, then several optimal coverage 
probabilities will result, and the user is free to choose any one 
of these. There could be circumstances under which D(da) will 
not attain a minimum, and the method will fail to produce an 
answer. The optimality conditions which ensure a minimum 
value of D(da) is a matter that needs to be formally addressed, 
but with c(da) monotonic and concave (or convex), and with 
L{da,x) t/-shaped as shown in Figure 1, D(da) will indeed 
attain a minimum. The choice of L(da,x) prescribed in Equa- 
tion (1) is quite general. It is easily adaptable to one-sided inter- 
vals, and also to the inventory and banking scenarios mentioned 
before. Furthermore, it is conventional in life-length prediction 
studies and in statistical inference wherein square error loss is a 
common assumption. 

The assumed distribution of X with specified parameters 
plays two roles. One is to average out L(da,x) to produce 
the risk function R(da). In this role the choice of the distri- 
bution of X is not restrictive because its purpose here is to 
merely serve as a weighting function. Any well-known distri- 
bution can be used, especially when R(da) is obtained via nu- 
merical methods, as we have done with the normal. By contrast, 
frequentist prediction intervals that entail pivitol methods limit 
the choice of distributions.-The second role played by the dis- 
tribution of X, is to facilitate a relationship between da and a. 
In the case of the normal distribution with mean jx and vari- 
ance a2, da = 2za/2c; here fi does not matter. This type of 
relationship will arise with any symmetrical distribution, such 
as the Student's-?, the triangular, the uniform, the Laplace, etc. 
A relationship between du and a in the case of the exponen- 
tial with scale X turns out to be quite straightforward, indeed 
more direct than that encountered with the normal; specifically 

da — j log[(2 — a)/a]. By suitable transformations, the case of 
other skewed distributions such as the lognormal, the Weibull, 
and the chi-squared can be similarly treated. A difficult case 
in point is the Pareto distribution (popular in financial math- 
ematics) wherein P(X > x; y/,fi) = (w/iv + x))^• Here 
da = y[0 + a/2)~l/P - (a/2)-1^], and the relationship be- 
tween da and a is involved for the method to be directly in- 
voked. 

Finally, besides the caveat of D{da) not having a minimum, 
the other caveat is the dependence of an optimal coverage prob- 
ability on data. Specifically, the use of a posterior distribution of 
X to obtain R(da) makes this latter quantity depend on the ob- 
served data with the consequence that in the same problem one 
could conceivably end up using a different coverage probability 
from forecast to forecast. Unattractive as this may sound, it is 
the price that one must pay to ensure coherence. However, this 
dependence on the data becomes of less concern once the pos- 
terior distribution of X converges, so that the effect of the new 
data on the posterior diminishes. The same situation will also 
arise when the distribution of X is specified via a frequentist 
approach involving a plug-in rule. 

6. SUMMARY AND CONCLUSIONS 

The thesis of this article is to argue that choosing coverage 
probabilities for prediction intervals should be based on deci- 
sion theoretic considerations. The current practice is to choose 
these by convention or astute judgment. Prediction intervals are 
one of the essentials of regression, time series, and state space 
models. They also occur in conjunction with previsions based 
on probability models entailing the judgment of exchangeabil- 
ity. Furthermore, the principles underlying the construction of 
prediction intervals share some commonality with those involv- 
ing inventory planning and banking reserves. 

The decision theoretic approach boils down to the minimiza- 
tion of total expected disutility. This disutility consists of two 
components. One is a disutility associated with the width of the 
interval and the other is associated with the failure of an inter- 
val to cover the observed value when it reveals itself. The pro- 
posed approach is illustrated via a consideration of stylized util- 
ity functions. It can be seen as a prototype for approaches based 
on other utility functions. The approach also entails a use of the 
normal distribution to describe the uncertainties. Again, this dis- 
tributional assumption is not essential; other distributions will 
work equally well. 

We emphasize that the material here pertains to prediction 
intervals, not confidence intervals. It would be interesting to de- 
velop a decision theoretic approach for choosing the confidence 
coefficient of a confidence interval. To the best of our knowl- 
edge, this remains to be satisfactorily done. 

[Received June 2007. Revised December 2007.] 
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Introduction and Background 

There is extensive and burgeoning material on the 
topic of damage and its associated factors like 
aging, cumulative damage, degradation, deterio- 
ration, fatigue, health status, and quality of life. 
This material appears in both the biostaristical and 
the engineering reliability literatures. However, these 
notions suffer from the feature that they lack a 
precise definition. Rather they convey an abstract 
but intuitive import in the sense of a decrease in 
residual (or remaining) life. This decrease in resid- 
ual life is conceptualized via the feature that an 
item experiencing aging and degradation will fail 
when the damage hits some barrier or threshold. 
Alternatively, it is supposed that at inception, every 
item is endowed with a resource that gets depleted 
because of damage, and that the item fails when the 
resource gets exhausted. Thus, for example, to engi- 
neers like Bogdanoff and Kozin [1], "Degradation 
is the irreversible accumulation of damage through- 
out life that leads to failure." The term damage is 
not made precise; however it is claimed that dam- 
age reveals itself via surrogates or markers, such as 
cracks that grow in size, corrosion, measured wear 
(i.e., depletion of material), and so on. Similarly, 
Sobczyk [2] sees fatigue as "a phenomenon which 
takes place in units experiencing time-varying exter- 
nal actions which manifest in a deterioration of the 
unit's resistance to carry its intended loading". In 
the biostaristical literature, aging pertains to a unit's 
position in a state space wherein the probabilities of 
failure are greater than its former position. Aging 
manifests itself in terms of biomedical and physical 
difficulties experienced by individuals, and in certain 
scenarios, via things tike low-CD4 cell counts; these 
serve as biomedical surrogates, or what are known as 
biomarkers. 

The markers mentioned above are, in most cases, 
observable and measurable endues. Much of the 
recent work on what is known as degradation model- 
ing centers around assessing lifetimes via an analysis 
of the observed markers and their hitting times to 
a threshold (cf. Doksum [3], Doksum and Normand 
[4], Lu and Meeker [5], Ebrahimi [6], and Lehmann 
[7]). However, treating the observable markers as 
substitutes for the unobservable degradation process 

that actually causes failure is tantamount to purring 
the cart before the horse. This is because the unob- 
servable degradation process spawns the observable 
marker process, and is therefore its cause. An excep- 
tion, however, is the work of Whitmore et al. [8] 
and of Lee et al. [9], who treat the degradation and 
the marker as separate but related processes. Also, 
see Nair [10], who makes the point that data on the 
observable surrogates of degradation help sharpen 
lifetime assessments. In this vein, a noteworthy con- 
tribution is by Cox [11] who systematically artic- 
ulates the roles that the observable and the unob- 
servable play in lifetime assessments. The premise 
upon which our bivariate stochastic process model 
with a random threshold is based has been inspired 
by the papers of Whitmore et al. [8] and Cox [11], 
and our work on hazard potential (see Singpurwalla 
[12; 13, p. 79]). 

Preliminaries: The Hazard Potential 

For an appreciation of the bivariate stochastic process 
model as a description of the damage process, some 
preliminaries on the notion of a hazard potential 
would be helpful. Accordingly, let T denote the 
lifetime of a unit and let h(t) be the hazard rate 
of />(T >t),t> 0; let //(r) = /„' h(u) du be the 
cumulative hazard function at t. Then it is easy to 
see that 

P(T> r; h(t),t >0) 

= exp(-//(r)) = />(X>W(f))       (1) 

where X has an exponential distribution with scale 
one. The random variable X is called the hazard 
potential of the item, and it represents an unknown 
"resource" that the item is endowed with at inception. 
Furthermore H(t) is a measure of the amount of 
resource consumed by time t, and h(t), the rate at 
which the resource is consumed at t. The unit fails 
when //(r) exceeds X; that is when //(f) hits the 
random threshold X. 

When the rate at which a unit's resource gets 
consumed is random, h(t) is described by a stochas- 
tic process, making {//(f); t > 0] a stochastic pro- 
cess as well. However, this latter process has to 
be nondecreasing. The unit fails when the process 
(//('); t > 0) hits a barrier X, where X is also 
random with a unit exponential distribution. Can- 
didate stochastic processes for (//(f); f > 0]  arc 
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also alluded to in Singpurwalla [12]. Since //(f) 
is, in principle, nondecreasing in t, t > 0, the pro- 
cess (//(f); f > 0J is a candidate for describing 
a damage process. Furthermore, since the conven- 
tional view claims that an item fails when the dam- 
age hits a threshold, the cumulative hazard and the 
damage reflect a parallel feature. This motivates us 
to view the (cumulative) damage as being isomor- 
phic with the cumulative hazard. Doing so makes 
our perspective different from that which is cur- 
rently being discussed in literature. Like (cumulative) 
damage, the cumulative hazard is not observable. 
However, the cumulative hazard does influence the 
time to failure. Consequently, the cumulative haz- 
ard and the (cumulative) damage are to be seen as 
latent variables, and for that matter, so is the hazard 
potential X. 

A Stochastic Process Model for Damage 
and its Markers 

Because markers are closely linked with damage, 
any suitable model for the damage process should 
be accompanied by some sort of description for the 
markers as well. The most general way to do this 
would be to assume that the markers are realiza- 
tions of stochastic processes, just as the (cumulative) 
damage is a stochastic process. The simplest way 
to proceed would be to suppose that there is only 
one marker to focus attention upon, so that a bivari- 
ate stochastic process {//(/), Z(f); t > 0} would be a 
suitable description of the damage and its marker. As 
stated in the section titled "Preliminaries: The Hazard 
Potential", the process {//(r); t > 0} is nondecreas- 
ing in /. However, the process (Z{f); t > 0} need not 
be restricted to being nondecreasing. Indeed, markers 
such as crack growth and CD4 cell counts fluctuate 
around some trend, and thus one is free to choose 
any suitable model for the process {Z(f); t > 0). A 
Wiener process appears to be the model of choice, 
but this need not be so. 

Thus to summarize, our proposed model for the 
(cumulative) damage and its associated marker is 
a bivariate stochastic process {/7(f), Z(t); t > 0) 
with //(f) nondecreasing in t, and Z(t) free to 
fluctuate around some constant or trend. We term 
such a process a degradation process. Since H(t) 
spawns Z(f), the two processes {//('); t > 0) and 
(Z(f); f > 0} need to be linked; that is, they need 

to be cross-correlated. Without such linkage, the 
marker process cannot serve as predictor of failure, 
and the statistical exercise of degradation modeling 
is not meaningful. One way to achieve this linkage is 
to describe {Z(r); t > 0) by a Wiener process, and 
the unobservable (cumulative) damage process by a 
Wiener maximum process, namely. 

//(f) = sup {Z(s); s>0) 
0<s<l 

(2) 

This strategy has been proposed in Singpurwalla 
[14], wherein a Bayesian approach for inference 
about lifetimes, using data on the marker process, 
is also described. The item fails when //(r) hits 
the (random) threshold X. Whereas the model of 
equation (2) could be a starting point, there is a 
caveat that needs to be addressed. Specifically, since 
Z(f) is spawned by //(f), the latter is the cause of 
the former. This means that //(f) must lead Z(f), 
and so any linkage between the two processes in 
question should incorporate a time lag. The model 
of equation (2) does not do this because here //(f) 
is determined retrospective to Z(f) and therefore lags 
Z(f), instead of the other way around. Thus H(t) and 
Z(r) need to be connected, with the observable Z't) 
lagging the unobservable //(f). This is a possible 
topic for future research. 

In the section titled "Candidate Processes for 
Damage and Markers", we give an overview of 
some modeling strategics that have been proposed 
for the damage process {//(f); f > 0), as well as 
for the marker process (Z(f); r > 0) when each are 
treated separately; that is when no distinction is made 
between the damage (or degradation) process and 
the marker process. Supplementary material on the 
above can also be found in Chapters 7 and 8 of 
Singpurwalla [13]. 

Candidate Processes for Damage and 
Markers 

The origins of the work on threshold crossing of 
cumulative damage as a basis for failure goes back 
to Epstein [15], Esary [16], and Gaver [17]. The 
idea of describing cumulative damage as a stochastic 
process can be traced, to the best of our knowl- 
edge, to Cox [18, p. 91], and to the Ph.D. thesis of 
Morey [19]. However, the granddaddy of all work on 
damage processes is the remarkable paper of Esary 
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et al. [20], who (without articulating what damage 
means) describe damage by a compound Poisson 
process with increments that are positive and have the 
Markov property. Failure occurs when the said pro- 
cess hits a random barrier whose distribution is expo- 
nential. The choice of an exponential distribution for 
the barrier is arbitrary, and Esary et al [20] show that 
the hitting time has an exponential distribution. More 
recently Zacks [21, 22] has elaborated on this theme. 

In the biostatistical arena there is a setup parallel 
to that of Esary et al. [20], which does not allude to 
damage, deterioration, or aging, but to the number of 
mice at some time t, that have typhoid organisms. 
The growth of such mice is described by a pure birth 
process, and the first passage time to a barrier is 
investigated. The specifics are in Cox and Miller [23, 
p. 160], and in Cox [II]. 

The Esary et al. [20] architecture is enhanced by 
Lemoine and Wenocur [24], who model wear (i.e., 
damage) by a suitable random process but who also 
allow for failure due to trauma. The latter is described 
by a Poisson process, the rate of which depends 
on the state of wear. An item fails when the wear 
reaches a threshold or when the item experiences fatal 
trauma. Thus in the model of Lemoine and Wenocur 
[24], the wear and the trauma processes compete with 
each other for an item's lifetime. The random process 
considered by the above authors is a diffusion process 
that is driven by a Wiener process. In a subsequent 
paper, Lemoine and Wenocur [25] describe wear by 
a shot-noise process. A disadvantage of the diffusion 
and the shot-noise process is that the wear (to us 
damage) is not monotonically nondecreasing. To 
rectify this deficiency, Wenocur [26] considers a 
gamma process for describing wear. His development 
of the gamma process proceeds along the following 
lines. 

Partition the time interval into subintervals of 
length h, and let X(n) denote the damage (or wear) 
at time nh, n = 1, 2 Suppose that the damage at 
time (n + \)h is prescribed via the relationship 

X(n + 1) - X(n) = <x(X(n))en + fi(X(n))h    (3) 

where a, (i are constants, and (c„) is a sequence 
of independent and identically distributed random 
variables having a gamma distribution with shape 
parameter h > 0. Letting h j 0, we have 

where {/(/)] is a gamma process. 
In integral terms, equation (4) becomes the stocha- 

stic integral 

-f 
Jo 

X(t) = X(0) + l 0t(X(O) dy(s) +] P(X(s-))ds 

(5) 
Since the gamma process has nonnegative incre- 

ments, the wear (or damage) process is increasing. 
For an overview of the gamma process and their con- 
structions, see Singpurwalla [27], or van der Weid 
[28]. Whereas a gamma process model may be attrac- 
tive in scenarios wherein the damage causing shocks 
occur frequently, the models by Zacks [21, 22] for 
the compound Poisson process case and for the com- 
pound renewal process case, respectively, seem to be 
more appropriate when the shocks are infrequent. 

Candidate Marker Processes 

In engineering reliability, an archetypical marker pro- 
cess is crack growth, whereas in biostatistical studies, 
it appears that CD4 cell counts is a commonly men- 
tioned biomarker. With archetypical markers come 
archetypical stochastic processes for (Z(X); ' > 0), 
and one such process is the Wiener process with a 
drift parameter r) and a diffusion parameter a2 > 0; 
see Doksum [3] and Whitmore et al. [8]. As men- 
tioned before, the marker is often viewed as a proxy 
for damage, and failure is said to occur when the 
marker process hits a threshold. As is well known, 
the hitting time to the threshold (assumed fixed and 
known) of a Wiener process has an inverse Gaussian 
distribution (see Singpurwalla [13, p. 68 and 136], 
for a discussion of this distribution). 

The Wiener process has independent increments, 
so does a gamma process. This amounts to saying that 
the increments of crack size are independent of the 
existing crack length. This latter phenomenon is not 
always true. The bigger the crack, the bigger is its 
growth. This motivates one to consider transforma- 
tions of the Wiener process. Furthermore, the crack 
growth phenomenon also exhibits abrupt growth. The 
Wiener process does not encapsulate such abruptness 
of growth. With the above in mind, Schabe [29] pro- 
poses the following as a model for X(t). the size of 
a crack at time x, X > 0. Let X(t) = (,M(t))a, where 

M(t) = bt + W(t) + /xP(x) (6) 

Here  W(x) is a Wiener process with variance 
dX(x) =a(X(x~)) dy(t) + P(X(t~))      (4)      ah, and P(t) is a Poisson process with intensity 
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A. The constant b > 0 describes a trend, and the 
constant a is such that a > (<)1 encapsulates a 
progressive (regressive) velocity with which the crack 
grows. Under the model of equation (6), Schabe 
[29] obtains the hitting time of X(t) to h > 0, a 
barrier. This distribution does not have a closed-form 
solution. However, the mean and the variance of this 
distribution are available; these are hhl"(b + /tA.) and 
/,'/" (CT2 + >./i2) /(b + /zX)3, respectively. 

In Ebrahimi [6], a strategy that parallels those of 
Lemoine and Wenocur [24] and of Schabe [29] is 
taken, but instead of looking at the growth of a single 
crack, an ensemble of k cracks, each having its own 
growth rate is considered. Specifically, it is supposed 
that the growth of the i th crack, i = 1,..., k is 
governed by the stochastic differential equation 

dXt(t) = \,(t)X,(t)+oX,(t) dW(»)       (7) 

where Aj(f) is the growth rate of the cracks, a > 0 is 
a constant, and {W(t)\ t > 0} is a standard Wiener 
process with mean 0 and variance t. Using standard 
results (i.e., the Ito formula) it can be seen that 

Xiif) = X(0)exp [A|(0 - yf + <rW(t) 1 (8) 

where A; (/)=/„'A, (s) ds, and X(fi) is the initial 
crack size, assumed to be known, and is the same 
for all the k cracks. The item fails when the size 
of the largest crack hits some threshold, say a. If T 
denotes the passage time of the largest crack to the 
threshold a, then it can be seen that for 0 < u < t 

P(T > 0 

= p[w(u)<[rnink{^u-U,W)+c)] 

(9) 
where c = h/a and b = logo - log X(Q). 

Computation of the above follows from results on 
the the times taken by the Wciner process to hit a 
threshold. 

Motivated by a model of Durham and Padgett 
[30], Park and Padgett [31] propose a model for 
cumulative damage, assuming that the damage is 
an observable measurable entity. This amounts to 
interpreting cumulative damage as a marker, like 
crack growth. The scheme proposed by Park and 
Padgett [31] is noteworthy, because it facilitates the 
introduction of both a Brownian motion process and 

a gamma process as the driving processes for crack 
growth. Here, for some functions c(.) and A(.), it is 
assumed that 

dc(X(r))=/i(X(/))dD(r) (10) 

where D(t) is the damage at t, and X(t) is the 
cumulative damage at t. As a consequence of the 
above 

I 1 

0   *<*<«)) 
dc(X( «)) = f 

Jo 
d£>(«) = D{t) - £>(0) 

(11) 
By choosing various forms for the function c(.) 

and /i(.), and a stochastic process for \D(t); t > 0), 
different models for A'(r) can be attained. For 
example, with h(u) = \,c{u) = logu, and a Brow- 
nian motion (or Wiener process) for (D(f); ' > 0), 
we obtain a geometric Brownian motion process 
for X(t). With h(u) = 1, c(«) = u and a Brownian 
motion process for [D(t); t > 0} we obtain a Gaus- 
sian process for X{t). With h(u) = 1, c(«) = u and a 
gamma process for [D(t); t > 0) we obtain a gamma 
process for X(t). Whereas the Gaussian process is not 
always positive, the geometric Brownian motion pro- 
cess is always positive but not increasing. In contrast, 
the gamma process is both positive and increasing. 
Characteristics of the hitting times of the geomet- 
ric Brownian motion and the gamma process to a 
fixed and known threshold are also obtained by Park 
and Padgett [31]. This completes our overview of 
stochastic process models for the damage process and 
the marker process - when viewed separately - save 
for the work of Desmond [32], who articulates on a 
two-parameter family of life distributions introduced 
by Birnbaum and Saunders [33]. This distribution is 
motivated via the notion that failure caused by fatigue 
is due to the initiation, growth, and extension of a 
dominant crack past some critical length. 

The essence of Desmond's [32] idea is based on 
the notion that it is the environmental stresses called 
impulses that cause a crack to grow, so that if Xj is 
the size of the crack after the i"th impulse, then 

Xl+1 = X, + nl+)g(X,), i = 0, 1.2,...       (12) 

here 11/ is taken to be the magnitude of the ith 
impulse; e.g. the stress caused by the t'th impulse. The 
n,'s are assumed to be random. If VXj = Xi+i - Xf 



Damage Processes 

is taken to be sufficiently small, then 

(13) 

is approximately normal; g(y) is some function of y. 
The quantity Xo is the initial size of the dominant 
crack. 

With g(y) m 1, and assuming that the n,'s have 
a common mean \i and variance a2 

nxio • [*' d> N(m, to1) (14) 

If Xc denotes the critical crack size, and T the 
time to failure of the unit experiencing the impulses, 
then 

r=inf{r:X(/)>Xc) (15) 

Simple manipulations show that 

(16) 

Where <£(•) is the unit normal distribution func- 
tion. The distribution function given above is a 
member of the Birnbaum-Saunders [33] family of 
distributions. 
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The Hazard Potential: Introduction and Overview 
Nozer D. SINGPURWALLA 

d) 

This is an expository article directed at reliability theorists, survival analysts, and others interested in looking at life history and event 
data. Here we introduce the notion of a hazard potential as an unknown resource that an item is endowed with at inception. The item fails 
when this resource becomes depleted. The cumulative hazard is a proxy for the amount of resource consumed, and the hazard function 
is a proxy for the rate at which this resource is consumed. With this conceptualization of the failure process, we are able to characterize 
accelerated, decelerated, and normal tests and are also able to provide a perspective on the cause of interdependent lifetimes. Specifically, 
we show that dependent life lengths are the result of dependent hazard potentials. Consequently, we are able to generate new families of 
multivariate life distributions using dependent hazard potentials as a seed. For an item that operates in a dynamic environment, we argue 
that its lifetime is the killing time of a continuously increasing stochastic process by a random barrier, and this barrier is the item's hazard 
potential. The killing time perspective enables us to see competing risks from a process standpoint and to propose a framework for the joint 
modeling of degradation or cumulative damage and its markers. The notion of the hazard potential generalizes to the multivariate case. This 
generalization enables us to replace a collection of dependent random variables by a collection of independent exponentially distributed 
random variables, each having a different time scale. 

KEY WORDS:   Compcting-risk process; Degradation process; Dependence; Exchangeable lifetimes; Killing times; Ldvy process; Marker; 
Multivariate failure models; Random killing; Reliability, Survival analysis. 

1. INTRODUCTION AND OVERVIEW 

1.1 Preliminaries: The Hazard Rate and 
the Hazard Potential 

The mathematical theory of reliability, the statistical theory 
of life history or survival analysis, and the underlying premise 
of actuarial sciences are driven by a notion unique to them: 
the hazard rate function (see, e.g., Gjessing, AaJen, and Hjort 
2003). The hazard rate function is both a theoretical and a de- 
scriptive tool that also plays a fundamental role in event history 
analysis. Specifically, there is a parallel between the hazard rate 
function and the intensity Junction of a nonhomogeneous Pois- 
son process (see Grandell 1975), and also between the intensity 
function of a doubly stochastic Poisson process and the hazard 
rate function when the latter is viewed as a stochastic process 
(see Kebir 1991). There are two virtues of the hazard function: 
(a) an interpretive content, in the sense that the aging charac- 
teristics of single and one-of-a-kind items can be encapsulated 
by the shape of the hazard function, and (b) that under some 
regularity conditions (see Yashin and Arjas 1988; Singpurwalla 
and Wilson 1995), the hazard function uniquely determines a 
survival function. There are other scenarios in which (a) is also 
germane; these have been alluded to by Gjessing et al. (2003); 
some examples are an understanding of neuronal degeneration, 
the sleep-wake cycles of individuals, and the longevity of hu- 
mans (see Gavrilov and Gavrilova 2001). 

This is an expository article directed at reliability theorists, 
survival analysts, actuaries, and others interested in event his- 
tory analysis. Our purpose here is to introduce a new notion, the 
hazard potential (HP) as a conceptual tool that provides a differ- 
ent way of looking at the stochastic behavior of lifetimes. The 
term "potential" refers to a feature parallel to that of potential 
energy in physics. The difference here is that we are alluding to 
an item's resistance to failure rather than its capacity for work. 
In Section 3 of this article we put forth the view that the HP can 
be interpreted as the (random) amount of an unknown resource 
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partment of Statistics, George Washington University, Washington, DC 20052 
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edged. This research was supported in pan by U.S. Army Research Office grant 
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with which an item is endowed at inception, and that the item 
fails when this resource is depleted. Looking at lifetime in terms 
of a depleting resource can be more satisfying than one based 
on conditional probabilities, which is what the hazard function 
represents. 

Besides providing an alternative platform for conceptualizing 
the process that leads to failure, and for processes that compete 
for failure, the HP has the following attractive features: 

• It is inherently robust, in the sense that the HP of any and 
all items has an exponential (1) distribution on a suitably 
chosen time scale. 

• It provides a context-free means for characterizing accel- 
erated, decelerated, normal, and partially accelerated life 
tests. 

• In the language of probabilistic causality (see Suppes 
1970), it can be seen as either a prima facie or a genuine 
cause of dependence between lifetimes. 

• It provides a vehicle for developing new families of uni- 
variate and multivariate survival functions by looking at 
the killing times of continuously increasing stochastic 
processes to random barriers. 

• It offers a natural platform from which the abstract phe- 
nomenon of degradation (or damage accumulation) and its 
markers can be stochastically described. 

The HP generalizes to the multivariate case. This general- 
ization, when used in conjunction with the notion of a hazard 
gradient due to Marshall (1975a), enables us to represent a col- 
lection of dependent lifetimes in terms of a collection of inde- 
pendent exponential (1) random variables, each on a different 
time scale. 

In light of the foregoing features, we may liken the HP to the 
notion of a hidden parameter in physics. Hidden parameters per 
se do not have a physical reality, but nonetheless arc valuable 
because they provide explanations for observable phenomena. 

1.2 Overview 

This article is organized as follows. In Section 2 we introduce 
our notation and review some basic relationships. In Section 3 
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we define the HP and interpret its nature from both physical and 
probabilistic standpoints. We also provide a way to formally 
distinguish between accelerated, decelerated, normal, and par- 
tially accelerated life tests from a context-free standpoint. The 
state of the art in accelerated testing seems vague when it comes 
to being specific about what a normal life test means; it treats 
this matter as a given. We conclude Section 3 by generaliz- 
ing the HP to the nonexponential case through the notion of a 
G-hazard potential. In Section 4 we present several qualitative 
results pertaining to the claim that dependent HPs are a prima 
facie cause of dependent lifetimes, whereas a common HP is 
a genuine cause of dependence. Dependent HPs arc a manifes- 
tation of commonalities in manufacturing or, in the context of 
biological units, a shared genetic makeup. In Section 5 we put 
the material of Section 4 to work by generating new families 
of dependent lifetimes using dependent HPs as a seed. In Sec- 
tion 6 we develop new families of survival functions for items 
destined to operate in random environments. The material here 
revolves around obtaining the distribution of the killing time of 
a continuously increasing stochastic process by a random bar- 
rier that is an item's HP. Although the approach of Section 6 
is general, attention focuses only on the following processes: 
the running maxima of a Brownian motion, a Markov process 
with nonnegative increments, a family of nonnegative Levy 
processes, and the integral of a geometric Brownian motion. 
The material of Sections 5 and 6 is not purely conceptual; it has 
the attractiveness of having a practical import. This can be seen 
as an argument in favor of looking at the HP as a useful tool. In 
Section 7 we explore the role of the HP in articulating the no- 
tion of competing-risk processes and casting the phenomenon 
of degradation and its markers in a manner that accords with 
that described in the engineering and materials science litera- 
ture. We devote Section 8 to the multivariate case, which entails 
a relationship between the hazard gradient and what we intro- 
duce as a conditional HP. This connection allows us to replace 
a collection of dependent lifetimes by a collection of indepen- 
dent exponential (1) lifetimes, each indexed by a different time 
scale. In Section 9 we close the article by reemphasizing the 
point of view that the HP offers an alternative perspective for 
appreciating the failure process and that it is a useful conceptual 
tool for understanding the cause of interdependent lifetimes in 
engineering and biological systems. We close Section 9 by ex- 
pressing our hope that the role of the HP could turn out to be as 
useful to reliability and survival analysis as the failure rate and 
the intensity functions. 

2. NOTATION, TERMINOLOGY, AND 
PRELIMINARY RELATIONSHIPS 

Let T denote the (unknown) time to failure of a unit that is 
scheduled to operate in some environment, labeled £. Based on 
the characteristics of the unit, and on knowledge of how the 
unit interacts with £ (vis-a-vis 7), one is able to subjectively 
specify h(t), t > 0, the hazard rate function of P(T > t), the 
survival function of T, assumed to be absolutely continuous. 
We interpret h{i) through the relationship 

h(t)dt*P(t<T<t + dt\T>t), 

where the right side is a conditional probability. A formal de- 
finition of h(t) can be found in the recent book of Aven and 

Jensen (1999). We claim that the hazard function is a theoreti- 
cal (or abstract) notion because, unlike lifetimes that can be di- 
rectly observed, conditional probabilities are either subjectively 
specified or inferred from data. 

Let //(f) — f0 h(u) du; //(f) is known as the cumulative haz- 
ard at time t. Observe that H(t) is nondecreasing in t. But 
what does //(f) mean? Whereas h(f)dt can be given an in- 
tuitive import, H(t) cannot! It is not the sum of conditional 
probabilities—because the conditioning event changes with /— 
and there is no law of probability that leads us to //(f). Thus 
//(f) does not have a probabilistic connotation. Yet //(f) plays 
a key role in reliability and survival analysis, because of the ex- 
ponentiation formula (see Barlow and Proschan 1975, p. 53), 
which says that with //(f) specified, 

(I) P(T>t;H(t),t>Q)=e~m'\ 

In the foregoing equation, plus those that follow, we intro- 
duce the convention that all quantities to the right of the semi- 
colon are viewed as being specified. In contrast, all quantities 
to the right of the vertical slash are conditional, that is, if they 
are known. 

Equation (1) relates the survival function P(T > t) to //(f); 
however, H(t) lacks an interpretive content. Our interest in this 
article is motivated by the desire to interpret //(f) in a manner 
that provides insight into the relationship of (1). 

In the case of a one-of-a-kind item, h(t) dt encapsulates an 
assessor's judgment about the inherent quality of an item and 
the environment in which it operates. By quality, we mean 
a resistance to failure-causing agents, such as crack growth, 
weakening of the immune system, and so on. Consequently, the 
hazard rate of an item of poor quality that operates in a be- 
nign environment could be smaller than that of a high-quality 
item that operates in a harsh environment. In effect, the quantity 
h(t) dt encapsulates an assessor's subjective view of the manner 
in which an item and its environment interact. Thus, in princi- 
ple, h(t) dt does not have a physical reality. 

Turning attention to the right side of (1), we note that e~H^ 
is the survival function of an exponentially distributed random 
variable, say X, if its scale parameter is 1, evaluated at //(/), 
that is, 

P(J > f; /7(f), f > 0) = e"w(,) = P(X > H(t) 11).       (2) 

3. INTERPRETATION: THE NOTION OF 
A HAZARD POTENTIAL 

Thus far, we have introduced three quantities, X, H, and T. 
Given any two of these, we can find the third using (2). But what 
insight can (2) provide about H(t) and XI We see two possibil- 
ities, one providing an indifference principle for reliability and 
survival analysis and the other having a physical connotation. 

To appreciate the first, we see from (2) that, corresponding to 
every nonnegative random variable T having an absolutely con- 
tinuous survival function F(t) — P(T > f), there exists a random 
variable X taking values //(f), 0 < //(f) < co, whose survival 
function is an exponential with a scale parameter of 1. The sur- 
vival function of T is indexed by /, f > 0, whereas that of X 
is indexed by //(f) — — f0 dF(u)/F(u). We can summarize the 
foregoing in the following theorem. 
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Theorem J. The lifetime of any and all items has art expo- 
nential (1) distribution on //(f), the cumulative hazard, as the 
scale. 

The essence of Theorem 1 has been noted by Cinlar and 
Ozekici (1987); it is stated here as a prelude to Theorem 5, 
which pertains to the multivariable case. In the context of point 
processes. Theorem 1 has a parallel with the result that any non- 
homogeneous Poisson process can be transformed by a change 
in clock time to a homogeneous Poisson process with rate one 
(see Kingman 1964). This parallel leads us to make precise the 
notions of accelerated and normal life tests in Section 3.1. 

3.1 The Physical Connotation 

To appreciate the physical connotation implied by (2), we 
note that because 

P(T < t; //(f), f >0) = P(X <//(f)| 1), 

we may claim that the time to failure T of an item coincides 
with the time at which the cumulative hazard //(f) crosses a 
random threshold X, where X has an exponential (1) distribu- 
tion (Fig. 1), that is, T =H~\X). 

The random threshold X, where X — H(T), is defined as the 
HP of the item. Furthermore, because the exponential (1) dis- 
tribution of X does not depend on £, we may interpret X as 
an unknown resource with which the item is endowed at the 
time of its inception. With X considered a resource, H(t) can be 
interpreted as the amount of resource consumed by time t. Con- 
sequendy, the hazard rate, h(t) = j,H(t), can be considered the 
rate at which the resource is consumed. With this alternative 
perspective on //(f) and h(t), wc may view a normal life-test 
as one for which H(i) = t, a uniformly accelerated (deceler- 
ated) test as one for which H(t) > (<) t, and a partially accel- 
erated (decelerated) test as one for which //(f) crosses t from 
above (below). The qualifier accelerated (decelerated) signals a 
contraction (expansion) of the clock time from t to //(f), and 
by shifting attention from the applied stress (which is what is 
normally done when discussing accelerated tests) to time, we 
achieve the context-free feature mentioned earlier. The concept 

of looking at failure as the depletion of a resource dates back to 
a Soviet physicist Sedyakin (1966), who enunciated this view- 
point without a formal architecture. 

It is useful to note that the exponential (1) random variable X 
has an entropy of 1, and also the lack of memory property if and 
only if //(f) — f. A change in clock time from t to //(f) changes 
the entropy and destroys the memoryless property. 

3.2 The G-Hazard Potential 

There is a generalization of Theorem 1 such that the IIP 
can be made to have a distribution other than an exponen- 
tial (1). Specifically, suppose that G is some absolutely contin- 
uous distribution function with support [0, oo); let W = G~'. 
Then it can be seen (Bagdonavicius and Nikulin 1999) that 

Y = W(F(T)) has the survival function G, irrespective of £. 
Consequently; 

P(T > t) = P(W(F(T)) > W(F(t))) = P(Y > W(e-"M)), 

so that 

P(T < t) = P(Y < W{e~m))). (3) 

Equation (3) implies that the item fails when W(e~//(,)), ex- 
ceeds a threshold Y, where Y has the distribution G We refer 
to Y as the G-hazard potential and W(e_H(,)) as the G-resource 
used until time t. Then we have, as a generalization of Theo- 
rem 1, the following result. 

Theorem 2. The lifetime of any item can be made to have 
any absolutely continuous survival function G, provided that 
G is indexed by G-'(exp(-//(f))). 

As of now, Theorem 2 is mainly of an academic interest; it is 
given here for completeness. 

4. HAZARD POTENTIALS AND 
DEPENDENT LIFETIMES 

The aim of this section is to discuss the nature of depen- 
dence between lifetimes and offer a new perspective on the 

Cumulative Hazard, H(f) 

X=a 

X=b 

Time t 

Ta( = Time to Failure When X= a ) 

Figure 1. Relationship Between Cumulative Hazard, Threshold X, and Failure Time. 
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cause of interdependence. We argue that the HP offers a con- 
venient platform for doing this. We view dependence and inde- 
pendence from a subjectivistic (de Finettian) viewpoint; that is, 
two events A and B are dependent if knowledge about B causes 
us to change our two-sided bets on A. 

Because H(t) encapsulates an assessor's view about the in- 
teraction between an item's quality and its environment, it is 
likely that two different items operating in a common environ- 
ment will have different //(r)'s, say H\(t) and H2{t). Similarly, 
for a single item, changing its environment from £\ to £2 will 
change its cumulative hazard from Hi (t) to //2(f) (Fig. 2). 

Figure 2 suggests that the lifetimes T\ and 7*2 of two items 
having the same hazard potential will be dependent. Equiva- 
lently, the lifetimes 7^ and TJ of a single item scheduled to 
operate in two environments, £1 and £2, will also be depen- 
dent. However, from a subjectivistic perspective, the depen- 
dence will come into play only when one is able to specify 
H] (t) and //2(f). or a relationship between the two, when only 
one of them is known. This is because knowledge of, say, T\ to- 
gether with H\(i) will tell us something about the unknown X\, 
and if X\ and X2 are dependent, then knowledge of X\ will en- 
lighten us about X-i. Consequently, Xj together with Hi{t) will 
help change our assessment of T2. To summarize, if the HPs X\ 
and X2 are dependent, then the lifetimes T\ and T2 will also be 
dependent, provided that H\ (r) and //2(f) are known or a rela- 
tionship between them is specified. In contrast, if X\ and X2 are 
independent, then so are T\ and T2, irrespective of whether or 
not H[(t) and //2O) are known. These assertions are summa- 
rized in the remarks that follow. 

Remark 1. When H\(t) and #2(0. f > 0, are known, life- 
times 7"i and T2 are independent if and only if their hazard po- 
tentials, X\ and X2, are independent. 

Proof. When X\ and X2 are independent, 

P{X:>Hdh),X2>H2(t2)) 

P{Xl>H,(.tx))-P(X2>H2(t2)), 

for any H\(t\) and H2(t2). Consequently, 

P{Ti>ti,T2>t2;Hl(t),H2(t),t>0) 

= P{X1>Hl«l),X2>H2(t2)) 

= P(Xl>H1(tl))P(X2>H2(i2)) 

=-P{Ti > t\;Hi(t), t >0) • P{T2 > t2;H2(t), t > 0). 

Thus, knowing Hi (t) and H2(t), T\ and T2 are independent, and 
similarly for the converse. 

When Hi(t), j = 1,2 or both i = 1 and 2, for / > 0 are not 
known, Remark 1 is weakened in the sense that only the "if 
part holds. Specifically, T\ and T2 are independent even when 
X\ and X2 are dependent. The subjectivistic line of reasoning 
justifying this claim goes as follows. 

Observing T\ provides no insight about X\, because H\ (r) 
is not known. Consequently, there also is no insight into 
X2 or 7-2. Thus T\ and 7°2 are independent. Mathematically, 
without knowing //,(/), 1 = 1,2, we are unable to relate 
P(Ti > h, T2 > t2) with the distribution of Xl and X2. We sum- 
marize the foregoing in the following remark. 

Remark 2. Lifetimes T\ and T2 are independent whenever 
H\{t) and (or) H%(£), t > 0, are not known. 

As a consequence of Remarks 1 and 2, we may state the fol- 
lowing theorem. 

Theorem 3. Lifetimes T\ and T2 are dependent if and only 
if their hazard potentials X\ and X2 are dependent and if Hi (/) 
and H2 (0 are known. 

Theorem 3 puts aside the often expressed view that the life- 
times of items sharing a common environment are necessar- 
ily dependent (see Marshall 1975b; Lindley and Singpurwalla 
1986); that is, it is a common environment that causes depen- 
dence among lifetimes. Theorem 3 asserts that it is the com- 
monalities in the HPs or identical HPs, both of which result 
in dependent HPs, that cause of interdependent lifetimes. De- 
pendent HPs are a manifestation of similarities in design, man- 
ufacture, or genetic makeup. In the language of probabilistic 

Cumulative Hazard, H{t) 

Threshold X 

p.     Time t 

7", T2( = Time to Failure Under e2) 

Figure 2. Effect of Changing Environment on Lifetimes. 
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causality of Suppes (1970), the common environment can be 
interpreted as a spurious cause of dependent lifetimes, whereas 
dependent (or identical) HPs are their prima facie (or genuine) 
cause. 

The role of Theorem 3 is to generate new families of depen- 
dent lifetimes using multivariate distributions with exponential 
marginals as a seed; see Section 5. Remarks 1 and 2 pertain to 
the two extreme cases in which the Hi(t)'s, it = 1,2, are either 
known or not. An intermediate case is one in which an ///(/)> 
say H\(t), t > 0, is known and the other is not, except for the 
fact that Hi (t) > //2(f)- For such scenarios, we have the follow- 
ing. 

Remark 3. Suppose that Hi(t) > (<) H2(t) and that either 
H\(t) or #2(0.' > 0, is known; then X\ and X2 dependent im- 
plies that T] and T2 are also dependent. 

Proof. The proof is by contradiction. For this, suppose that 
X\ and X2 have the Bivariate Exponential Distribution (BVE) of 
Marshall and Olkin (1967); specifically, for X], X2, and X12 > 0, 

P(X\ > x,X2 >y) — exp(—Xi* — X2y - Xi2max(.ic,y)), 

= exp(-(Xi + X12)JC - X2y),    if x> y. 

The marginal distribution of Xi, P(Xi > x) = exp(—(X;+X12W, 
1f = 1,2. For the X,'s to be dependent HPs, we need to have 
(X; + X12) = 1, for i=l,2, and X12 > 0; this would imply that 
A]• = X2 —X. Thus 

P(Xi > *, X2 > y) = exp(-(jc + Xjy». 

If we set x = /?i(*i) and y — H2O2), for some t\, 12 > 0, then 
x> y would imply that H2U2) = H\ (t2) — 8, for some unknown 
8 > 0. Consequently, 

P(Xi >x,X2>y) = P(Xi > Hi (ti),X2 > Hi (f2) - 8) 

= exp(-(//i(fj) + X2(tf] (t2) - S))).   (4) 

Given the foregoing, we need to show that Ti and 72 are depen- 
dent. Suppose that they are not; then 

P(Ti >h,T2> t2\ Hx(/1), H2(t2),n,t2 >0) 

= P(Ti >h;Hi fa), h > 0)P(T2 > t2\H2{t2), t2 > 0) 

= P(Xi>Hi(ti))P(X2>H2«2)) 

- exp(-7/i(*i))exp(-(tf|(fe) - 8)) 

= P(Xi> Hi(ti),X2>Hi«2)-8), (5) 

because the first term of (5) does not entail elements of the sec- 
ond term. Thus we have 

P{XV>Hi{ti),X2>Hi{t2)-8) 

= exp(-(//i(r1)+//1(/2)-S)).   (6) 

Equation (6) agrees with (4) if X2 = 1. However, X2 = 1 implies 
that X12 = 0, which contradicts the hypothesis that Xi and X2 
are dependent. The proof when Hi(t) < H2U) follows along 
similar lines. 

A broader, but weaker version of Remark 1 pertains to the 
case where Xi and X2 are exchangeable. Here again, we re- 
quire that #,•(/), /' = 1,2, f > 0, be specified. We then have the 
following result. 

Remark 4. If the hazard potentials Xi and X2 are exchange- 
able and if H\(t),H2{t),t > 0, are known, then the lifetimes 
Ti and T2 are also exchangeable. 

Proof. Let x = Hi (t) and y = //2(f) for any fi, t2 > 0; then 

P(X\ >x,X2>y) = P(Ti >h,T2> t2; H1U1), H2(t2)). 

Similarly, 

P(Xi > y, X2 > x) = P(Ti > ti, T2>ti; Ht(n). H2(tz>). 

Because the exchangeability of Xi and X2 implies that 

P(Xt >x,X2>y) = P{Xi >y,X2> x), 

the statement of the remark now follows. 

5. GENERATING NEW FAMILIES OF 
DEPENDENT LIFETIMES 

The aim of this section is to put Theorem 3 to work. Here we 
show how dependent HPs can be used to generate new families 
of multivariate distributions through multivariate distributions 
with unit exponentials as a seed. Of course, this is by no means 
the only way to generate multivariate distributions. For the pur- 
pose of illustration, we limit attention to the bivariate case and 
consider as seeds the bivariate exponentials of Marshall and 
Olkin (1967), Gumbel (1960), and Singpurwalla and Youngren 
(1993; henceforth S-Y), and a bivariate exponential induced by 
the copula of a bivariate Pareto distribution. 

5.1 The Bivariate Exponential of Marshall and Olkin 

Suppose that the HPs Xi and X2 have the BVE of Marshall 
and Olkin (1967), with Xi, X2, and X12 as parameters. To ensure 
that the marginal distributions are unit exponentials, we need to 
have Xi = X2 = X and X + X12 = 1, with X12 > 0; the latter 
inequality ensures dependence between Xi and X2. 

Let Ti and T2 be the lifetimes corresponding to Xi and X2 

and the cumulative hazard functions Hi(ti) and H2O2). Then, 
because 

P(Ti >ti,T2>tz;) 

= P{Xi >Hi(ti),X2>H2(t2);X,Xt2) 

= cx.v[~X(Hl(tl)+H2(t2))-\1imax(Hl(ti),H2(t2))], 

we can generate families of bivariate distributions for Ti and T2, 
by assuming specific forms for //,(/), for i = 1,2. In particular, 
if HjOi) = (a,r,)ft, (=1,2, then 

P(Ti > tlt T2 > r2; •) = exp[-{A.[(ai/i)ft + (.a2t2)^] 

+ X12max[(a1r1/
l,(a2r2)

ft]}], 

which is a bivariate Weibull of the Marshall-Olkin type. 
If Ht{ti) = a;ln(l + 0(ti), J = 1,2, then 

P(Tl>tuT2>t2,) 

- (  1  V' (  l  V"2 

l\\+Pitij    'yi+fhhj    J 
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which resembles the bivariate distribution of Muliere and 
Scarsini (see Kotz, Balakrishnan, and Johnson 2000, hence- 
forth KBJ, pp. 408 and 595). This distribution is also known 
as the Marshall-Olkin-type Pareto distribution (see KBJ 2000, 
p. 612). Note that //,-(*,-) =(«/*/)* [a,-ln(l + #(,)] corresponds 
to an increasing (decreasing) rate of consumption of the HP. 

Continuing in the foregoing vein, if //,-(*,•) = a,(eA'' — 1), 
i = 1,2., then the induced distribution of T\ and T2 is given as 

P(T1>tuT2>t2;) 

= e(«i+«n)X. exp[-{ai^'" + a2\e
fh'2 

+ A,2max(ai(^"1 - l),a2(^
2'2 - 1))}], 

and i£Hi(fi) = (1 - e~")/0 + e~H), i = 1,2, the logistic func- 
tion, then 

P(Ti>H,T2>t2;)=cxp\-lx(j 
- e-'i      1 - e->i 

+ 

+ A. 12 max 

+ e-'i      1 + e-1) 

\ 1 + e-'i   1 + e 3 
Neither of these distributions is of a recognized form. The first 
form of Hi(ti) corresponds to an exponential rate of consump- 
tion of the HP, whereas the second corresponds to a rale of that 
which starts at 5 at / = 0 and asymptotes to 1 as / becomes 
infinite. 

5.2 The Bivariate Exponential of Gumbel 

Following the notation of Section 5.1, suppose that for some 
parameter 0< 6 < 1, 

p{Xi>Hi(ti),x2>H2(t2y,e) 

m UV[-Hl(.ti)-H2(t2) ~ 0tfl(fl)//2(b)]. 

This is the bivariate exponential of Gumbel (1960), with mar- 
ginals that are always unit exponentials. If H,(t\) — (a,-f;)*, 
i— 1,2, then the induced distribution of T\ and T2 is 

P(Ti>n,T2>t2;) 

= exp[-{(ori/1)
ft + (a2f2)

fe + 0(onn)* (a2iit''}]; 

we call this distribution the bivariate Weibull of the Gumbel 
type. 

If H,iti) = m ln(l + fiitt) ,i'=l,2, then 

P(Ti>tuT2>t2; ) 

Vi+/W u + /W 
xexp(-f?aiof2ln(l+/Ji«i)ln(l+/?2^)), 

which is a multivariate distribution with marginals that are a 
Pareto; we call this distribution a bivariate Pareto of the Gumbel 
type. 

5.3 The Bivariate Exponential of S-Y 

Here again, we follow the notation of Section 5.1 and sup- 
pose that for some parameter m, 

P{Xi>Hi(t1),X2>H2(t2y,m) 

1 - m • minffiiO'l), H2(t2)) + m • max(ffi (rQ, H2{t2)) 

l+m(Hi(«i)+H2te)) 

This distribution has unit exponential marginals if m = 2. 
If weset#i(/i) >H2(t2), then 

P(X,>//,(/i),X2>//2(f2)) 

l-2//2(t2) + 2fft(fi) 

l+2(Hi(»,) + ff2(/2)) 
exp(-2//i(ti)). 

The multivariate distributions for T\ and T2, when derived 
assuming that the Hi(ti) take any of the forms given in Sec- 
tion 5.1, are not of any recognizable type; they appear to be 
new. This is not surprising, because the bivariate exponential 
given earlier is also not of a well-recognized form. 

5.4 Unit Exponentials Induced by Copulas 

New families of multivariate distributions with unit exponen- 
tials can be created by the method of copulas and by invok- 
ing Sklar's theorem in reverse (see, e.g., Nelson 1995). We can 
then use these multivariate exponentials as a seed for generating 
other families of multivariate distributions. 

As an example of the foregoing, consider a bivariate Pareto 
distribution of the form 

P(Xi>xuX2>x2; t;)
    (      b      V 

\b + xi+x2J 

B+l 

yb + xi +x2/ 

its copula, for u > 0 and v < 1, is 

Ca(«,v) = i/ + v-l-)-((l-«)-'a+1) + (l-v)-(a+1>-l)-(a+1). 

If we setu — 1 —exp(—//](/()) and v = 1 —exp(—H2(t2)), then 
it can be seen (see Singpurwalla and Kong 2004) that 

p(Xi>irifa),Jb>j%fe);«j 

which is a bivariate distribution with unit exponentials as mar- 
ginals. We may now choose any desired form for the //,(/,), 
i — 1,2, to produce new families of bivariate distributions of 
the form P(Ti > fi, T2 > t2; •). 

6. CUMULATIVE HAZARD PROCESSES AND 
RANDOM KILLING 

Our discussion thus far has been based on the premise that 
H(t) is a deterministic function of t. This may be a reasonable 
first step. A more meaningful strategy is to assume that H(t) 
is described by some nondecreasing and nonnegative stochas- 
tic process {//(/); t > 0}. There is some precedence for doing 
so in both the biostatistical and the reliability literature (see 
Singpurwalla 1995), although the motivation there is different 
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from what we give here. This is because we see //(f) as a proxy 
for usage until time f, and conceptualizing usage as a random 
process is more natural than simply declaring that the cumu- 
lative hazard is a stochastic process. With //(f) described as 
a stochastic process, the time to failure T will be the hitting 
time of {//(f); f > 0} to a random barrier X, which is the HP 
of the item; see Figure 1. Put alternatively, the lifetime of an 
item corresponds to the killing time of {//(f); f > 0} by a ran- 
dom threshold X. The notion that lifetimes correspond to hitting 
times of stochastic processes to some barrier was also explored 
in the pioneering work of Esary, Marshall, and Proschan (1973; 
henceforth EMP) and in the more recent works of Durham 
and Padgett (1997), Pettit and Young (1999), Yang and Klutke 
(2000), and Duchesne and Rosenthal (2003), the difference be- 
ing that to these authors, the underlying stochastic process is 
an observable phenomenon such as degradation, aging, or cu- 
mulative damage. A consequence of the foregoing is that the 
results thus obtained pertain to specific scenarios. In contrast, 
the approach of considering any failure time as the hitting time 
of a process {//CO; f > 0} to a random threshold X whose distri- 
bution is an exponential (1) provides a common architecture 
for developing classes of survival functions, with each class 
determined by the nature of the process. For example, when 
{//('); f > 0} is a positive nondecreasing Levy process (special 
cases of which are the compound Poisson, the gamma, and the 
stable), a general result for the survival function is obtained. We 
discuss this and related matters in what follows. 

6.1 The Hazard Rate and Cumulative Hazard Process 

The purpose of this section is to obtain a result analogous 
to that of (2) when //(f) is a stochastic process. To obtain an 
analog to the left side of (2), we proceed formally by consider- 
ing a probability measure space (S2, T, P) on which all random 
variables and processes are defined. 

Let [h(s); s > 0} be a nonnegative and right-continuous sto- 
chastic process, and let T be a real-valued random variable 
denoting the lifetime of an item. For f > 0, we define the 
a-algebras F, and T as 

Jr, = <r(h(s);s<t} and F = a{h(s);s>0}. 

Then {h(s); s > 0} is defined as the hazard rate process of T, if, 
for f > 0, 

P(J > t\F) = exp( - \< h{s) dsj. 

It now follows, from a result of Pitman and Speed (1973), that 
T is a randomized stopping time, so that 

P(T > t\F,) 

Consequently, 

P(T > t) 

=expH' h(s)ds f>0. 

exp 
(-(*'*) 

or 

/>(T>f)=£[exp(-//(f))], (7) 

where {//(f); f > 0} is the cumulative hazard process. Equa- 
tion (7) is our analog of the left side of (2). 

For an analog of the right side of (2), we assume that 
{//(f); t > 0} is a nonnegative, nondecreasing stochastic process 
and consider the hitting time of this process to a random thresh- 
old X whose distribution is an exponential (1). Then, assuming 
independence of//(f) and X, 

roo 
P(T > t) = P(X > //(f)) = /     exp(-y)//,(//y) 

Jo 

= £[exp(-//(f))], (8) 

where //,(•) is the density of the distribution of H(t). Thus an 
analog to the right side of (2), with {//(f); t > 0} a stochastic 
process, is 

P(7->f)=£[exp(-//(f))]. (9) 

The right side of (9) is the Laplace transform of the process 
{//(f); f > 0}, which for the Levy process has an explicit form, 
namely 

£[exp(-//(f))] = exp^-f j   [\ - exp(-y) ]»(</» j,     (10) 

where v(dy) is the Levy measure of the process and the integral 
term is the Laplace exponent of the Levy process; complete the 
L6vy-Khinchin formula of Protter (1990). An attractive feature 
of the argument that leads to (8) is the straightforward manner 
in which it is developed. In contrast, the argument of (7) calls 
for some appreciation of randomized stopping rules associated 
with stochastic processes. 

In what follows we consider several possible candidates for 
the process {//(f); f > 0), starting with the simplest and mov- 
ing to the more general. In most cases, explicit expressions for 
P(T > t) are obtained; in others, computations and approxima- 
tions may be needed. 

The choice of which of the following processes to use de- 
pends on the application. Presumably, because //(f) encapsu- 
lates the resource used until time f, the selection of a suitable 
process for {//(f); t > 0} would depend on the pattern of use of 
the item. 

6.2 Cumulative Hazard Processes and 
Their Survival Functions 

The process {//(f); f > 0} is required to be nonnegative, non- 
decreasing, and right-continuous. Thus our choice of candi- 
date processes is limited. Clearly, the Brownian motion process, 
which has often been used to describe degradation and wear, 
must be eliminated. However, certain functionals of the Brown- 
ian motion, such as the running maxima, are viable candidates, 
and this is the first process considered. 

6.2.1 The Maxima of Brownian Motion. Suppose that 
{W(f);f > 0} is a standard Brownian motion process [i.e., 
W(0) = 0]; for any f > 0, W(t) has a Gaussian distribution 
with mean 0 and variance f, and (W(f); r > 0} has stationary 
independent increments. If we set 

//(f) = sup {W(s)},        t > 0, 
0<s<l 

then the process {//(f); f > 0} will be continuous, nonnegative, 
and nondecreasing; this is called a Brownian maximum process. 
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def 
It is well known that Tx = inffr > 0; W(t) >x} = M{t > 

0; H(t) > JC}, the time at which the process [W(t); t > 0} first 
hits a barrier x, x > 0, has an inverse-Gaussian distribution (see 
Pettit and Young 1999). Consequently, the hitting time of the 
process {H{t)\ t > 0} to x also has an inverse-Gaussian distrib- 
ution, specifically, 

PCr*<r)=2(i-*c*/Vo), 
where <t>(«) = JZOQ -4=e~^,2ds. 

Because the time to failure of an item is the time at which the 
process {H(t); t > 0} first hits the (HP) X, where X is exponen- 
tial (1), 

/•oo 

P'T <t) =        2(1 - <P(x/VO)e~~xdx= 1 -2e'/2i>(-Vt), 
Jo 

so that 

P(T>t) = 2e'/2•*(-ft), 

an expression that is easily evaluated. 

(11) 

6.2.2 The Compound Poisson Process. The compound 
Poisson process with an (arrival) rate X and iid jumps 7,-, i = 
1,2,..., with P(Ji < cS) — G(w) is another possible candidate 
for describing the process {//(/); t > 0). This process increases 
only by jumps of size Jj, i = 1,2, If we assume that the 
Jj's are also independent of the HP X, then, given X, 

P(T > »|i) - £ e-£t r GSk\x)e-*dx, 
to      *'      J° 

where Cw() is the /fc-fold convolution of G() with itself. The 
foregoing simplifies (see EMP 1973) as 

P(r>f|A)=exp(-;U), (12) 

for all G() with G(x) = 0, x < 0. 
When X > 0 is unknown, we may average out P(T > t\X) 

with respect to any distribution of X. This would lead us to con- 
clude that P(T > t) has a hazard rate function h(t) that is a de- 
creasing function of t > 0. Thus items experiencing use of a 
resource described by a compound Poisson process will neces- 
sarily have lifetimes with a heavy-tailed distribution function. 
For example, if X has a gamma distribution, then P(T > t) will 
have a Pareto distribution, that is heavy-tailed. 

6.2.3 A Special Markov Process. EMP (1973) considered a 
Markov process for {//(f); t > 0} with a special feature that de- 
scribes proneness to wear. Whereas their interpretation of H(t) 
is unlike ours, their special feature is appropriate to our setup, 
specifically (a) H(0) = 0; (b) H(t + A) - H't) > 0, Vf, A > 0; 
and (c) P(H(t + A) - //(/) < u\H(t) =z)\ z, t. The practi- 
cal import of (c) is that proneness to wear increases with us- 
age. With the foregoing in place, EMP (1973) showed that for 
any barrier x, the hitting time of the process {//(/); t > 0} has 
a distribution with a failure rate function h(u) such that h(t) 
increases in t, where 

h{t). I   h(u) du. 
Jo 

(13) 

Such distributions are said to have an increasing hazard rate 
average property. Because the barrier in our case is the HP X, 

where X has an exponential (1) distribution, we note that for 
the special Markov process for {H(t); t > 0}, the survival func- 
tion P(T > t) can be written as an exponential (1) mixture of 
distributions with the increasing hazard rate average property. 

6.2.4 A Nonnegative Uvy Process. An omnibus way of de- 
scribing [H(t); t > 0} is through a nonnegative L6vy process, 
that is, a continuous process with stationary independent in- 
crements. Such processes are examples of Markov processes 
and include the compound Poisson, the gamma, and all stable 
processes as special cases. Furthermore,.a L£vy process renews 
itself at stopping times and has a strong Markov property, and 
all of the nonnegative L6vy processes are limits of compound 
Poisson processes (see Protter 1990). Thus the process pro- 
vides a convenient general platform for describing {H(t); r > 0} 
and makes the result of (12) based on the compound Poisson 
process central. Besides the foregoing generalities, the main at- 
traction of considering a Levy process stems from the fact that 
its Laplace transform (given by the L6vy-Khinchin formula) 
takes a form identical to that of (10), namely 

P(T > t) = exp K (l-exp(-y))v(dy) ]• (14) 

where v(dy), the L6vy measure, characterizes both the expected 
frequency and the size of the jumps (nonnegative in our case) 
in a L6vy process. 

For the compound Poisson process of Section 6.2.2, v(dy) — 
XG(dy), and if G had a gamma distribution with scale a > 0 
and shape /8 > 0, then 

v(dy) = Xafi/-1e~aydy/ r(j8). 

In the case of a gamma process [i.e., when for any t > 0, H(t) 
has a gamma distribution with scale a > 0, and shape fit], 

v(dy) = (f$e-ay/y)dy, (15) 

whereas when {H(t); t > 0} is described by a stable process, 

v(dy) 
afi -0+ft dy (16) 

for parameters a > 0 and /S e (0,1). Plugging (15) and (16) 
into (14) will give P(T > t) for the special cases of the gamma 
and the stable process; also see (18) in the next section. 

6.2.5 Continuous and Increasing Strong Markov Processes. 
One of the more striking results in stochastic processes theory 
pertains to continuous and increasing processes that have the 
strong Markov property. It has been shown that such processes 
have deterministic paths up to random killing. Essentially, this 
means that a continuous increasing strong Markov process is 
essentially deterministic. This result dates back to work of 
Blumenthal, Getoor, and McKean (1962). Loosely speaking, 
if [H{i);l > 0) is an increasing, continuous, strong Markov 
process with a state space of form [a, b), then there exists a 
strictly increasing continuous function k() on the state space 
such that for all / > 0, Hit) = ^-'^(//(O)) + t]; for specifics, 
see corollary 1 of Cinlar (1979). Thus the sample path of the 
{H(i);t > 0} process is a deterministic function of the ini- 
tial state of the process, namely W(0) = 0, and time t. Once 
the process [H(t): t > 0} is considered (essentially) determinis- 
tic, obtaining the hitting time of H(/) to a barrier is relatively 
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straightforward; it is also deterministic if the barrier is a known 
constant. Randomness of hitting times enters into the picture 
when the barrier is random, which is so in our case. 

As an illustration of the foregoing, suppose that the process 
{#(0; f > 0} is an increasing Levy process. Recall that Levy 
processes are continuous, have stationary independent incre- 
ments, and thus are strong Markov. When this is the case, the 
function £(•) is such that for some a > 0, 

/ 
Jo 

H(t) = at +       (l-exp(-uOMdu), (17) 

where v(du) is the Levy measure of the process. 
If we set a = 0 and assume that {//(/); / > 0} is a gamma 

process, then v(du) is given by (15), and the deterministic cu- 
mulative hazard function turns out to be 

ff(0'=j81og m t>0 

(see Kebir 1991 for more details). 
The unit fails when H(t) gets killed by a threshold x; that is, 

Tx, the time to failure for a fixed threshold x, is 

Averaging with respect to its exponential (1) distribution, we 
have 

P(T>t)=(l + ^\     , (18) 

which is a Pareto distribution. Note that the Pareto distribution 
also arises in the context of a compound Poisson process for 
{H(t)', t > 0} when the distribution of A, the arrival rate, is as- 
sumed to be a gamma; see the discussion after (12). 

To summarize, in practically all of the cases that we have 
considered so far, closed-form expressions for P(T > t) are 
available. The sole exception is the special Markov process of 
Section 6.2.3, for which our result is merely qualitative. Our fi- 
nal case, considered next, pertains to an exponential functional 
of Brownian motion; here a closed-form result is not available. 
We chose this case because of its novelty and plausible applica- 
bility. 

6.2.6 Integrated Geometric Brownian Motion Process. In 
Section 6.2.1 we considered the running maximum of a stan- 
dard Brownian motion as a model for {H{t)\ t > 0}. Here we 
consider another functional. Specifically, let 

H(0 
JO 

exp(2W(s))ds, (19) 

where W(s) is a standard Brownian motion. We choose the 
scalar 2 for convenience; its role will become clear in the 
sequel. Observe that exp(2iy(s)) is always positive and that 
H(t) is continuous and strictly increasing in /. Recall that 
a Brownian motion has continuous sample paths. Whereas 
snPo<j<ii^(f)'s — 0) increases in / by steps, the //(/) of (19) 
is a strictly increasing function of /. As stated earlier, Brown- 
ian motion has often been used to describe crack growth and 
degradation. The foregoing transformation of the process is ne- 
cessitated by the requirement that H{t) be nonnegative and non- 
decreasing. Our sense is that the H{t) of (19) also could be a 
viable candidate for describing degradation and wear. 

With the foregoing in place, we let 

Tx = ird{t>0:H(t)=x} (20) 

for some barrier x > 0; that is, Tx is the hitting (killing) time 
of the process {//(r); / > 0} to a threshold x. Because //(/) is 
continuous and increasing, we have that 

P(Tx>t) = P(fl(t)<x). (21) 

To evaluate the right side of the foregoing, we need to know 
the density of H(i) for a fixed value of t. For convenience, we 
denote H(t) by Ht, and, following the notation of Yor (1992), 
note that 

P(H,edv) I2* f°°    ( y2   v   u2 \ -•J—/    exPl-;r+~cos" y I dv V  v J0      *\   2i     2 ') 

x sinhysinl — )(] - <J>(Vucoshy))d!y, 

where <t>(u) is as defined in Section 6.2.1. Consequently, 

P(Tx>t)= fXp(Hr€dv), 
Jo 

(22) 

(23) 

from which it follows that 

P(T>t)= /     P(TX > t)e~x dx, 
Jo 

= 7      /     P(H, G dv)e~x dx, 
Jo   Jo 

with P(Ht e dv) as given earlier. 

7. COMPETING-RISKAND 
DEGRADATION PROCESSES 

7.1 Competing Risks and Competing-Risk Processes 

Loosely speaking, the term "competing risks" connotes com- 
peting causes of failure, and interest centers on the cause of fail- 
ure and/or the time to failure given that there are several agents 
competing for an item's lifetime. The issue can be quite com- 
plex because the causes do not operate in isolation of one an- 
other, it often being the case that one cause acerbates the effect 
of the other. Traditionally, the model used for encapsulating 
the scenario of failure under competing risks is the reliability 
of a series system with independent (or dependent) component 
lifetimes, the latter representing the causes of system failure. 
In what follows, we shift focus from independent or depen- 
dent lifetimes to independent or dependent HPs to develop a 
framework that could provide a more realistic description of 
the competing-risk phenomenon. Accordingly, let T, denote the 
time to failure of the »th component of a series system of k com- 
ponents, i = 1,..., k, and T the time to failure of a system. Then 

P(T>t)=P{Hi(t)<Xl,...,Hk(t)<Xk), 

where /7,(0 is the cumulative hazard (or risk) experienced by 
the ith component and Xt is its HP. If the HPs are assumed to be 
independent, then 

P(T>t) = exp[-(//,(0 + • •  +«*«)], (24) 

suggesting an additivity of the cumulative hazards (or risks). If 
the HPs are assumed to be dependent, then the nature of depen- 
dence would dictate the form taken by P(T > t); see Section 5. 
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In either case, our expression for P(T > i) would be the same 
as what we would obtain assuming the dependence or indepen- 
dence of the lifetimes T;. Thus it would appear that little, if any, 
gain has been achieved by shifting focus from the 7j's to the 
X,'s. But there is another way to look at (24), a way with paves 
the path for obtaining another expression for the survival func- 
tion of an item experiencing multiple risks. 

Observe that (24) is also the survival function of a single item 

that has a cumulative hazard of /7(f) = £?=i Ht(t), at time f. 
But when this is the case, how can we interpret each ///(f)? 
More generally, in the case of a single item with a cumulative 
hazard of //(f), can there be a meaningful decomposition of 
Hit), and, if so, can it be additive? Moreover, which of the two 
perspectives more accurately reflects the competing-risk phe- 
nomenon? 

One possible strategy for addressing these questions is to see 
each Hiit), i=\ fc, as the consequence of a covariate and 
to suppose that if the item were to experience covariate i alone, 
then its time to failure would coincide with the item at which 
Hi(t) crossed its hazard potential X. With the item simultane- 
ously experiencing k covariates, its survival function would be 

P(T > f) = />(//i (f) < X Hk(t) < X) 

= P(X>max{//1(r),...,//t(0}) 

- exp(-max{//, (0,,....Hk(t))). (25) 

Clearly, under the scenario of an item simultaneously experi- 
encing k causes of failure (risks), the decomposition of H(t) is 
not additive. 

Whereas (25) could be new to the literature on compet- 
ing risks, it is worth noting that the two scenarios discussed 
earlier—the traditional one involving a series system that leads 
to (24) and the one pertaining to the single item that leads to 
(25)—are related because considering a single HP X is tanta- 
mount to considering k HPs that are totally (and positively) de- 
pendent on one another. This leads to the following result. 

Theorem 4. The survival function under any series system 
model for competing risks with positively dependent hazard po- 
tentials is bounded as 

exp -J2Hi(t))±P(T>t) 

^exp^maxf/ZKO,.-.,//^)})- 

This theorem shows that the two perspectives on competing- 
risk modeling can be reconciled through the notion of indepen- 
dent and dependent hazard potentials, with the left side of the 
inequality reflecting the former and the right side reflecting the 
latter. 

7.1.1 Dependent Competing Risks and Competing Risk 
Processes. In our discussion thus far, the //;(f)'s have been 
assumed known and specified. Consequently, the matter of 
independent or dependent competing risks was not germane; 
dependence and independence were embodied in the context 
of HPs. But the prevailing view of. what constitutes depen- 
dent competing risks entails considering dependent lifetimes 
in the series system model mentioned earlier. We consider this 

approach circuitous. A proper framework for discussing de- 
pendent competing risks requires that the //,(f)'s be random; 
a comprehensive way of doing this is to assume a stochastic 
process model {//,(:); t > 0}, i= 1,...,k, as was done in Sec- 
tion 6. We call such a model a competing-risk process, and 
call the fc-variate process {//i(f), ..., /7*(f); t>0} a dependent 
competing-risk process if the //;(f)'s are interdependent. A unit 
fails when any one of the k marginal processes [ftt(t); t > 0), 
i — !,...,&, hits the item's HP X. Interdependence of the 
//,(f)'s will induce dependence between the corresponding life- 
times Tj, i=l,...,k. Thus the prevailing notion of what con- 
stitutes dependent competing risks will be sustained, albeit 
more as a consequence than as a fundamental construct View- 
ing the competing-risk scenario from the standpoint of hitting 
the HP offers a convenient platform for appreciating the phe- 
nomenon of lifetimes under dependent competing risks. 

Having stated the foregoing, the question still remains as 
to what would be suitable models for the fc-variate process 
{Hi (f), • - •, Hjt(')i' > 0). where the marginal processes {Hf{t); 
t > 0}, i — 1 k, are such that each //,(/) is nondecreas- 
ing in t. One possibility would be to let each marginal process 
be a Brownian maximum process of Section 6.2.1 and de- 
duce the interdependence between the marginal processes 
from the assumed dependence of the fc-variate Brownian 
motion process that generate Brownian maxima processes. 
The specifics remain to be worked out. Another possibility, 
in the case where k — 2, is to assume that {//)(/); t > 0} is a 
nonnegative, nondecreasing, and right-continuous process of 
the type discussed in Section 6.2, but that the sample path of 
{//2(f); t > 0} is an impulse function of the form //2(f) = 0 
for all tj^t*, and H2O*) = 00, for some t = t* > 0, where 
the rate of impulse occurrence depends on the state of the 
process (Wi(f);' > 0}. Such a model may be meaningful when 
the process [H\(t); t > 0} can be identified with, say, degrada- 
tion and the process {//2(f);' > 0} can be identified with some 
form of trauma with a rate of occurrence depending on the state 
of the degradation process. Here degradation and trauma com- 
pete with each other for the lifetime of the system. Lemoine 
and Wenocur (1985) and Wcnocur (1989) have proposed the 
foregoing as a framework for failure modeling, although not in 
the context of competing risks. With appropriate modifications, 
their results could be adapted for the competing-risk scenario. 

7.2 Degradation and Aging Processes 

Much has been written on what is known as "degradation 
modeling" and reliability assessment using degradation data. 
The thinking here has been that degradation is an observable 
phenomenon and that failure occurs when the level of degrada- 
tion hits some threshold (see Doksum 1991). What the thresh- 
old should be and how it should be specified has not been made 
clear. Our review of the engineering and materials science lit- 
erature on degradation suggests that this viewpoint is question- 
able. This is because degradation is viewed as the irreversible 
accumulation of damage throughout life that ultimately leads to 
failure (see Bogdanoff and Kozin 1985, p. 1). Whereas the term 
"damage" itself is not defined, it is claimed that damage mani- 
fests as cracks, corrosion, physical wear (depletion of material), 
and so on. Similarly, with regard to aging, a review of the lit- 
erature on longevity and mortality indicates that aging pertains 
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to a unit's position in a state space in which the probabilities of 
failure are greater than in a former position and that the mani- 
festations of aging are the biomedical and physical difficulties 
experienced by older individuals. 

Thus it appears that both degradation and aging are abstract 
constructs that cannot be observed and thus cannot be mea- 
sured. However, these constructs serve to describe a process 
that results in failure and can be viewed as the cause of ob- 
servables such as crack growth and corrosion, which can be 
measured. Thus the question arises as to how one can math- 
ematically model the degradation phenomenon and relate it to 
the observables mentioned earlier. Put another way, how can we 
mathematically describe the cause and effect phenomenon of 
degradation and the observables that it spawns? Our proposal 
is to treat the former as a cumulative hazard process and the 
latter as a covariate (or a marker) process that is influenced 
by the former (see, e.g., Whitmore, Crowder, and Lawless 
1998). This viewpoint of view may fit well with Aalen's (1987) 
proposal that matters of causality be handled by stochastic 
process models. As before, the item fails when the cumula- 
tive hazard process hits the item's HP X. With the foregoing 
in mind, we define a degradation process as a bivariate stochas- 
tic process {H(i),Z(t)\ t > 0}, with H(t) representing the unob- 
served cumulative hazard, and Z(t) representing an observable 
marker that is a precursor to failure. In principle, {Z(r); t > 0J, 
the marker process, can also be a vector stochastic process. 
Whereas H{t) is required to be nondecreasing, there is no such 
restriction on Z(t)\ cracks can be repaired and sometimes do 
heal. 

7.2.1 Specifying Degradation Processes. When the marker 
process can be meaningfully described by a Markov process, 
for which there is some precedence when the marker is 
crack growth (see Sobczyk 1987), the degradation process 
{//(r), Z(f); t > 0} can be taken to be Cinlar's (1972) Markov 
additive process (MAP). When this is the case, {H(t); t > 0} is 
a Levy process with parameters depending on the state of the 
{Z(f); t > 0} process. Another way to link the two processes 
in question is to use Cox's (1972) proportional hazards model 
or Aalen's (1989) additive hazards model, in which linkage is 
achieved through the processes {h{t)\ t > 0} and {Z(0; t>0). 
The ramifications of the foregoing, as well as the MAP, remain 
to be explored. Our main purpose here is to propose a different 
approach for examining the degradation phenomenon and the 
role of the HP in analyzing it. 

8. THE HAZARD GRADIENT AND CONDITIONAL 
HAZARD POTENTIALS 

The purposes of this section are to obtain a generalization of 
Theorem 1 and to further explore the ramifications of depen- 
dent life-lengths and dependent HPs. We start with the notion 
of a "hazard gradient" and provide a strategy through which a 
collection of dependent lifetimes can be replaced by a collec- 
tion of independent ones. 

Let Ti,..., T„, be a collection of n lifetimes, and let P{T\ > 
fi T„ > tn) = R(t\ f„) be its survival function. Let 
t = (fi tn) be such that i?(t) > 0. The quantity H(t) = 
lnR(t) is the multivariate analog of H{t). Suppose that H(t) 

has a gradient r(t) = (ri(t),..., r„(t)), where r,(t) = jf.H(t), 

i = 1,..., n. The quantity r(t) is called the hazard gradient of 
R(t) (see Marshall 1975a). 

The relationship among H(t), R(t), and r(u) is expressed 
through 

H(t) I  r(u)du (26) 

and 

P(Ti > h,..., TH > t„) = expf- j r(u) rfu j.        (27) 

Marshall (1975a) gave a decomposition of H(t) that is note- 
worthy due to its role in allowing us to prove Theorem 5. 
Specifically, 

r<\ r'2 
=        rl{u[,0,...,0)dul +        r2(tuu2,0 0)du2 

Jo Jo 

/    r„(ti 
Jo 

H(t) 

+ ••- + ,/„_!, un)dun,    (28) 

where ri(«j,0,. ..,0) is the failure rate of T\ at u\, and 
n('l, • • -, U-1. "i • 0,..., 0) is the (conditional) failure rate of T, 
at Uj, were it so that T\ > fj,..., T,_i > fj-j. 

The first term on the right side of (28) is the cumulative haz- 
ard of T\ at t\ and is denoted by H\(t\). The second term is the 
integral of the conditional hazard of T2 at K? given that T\ > t-\; 
it is denoted by #2fe|ri). Similarly, the last term is denoted by 
J/,t(fji|ri,...,J»-i).Thu8 

H(t) - //,(:,) +ff2(fel*i) + • • • + H„(tn\h...., t„-i), 

and because R(t) — exp(—H(t)), 

P(Ti >t\ Tn > tn) =exp[-//i({1)]exp[-//2(/2|/i)] • • 

x exp[-//„(f„h f„_,)].    (29) 

Clearly, e
—wi(fi> = p(T\ > /j), and, using arguments that par- 

allel those leading us to (1), we can see that for any n > 2, 

e\p[-Hn(tn\ti r„_i)] 

= P(Tn > tn\T\ >tu...,Tn-i> *„_!).    (30) 

Let Xi, ...,X„, be the HPs corresponding to the lifetimes 
T\,...,T„ and the cumulative hazards H\(j]),...,Hn(tn). 
Then, a consequence of the relationship (29) is that 

P{Tn>tn\Tx>h T„_, >/„_,). 

= P(X„>HnUn)\Xl >Hi(ti),...,Xn-i > Hn.i(tn-l)) 

= exp[-H„(t„\ti,...,tn-i)]. (31) 

Because T\ T„ are not independent, the HPs X\,..., Xn 

are, by virtue of Remark 1, also not independent. However, the 
hand side of (31) is the distribution function of an exponentially 
distributed random variable, say X*, with a scale parameter of 1, 
evaluated at //n('n|fi t„-\). Thus, from (30), we have the 
result that for all n > 2, 

P(J„>tn\Tx>ti '/•„_, >/„_,) 

= P{Xn>Hn{tn)\X1>Hi{t)) X„_, >//„_,(;„_,)) 

= P(XZ>H„(tn\h /„_!)). 
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The quantity X* is called the conditional HP of the nth item; 
its unit exponential distribution is indexed by Hn(t„\tf,..., 
tn-\). In contrast, X„, the HP of the nth item, has a unit ex- 
ponential distribution indexed by Hn(tn). 

Similarly, corresponding to each term on the right side of (28) 
except the first, there exist random variables XJ,..., XJf_,, in- 
dependent of one another, and also of X^, such that 

P(Tl>tu...,Tn>tn) 

= /»(X, > Hi{tl))P{X*2 > H2(t2\h)) • • • 

xPQCn>Hn{tn\t\,...,tn^)). 

We have now proved, as a multivariate analog to Theorem I, 
the following results. 

Theorem 5. Corresponding to every collection of nonnega- 
tive variables T\,..., 7",,, having a survival function R(t\,. ..,tn), 
there exists a collection of n independent and exponentially 
distributed random variables X\, XJ,... ,X*, with scale para- 
meter 1; X\ is indexed on #i(r,), and for n>2,X* is indexed 
on//„(rn|/],...,r„-i). 

9. SUMMARY 

In this article we have described a unifying perspective on 
the process leading to the failure of items that is context- 
independent. This perspective is made possible through the 
notion of an HP. Besides providing an alternative means of 
conceptualizing the failure process, the HP provides a means 
by which the nature of dependence between the lifetimes can 
be understood and exploited. With respect to the latter, we can 
generate (new) families of multivariate failure distributions us- 
ing multivariate exponentials with unit exponential marginals as 
seeds. For items required to operate in dynamic environments, 
the HP provides a vehicle by which new families of univariate 
survival functions can be obtained. This is achieved by estab- 
lishing a connection between the failure process and the killing 
times of continuous and increasing stochastic processes to a 
random barrier, which is the HP. The notion of a HP generalizes 
to a nonexponential distribution for the barrier and also to the 
multivariate case. To conclude, the importance of the notion of 
a HP stems from its ability to provide a different perspective on 
failure, a model for the cause of dependence of lifetimes, new 
multivariate models for failure, new univariate models for sur- 
vival in dynamic environments, and a perspective on competing 
risks and degradation modeling. 

This article is expository in the sense that it provides a feel 
for the foregoing possibilities. Clearly, more can be done. For 
one, stochastic processes other than those considered in Sec- 
tion 6.2 can be investigated. We may do more on considering 
covariates that drive the {//(/); t > 0} process. Another possi- 
bility would be to consider bivariate processes and their killing 
times by interdependent barriers. In regard to the latter, one may 
also be able to leverage the idea for assessing competing risks 
by looking at the bivariate cumulative hazard process. Finally, 
there is a matter of statistical inference and model validation, 
topics that have not been touched on here. The possibilities of 
further capitalizing the notion of an HP are promising for relia- 
bility theorists, survival analysts, and actuarial scientists. 

{Received November 2005. Revised June 2006.] 
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1. Introduction: The hazard potential 

Let T denote the time to failure of a unit that is scheduled to operate in some 
specified static environment. Let h(t) be the hazard rate function of the survival 
function of T, namely, P(T > t),t > 0. Let H(t) = /0 h(u)du, be the cumulative 
hazard function at t;H(t) is increasing in t. With h(t),t > 0 specified, it is well 
known that 

Pr(T > t;h{t),t> 0) = exp(-H(t)). 

Consider now an exponentially distributed random variable X, with scale parameter 
A, A > 0. Then for some H(t) > 0, 

PT(X > H(t)\X = 1) = exp(-//(t)); 

thus 

(2.1) Pr(T > t; h(t), t > 0) = exp{-H(t)) = PT{X > H(t)\X = 1). 

The right, hand side of the above equation says that the item in question will 
fail when its cumulative hazard H(t) crosses a threshold X, where X has a unit 
exponential distribution. Singpurwaila [11] calls X the Hazard Potential of the 
item, and interprets it as an unknown resource that the item is endowed with at 
inception. Furthermore, H(t) is interpreted as the amount of resource consumed 
at time t, and h(t) is the rate at which that resource gets consumed. Looking at. 
the failure process in terms of an endowed and a consumed resource enables us to 
characterize an environment as being normal when H(t) = t, and as being acceler- 
ated (decelerated) when IJ(t) > (<) t. More importantly, with X interpreted as an 
unknown resource, we are able to interpret dependent lifetimes as the consequence 
of dependent hazard potentials, the later being a manifestation of commonalities 
of design, manufacture, or genetic make-up. Thus one way to generate dependent 
lifetimes, say 7\ and T^ is to start with a bivariate distribution (X\,X2) whose 
marginal distributions are exponential with scale parameter one, and which is not 
the product of exponential marginals. The details are in Singpurwaila [11]. 

When the environment is dynamic, the rate at which an item's resource gets 
consumed is random. Thus h(t); t > 0 is better described as a stochastic process, 
and consequently, so is H(t), t > 0. Since H(t) is increasing in t, the cumulative 
hazard process {H(t);t > 0} is a continuous increasing process, and the item 
fails when this process hits a random threshold X, the item's hazard potential. 
Candidate stochastic processes for {H(t); t > 0} are proposed in the reference given 
above, and the nature of the resulting lifetimes described therein. Noteworthy are 
an increasing Levy process, and the maxima of a Wiener process. 

In what follows we show how the notion of a hazard potential serves as a unifying 
platform for describing the competing risk phenomenon and the phenomenon of 
failure due to ageing or degradation in the presence of a marker (or a bio marker) 
such as crack size (or a CD4 cell count). 

3.  Dependent competing risks and competing risk processes 

By "competing risks" one generally means failure due to agents that presumably 
compete with each other for an item's lifetime. The traditional model that has 
been used for describing the competing risk phenomenon has been the reliability of 
a series system whose component lifetimes are independent or dependent. The idea 
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here is that since the failure of any component of the system leads to the failure 
of the system, the system experiences multiple risks, each risk leading to failure. 
Thus if Ti denotes the lifetime of component i, i — 1,..., k, say, then the cause 
of system failure is that component whose lifetime is smallest of the k lifetimes. 
Consequently, if T denotes a system's lifetime, then 

(3.1) Pr(T > t) = P(#i(0 < Xx Hk{t) < Xk), 

where Xi is the hazard potential of the i-th component, and Hi(t) its cumula- 
tive hazard (or the risk to component i) at time t. If the Xi's are assumed to be 
independent (a simplifying assumption), then (3.1) leads to the result that 

(3.2) Pr(T > t) = fxp[-{Hi(t) + ••• + Hk{t))\, 

suggesting an additivity of cumulative hazard functions, or equivalently, an ad- 
ditivity of the risks. Were the Xi's assumed dependent, then the nature of their 
dependence will dictate the manner in which the risks combine. Thus for example 
if for some 6, 0 < 8 < 1, we suppose that 

Pr(-Xi > x\,X2 > x2\6) = exp(-x! - x2 - 6x\X2), 

namely one of Gumbel's bivariate exponential distributions, then 

Pr(T > t\6) = exp[-(tfi(t) + H2(t) + 9Hi{t)H2(t))\. 

The cumulative, hazards (or equivalently, the risks) are no longer additive. 
The series system model discussed above has also been used to describe the 

failure of a single item that experiences several failure causing agents that compete 
with each other. However, we question this line of reasoning because a single item 
posseses only one unknown resource. Thus the X\,..., Xk of the series system model 
should be replaced by a single X, where X\ = X2 — • • • — Xk — X (in probability). 
To set the stage for the single item case, suppose that the item experiences k 
agents, say Ci,..., Ck, where an agent is seen as a cause of failure; for example, 
the consumption of fatty foods. Let Hi(t) be the consequence of agent d, were Ci 
be the only agent acting on the item. Then under the simultaneous action by all of 
the k agents the item's survival function 

Pr(T>t;h1(t),...,hk(t)) 

(3.3) =P(Hi{t)<X,...,Hk(t)<X) 

= exp(- max(Hi(t),..., Hk(t))). 

Here again, the cumulative hazards are not additive. 
Taking a clue from the fact that dependent hazard potentials lead us to a 

non-additivity of the cumulative hazard functions, we observe that the condition 
p        p        p        p P 

X\ = X2 = • • • = Xk — X (where X\ = X2 denotes that A'iand X2 are equal in 
probability) implies that Xy,...,Xk are totally positively dependent, in the sense 
of Lehmann (1966). Thus (3.2) and (3.3) can be combined to claim that in general, 
under the series system model for competing risks, P(T > t) can be bounded as 

k 

(3.4) exp{-YJHi{t)) < P(T >t)< exp(- max(//i(t),.... ff*(<))). 
i 

Whereas (3.4) above may be known, our argument leading up to it could be new. 
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3.1.   Competing risk processes 

The prevailing view of what constitutes dependent competing risks entails a con- 
sideration of dependent component lifetimes in the series system model mentioned 
above. By contrast, our position on a proper framework for describing dependent 
competing risks is different. Since it is the Hi(t)'s that encapsulate the notion 
of risk, dependent competing risks should entail interdependence between Hi(t)'s, 
i — 1,...,k. This would require that the Wj(i)'s be random, and a way to do so 
is to assume that each {Hi(t);t > 0} is a stochastic process; we call this a com- 
peting risk process. The item fails when any one of the {//,(t); t > 0} processes 
first hits the items hazard potential X. To incorporate interdependence between 
the Hi(t)'s, we conceptualize a &-variate process (Hi(t),..., Hk(t); t > 0}, that we 
call a dependent competing risk process. Since //z(t)'s are increasing in t, one 
possible choice for each {Hi(t); t > 0} could be a Brownian Maximum Process. That 
is Hi{t) = sup0<a<t{Wj(s); .s > 0}, where {Wi(s);s > 0} is a standard Brownian 
motion process. Dependence between the i/j(£)'s can be induced via a dependence 
between the {Wi(s);s > 0} processes. Thus for example, in the brvariate case, if 
p denotes the correlation between two standard Brownian motion processes, then 

Pr(T >t)=  I 
Jo 

P(Hy{t) < x,H?{t) < x)e~xdx 

and it can be shown (details omitted) that, 

(3.5) >t) = 
/o/oexP 

(o2+62-2pa6) 
dadb 

Jo   Jo   exP 
(u2+vJ-2ptitp) 

2t(l-pJ) dudv 

Another possibility, again for the case of k = 2, is to assume that {Hi(t); t > 0} 
is some non-negative, non-decreasing, right-continuous process, but that [H^it); 
t > 0} has a sample path which is an impulse function of the form H2{t) = 0 for all 
t < t*, and that Ihit") = oo for some t* > 0, where the rate of occurrence of the 
impulse at time t depends on Hi(t). The process {H2(t);t > 0} can be identified 
with some sort of a traumatic event that competes with the process {H\{t); t > 0} 
for the lifetime of the item. In the absence of trauma the item fails when the 
process {H\{t)\t > 0} hits the item's hazard potential. This scenario parallels the 
one considered by Lemoine and Wenocur [6], albeit in a context that is different 
from ours. By assuming that the probability of occurrence of an impulse in the time 
interval [t, t f h), given that Hi(t) = u>, is 1 - exp(—u>h), Lemoine and Wenocur 
[6] have shown that for X — x, the probability of survival of an item to time (is of 
the form: 

(3.6) Pr(T > t) = £ exp 
(/'"' 

(s)ds)l[0iX)(H1(t)) 

where IA(*) >
S
 the indicator of a set A, and the expectation is with respect to the 

distribution of the process {Hi(t); t > 0}. As a special case, when [Hi (f); t > 0} is 
a gamma process (see Singpurwalla [10]), and x is infinite, so that, /[o,oo) (#i (0) = 1 
for Hi (t) > 0, the above equation takes the form 

(3.7) Pr(T > t) = exp(-(l + t) log(l + t) + t). 
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The closed form result of (3.7) suffers from the disadvantage of having the effect of 
the hazard potential de facto nullified. The more realistic case of (3.6) will call for 
numerical or simulation based approaches. These remain to be done; our aim here 
has been to give some flavor of the possibilities. 

4. Biomarkers and degradation processes 

A topic of current interest in both reliability and survival analysis pertains to assess- 
ing lifetimes based on observable surrogates, such as crack length, and biomarkers 
like CD4 cell counts. Here again the hazard potential provides a unified perspective 
for looking at the interplay between the unobservable failure causing phenomenon, 
and an observable surrogate. It is an assumed dependence between the above two 
processes that makes this interplay possible. 

To engineers (cf. Bogdanoff and Kozin [1]) degradation is the irreversible accu- 
mulation of damage throughout life that leads to failure. The term "damage" is 
not defined; however it is claimed that damage manifests itself via surrogates such 
as cracks, corrosion, measured wear, etc. Similarly, in the biosciences, the notion 
of "ageing" pertains to a unit's position in a state space wherein the probabilities 
of failure are greater than in a former position. Ageing manifests itself in terms 
of bioniedical and physical difficulties experienced by individuals and other such 
biomarkers. 

With the above as background, our proposal here is to conceptualize ageing and 
degradation as unobservable constructs (or latent variables) that serve to describe 
a process that results in failure. These constructs can be seen as the cause of ob- 
servable surrogates like cracks, corrosion, and biomarkers such as CD4 cell counts. 
This modelling viewpoint is not in keeping with the work on degradation modelling 
by Doksum [3] and the several references therein. The prevailing view is that degra- 
dation is an observable phenomenon that reveals itself in the guise of crack length 
and CD4 cell counts. The item fails when the observable phenomenon hits some 
threshold whose nature is not specified. Whereas this may be meaningful in some 
cases, a more general view is to separate the observable and the unobservable and 
to attribute failure as a consequence of the behavior of the unobservable. 

To mathematically describe the cause and effect phenomenon of degradation (or 
ageing) and the observables that it spawns, we view the (unobservable) cumula- 
tive hazard function as degradation, or ageing, and the biomarker as an observ- 
able process that is influenced by the former. The item fails when the cumulative 
hazard function hits the item's hazard potential X, where X has exponential (1) 
distribution. With the above in mind we introduce the degradation process as 
a bivariate stochastic process {H(t),Z(t),t > 0}, with H(t) representing the un- 
observable degradation, and Z(t) an observable marker. Whereas ll(t) is required 
to be non decreasing, there is no such requirement on Z(t). For the marker to be 
useful as a predictor of failure, it is necessary that H(t) and Z(t) be related to each 
other. One way to achieve this linkage is via a Markov Additive Process (cf. Cinlar 
[2]) wherein {Z(i);t > 0} is a Markov process and {H{t);t > 0} is an increasing 
Levy process whose parameters depend on the state of the {Z(t);t > 0} process. 
The ramifications of this set-up need to be explored. 

Another possibility, and one that we are able to develop here in some detail (see 
Section 5), is to describe {Z[t); t > 0} by a Wiener process (cracks do heal and CD4 
cell counts do fluctuate), and the unobservable degradation process {H(i);t > 0} 
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by a Wiener Maximum Process, namely, 

(4.1) H(t)=  sup {Z(s);s>0}. 
0</><t 

What makes the topic of analyzing degradation processes attractive is not just 
the modeling part; the statistical and computational issues that the set-up creates 
are quite challenging. Since {Z(t)\ t > 0} is an observable process, how may one use 
observations on this process until some time, say t*, to make inferences about the 
process of interest H{t), for t > t*t In other words, how does one assess Pr(T > 
t\{Z(s); 0 < s < f < t}), where T is an item's time to failure? Furthermore, as is 
often the case, the process {Z(s); s > 0} cannot be monitored continuously. Rather, 
what one is able to do is observe {Z(s); s > 0} at k discrete time points and use 
these as a basis for inference about Pr(T > £|{Z(s);0 < s < t" < £}). These and 
other matters are discussed next in Section 5, which could be viewed as a prototype 
of what else is possible using other models for degradation. 

5.  Inference under a Wiener maximum process for degradation 

We start with some preliminaries about a Wiener process and its hitting time to a 
threshold. The notation used here is adopted from Doksum [3]. 

5.1.  Hitting time of a Wiener maximum process to a random threshold 

Let Zt denote an observable marker process {Z(t);t > 0}, and Ht an unobservable 
degradation process {H(t);t > 0}. The relationship between these two processes 
is prescribed by (4.1). Suppose that Z% is described by a Wiener process with a 
drift parameter 77 and a diffusion parameter a2 > 0. That is, Z(0) = 0 and Zt has 
independent increments. Also, for any t > 0, Z(t) has a Gaussian distribution with 
E(Z(t)) = t)t, and for any 0 < h < t2, Var[Z(42) - Z(h)\ - (t2 - h)a2. Let Tx 

denote the first time at which Zt crosses a threshold x > 0; that is, Tx is the hitting 
time of Zt to a;. Then, when rj = 0, 

Pr (Z(l) > x) =  Pr(Z(i) > x\Tx < t) PT{TX < t) 
['' +PT(Z(t)>x\Tx>t)Pr{Tx>t), 

(5.2) Pr(T,<t)  = 2Pr(Z(i)>x). 

This is because Pr(Z(£) > x\Tx < t) can be set to 1/2, and the second term on 
the right hand side of (5.1) is zero. When Z(t) has a Gaussian distribution with 
mean -qt and variance a2t, Pi(Z(t) > x) can be similarly obtained, and thence 

Pr(TI < () = Fx(t\n,a). Specifically it can be seen that 

(53, «,^_.(£rf-3)+.(-£rf-3).„(E 
where \x = x/n and A = x2/a2. The distribution Fxis the Inverse Gaussian 
Distribution (/G-Distribution) with parameters u and A, where u — E(TX) and 
\u2 =Var(Tj;). Observe that when 77 = 0, both E{TX) and Var(Tz) are infinite, and 
thus for any meaningful description of a marker process via a Wiener process, the 
drift parameter 7/ needs to be greater than zero. 
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The probability density of Fx at t takes the form: 

A   (t-rf (5.4) /i(i|7?i(7) = ^__eXp 
2(x2 

for t, u, A > 0. 
We now turn attention to Ht, the process of interest. We first note that because 

of (4.1), 7/(0) = 0, and H(t) is non-decreasing in t; this is what was required of 
Ht- An item experiencing the process Ht fails when Ht first crosses a threshold 
X, where X is unknown. However, our uncertainty about X is described by an 
exponential distribution with probability density f(x) = e~x. Let T denote the 
time to failure of the item in question. Then, following the line of reasoning leading 
to (5.1), we would have, in the case of 77 = 0, 

Pr(T<t) = 2PT{H{t)>x). 

Furthermore, because of (4.1), the hitting time of Ht to a random threshold X will 
coincide with Tx, the hitting time of Zt (with 77 > 0) to AT. Consequently, 

Pr(T < t) = Pr(Tx < t) = f    Pr{Tx < t\X = x)f(x)dx 
Jo 

rOO /«oo 

=  /     Pr{Tx<t)e~xdx = \    Fx{t\n,a)e-Xdx. 
Jo Jo 

Rewriting Fx{t\n,cr) in terms of the marker process parameters n and o, and treating 
these parameters as known, we have 

Pr(T<t\V,a)d=f F(t\r,,a) 

x exp ( x ( —5 — 1 ] ] dx, 

as our assessment of an item's time to failure with 77 and o assumed known. It is 
convenient to summarize the above development as follows 

Theorem 5.1. The time to failure T of an item experiencing failure due to ageing 
or degradation described by a Wiener Maximum Process with a drift parameter 

•q > 0, and a diffusion parameter a2 > 0, has the distribution function F(t\n, o) 
which is a location mixture of Inverse Gaussian Distributions. This distribution 
function, which is also the hitting time of the process to an exponential (1) random 
threshold, is given by (5.5). 

In Figure 1 we illustrate the behavior of the /G-Distribution function Fx(t), 
for x = 1,2,3,4, and 5, when r) = a = 1, and superimpose on these a plot of 
F(t\r) = a — 1) to show the effect of averaging the threshold x. As can be expected, 
averaging makes the 5-shapedness of the distribution functions less pronounced. 

5.2.   Assessing lifetimes using surrogate (biomarker) data 

The material leading up to Theorem 5.1 is based on the thesis that n and a1 are 
known. In actuality, they are of course unknown. Thus, besides the hazard potential 
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FlG 1. The IG-Distribution with thresholds X — 1,...,S and the averaged IG-Distribution. 

X, the r) and a2 constitute the unknowns in our set-up. To assess n and a2 we may 
use prior information, and when available, data on the underlying processes Zt and 
Ht- The prior on X is an exponential distribution with scale one, and this prior 
can also be updated using process data. In the remainder of this section, we focus 
attention on the case of a single item and describe the nature of the data that can 
be collected on it. We then outline an overall plan for incorporating these data into 
our analyses. 

In Section 5.3 we give details about the inferential steps. The scenario of Observ- 
ing several items to failure in order to predict the lifetime of a future item will not 
be discussed. 

In principle, we have assumed that Ht is an unobservable process. This is cer- 
tainly true in our particular case when the observable marker process Zt cannot be 
continuously monitored. Thus it is not possible to collect data on Ht. Contrast our 
scenario to that of Doksum [3], Lu and Meeker [7], and Lu, Meeker and Escobar 
[8], who assume that degradation is an observable process and who use data on 
degradation to predict an item's lifetime. We assume that it is the surrogate (or 
the biomarker) process Zt that, is observable, but only prior to T, the item's failure 
time. In some cases we may be able to observe Zt at t=T, but doing so in the case 
of a single item would be futile, since our aim is to assess an unobserved T. Data 
on Zt will certainly provide information about n and a2, but also about X; this is 
because for any t < T, we know that X > Z(t). Thus, as claimed by Nair [9], data 
on (the observable surrogates of) degradation helps sharpen lifetime assessments, 
because a knowledge of r;, a2 and X translates to a knowledge of T. 

It is often the case - at least we assume so - that Zt cannot be continuously 
monitored, so that observations on Zt could be had only at times 0 < ti < t2 < • • • < 
tk < T, yielding Z = (Z(ti),..., Z(tk)) as data. Furthermore, based on Z(lk), we 
are able to assert that X > Z(tk}- This means that our updated uncertainty about 
X will be encapsulated by a shifted exponential distribution with scale parameter 
one, and a location (or shift) parameter Z(t).). 

Thus for an item experiencing failure due to degradation, whose marker process 
yields Z as data, our aim will be to assess the item's residual life (T - tk). That is, 
for any u > 0, we need to know Pr(T > tk + u; Z) = Pr(T > tk + u; T > tk), and 
this under a certain assumption (cf. Singpurwalla [12]) is tantamount to knowing 

(5.6) 
Pr(T> tk+u) 

Pr(T>ifc)    ' 
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for 0 < u < oo. To assess the two quantities in the above ratio, we need to consider 
the quantity Pr(T > t; Z), for some t > 0. Let ir(rj,a2,x; Z) encapsulate our uncer- 
tainty about r), a2 and X in the light of the data Z. In Section 5.3 we describe our 
approach for assessing 7r(ry, a2, x\ Z). Now 

(5.7)   Pr(T> t;Z)=  /        Pr(T > t[r],a2,x; Z)n(n,(T2,x;Z)(dTj)(da2)(dx) 
Jrj,a2,x 

= [       Pr(T* > t\rj,a2)n(rita
2,x;Z){dri)(da2){dx) 

n\,a',x 

,2   „. '7^/•J„^/J„2^ (5-8) = f       Fx(t\V,a)7t(r,,a2,x;Z)(dr,)(da2){dx), 

where Fx(t\r}, a) is the /G-Distribution of (5.3). 
Implicit to going from (5.7) to (5.8) is the assumption that the event (T > t) 

is independent of Z given 77, a2 and X. In Section 5.3 we will propose that T\ be 
allowed to vary between a and b; also, a2 > 0, and having observed Z(tk), it is clear- 
that x must be greater than Z{tk)- Consequently, (5.8) gets written as 

(5.9) Pr(T>C;Z)=/    /      /        Fx(t\r,,a)Tr(r,,(T2,x;Z)(d7j)(da2)(dx), 
Ja   JO     JZ(t±) 

and the above can be used to obtain Pr(T > t* + u\ Z) and Pr(T > tkA, Z). Once 
these are obtained, we are able to assess the residual life Pr(T > tjt + u\T > tk), 
for u > 0. 

We now turn our attention to describing a Bayesian approach specifying 7r(r/,(T2, 
x;Z). 

5.3.   Assessing the posterior distribution of n, cr2 and X 

The purpose of this section is to describe an approach for assessing Tv(rj,a2,x; Z), 
the posterior distribution of the unknowns in our set-up. Fbr this, we start by 
supposing that Z is an unknown and consider the quantity n(r),a2,x\ Z). This is 
done to legitimize the ensuing simplifications. By the multiplication rule, and using 
obvious notation 

Tc(v,tr2,x\Z) = m(v,c2\X,Z)iv2(X\Z)- 

It makes sense to suppose that rj and a2 do not depend on X; thus 

(5.10) Jr(r?,a2,i|Z)=7ri(T?>
2|Z)7r2(A-|Z). 

However, Z is an observed quantity. Thus (5.10) needs to be recast as: 

(5.11) n{rj, a2, x; Z) = m(ji, a2- Z)w2(X; Z). 

Regarding the quantity 7T2(X;Z), the only information that Z provides about 
X is that X > Z(tk). Thus W2(X;Z) becomes iT2(X\Z(tk)). We may now invoke 
Bayes' law on ir2{X\ Z(tk)) and using the facts that the prior on X is an exponential 
(1) distribution on (0,00), obtain the result that the posterior of X is also an 
exponential (1) distribution, but on {Z(tk),00). That is, ^(X; £(£*)) is a shifted 
exponential distribution of the form exp(—(x — Z{tk))), for x > Z{tk)- 

Turning attention to the quantity 7Ti (77, a2; Z) we note, invoking Bayes1 law, that 

(5.12) 7n(r,,a2;Z) oc£(r),<T2;Z)7T*(r7,ff2), 
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where £{r), a2; Z) is the likelihood of rj and a2 with Z fixed, and 7T*(T7,<7
2
) our prior 

on rj and a2. In what follows we discuss the nature of the likelihood and the prior. 

The Likelihood of 77 and er2 

Let Yi = Z(h), y2 = (Z(t2) - Z{ti)),...,Yk = (Z(tk) - Z(t*_i)), and Sl = 
t\, S2 = h — ti,... ,Sk = tk — tfc_i. Because the Wiener process has independent 
increments, the yt's are independent. Also, j/4 ~ N(r]Si,cr2Si), i = l,...,k, where 
N(n,£2) denotes a Gaussian distribution with mean ji and variance £2. Thus, the 
joint density of the j/j's, i = 1,... ,k, which is useful for writing out a likelihood of 
TJ and a2, will be of the form 

n* TjSi 

a'Si 

where 4> denotes a standard Gaussian probability density function. As a consequence 
of the above, the likelihood of 77 and a2 with y = (j/i,..., yk) fixed, can be written 

k V 

(5.13) £(7,,<T2;y) = ;Q^r—exp   4 ( 
2/i - V*i 

The Prior on 77 and <r2 

Turning attention to n*(rj, a2), the prior on T? and cr2, it seems reasonable to suppose 
that 77 and a2 are not independent. It makes sense to suppose that the fluctuations 
of Zt depend on the trend 77. The larger the rj, the bigger the a2, so long as there is 
a constraint on the value of rj. If TJ is not constrained the marker will take negative 
values. Thus, we need to consider, in obvious notation 

(5.14) W*(7?,CT
2
) = *'(°2\v)**(v)- 

Since rj can take values in (0,oo), and since TJ = tan# - see Figure 2-0 must 
take values in (0,7r/2). 

To impose a constraint on TJ, we may suppose that 0 has a translated beta density 
on (a, b), where 0 < a < & < 7r/2. That is, 6 = a + (b — a)W, where W has a beta 
distribution on (0,1). For example, a could be 7r/8 and 6 could be 3TT/8. Note that 
were 9 assumed to be uniform over (0,7r/2), then TJ will have a density of the form 
2/[7r(l + n2)\ - which is a folded Cauchy. 

E(Z,) = nt 

FIG 2. Relationship between 7,t and n. 
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The choice of -K'(cr2\Ti) is trickier. The usual approach in such situations is to 

opt for natural conjugacy. Accordingly, we suppose that ip = a2 has the prior 

(5.15) ^(^oc^-Cf+Oexp^-^-V 

where v is a parameter of the prior. 
Note that E{ip\r), v) = r\l{v — 2), and so V* = c2 increases with 77, and n is 

constrained over a and b. Thus a constraint on a2 as well. 
To pin down the parameter v, we anchor on time t = 1, and note that since 

E(Zi) = 77 and Var(Zj) = a2 = if), a should be such that ACT should not exceed 
77 for some A = 1,2,3,...; otherwise Z\ will become negative. With A = 3, 77 = 
3CT and so 1/1 = a2 = 77a/9. Thus v should be such that E(CT

2
|T/, V) « r;2/9. But 

£(CT
2

|T7, y) = 77/(1/ - 2), and therefore by setting r\j(y - 2) = 772/9, we would have 
v = 9/TJ + 2. In general, were we to set 77 = ACT, U = A2/r) + 2, for A — 1,2,.... 
Consequently, v/2 + 1 = (A2/r) + 2)/2 + 1 = A2/2r7 + 2, and thus 

(5.16) 7r*(t%;A)=,r(^+2)exp(-^), 

would be our prior of a2, conditioned on lp, and A = 1,2,..., serving as a prior 
parameter. Values of A can be used to explore sensitivity to the prior. 

This completes our discussion on choosing priors for the parameters of a Wiener 
process model for Zt. All the necessary ingredients for implementing (5.9) are now 
at hand. This will have to be done numerically; it does not appear to pose major 
obstacles. We are currently working on this matter using both simulated and real 
data. 

6.  Conclusion 

Our aim here was to describe how Lehmann's original ideas on (positive) depen- 
dence framed in the context of non-parametrics have been germane to reliability 
and survival analysis, and even so in the context of survival dynamics. The notion 
of a hazard potential has been the "hook" via which we can attribute the cause 
of dependence, and also to develop a framework for an appreciation of competing 
risks and degradation. The hazard potential provides a platform through which the 
above can be discussed in a unified manner. Our platform pertains to the hitting 
times of stochastic processes to a random threshold. With degradation modeling, 
the unobservable cumulative hazard function is seen as the metric of degradation 
(as opposed to an observable, like crack growth) and when modeling competing 
risks, the cumulative hazard is interpreted as a risk. Our goal here was not to solve 
any definitive problem with real data; rather, it was to propose a way of looking at 
two commonly encountered problems in reliability and survival analysis, problems 
that have been well discussed, but which have not as yet been recognized as having 
a common framework. The material of Section 5 is purely illustrative; it shows what 
is possible when one has access to real data. We are currently persuing the details 
underlying the several avenues and possibilities that have been outlined here. 
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Foreword 

The entries in this volume have been categorized into seven parts, each part 
emphasizing a theme that in our judgment seems poised for the future develop- 
ment of reliability as an academic discipline with relevance. The seven parts: 
are Networks and Systems; Recurrent Events; Information and Design; The 
Failure Rate Function and Burn-in; Software Reliability and Random Environ- 
ments; Reliability in Composites and Orthopedics, and Reliability in Finance 
and Forensics. Embedded within the above are some of the other currently 
active topics such as causality, cascading, exchangeability, expert testimony, 
hierarchical modeling, optimization and survival analysis. Collectively, these 
when linked with utility theory constitute the science base of risk analysis. 

Part I on Networks and Systems consists of three entries each striking a 
unique and different chord. Boland and Samaniego introduce the notion of 
the "signature" of a system. The term signature (or imprint), resonates well 
with engineering wherein it is used to describe the characteristics of rotating 
machinery vis a vis its vibration. Boland and Samaniego use their notion to 
characterize the manner in which a system is put together, irrespective of the 
inherent quality of each member of the system. They make connections be- 
tween their notion and the notions used in computer science. Their treatment 
of the topic is exhaustive; it promises to generate added interest in the notion 
of signatures. The second paper by Kuo and Prasad is in some sense unique 
among all other entries because it brings into the picture the role of optimization 
in reliability. Since mathematical optimization is a core discipline of operations 
research, Kuo and Prasad's entry is noteworthy on two counts. It exposes reli- 
ability theorists to the relevance of optimization in system design, and it makes 
this volume's inclusion in a series in Operations Research and Management 
Science germane. The third paper by Swift summarizes some of the more re- 
cent work in assessing the reliability of systems from a statistical point of view. 
Such work, motivated by the more recent concerns of infrastructure protection, 
entails aspects of hierarchical modeling, computations via the Markov chain 
Monte Carlo, notions of interdependence (causal and cascading failures) and 
the use of neural nets for reliability assessment. To whet the appetite of proba- 
bility theorists, Swift caps his entry by including in it the pitfalls of not paying 
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attention to Borel's paradox which can arise naturally in the context of system 
reliability assessment. 

Part II on Recurrent Events consists of three entries, one emphasizing an 
engineering scenario, another the biomedical scenario and the third a matter 
of foundations. Arjas and Bhattacharjee demonstrate the importance of hierar- 
chical modeling as a way to borrow strength when dealing with heterogeneous 
data. They motivate their work by starting with a real life example involving 
valve failures in a nuclear plant and analyze the ensuing data using the Markov 
chain Monte Carlo approach in a Bayesian context. Their analyses show how 
modern statistical techniques when coupled with sophisticated computational 
approaches can lead to useful practical insights. The second paper by Doksum 
and James pertains to the use of a class of priors originally proposed by Dok- 
sum. These priors are called neutral to the right and they have gained popularity 
in Bayesian inference. Doksum and James do a Bayesian analysis of Barlow's 
total time on test transform and we are fortunate to receive this contribution. 
The third paper by Pena and Hollander is both archival and state-of-the-art. The 
authors introduce a general class of models for the treatment of recurrent event 
data that arises in a variety of contexts: health sciences, engineering, economics 
and sociology. The models are able to incorporate the effects of interventions, 
accumulations and concomitance. The list of references is exhaustive and the 
material is expository enough for any novice to benefit. It offers the Bayesians 
a new window of opportunity for research in an area of investigation that is very 
general. 

Part III on Information and Design consists of three entries two of which share 
a common theme. The aim of failure data analysis, irrespective of whether the 
data arises from a designed life-testing experiment or retrospectively from the 
field, is to gain information or knowledge. The latter enables one to make 
meaningful predictions about future lifetimes. Discrimination, entropy, and 
information are the three legs on which the notion of "quantified knowledge" 
rests. In the first entry, Ebrahimi and Soofi provide an authoritative synopsis of 
the above triage with a focus on how it relates to reliability and life-testing. The 
entry is rich in examples and almost complete vis a vis coverage; an exception 
is the topic of how to design experiments for extracting the maximum amount 
of information that one possibly can. All the same, Ebrahimi and Soofi 's entry 
should motivate researchers in reliability to consider incorporating information 
theoretic ideas in reliability analysis; this entry provides a valuable service. The 
second entry by Nair, Escobar and Hamada pertains to the design of experiments 
for gathering performance data, with a view towards enhancing reliability. This 
point of view, popularized by Taguchi, advocates an active philosophy in the 
sense that the aim of reliability analysis should be to improve performance, not 
to merely report observed performance - the passive view. Notions of accel- 
erated testing, degradation analysis, robustness and censoring are embodied in 
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the context of the theme of the entry. The third entry by Wilson, Reese, Hamada 
and Martz has a futuristic motif. It pertains to the fusion of information about 
lifetimes that arises from two different sources: physical experiments and com- 
puter simulations. The latter is necessitated by either cost and time constraints 
or by the impossibility of conducting physical tests. For example, the inability 
to test nuclear weapons due to test ban treaties. The authors' aim is achieved 
by three modern technologies: hierarchical modeling, Bayesian pooling and 
Markov chain Monte Carlo. The entry is both state-of-the-art and futuristic; it 
reinforces the idea that new research and new paradigms are often driven by 
new problems. 

Part IY on the Failure Rate Function and Burn-in consists of two entries the 
first being a prelude to the second. The entry by Block and Savits addresses the 
fundamental question upon whose answer depends the need for the second entry 
by Jensen and Spizzichino. The notion of the failure rate function is perhaps 
unique to reliability and survival analysis. Indeed statistical reliability can be 
said to owe its existence to the notion of failure rate. Engineers often claim that 
components and systems exhibit a failure rate function whose shape is like that 
of a bath-tub. The decreasing form of the failure rate function is intriguing; 
specifically, is the decrease of the failure rate due to some natural phenomenon 
or is it the manifestation of something else, like a mixture (be it physical or 
be it psychological). A knowledge of the form of the failure rate function is 
useful for commissioning an item to service. This is the theme of the second 
entry by Jensen and Spizzichino. In the first entry, Block and Savits provide 
an overview of the various forms of the failure rate function that can occur due 
to mixing - irrespective of what causes the mixture. The treatment of Block 
and Savits tend to be mathematical (but not necessarily technical); however, 
their entry here is expository and relaxed. This entry embodies the view that 
the good mathematics of reliability theory should be driven by a genuine need. 
The second entry by Jensen and Spizzichino exploits the kind of results that 
the first entry can produce, in order to address the question of how much one 
should test an item (i.e. the notion of "burn-in") prior to commissioning it for 
use. This entry explores several ramifications of the problem and the material 
- which tends to be technically sophisticated - embodies the notion of utilities 
(via costs) - Bayesian decision making under uncertainty and sequential control 
theory; aspects of Operations Research and Management Science. 

Part V on Software Reliability and Random Environments pertains to an issue 
that is currently important and will continue to be so. As systems become more 
and more software driven and software dependent, unreliable software is the 
critical component of a system. The first entry by Chiang and Kuo uses some 
of the notions and ideas that are useful in reliability, to manage the software 
development process. This is noteworthy on two counts: the first is that it has 
often been claimed by experienced software engineers that it is the process that 
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produces a piece of software that ensures its reliability - not just the innate 
abilities of programmers to produce error-free codes; the second is that by 
using system reliability data to manage the process, Chiang and Kuo put into 
practice Taguchi's philosophy of reliability techniques playing an active role 
for producing quality software. There is a parallel between this entry and that 
of Jensen and Spizzichino vis a vis optimum time to "bum-in" and optimum 
time to release software. Hopefully, these entries will provide some synergy 
between the said topics. The second entry by Ozekici and Soyer pertains to 
a generic topic in reliability - be it hardware or be it software - namely the 
manner in which the effects of a random environment can be treated in the 
context of assessing survivability. The entry, albeit focussed on the context 
of software, provides an overview of the several modem approaches - mostly 
based on stochastic process theory linked with Bayesian methodology - that are 
used in the context mentioned above. 

Parts VI and VII pertain to some new and important avenues of application 
of reliability, namely, composite materials, orthopedics, finance and forensics. 
Of these, finance and orthopedics seem to be most intriguing, and composite 
materials the most crucial. Lynch and Padgett provide an overview of the 
recent work on the strength of fibre bundles that they have been doing over 
the past few years. With the increased emphasis on infrastructure protection 
and the use of composite materials, this type of research has an added urgency. 
Their entry pulls together several related topics (such as pooling failure data, 
interacting systems, Gaussian and inverse Gaussian processes and inferential 
issues) to develop a coherent package that should appeal to both engineers and 
statisticians. Their list of references will support this latter claim. Wilson 
and also Lynn introduce a new frontier for the application of reliability. The 
former focuses on a specific problem in orthopedics, namely the life-length of 
hip replacements, and uses a hierarchical approach in the context of a Bayesian 
analysis to assess lifetimes of such replacements. He illustrates the validity of 
his approach by considering actual data. This scenario further attests to the 
growing importance of hierarchical modeling in reliability analysis. Via this 
work we note the importance of the application of reliability theory to such 
burgeoning areas as biomedical engineering. Another area of importance for 
the application of reliability techniques is illustrated in Lynn's entry which is 
more on the conceptual front than on the practice front. He introduces notions 
in fixed income instruments - like bonds - and discusses their risk of default 
(i.e. failure). He then points out opportunities wherein notions of reliability 
and risk could come into play and discusses some possibilities. He then moves 
to the notion of "derivatives" and again points out scenarios wherein there 
could be an interplay between reliability and finance. Lynn's entry is important 
because it opens a new window of opportunity for the techniques of reliability. 
The final entry is on warranties. These bring into play the various notions of 



hHEMATICAL RELIABILITY 

ility - not just the innate 
JS; the second is that by 

ffchiang and Kuo put into 
playing an active role 

|§tween this entry and that 
§o "burn-in" and optimum 
||I provide some synergy 
J.ci and Soyer pertains to 
§t software - namely the 
lint can be treated in the 
Ifocussed on the context 

,Jbrn approaches - mostly 
|fn methodology - that are 

Avenues of application 
'finance and forensics. 

fjguing, and composite 
||<£an overview of the 

been doing over 
^structure protection 

f|s'an added urgency. 
pooling failure data, 
vjses.and inferential 

iftpbbth engineers and 
ier claim.  Wilson 
pliability. The 

^life-length of 
tfjBayesian 
Validity of 

attests to the 
El Via this 

flo such 
ance for 
|hich is 
potions 
l&fault 

feility 
loves 
Ifthere 

Eef 

XXI 

probability (objective, logical and personal), utility and game theory, failure 
models indexed by multiple scales, and forecasting using leading indicators. 
Violations of warranty are often the cause of litigation - sometimes in millions 
of dollars - and the role of reliability analyst as an expert witness becomes 
central. Thus the label reliability in forensics. 

Despite the broad coverage that we have endeavored to encompass, we are 
aware of the fact that there may be other topics that should have been included. 
In excluding these we take the blame; but then we are also quite delighted with 
what we have included. 

Finally, we would like to take this opportunity to acknowledge the several 
years of support provided by The Army Research Officej and the Office of Naval 
Research, for sustaining our work in reliability through the George Washington 
University's Institute for Reliability and Risk Analysis. 
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1 PREAMBLE 

Writing the history about any topic is both challenging and demanding. Demanding because 

one needs to acquire a broad perspective about the topic, a perspective that generally comes 

over time and experience. The challenge of writing history comes from the matter of what 

to include and what to omit. There is the social danger of offending those readers who 

feel that their work should have been mentioned but was not. But the moral obligation of 

excluding the works of those who are no more with us is much greater. Writers of history 

must therefore confront the challenge and draw a delicate line. This task is made easier 

with the passage of time, because the true impact of a signal contribution is felt only after 

time has elapsed. By contrast, the impact of work that is incremental or marginal can be 

judged immediately. It is with tlic above in mind that the history that, follows is crafted. 

The word "select" in the title of this contribution is deliberate; it reflects the judgement of 

the authors. Hopefully, the delicate line mentioned before, has been drawn by us in a just 

and honourable manner. All the same, our apologies to those who may feel otherwise, or 

whose works we have accidentally overlooked. 

2 INTRODUCTION 

From a layperson's point of view, a viewpoint that predates history, the term "risk" con- 

notes the possibility that an undesirable outcome will occur. However, the modern technical 

meaning of the term risk is different. Here, risk is the sum of the product of the probabilities 

of all possible outcomes of an action and the utilities (or consequences) of each outcome. 

Utilities are numerical values of consequences on a zero to one scale. Indeed, utilities are 

probabilities and obey the rules of probability (Lindley, 1985, page 56). They encapsulate 

one's preferences between consequences. Thus the notion of risk entails the twin notions of 

probability and utility.  Some adverse outcomes are caused by the failure or the malfunc- 



tioiiing of certain entities, biological or physical. For such adverse outcomes, the probability 

of failure of the entity in question is known as the entity's unreliability; its reliability is the 

probability of non-failure for a specified period of time. In the biomedical contexts, wherein 

the entity is a biological unit, the term survivability is used instead of reliability. Thus as- 

sessing reliability (or survivability) is de facto assessing a probability, and reliability theory 

pertains to the methods and techniques for doing such assessments. The linkage between 

reliability and risk is relatively new (Singpurwalla, 2006). It is brought about by the point 

of view that the main purpose of doing a reliability analysis is to make sound decisions 

about preventing failure in the face of uncertainty. To the best of our knowledge, the first 

document that articulates this position is Barlow et al. (1993). Thus we see that probability, 

utility, risk, reliability and decision making are linked,. with probability playing a central 

role, indeed the role of a genninator. Our history of risk and reliability must therefore start 

with a history of probability. Probability is a way to quantify uncertainty. Its origins date 

back to 16th century Europe and discussions about its meaning and interpretation continue 

until the present day. For a perspective on these, the review articles by Kolmogorov (1969) 

and Good (1990) are valuable. The former wholeheartedly subscribes to probability as an 

objective chance, and the latter makes the point that probability and chance are distinct 

concepts. The founding fathers of probability were not motivated by the need to quantify 

uncertainty; they were more concerned with action than with interpretation. This enables 

us to divide the history of probability into three parts: until 1750, 1750-1900, and from 

1900. These reflect, in our opinion, three reasonably well-defined periods of development 

of the mathematics of uncertainty which we label: foundations, maturation and expansion 

of applicability. Some excellent books on the history of probability are by Hald (1990b,a), 

Stigler (1990) and von Plato (1994). Since the history of probability is the background for 

the history of risk and reliability, a reading of these and the exhaustive references therein 

should provide risk and reliability analysts a deeper appreciation of the foundations of their 



subject. 

3    TO 1750:   THE FOUNDATIONS OF PROBABIL- 

ITY 

Insurance was the first place where the traditional notion of risk had to be quantified. Its 

use can be traced back 4 millenia to ancient China and Babylonia, where traders took on 

the risks of the caravan trade by taking out loans that were repaid if the goods arrived. The 

ancient Greeks and Phoenicians used marine insurance, while the Romans had a form of life 

insurance that paid for the funeral expenses of the holder. However there is no evidence 

that insurance was a common practice and indeed it disappeared with the fall of the Roman 

Empire. It took the growth of towns and trade in Renaissance Europe, where risks such 

as shipwreck, losses from fire and even kidnap ransom worried the wealthy, for insurance 

to develop once again. But it was the development of probability in the 17th century that 

finally saw the foundation for the mathematics of risk, and where our brief history can 

really begin. We should mention first that the mathematisation of uncertainty can be traced 

back to Gioralimo Kardano (1501-1575). But it was the short correspondence between 

Pierre de Fermat (1608-1672) and Blaise Pascal (1623-1662) that began the development 

of modern probability theory. Their correspondence concerned a gambling question called 

"The Problem of Points", which is to determine the fair bet for a game of chance where 

each player has an equal chance of winning, and the bet is won as soon as either player 

wins the game a pre-determined number of times. The difficulty arises if the number of 

games to win is different for each player; Fermat's and Pascal's correspondence led to a 

solution. Meanwhile, a contemporary of both, Christiaan Huygens (1629 1695), was one of 

the earliest scientists to think mathematically about risk. He was motivated by problems in 

annuities, which at that time were common means for states and towns to borrow money. 



of 100 ['quick conceptions'] 

there dies within the first six years    36 

The next ten years, or Decad 24 

The second Decad 15 

The third Decad (.) 

The fourth 6 

The next 4 

The next 3 

The next 2 

The next 1 

["perhaps but one surviveth 76"] 

Table 1: Reproduction of the table that appears in Graunt (1662). 

Huygens wrote up the solution of Ferrnat and Pascal, and is thus credited with publishing 

the first book on probability theory (Huygens, 1657). Without the benefit of Fermat's and 

Pascal's theory, Graunt produced the first mortality table by decade (Graunt, 1662), from 

which he concluded that only 1% of the population survived to 76 years. Table 1 shows 

this brilliant if unsophisticated effort; see Seal (1980) for a discussion of its use. Graunt's 

work happened at the time when property insurance as we know it today began. Following 

the Great Fire of London in 1666, which destroyed about 13,000 houses, Nicholas Barbon 

opened an office to insure buildings. In 1680, he established England's first fire insurance 

company, "The Fire Office," to insure brick and frame homes; this also included the first 

fire brigade. Edmond Halley constructed the first proper mortality table, based on the 

statistical laws of mortality and compound interest (Halley, 1693). The table was corrected 

by Joseph Dodson in 1756 and made it possible to scale the premium rate to age; previously 

the rate had been the same for all ages. The idea of a fair price was linked to probability by 

Jacob Bernoulli (1654-1705), work that was published posthumously by his nephew Nicholas 

(Bernoulli, 1713). This work is important because it was the first substantial treatment of 



probability, and contained the general theory of permutations and combinations, the weak 

law of large numbers as well as the binomial theorem. What interested Bernoulli was to 

apply the Fermat-Pascal idea of a fair bet to other problems where the idea of probability 

had meaning. He argued that opinions about any event occurring or not were analogous 

to a game of chance where betting on a certain outcome led to a fair bet. The fair bet 

then represents the certainty that one attaches to an event occurring. This analogy between 

games of chance and one's opinions also appears to have been made at the time of Fermat 

and Pascal (Arnauld and Nicole, 1662). The law of large numbers was particularly important 

for this argument because Bernoulli realized that, in practical problems, fair prices could not 

be deduced exactly and approximations would have to be found. This allowed him to justify 

approximating the probability of an event by its relative frequency. Thus in Bernoulli's 

ideas we see parts of the two currently dominant interpretations of probability: subjective 

degree of belief and relative frequency. The relative frequency idea was further developed 

by de Moivre (1718), who proposed the ideas of independent events, the summation rule, 

the multiplication rule and the central limit theorem. This connection between fair prices 

and probability is the basis for insurance pricing. Bernoulli's and de Moivre's work came 

during a period of rapid development of the insurance market, spurred on by the growth of 

maritime commerce in the 17th and 18th centuries. We have seen that fire insurance had 

been available since the Great Fire of London, but up to the 18th century, most insurance 

was underwritten by individual investors who stated how much of the loss risk they were 

prepared to accept. This concept continues to this day in Lloyd's of London, beginning 

in Edward Lloyd's coffeehouse around 1688 in Tower Street, London, which was a popular 

meeting place for the shipping community to discuss insurance deals among themselves. 

Soon after the publication of Bernoulli's work, corporations began to engage in insurance. 

They were first chartered in England in 1720, and in 1735, the first insurance company in 

the American colonies was founded at Charleston, S.C.  So, by 1750 all the basic ideas of 
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probability necessary for quantifying risk — probability distributions, expected values and 

the idea of fair price, and mortality — were in place, and were in use in insurance. 

4    1750-1900: PROBABILITY MATURES 

Post 1750, the first notable name is that of Thomas Bayes (1702-1761) and his famous 

essay on inverse probability (Bayes, 1764). His main contribution was to articulate on the 

multiplication rule that allows conditional probabilities.to be computed from unconditional 

ones; vitally, this permitted Laplace (1749-1827) to derive the law of total probability and 

Bayes' law. In contrast to de Moivre, Laplace thought that probability was a rational belief 

and the rules of probability and expectation followed naturally from this interpretation 

(Laplace, 1812, 1814). Poisson (1741-1840) did much work on the technical and practical 

aspects of probability, and greatly expanded the scope and applications of probability. His 

main contribution was a generalization of Bernoulli's theorem; his seminal work (Poisson, 

1837) also introduced the Poisson distribution. While Poisson agreed with Laplace's rational 

belief interpretation of probability, criticisms of this view were raised as we move to the 

second half of the 19th century. John Venn (1834-1923) revived the frequency interpretation 

of probability, hinted at by Bernoulli, but taken further to state that frequency was the 

starting point for defining probability (Venn, 1866). We note little attempt so far to quantify 

the consequences of adverse events through utility and hence to manage risks in a coherent 

manner. However, we note two developments. First, the idea of utility did arise through 

Daniel Bernoulli in 1738 and utilitarian philosophers such as Bentham (1748-1832). They 

proposed rules of rationality that stated individuals desire things that maximise their utility, 

where positive utility is defined as the tendency to bring pleasure, and negative utility is 

defined as the tendency to bring pain (Bentham, 1781). Second, the industrial revolution 

meant that manufacturing and transport carried far graver risks than before, and we do 



see the first attempts at risk management through regulation. In the United Kingdom, 

the Factory Act of 1802 (known as the "Health and Morals of Apprentices Act") started 

a sequence of such acts that attempted to improve health and safety at work. Following a 

rail accident that killed 88 people in Armagh, Northern Ireland, the Regulation of Railways 

Act 1889 made fail-safe brakes mandatory, as well as block signalling. All the main areas 

of insurance — life, marine and fire insurance — continued to grow throughout this period,. 

After 1840, with the decline of religious prejudice against the practice, life insurance entered 

a boom period in the United States. Many friendly or benefit societies were founded to 

insure the life and health of their members. The close of the 19th century finally allows us to 

say something about mathematical reliability theory; Pearson (1895) names the exponential 

distribution -for the first time. •• 

5     FROM 1900 TO THE PRESENT: UTILITY AND 

RELIABILITY ENTER 

The first half of the twentieth century saw the beginning of the modern era of probability; 

Kolmogorov (1903-1987) axiomized probability and in doing so freed it from the confu- 

sions of interpretation (Kolmogorov, 1956). It also saw many developments in the frequency 

interpretation of probability, and several advances in subjective probability. Von Mises 

(1883-1953) wrote a paper extolling the virtues of the frequentist interpretation of proba- 

bility (von Mises, 1919). Together with the work of Karl Pearson (1857-1936) and Fisher 

(1890-1962), methods of inference under the frequency interpretation of probability became 

the dominant approaches to data analysis and prediction. However, at about the same time 

there were breakthrough developments in the subjective approach to statistical inference and 

decision making. Noteworthy among these were the work of Ramsey (1931) who proposed 

that subjective belief and utility are the basis of decision making and the non-separability of 
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probability from utility. Jeffreys' (1891-1986) highly influential book on probability theory 

combined the logical basis of probability with the use of Bayes' Law as the basis of statistical 

inference (Jeffreys, 1939). At about this time, de Finetti (1906-1985), unaware of Ramsey's 

work, adopted the latter's subjectivistic views to produce his seminal work of probability 

(de Finetti, 1937), later translated into English (de Finetti, 1974). De Finetti is best re- 

membered for the above writings, and his bold statement that "Probability Does Not Exist"\ 

The period 1900-1950 also saw the laying of the foundations of modern utility theory, from 

which a prescription for normative decision making comes about. The mathematical basis 

of today's quantitative risk analysis is indeed normative decision theory. Impetus for a for- 

mal approach to utility came from von Neumann and Morgenstern (1944) with its interest 

"in rational choice, game theory, and the modelling of preferences: This was brought to its 

definitive conclusion by Savage (1954), who proposed a system of axioms that linked together 

the ideas of Ramsey, de Finetti, and von Neumann and Morgenstern. Readable accounts of 

Savage' brilliant work are in DeGroot (1970) and Lindley (1985), two highly influential voices 

in the Bayesian approach to statistical inference and decision making. Not to be overlooked 

is the 1950 treatise of Wald (1902-1950) whose approach to statistical inference was decision 

theoretic. However, unlike that of Savage, Wald's work did not entail the use of subjective 

prior probabilities on the states of nature. Hardly mentioned up to now is the mathematical 

and the statistical theory of reliability. This is because it is only in the 1950's and the 1960's 

that reliability emerged as a distinct field of study. The initial impetus of this field was 

driven by the demands of the then newer technologies in aviation, electronics, space, and 

strategic weaponry. Some of the landmark events of this period are: Weibull's (1887-1961) 

advocacy of the Weibull distribution for metallurgical failure (Weibull, 1939, 1951), the sta- 

tistical analysis of failure data by Davis (1952), the proposal of Epstein and Sobel (1953) 

that the exponential distribution be used as a basic tool for reliability analysis, the work of 

Grenander (1956) on estimating the failure rate function and the book of Gumbel (1958) on 
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the application of the theory of extreme values for describing failures caused by extremal 

phenomena such as crack lengths, floods, hurricanes, etc., the approach of Kaplan and Meier 

(1958) for estimating the survival function under censoring and the introduction in Watson 

and Wells (1961) of the notion of burn-in. Some, though not all, of this work was described 

in what we consider to be the very first few books on reliability; Bazovsky (1961), Lloyd and 

Lipow (1962), and Zelen (1963). Initially the statistical community was slow to embrace 

the Weibull distribution as a model for describing random failures; indeed the Journal of 

the American Statistical Association rejected Weibull's 1951 paper. This is despite the fact 

that the Weibull distribution is a member of the family of extremal distributions (Gnedenko, 

1943). Subsequently, however, the popularity of the Weibull grew because of the papers of 

Lieblien and-Zelen-(1956)rKao (1958; 1959), and later the inferential work of Mann (1967, 

1968, 1969). Today, along with the Gaussian and the exponential distributions, the Weibull 

is one of the most commonly discussed distributions in statistics. Whereas the emphasis of 

the works mentioned above has been to the statistical analysis of lifetime data, progress in 

the mathematical and probabilistic aspects was also made during the 1950's and 1960's. A 

landmark event is Drenick (1960) on the failure characteristics of a complex system with the 

replacement of failed units. It started a line of research in reliability that focused on the 

probabilistic aspects of components and systems; in a similar vein is a book by Cox (1962). 

The next major milepost was the paper by Birnbaum et al. (1961) on the structural repre- 

sentation of systems of components; inspiration for this work can be traced to the classic 

paper of Moore and Shannon (1956) on reliable relays. This was followed by the paper of 

Barlow et al. (1963) on monotone hazard rates. This work was highly influential in the sense 

that it spawned a generation of researchers who explored the probabilistic and statistical 

aspects of monotonicity from different perspectives. Much of this work is summarised in the 

two-books of Barlow and Proschan (1965, 1975). There were other notable developments 

during the late 1960's and mid 1970's, some on the probabilistic aspects, and the others on 

12 



the statistical aspects. With regards to the former, Marshall and Olkin (1967) proposed a 

multivariate distribution with exponential marginals for describing dependent lifetimes. The 

noteworthy features of this work are that the distribution was motivated using arguments 

that are physically plausible, and that its properties bring out some subtle aspects of proba- 

bility models. At about the same time, Esary et al. (1967) proposed a notion of dependence 

that they called association. This notion was motivated by problems of system reliability 

assessment, and the generality of the idea was powerful enough to attract the attention of 

mathematical statisticians and probabilists to develop it further. During this period, and 

perhaps earlier than that, there was important work in reliability also done in the Soviet 

Union. Indeed, Kolmogorov (1969) in his expository papers on statistics, often used exam- 

ples from reliability and lifelength studies to motivate his material. The book by Gnedenko 

et al. (1969), and the more recent review by Ushakov (2000), gives a perspective on the 

Soviet work in reliability. Some other developments in that period were the papers of Cox 

(1972), and of Esary et al. (1973) and the book by Mann et al. (1974). Cox's highly influen- 

tial paper provided a means for relating the failure rate with covariates. A similar strategy 

was used in Singpurwalla (1971), in the context of accelerated testing. The paper by Esary 

et al. on shock models and wear processes was remarkable in two respects. The first is that 

it addressed a phenomenon of much interest to engineers and produced some elegant results. 

Second, it paved the way for using stochastic processes to obtain probability models of failure 

(Singpurwalla, 1995). The book by Mann et al. integrated the probabilistic and statistical 

techniques used in reliability that were prevalent at that time, and by doing so it created a 

template for the subsequent books that followed. The book was also the first of its kind to 

make a case for using Bayesian methods for reliability assessment. Subsequent to the mid 

1970's interest in reliability as an academic discipline took a leap and several books and pa- 

pers began to appear, and are continuing to appear today. Notable among the former are the 

books by: Lawless (1982), Martz and Waller (1982), Nelson (1982, 1990), Gertsbakh (1989), 
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Crowder et al. (1991), Meeker and Escobar (1998), Aven and Jensen (1999), Singpurwalla 

and Wilson (1999), Hoyland and Rousand (2004) and Saunders (2006). With the exception 

of Martz and Waller (1982) and Singpurwalla and Wilson (1999), the statistical paradigm 

guiding the material in the above books has been sample theoretic (i.e. non-Bayesian). In 

terms of signal developments during the period, two notable ones seem to be Natvig (1982) 

suggestion to consider multi-state systems, and the consideration of subjective Bayesianism 

in reliability. The latter was triggered by Barlow's interpretation of decreasing failure rates 

caused by subjective mixing (Barlow, 1985), and brought to its conclusion by Gurland and 

Sethuraman (1995); also see the discussion in Lynn and Singpurwalla (1997) of Block and 

Savits (1997). The book by Spizzichino (2001) is an authoritative treatment of the gener- 

ation of subjective probability models for lifetimes based on exchangeability: Someother 

developments in reliability have come about from the biosLatistical perspective of survival 

analysis. Notable among these are Ferguson (1973) and its advocacy of the Dirichlet process 

for survival analysis, and Aalen (1978) and its point process perspective and the martingale 

approach to modelling lifetimes. The former has been exploited by Sethuraman (1994), and 

the latter by Pena and Hollander (Pena and Hollander) and Hollander and Pena (2004) in a 

variety of contexts that are germane to reliability. To conclude, the last sixty years have seen 

two trends in risk. First of all, the idea of risk has spread to many other fields outside the 

traditional areas of insurance and actuarial science. It is now an important idea in medicine, 

public health, law, science and engineering. Secondly, driven by its increasing use and by 

the growth of computing and data collecting power, increasingly complex quantifications of 

risk and reliability have been made to make better use of increasing quantities of data; reli- 

ability and risk models, inference and prediction with those models, and numerical methods 

have all advanced enormously. Since the 1960's in particular, the literature on reliability, 

risk and survival analysis has grown in journals that cover statistics, philosophy, medicine, 

engineering, law, finance, environment and public policy  Annual conferences on risk in all 
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these subject areas have been held for the last 30 years. To these two trends we might add 

that the magnitude of the risks being quantified and managed has increased over the last 

century; environmental pollution, intensive food production and the nuclear industry being 

examples. The same trends in reliability theory can be discerned as those in risk: the spread 

of application into new fields and the impact of increasing computing power and availability 

of data. It is worth comparing seminal books on statistical reliability of the 1960's such as 

Bazovsky (1961) and Barlow and Proschan (1965) with that of the current decade (Singpur- 

walla, 2006) to see how much the field has changed. The debate over the interpretation of 

probability, and uncertainty quantification more generally, continues. The important work 

of Savage (1954), DeGroot (1970) and de Finetti (1974) publicized the justifications for the 

laws of probability through their interpretation as a subjective degree of belief. This, along 

with the practical development of the necessary numerical tools, has increased the use of 

subjective probability and Bayesian inference in the last 30 years. The strong link between 

risk, reliability, and the mathematical tools of probability and decision making, that has 

existed for 400 years, looks set to continue. 
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