

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Mark J. Brudnak, Ph.D., U.S. Army RDECOM-TARDEC Wilford Smith, SAIC Jarrett Goodell, SAIC

maintaining the data needed, and including suggestions for reducin	ould be aware that notwithstanding	ction of information. Send commen quarters Services, Directorate for In	ts regarding this burden estimation Operations and Rep	ate or any other aspect orts, 1215 Jefferson Da	of this collection of information, vis Highway, Suite 1204, Arlington		
1. REPORT DATE 15 APR 2009		2. REPORT TYPE N/A		3. DATES COVERED -			
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER				
Integration of Har	nternet	net 5b. GRANT NUMBER					
				5c. PROGRAM E	ELEMENT NUMBER		
6. AUTHOR(S) Mark J. Brudnak; Wilford Smith; Jarrett Goodell					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
		5f. WORK UNIT NUMBER					
	IZATION NAME(S) AND A M-TARDEC 6501	8. PERFORMING ORGANIZATION REPORT NUMBER 19796RC					
9. SPONSORING/MONITO	DRING AGENCY NAME(S)	10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC					
				11. SPONSOR/M NUMBER(S) 19796RC	ONITOR'S REPORT		
12. DISTRIBUTION/AVAI Approved for pub	LABILITY STATEMENT lic release, distribut	tion unlimited					
	OTES [ardware-in-the-loo contains color ima		ing, 15 APR 200	9, Wright Pa	itterson AFB, The		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC		17. LIMITATION	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	OF PAGES 57	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Power & Energy SIL

P&E SIL

- Series Hybridelectric power system
- Laboratory based evaluation of design alternatives
- Driven by automated controller
- Requires a-priori duty cycle

Hermit (DCE3)

RDECOM SIL HWIL and Driver-in-the-Loop Layout

P&E-SIL – Automation of Code **Generation and Integration**

RDECOM Simulation Design - Power System

- Model: GVSL
 - Assumptions: SS torque transfer in gear train,
 - Current Power Systems: 420kW Engine, 410kW Generator, 500kW Battery (consistent with 24-ton FCS-like vehicle)
- Blocks:
 - - Inputs from the Vehicle
 - Output
 - Outputs to the Vehicle
 - High Voltage Powertrain & Energy Storage
 - CHPSPerf- Engine, Generator, & Battery
 - 420kW Turbo-Diesel Engine/ 410kWGenerator
 - Li-Ion Battery direct connected to 510V Bus
 - **Dump Resistor**
 - Turret Azimuth & Gun Elevation Motors
 - **Drive System**
 - Independent Left/Right Motors (ILR), transmission, & brakes
 - Gears include Coulombic, Viscous, and Mesh gear losses
 - **Energy Management**
 - Power Generation and Motor controllers (translates commanded torques to machine torques)
 - Driver
 - Speed-based mobility control (throttle/steer commands to torque commands) for low vehicle speeds
 - Torque-based mobility control for high vehicle speeds
 - Blended mobility control for mid vehicle speeds
 - Low Voltage (Fan/Aux)
- Input File gvsl_Input.m defines input parameters

Links with shared workspace with the vehicle module

Input Block:

- Commands/States from vehicle model: accel, brake, steer, gun azimuth/elevation, gun trigger, EMA, speeds/rates (vehicle, track, sprocket, turret azimuth/elevation, steer), gear, aux. loads
- Includes speed sign management for neutral and reverse

Output Block:

- Power outputs (propulsion & turret motor torques, sprocket & brake torques, mean & delta torque, fan/battery current & voltage, generator & dump resistor current, PFN voltage, Aux system current), fuel, engine speed, battery SOC, EMA/gun readiness, Left & Right MOIs, gear.
- Includes torque sign management for neutral and reverse

RDECOM Safety & Communications

RemoteLink Internet ICD, v1.11

GVSI Warren MT

udp ports 5115, 5116

VehModelFaults > 0 for Inf or NaN trapped on inputs/outputs, max speed or Euler angle exceeded

GVSL out

52 floats, 208 bytes

Net .	$\begin{cases} \\ \end{cases}$	38	sim_time_gvsl (s)
		39	sim_time_sil (s)
		40	round trip delay gvsl (s)
		41	round trip delay sil (s)
		42	GVSL_out update rate at SIL (Hz)
	L	43	SIL_out update rate at GVSL (Hz)
Health Status		50	Veh_dynamics_up (0/1)
	4	51	Power_system_SC_up (0/1)
		52	ESS_up (0/1)
			-

SIL_out

104 floats, 116 bytes

sim_time_gvsl (s)		
sim_time_sil (s)		
round trip delay gvsl (s)	l	Net
round trip delay sil (s)	١٢	QOS
GVSL_out update rate at SIL (Hz)		
SIL_out update rate at GVSL (Hz)	ノ	
VMS/veh dyn Status (0/1)	1	Health
HWIL Status (0/1)	}	
SC Status (0/1)	J	Status
	sim_time_sil (s) round trip delay gvsl (s) round trip delay sil (s) GVSL_out update rate at SIL (Hz) SIL_out update rate at GVSL (Hz) VMS/veh dyn Status (0/1) HWIL Status (0/1)	sim_time_sil (s) round trip delay gvsl (s) round trip delay sil (s) GVSL_out update rate at SIL (Hz) SIL_out update rate at GVSL (Hz) VMS/veh dyn Status (0/1) HWIL Status (0/1)

Initiate SIL HW shutdown if any below are TRUE:

- GVSL_Veh_Dyn_up ==0
- GVSL Pwr Sys SC up == 0
- GVSL_ESS_up ==0
- •Net data delay > 10s == 1

SIL San Jose Ca

dp ports 5100, 5101

Signal SIL HW health with:

- •SIL_Veh_Dyn_Faults == 0
- •SIL HWIL Faults
- •SIL SC Faults ==0

RDECOM Motion Base Simulators

- Man-rated motion base simulator
- Integrated immersive simulation environment
- Real-time vehicle model
- Integrated CAT Crewstation
- Ideal facility for capturing soldier behavior (i.e. duty cycles)

Duty Cycle Motivation

- The Power & Energy SIL in Santa Clara, CA.
 - Series hybrid electric power system
 - Mobility loads:
 - Traction drive motors
 - Non-mobility loads:
 - Constant on/off loads
 - Time varying loads
 - Pulse power loads
- Non-mobility and mobility loads need to share the available power.
- What is the impact of power management choices?
- How should components be sized?
- Simple drive cycles were inadequate.
- → Need a relevant Duty Cycle

RDECOM Duty Cycle Experiment 2

- 12 trained Army driver/gunner subjects
- 13 km route
- Avg 42 minutes driving
- Grades greater than 30%
- 7 engagements with OneSAF opposition force infantry and vehicles

Duty Cycle Experiment 2 (DCE2): June 2006

• Duty Cycle Experiment 3 (DCE3): June 2007

• ILIR: FY08

Long Haul Motivation

- Geographically disbursed.
- High-fidelity.
- Integration improves fidelity of experiments.
- Dynamical systems, the RMS and P&E SIL like tight loops. Substantial delays introduce instabilities.

2,450 Miles by Roads 2,080 Miles by Direct Route

 Remote location of power system is transparent to the operators.

Interconnections

- Series Hybrid Power System for MCS
- Independent Left/Right
- Diesel Engine/Generator
- 600 V bus w/Battery
- Two 300kW traction motors.
- Includes thermal model
- Implemented in graphical modeling tool and converted to real-time code.

Vehicle Dynamics and Terrain

- Implemented in Dynamics Modeling Tool
- Receives Torque
- Outputs
 - Speed
 - Motion
- Integrates its own states

- Implemented in Hardware
- Receives
 - **Driver Commands**
 - Speed
- **Outputs Torques**
- **Dynamometers** serve as vehicle proxy
- Hardware contains implicit dynamics

Speeds

Torques

DCE Top Level Design

Communication Channel Choice

Modem (56k bps)

- Analog/Digital
- Dedicated channel
- Connection-based
- Reliable
- No firewall
- Noise-based corruption
- ~350 ms round trip
- 1.4% loss rate

Internet

- Digital
- No dedicated channel
- Packet-based
- Moderately Reliable
- Firewall configuration required
- Dropped packets
- ~94 ms round trip
- 0.1% loss rate

Protocol Choice

TCP Δt ? D

- (Virtual) Connection
- Stream
- Reliable

UDP $\Delta t = \underline{D}$

- Connectionless
- Packet
- Unreliable

UDP Performance

- Round trip times
 - 78 ms to 188 ms
 - Most at 94 ms
 - Limit 26 ms
- 209 packets dropped
- Vehicle dynamics ~2 ms
- SIL ~10 ms

- Problems
 - Substantial delay
 - Delay jitter
 - Data loss

D is a random variable

Design A – Naïve Approach

- Delay > Dynamics
- Delay > SIL
- Simulator response
 - Driver → Motion
 - Increased by 2D
- Safety risk to driver
- Damage risk to SIL
- Experimental quality degraded
- Potential instabilities

Design B – Parallel Simulations

Design B – Evaluation

Pros

- SIL will receive proper commands delayed by D
- Immediate response
- The GVSL and SIL are not coupled

Cons

- The power train model does not exactly match the SIL
- The GVSL and the SIL will tend to drift apart over time.

Design C – Observers

Design C – Vehicle dynamics

$$oldsymbol{ au}^{
u} = egin{bmatrix} au_{
m L} \ au_{
m R} \end{bmatrix}$$
 $oldsymbol{ au}^{
u} = oldsymbol{ au}^{
u} (\mathbf{x}^{
u}, oldsymbol{ au}^{
u})$
 $oldsymbol{ au}^{
u} = oldsymbol{ bu}^{
u} (\mathbf{x}^{
u}, oldsymbol{ au}^{
u})$
 $oldsymbol{ au}^{
u} = oldsymbol{ bu}^{
u} (\mathbf{x}^{
u})$

Design C - Vehicle Observer

Vehicle Observer – Direct ("Skyhook")

- Imposes an artificial force on the vehicle
- Used to track
 - Lateral position
 - Heading
 - Sprocket speed

Vehicle Observer – Indirect ("Augmented Input")

Design C – Power train dynamics

$$\mathbf{u}_{k}^{s} = \begin{bmatrix} t \\ s \\ b \end{bmatrix} \qquad \mathbf{x}^{s} = \mathbf{f}^{s} \left(\mathbf{x}^{s}, \mathbf{\omega}^{s}, \mathbf{u}^{s} \right)$$

$$\mathbf{v}_{k}^{s} = \begin{bmatrix} \omega_{L} \\ \omega_{R} \end{bmatrix} \qquad \mathbf{v}^{s} = \mathbf{h}^{s} \left(\mathbf{x}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s} \right)$$

$$\mathbf{v}^{s} = \mathbf{h}^{s} \left(\mathbf{x}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s} \right)$$

$$\mathbf{v}^{s} = \mathbf{h}^{s} \left(\mathbf{x}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s} \right)$$

$$\mathbf{v}^{s} = \mathbf{v}^{s} \left(\mathbf{v}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s} \right)$$

$$\mathbf{v}^{s} = \mathbf{v}^{s} \left(\mathbf{v}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s}, \mathbf{v}^{s} \right)$$

$$egin{aligned} oldsymbol{v}_{\mathrm{bus}} \ oldsymbol{\omega}_{\mathrm{e}} \ 1_{\mathrm{f}} \ T_{\mathrm{b}} \ \mathbf{M} \ \end{bmatrix}$$

$$lackbreak oldsymbol{ au}_k^s = egin{bmatrix} oldsymbol{ au}_{
m L} \ oldsymbol{ au}_{
m R} \ oldsymbol{ au}_{
m R$$

Design C – Power Train Observer

Design C – Evaluation

Pros

- States should track
- Delay is approximately negated in vehicle error

Cons

- Delay is approximately doubled in power train error
- Error contains time skew

Design D – Delay Compensation

Design D – Power Train Observer Delay Compensation

Design D – Evaluation

Pros

Unbiased estimate of the error

Cons

- Does not account for variance in delay (jitter).
- Does not account for data loss.

Power Train Observer (un-skewed, robust)

The Correction Term

- Ideas from sliding mode control were used to define the correction term.
- We used the sliding surface

$$s = \left(\frac{d}{dt} + \lambda\right)e$$

for some degree of freedom .

- We then devise a controller to drive *s* to 0.
- Our control action targets the acceleration terms of x
- We use the "robust" term of the SMC with a transition region to avoid chattering.

Aggressiveness of Control

- $\mathbf{p}^{\nu}(\mathbf{e}_{k}^{\nu})$ directly affects state rates.
- States are fully accessible (via rates).
- If allowed, may directly manipulate states.
- It is best to manipulate states in a rational way (i.e., IAW non-holonomic constraints)
- It is best to allow the correction term to gently keep system on track.
- Allow forward dynamics to provide instantaneous response.

o provide
$$\mathbf{y}_{j}^{v} + \mathbf{p}_{k}^{v}$$

$$\mathbf{x}_{k}^{v} = \mathbf{f}^{v} \left(\mathbf{x}^{v}, \mathbf{\tau}^{v} \right) + \mathbf{p}^{v} (\mathbf{e}_{k}^{v}) \qquad \mathbf{\hat{y}}_{k}^{v}$$

$$\mathbf{y}^{v} = \mathbf{h}^{v} (\mathbf{x}^{v})$$

Leaked Energy

- $\mathbf{p}^{\nu}(\mathbf{e}_{k}^{\nu})$ imposes an artificial "force" on the vehicle
- It affects the location and velocity.
- Ideally $\mathbf{f}^{\nu}(\mathbf{x}^{\nu}, \boldsymbol{\tau}^{\nu}) = \mathbf{p}^{\nu}(\mathbf{e}_{k}^{\nu})$
- If \mathbf{p}^{ν} affects only acceleration terms then $\mathbf{v}^{T}\mathbf{p}^{\nu}$ is an energy like term (normalized to unit mass).
- The correction term adds/subtracts energy from the system; it does work.
- We use

$$\int_{0}^{t} \mathbf{v}^{T} \mathbf{p}^{v} d\tau$$

to measure the accuracy of the observer.

nergy
$$\mathbf{y}_{j}^{v}$$
 + $\mathbf{\hat{p}}_{k}^{v}$ $\mathbf{\hat{q}}_{k}^{v}$ $\mathbf{\hat{q}}_{k}^{v}$ $\mathbf{\hat{q}}_{k}^{v}$ $\mathbf{\hat{q}}_{k}^{v}$ $\mathbf{\hat{q}}_{k}^{v}$ $\mathbf{\hat{q}}_{k}^{v}$ $\mathbf{\hat{q}}_{k}^{v}$ $\mathbf{\hat{q}}_{k}^{v}$

Safety Robustness

- Both TARDEC and SIL have parallel simulations running.
- Only TARDEC has human operator.
- Both sides set thresholds on state convergence error.
- If threshold is exceeded, the SIL is dropped off line and TARDEC continues.
- Additionally, health flags are sent back and forth regarding major system readiness.

Design E – Local Observers

Driver commands and SC errors

Time Delay

Artificial inputs

Driver commands and SC errors

Artificial inputs

SIL Performance

The only large state convergence errors occurred during either a significant time delay or an extreme driving event.

Leaked mobility energy: Less than 3% of total input energy

Leaked powertrain energy: Less than 2% of total input energy

Turret/Gun errors: Less than 10 degrees

Bus voltage errors: Less than 80 volts

Driver didn't notice any SC-induced oscillations

Continuing Work

Map Courtesy of Google™ Maps

Observer Free Approach

Description: Approach

- Each lab executes its respective real-time thread
 - Real-time thread executes in the time domain, t
 - Non-blocking communications initiate events in the sample domain, s
- Do not allow data to accumulate in queue.
- Events are driven by sending and arrival of packets.
- Each update has a limited effect with regard to time.

Description: Development plan

- Model-based internet integration with the actual engine
 - Preview added to driver model.
- Replace internet model with LAN
- Replace LAN with internet
- Replace VESIM vehicle with TARDEC vehicle
 - Increased transmission damping (ζ≈0.014)
 - Scaled engine by 50%
 - Redesigned driveline
 - Increased delay (up to 5x)
- Bring in the Motion Simulator

Description: Experiment

- 4 different drivers
- 2 different delay conditions
 - 25 ms
 - 125 ms
- 2 different closed courses at Aberdeen
 - Munson SFC
 - Churchville B

Results: Internet Delay Benchmark

