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Abstract

This thesis examines the problem in initializing communications whereby cog-

nitive radios need to find common spectrum with other cognitive radios, a process

known as frequency rendezvous. It examines the rendezvous problem as it exists in

a dynamic spectrum access cognitive network. Specifically, it addresses the problem

of rendezvous in an infrastructureless environment. A new algorithm, the modular

clock algorithm, is developed and analyzed as a solution for the simple rendezvous

environment model, coupled with a modified version for environment models with less

information. The thesis includes a taxonomy of commonly used environment mod-

els, and analysis of previous efforts to solve the rendezvous problem. Mathematical

models and solutions used in applied statistics are analyzed for use in cognitive net-

working. A symmetric rendezvous pursuit-evasion game is developed and analyzed.

Analysis and simulation results show that the modular clock algorithm performs bet-

ter than random under a simple rendezvous environment model, while a modified

version of the modular clock algorithm performs better than random in more difficult

environment models.
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The Modular Clock Algorithm for Blind Rendezvous

I. Introduction

In the 21st century, wireless devices are ubiquitous and increasing in popularity.

The amount of data traveling over the airways increases on a daily basis. The demands

for more information to be available at higher data rates regardless of location drives

up the demand for spectrum. Meanwhile, spectrum has been licensed to capacity.

Spectrum has become such a precious commodity that the auction of five blocks of

700 MHz spectrum raised $20 billion dollars from big market players such as Verizon

and AT&T. In addition, research has shown that certain reserved bands of spectrum

are tremendously under-utilized. Radios which can leverage under-used portions of

spectrum in a manner transparent to the original user would provide tremendous

value. Dynamic Spectrum Access (DSA) allows secondary users to utilize unused

or underutilized spectrum. In solving the spectrum shortage, advanced solutions

for utilizing under-used spectrum in this manner will require advanced solutions for

handling the bootstrapping of communication links.

A similar problem to spectrum scarcity is the problem of being unable to use

network and communication infrastructure that has been damaged or destroyed. This

is a common issue faced by first responders in crises such as Hurricane Katrina. Radios

which can communicate in an ad-hoc manner and discover each other autonomously

would provide the necessary adaptation required to handle these situations.

Wireless communication devices which alter their behavior based on percep-

tion and programming, known as cognitive radios, can help solve these problems.

However, the lack of available network and communication infrastructure makes the

initialization of cognitive radio links difficult.

As cognitive radio technology matures, the attractiveness of leveraging more

flexible radios for common military problems increases. As Horine states, cognitive
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radios are particularly attractive to the military sector because they require almost

no support from existing infrastructure in hostile territory [9]. For these reasons and

more, the paradigms of cognitive radios and DSA will become increasingly important

as wireless technologies. As these radios are deployed into non-supportive or hostile

environments, their ability to find each other to communicate will be tested.

Background

As the spectrum in which these radios operate becomes more dynamic, the pro-

cess for the radios to find each other for communication becomes more difficult. The

process to bootstrap the connection between cognitive radios is called rendezvous, and

the means by which rendezvous is achieved may differ for every network of cognitive

radios. Rendezvous in a DSA cognitive network is required when radios power up for

the very first time, when the primary user arrives to evict the secondary users, or any

other time the spectrum the radios were using becomes unavailable.

Much existing research has handled this problem through a variety of control

structures which degraded the flexibility of the cognitive network. Control stations

with reserved spectrum were required to handle the negotiation between radios oper-

ating in drastically different bands. Unfortunately, the availability of control stations

and/or reserved spectrum may not exist in certain applications. In particular, many

military applications of radios occur in less than hospitable environments. For this

reason, we would like our devices to be able to communication equally well without

pre-existing infrastructure.

Research Problem

Although the paradigm of DSA has received a considerable amount of attention,

the process by which radios rendezvous and begin communicating has been largely

overlooked. Most implementations simply find a method which works in a laboratory

scenario. However, there are scaling concerns with many traditional infrastructure
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based implementations. One of the means by which radios can overcome these con-

cerns is by achieving rendezvous by themselves.

The problem of Blind Rendezvous (BR) exists when radios attempt to bootstrap

their own connections without the use of infrastructure. How the BR problem can

be efficiently solved and under what assumptions can related solutions be applied are

open problems.

Scope

This thesis aims to solve the rendezvous problem without reserved infrastruc-

ture or pre-coordinated spectrum. It is assumed that communication channels are

orthogonal and that the use of a channel does not impact the use of neighboring

channels, as can often occur in 802.11 networks.

This thesis is not concerned with the waveforms or any other means by which

the handshaking occurs once the radios arrive in common spectrum. It is also not

concerned with any spectrum bargaining or allocation schemes that may occur once

the radios have begun setting up their communication before data is transferred.

Approach

The nature of BR is similar to another problem in communication, which is the

process of securing communications. In cognitive radio rendezvous and cryptography,

the environment is unknown, hostile and there is a limited amount of information

that can be leveraged. To solve these problems in cryptography, mathematical prin-

ciples from number theory are used to provide a relative level of assurance. Some

of the concepts used in designing cryptographic systems can be harnessed to provide

assurance in the cognitive radio environment as well.

In particular, the use of modular arithmetic with prime numbers provides math-

ematical guarantees that can be harnessed to achieve rendezvous. These guarantees

are examined against a variety of models and scenarios. Finally, the algorithms are
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simulated and compared against the results from rendezvous of a purely random fash-

ion. The objective is to demonstrate that these algorithms provide better results and

guarantees than implementing a random approach.

In Chapter 2, we conduct a review of cognitive radios, DSA technology, game

theory, various rendezvous problem models, and previous attempts to solve those

models. In Chapter 3, we create a taxonomy for some of the more common rendezvous

problem models and outline some assumptions and goals. In Chapter 4, the modular

clock algorithm is defined and analyzed. A second algorithm, known as the modified

modular clock, is also defined and analyzed. The design of experiments to test these

algorithms and the results from the simulations are provided. Finally we conclude in

Chapter 5 with the takeaways from all this analysis and simulation.
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II. Background on Rendezvous and Game Theory

This chapter will describe the field of cognitive radios and intelligent network

design to introduce the context in which the BR problem exists. The chapter

will discuss some of the mathematical modeling techniques that have been used in

other fields to introduce similar problems. Also included in this chapter are a review

of other works which attempt to solve the problem and other closely related problems.

Finally, since much of the theoretical literature analyzes rendezvous as a game, the

chapter will examine the potential for using a game theoretic model to solve the BR

and a description of different game models which can be used.

Dynamic Spectrum Access

The paradigm of DSA is to utilize available spectrum in already allocated but

under-utilized frequency bands. The driving factor behind the push for DSA is the

under usage of spectrum allocated for certain military, government, and public safety

bands [4]. By allowing secondary users to share spectrum with primary users, we can

essentially create more spectral capacity and commercial value. In order to peacefully

coexist, the secondary users must be transparent to the primary users. Similarly,

there is a need for secondary users to share the spectrum in a fair manner [5].

Software Defined Radios

Fette defines a Software Defined Radio (SDR) as a radio “in which the prop-

erties of carrier frequency, signal bandwidth, modulation, and network access are all

defined in software [8]”. He later defines a SDR as a term which abstracts underly-

ing functionality of the applications beneath the antenna and other radio hardware.

Through this methodology, the radios can be re-programmed with significantly less

overhead than a purely hardware based radio.

The rapid re-programming capability of SDRs enables cognitive radios to dy-

namically alter and adapt their receive and transmit frequencies, signal bandwidth,

and other parameters. It also allows a greater flexibility in how the signal is trans-

5



formed before being broadcast. This technology is a key enabler in the discussion and

implementation of DSA.

Cognitive Radios

A cognitive radio is a wireless communication device which can alter its behav-

ior based on the radio’s perception of the spectrum combined with intelligence and

programming. They are most frequently desired for their capabilities in spectrum

management and particularly in harvesting unused portions of pre-allocated band-

width under DSA. The term “cognitive radio” was coined by Joseph Mitola, who

defined it as a smart radio which “...has ability to sense the external environment,

learn from the history, and make intelligent decisions to adjust its transmission pa-

rameters according to the current state of the environment” [15]. It’s important to

note a bit of potentially confusing terminology present in cognitive radio literature.

Silvius defines a smart radio as a type of a cognitive radio [18]. However, Mitola

defined a cognitive radio as a type of smart radio. For the purposes of this thesis, the

terms can be used interchangeably.

Cognitive radios leverage software defined platforms to modify their receive and

transmission frequencies, change their transmission power, or classify received signals

for processing. They can also leverage the existence of other cognitive radios on

the network to perform joint spectrum sensing to help reduce error in the spectrum

sensing problem. The collaboration capability is important yet difficult as a single

node’s perception of the spectrum’s usage may be different than the actual usage, or

the perception at any of the other nodes [9].

Cognitive Networks

A cognitive network is a collection of radios which can perform the cognitive

functions of adaptation and behavior modification in response to the network oper-

ating environment. Formally, it is defined by Thomas, et al. in [16] as:

6



A network with a cognitive process that can perceive current network con-
ditions, and then plan, decide and act on those conditions. The network
can learn from these adaptations and use them to make future decisions,
all while taking into account end-to-end goals.

The inclusion of cognitive radios may or may not facilitate a cognitive network.

Similarly, a cognitive network may exist without the inclusion of individually cognitive

radios if a master controller is present. In order for communication to occur over an ad-

hoc cognitive radio-based cognitive network, radios must first find each other inside of

the available spectrum. If a master controller is present, the radios can communicate

with the controller, which can direct cognitive radios to available spectrum. If no

controller exists, the radios must find each other through the frequency rendezvous

process.

Rendezvous

Rendezvous is generally defined as the process by which two players or agents

meet in a common domain. The goal of a rendezvous problem is almost always to

minimize the expected time required to achieve the rendezvous, called the expected

Time to Rendezvous (TTR). This concept has been extended and analyzed in many

different directions. The common research version of the rendezvous problem involves

two agents which can move at pre-described velocities in a general planar space. Other

problem variations restrict the search space to a line, a circle, or another pre-defined

geometric space. Rendezvous problems and optimal solutions for minimizing TTR

can differ greatly depending on the model used.

Rendezvous literature refers to the method by which agents search the available

space as being symmetric or asymmetric [1]. Under symmetric rendezvous, the agents

are indistinguishable and must employ the same strategy. An example of symmetric

rendezvous would be writing rendezvous advice in a handbook that is provided to all

hikers. Under asymmetric rendezvous, agents are allowed to use different strategies

in order to minimize expected TTR. The ability to meet ahead of time to make
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strategy arrangements facilitates an asymmetric approach, while the lack of ability to

meet ahead of time forces a symmetric approach. One of the simpler and more well

known asymmetric strategies is known as the Wait for Mommy (WFM) approach.

Under WFM the “child” agent remains in their location while the “mother” agent

exhaustively searches, thereby guaranteeing rendezvous. This can only be facilitated

if the “mother”and the “child” are identified ahead of time.

In general, the rendezvous problem can be represented mathematically by mod-

eling the environment as a graph G = (V,E) where every vertex represents a domain

for rendezvous. At each time step t = 0, 1, 2, ... the agents can travel along any edge

in the graph or choose to stay in place. Depending on the rendezvous model, and

rendezvous is achieved either when both agents are at the same vertex and/or on the

same edge at the same time.

Frequency Rendezvous

Frequency rendezvous is the process by which two cognitive radios arrive on

the same frequency to begin transferring data. Silvius defines it as “the process of

one smart or cognitive radio finding another in the spectrum band of interest” [19].

Some previous work on the topic refers to the process as “neighbor discovery” such

as in [3], however more recent papers have taken to the term rendezvous. As DaSilva

writes in [6], the rendezvous process is important in DSA in ways that go beyond

the bootstrapping of communication. In DSA, the arrival of a primary user disrupts

secondary communication, and the secondary users must now find each other again

to resume communication.

A taxonomy for different rendezvous methods is introduced by DaSilva in [6].

As illustrated in Figure 2.1, his taxonomy consists of two branches: an aided system

or an unaided system. Under an aided system, the cognitive radios contact a master

radio that directs them to the same open space. This communication can either

occur over a dedicated control channel or in a data channel. This system is simple to
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Figure 2.1: DaSilva’s Taxonomy [6]

implement and provides for greater control of the spectrum, but is not very flexible

or scalable. If a control channel is used, the system’s bottleneck becomes closely tied

to the capacity of the channel and the capacity of the controller. If data channels are

used, the system is still bottlenecked by the capacity of the controller. Either way,

existing infrastructure must be implemented and available in order for the cognitive

radios to function.

In unaided rendezvous, radios are left to their own devices to find common

spectrum. Radios may have available dedicated spectrum to use for rendezvous,

facilitated by a single control channel or a series of control channels. Under a single

control channel scheme, radios which seek to rendezvous contact each other over the

single control channel. Under multiple control channels, radios must first find each

other on one of the control channels so they can begin negotiation. If no control

channel is available, the radios must figure out a way to find each other blindly, which

he calls the “blind rendezvous” (BR) problem.

It could be argued that DSA schemes which require a control channel are less

than dynamic. According to Sutton [21], the concept of DSA does not include a static

command and control channel to direct the agents to available spectrum white space,

even though contrary implementations are suggested in [4] and [5]. Control channels
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can often become bottlenecks for busy networks, and make an assumption of spectrum

reliability that might not always be present [7]. In order for a DSA scheme to work

without a control channel, we must be able to guarantee frequency rendezvous in a

reasonable amount of time.

Much of the literature on the problem assumes that radios which arrive at com-

mon spectrum will be able to find each other to begin communication. Horine’s

method [9] provides a means to accomplish this using slotted time windows for cogni-

tive radios to transmit and receive in during the detection process. At the beginning

of the time window, the radio senses the availability of the spectrum and emits an

attention signal on the frequency of choice. If a response is received, an acknowledge-

ment and handshake process begins. Failure to acknowledge and handshake results

in starting the process over, while successful handshake concludes the rendezvous

process. Although Horine suggests that the broadcast and detection process occur

over many different channels, his slotting process works equally well for single channel

transmission and listening. Silvius [19] describes a greater detail of beacon and hand-

shake process, including specific message formatting. The process described would

need to occur within a given time slot for successful rendezvous. If the radios are

de-synchronized, this process is not likely to finish before one radio’s time slot has

expired.

Kowalski and Malinowski [11] define the multiple agent rendezvous problem

as the gathering problem. Analysis in this paper will be done on the two agent

rendezvous problem. A problem formulation with multiple agents often involves bar-

gaining theory to reach a solution that is agreeable to all parties. For the purposes of

this thesis once the agents are able to bargain, the problem is solved.

The Blind Rendezvous Problem

In order for cognitive radios to become truly autonomous, they must be able to

sense and use available spectrum on their own. Furthermore, they must be able to
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Figure 2.2: Rendezvous Handshake Process [19]

communicate with other radios without having to rely on other infrastructure or risky

channel reservations, the volatility of which threatens the cognitive network. We can

make this possible by solving the BR problem. The BR problem is a specific instance

of the frequency rendezvous problem in which the process is unaided and no control

channel or frequency allocation mechanism exists for two wireless agents to contact

each other on.

Although DaSilva and Guerreiro in [7] define BR as each radio randomly visiting

available spectrum, this is a specific implementation method of solving BR and not

the problem itself. The BR problem is still very open for research, as most implemen-

tations for solving frequency rendezvous utilize control channels that do not scale well

in large cognitive radio implementations [6]. A summary of current solutions to both

the general frequency rendezvous and BR and their potential drawbacks is presented

below.

Notations

The following notation is used for common variables in the rendezvous problem:
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• N , the set of all cognitive radios, where |N | = n, and where an individual radio

is given an index i ∈ N . In most formulations (and the analysis in this thesis),

n = 2

• Ci, the set of open channels observed by the ith radio.

• C =
⋃

Ci is the set of all channels being searched over by all radios

• C̄ =
⋂

Ci is the set of open channels that radios share

• cij, the jth channel of radio i’s set of open channels

• m = |C|, the number of available channels for all radios

• mi = |Ci|, the number of open channels observed to be free by the ith cognitive

radio

• m̄ = |C̄|, the number of commonly observed channels

• p, a prime number

• t, a time slot variable

Existing Solutions

The following is a collection of solutions to the rendezvous problem from a

wide variety of sources. Some of the sources are based in cognitive radio/cognitive

network literature, some is from traditional communications literature, while others

are crossovers from applied statistics and operations research.

Random Channels. The random channel visitation is one of the more popular

solutions to the BR problem. The strategy is analyzed by Balachandran in [3] and

suggested for implementation by Silvius in [18]. Random channel visitation has the

desirable property that rendezvous can occur with a calculable probability at any time

slot t so long as C̄ 6= ∅.

If the available spectrum between two radios is the same (Ci = C, ∀i ∈ N , then a

truly random visitation of available space will yield expected TTR in linear, or O(m)
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time. In a more general sense, if multiple radios need to rendezvous on the same

channel, then random rendezvous would have expected TTR in O(mn−1) time. If we

consider this multi-radio problem formulation as a series of pairings where two radios

achieve rendezvous, with coordination they can act like a single radio then O(log(n))

expected rendezvous steps, and we have an expected TTR in O(log(n)m) time.

The problem with expected TTR in a random approach is that rendezvous is

not guaranteed in any time. No matter what value t is chosen, there also exists a

non-zero probability that rendezvous will not occur by it.

In a similar implementation, Silvius proposes the use of pseudo-random se-

quences in [19]. Note that the expected rendezvous time of different pseudo-random

sequences would match the expected time for truly random visitation. However,

there exists a probability that the same sequence is chosen by both radios with the

sequence beginning at different points, resulting in a potentially orthogonal sequence.

Orthogonal sequences have different values at every point of the sequence, preventing

rendezvous from occurring. We would need to predefine a timeout in order to recover

from these rendezvous failures under the pseudo-random sequence approach. For any

value of t that could be chosen as a maximum TTR, there exists a positive probability

that rendezvous will occur but has not yet by t, which makes establishing a timeout

difficult.

Randomized Permutation with Wait Factor. The applied statistics world has

examined the rendezvous problem at some length. Anderson and Weber’s [2] sym-

metric discrete locations rendezvous problem formulation most closely represents the

DSA rendezvous model. In this paper, agents exist within a certain discrete location

(channel) at every point of time. Movement between locations is instantaneous, and

occurs at the same discrete time intervals for all agents. Agents can only observe the

location they are currently in, and the game ends when the two agents find each other.

Furthermore, the agents are unable to see where the other player is (this is sometimes

called “dark” rendezvous [1]). The agent may, however, infer that since the game
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did not end the other agent chose a different location. In the graph formulation of

Anderson’s model, rendezvous must occur at a vertex and cannot occur on an edge.

The graph must also be complete so that the agents can travel to any vertex at any

time step.

In Anderson and Weber’s paper, for a problem with m domains or vertices the

algorithm/protocol by which the agents change locations consists of either following a

randomized permutation of the m locations or staying put. The use of the permutation

ensures that all locations are visited before a location is visited for the second time.

The fact that every channel is visited in the permutation guarantees rendezvous if one

agent searches while the other remains in place. The probability of choosing to remain

in place for m time steps instead of following a randomized permutation for m time

steps is denoted by θ. Anderson concludes that the optimal θ value, or percentage of

time that a agent will stay in place for m time steps (rather than randomly permute

through the channels) is 0.2475 as m gets infinitely large, and the expected TTR is

approximately 0.828 · m. Note that like the random channel approach, there is no

bound on the maximum TTR.

In the paper, Anderson and Weber show that the optimal solution (smallest

expected TTR) for two domains (m = 2) is for each radio to choose between the two

locations at every time step randomly. They also show that the ability to leave a

message for the other agent in a visited location would result in an algorithm with

a maximum TTR in O(
√

m) time. Unfortunately for cognitive radios, the ability to

leave static messages in spectrum is not part of a standard spectrum model.

Dynamic Control Channels. In contrast to previously mentioned solutions

which solve for rendezvous in an infrastructureless environment, Jeong and Yoo [10]

introduce an algorithm which allows rendezvous with the base station over any avail-

able data spectrum, rather than just a specific, predefined control channel. This im-

plementation eliminates the need for a predefined, reserved control channel between

the master controller and the cognitive radios, frees up spectrum, and eliminates the
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control channel spectrum bottleneck. However, the master controller (base station)

itself still acts as a bottleneck, and the hardware requirements of the base towers are

quite steep as it would potentially need to be listening and broadcasting over the

entire dynamic spectrum.

Broadcast Rendezvous. In [9], Horine proposes transmitting over all available

frequencies sensed, and listening over the same set for responses. The cognitive radios

will sense the availability of each “frequency bin” (referred to as “channel”), determine

which bins are available for communication and begin broadcasting and listening. The

radio collects all of the responses it receives, and then attempts to rendezvous on the

“last” channel a response is received on. Transmitting and listening over multiple

frequencies simultaneously (some of which may be in vastly different bands depending

on the availability of channels) faces many of the same challenges in implementation as

dynamic control channels such as hardware sophistication levels, antenna bandwidth,

amplifier linearity, and speed.

This approach seems reasonable if only two radios exist within the spectrum,

but if others are communicating in this space and the radios act without regard for

the other radios, the amount of noise created by various radios broadcasting over all

available spectrum could lead to a situation in which the radios begin to broadcast

at higher and higher powers to ensure their signal is received over the other signals

being sent. This is sometimes known as the “noisy cocktail party” effect, which can

result in all radios broadcasting at their maximum power all the time. This approach

can also cause interference for radios not involved in the rendezvous process.

The approach has the desirable property of being effective when the radios ob-

serve different sets of available channels as long as there exists some overlap. However,

due to the number of hardware challenges and the potentially wide range of bands

that would need to be broadcasted on and listened on simultaneously, it is reasonable

to assume that this implementation is not currently feasible.
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Figure 2.3: Broadcast Rendezvous Decision Tree [9]

Cyclostationary Signatures. Sutton [21] proposes the use of cyclostationary

signatures to solve frequency rendezvous. A cyclostationary signature is a distinctive

waveform property that is embedded in the signal over time. Their paper outlines

the process to embed the signature into a transmitted signal which uniquely identifies

the radio to all listeners. Radios which seek to rendezvous with the radio can then

move to the indicated available space and begin communication. The strength of this

approach is how it differentiates between competing secondary users in the dynamic

spectrum. As dynamic spectrum networks grow in size, the need for a technique such

as this to filter through the data and rendezvous noise will be necessary. However,

watermarking and identifying the signal does not solve the problem of ensuring that

the user of interest will ever receive the signal and actually rendezvous.
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Generated Non-orthogonal Sequences. DaSilva and Guerreiro [7] propose the

use of generated non-orthogonal channel sequences in order to achieve rendezvous.

The use of non-orthogonal sequences guarantees that a rendezvous will occur regard-

less of the time that two radios begin searching for one another (bounding the maxi-

mum TTR). In order to create a sequence that is guaranteed to be non-orthogonal, a

generalized permutation of the available channels is created and distributed amongst

all radios in the network. When a radio seeks to rendezvous, it begins to execute

the generated sequence. The generator provided by DaSilva works by creating a per-

mutation of channels and then embedding this permutation within a supersequence

of the permutation. Figure 2.4 illustrates this for n possible channels. For instance,

assume the permutation generated and distributed to all radios is 3, 2, 5, 1, 4. The

generated sequence then is 3, (3, 2, 5, 1, 4), 2, (3, 2, 5, 1, 4), 5, (3, 2, 5, 1, 4), 1, (3,

2, 5, 1, 4), 4, (3, 2, 5, 1, 4).

 selected 

permutation of 

N channels 

… … …

 selected 

permutation of 

N channels 
 

 selected 

permutation of 

N channels 

 selected 

permutation of 

N channels 

Figure 2.4: Sequence Based Rendezvous [7]

Because of the unique property of this generator, rendezvous is guaranteed to

occur by the time step t = m(m + 1). Asymptotically, the rendezvous process is

bounded by O(m2), so as long as both radios are executing the sequence rendezvous

will be achieved in squared time to the number of channels available.

This is one of the only benchmarks in open literature to date for a maximum

TTR. Previous approaches only had expected TTR. This approach also has the fea-

ture that it can favor certain portions of the dynamic spectrum over others. Earlier
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channels in the sequence are more likely to be converged on than channels later in

the sequence. Unfortunately, this preference cannot be implemented by the individ-

ual radios, since both radios must use the same permutation with the generator to

guarantee rendezvous.

The largest issue with the use of generated non-orthogonal sequences is that it

requires pre-coordination of the generator and permutations in advance. Furthermore,

both radios need to start with the same initial set of channels, i.e. Ci = C, ∀i ∈ N .

As the available spectrum changes, the radios would need to receive updates, unless

the sequences were implemented as a generic schema. In order to perform this pre-

coordination, a control channel or out-of-band coordinator would need to be available.

If the available spectrum is highly dynamic, the overhead in this communication could

be quite large and possibly even larger than the overhead of directing the rendezvous

in the first place. In the paper, the only non-coordinated change investigated is the

dynamic removal of channels (due to presence of a primary user).

The ability of the approach to handle different sets of observed channels is

analyzed further in Chapter 4.

Asymmetric Rendezvous. Silvius presents an asymmetric method similar

to the WFM approach coined by Alpern in [1] for solving the frequency rendezvous

problem [18]. Silvius assigns the two roles for the agents as the master radio (or

“child” in WFM), which has the pre-determined responsibility of maintaining a fixed

position within the dynamic spectrum, while the slave radio (or “mommy” in WFM)

exhaustively searches for it.

This implementation is problematic because it requires the radios to have differ-

ent roles in order to guarantee rendezvous. The situation of a master radio attempting

to rendezvous with another master radio would be particularly problematic, as both

radios would sit in their channel waiting for the other to find it. For very large

networks and very busy nodes, a control channel on predefined spectrum would be

necessary to facilitate the deconfliction of roles.
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Furthermore, the solution has not been shown to be effective when the sets of

observed channels differs with some overlap, (i.e. Ci 6= Cj, C̄ 6= ∅). In particular,

we should consider the situation in which the “child” radio sits in spectrum that the

“mommy” radio does not observe to be available. There exists an inherent Catch-22

for the “child” radio because if it is required to move after a timeout period, we violate

our guarantee of rendezvous and our role as the waiter. However, if the “child” refuses

to move from non-common spectrum, rendezvous cannot occur.

Bluetooth Rendezvous. Bluetooth communication bootstrapping uses an

asymmetric approach [17] with a control channel. To initialize communication, the

peripheral device initiates inquiry mode and broadcasts over the pre-defined bootstrap

spectrum. Any available devices respond to the beacon messages via the control

channel as well.

This is not to be confused with the fact that Bluetooth uses frequency hopping

spread spectrum (FHSS) during communication to handle noise. The handling of

communication once the links are created is beyond the scope of rendezvous.

Pre-defined Non-orthogonal Sequences. Some early examinations into se-

quences that are guaranteed to converge in less than O(m2) time and expected to

converge in less than O(m) time have been proposed by Martin [14]. The concept is

similar in nature to the generated non-orthogonal sequences proposed by DaSilva [7],

except that the exact channel sequences are calculated and given to the radios ahead

of time, rather than a generator sequence. The radio observes the environment, deter-

mines the number of available channels, and begins to use the corresponding sequence.

Some sample sequences are presented in Figure 2.5.� ������ ���	�
�� �

� ����
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Figure 2.5: Pre-defined Sequence Based Rendezvous [14]

19



This approach provides greater autonomy than the previously proposed gen-

erated non-orthogonal approach, and has been calculated to have a lower expected

TTR. However, there have not been any mathematical proofs to guarantee any long-

term gain as the number of channels gets infinitely large. Also, the solution has not

been shown to be effective when the radios observe different numbers of available

channels, or if the sets of observed channels differ with some overlap. This solution

also removes the ability to prefer certain channels over others.

Other Background Information

Chinese Remainder Theorem. The Chinese Remainder Theorem (CRT) states

that for any set of n pairwise prime numbers p = {p1, p2, ..., pn}, then for any set of

integers a1, a2, ..., an for which ai < pi, there exists a solution to the set of equations

x ≡ a1 mod (p1)
x ≡ a2 mod (p2)

...
x ≡ an mod (pn)

The CRT is important to this research because it proves that there exists a solution

to the set of equations, and regardless of which values of ai are desired. Our main

concern in applying the CRT is that the moduli are pairwise prime, so that regardless

of the starting integers given we will have a solution. The use of absolute primes

guarantees that the set P will also be pairwise co-prime. If the numbers chosen were

not absolute primes, coordination would need to occur to ensure that no common

factors exist between chosen p values.

Fundamentals of Game Theory. According to Osborne and Rubenstein [13],

game theory is “a bag of analytical tools designed to help us understand the phe-

nomena that we observe when decision-makers interact.” As we seek to increase the

automation and intelligence of our network service providing agents, the potential

for a conflict between the goals of the network and the goals of the individual agent
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increase. Game theory can be used to help us understand how those interactions play

out over time.

In order to model a scenario as a normal form game G, where G = 〈N,A, U〉
the following components must be represented:

1. A set of 2 or more players (or radios) N, |N | = n

2. A set of actions for player i, Ai. The set of all actions possible is referred to as

the action space A, where A = A1 × A2 × . . .× An.

3. A set of utility or objection functions for each player ui, where ui : A → R.

It’s important to note a particular game theory notation where i refers to any particu-

lar player, and −i refers to every other player except player i. Formally, we represent

this as i ∈ N,−i = {N − {i}}.

As an example, consider the following simple 2 person game, represented in

normal form. The players are at a picnic with a limited amount of food and must

choose between chicken or beef to eat. If both players choose the same meat, they

wind up not getting enough to eat and are dissatisfied. Player 1’s action choices are

given by {Chicken, Beef} and the decisions is represented by the row in Table 1.1.

Player 2’s decision is represented by the column. In each of the spaces in the table

is the utility score for each player in the form (P1, P2). For the rows and columns

where the decisions match each other, the players have chosen the same meat and

would therefore be dissatisfied, reflected by their utility of 0. If the players choose

different meats, they receive a much better utility. Notice that the player that eats

chicken alone has a higher utility function than the player that eats beef alone, but

that both players would prefer eating beef alone than sharing meat.

Table 2.1: A very simple game

P2
Chicken Beef

P1
Chicken (0, 0) (5, 2)

Beef (3, 6) (0, 0)
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Strategies. At a high level, a strategy is a player’s plan to guide which

actions they will choose based on the scenarios presented to them throughout the

various iterations of a game. Strategies are considered finite if the actions spaces are

also finite and the game is not repeated or of infinite stages, i.e. finite game, as is the

case in the game presented in Table 1.1. Under a pure strategy, the player pre-defines

which moves he will make ahead of time based on the situation they are currently in.

Alternatively under a mixed strategy, the player will choose their strategy based on

some probability function.

Often times, strategies for simple games can be compared to each other by

considering their dominance. It is said that a strategy A strictly dominates strategy

B if choosing A always presents the player with a superior outcome no matter what

the other players do [13]. Similarly, a strategy A weakly dominates strategy B if at

least one outcome of A is better, and the rest are no worse. For strict dominance,

formally:

∀s−i ∈ S−i, ui(A, s−i) > ui(B, s−i) (2.1)

Alternatively, strategies are intransitive and their success depends on the strate-

gies of the other players. Some commonly represented multi-stage or repeated game

strategies are:

• Grim Trigger - Players will choose mutually beneficial actions until another

player deviates. Once someone else deviates, the player will choose greedily.

• Tit for Tat - Players will reciprocate their opponent’s action.

• Collusion - A subset of the players agree to choose actions that will benefit them-

selves, potentially at the cost of other players. Collusion is typically facilitated

through external communication.

Nash Equilibrium. At the points where each player is eating a different

meat, neither player can improve their utility function by individually altering their

decision. This is known as a Nash Equilibrium (NE). Every finite game in normal
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form has at least one NE under mixed strategies [13]. The game above has two

separate NE– (Chicken, Beef) and (Beef, Chicken). At either equilibrium, if either

player unilaterally switches their choice of meat they will arrive at (Chicken, Chicken)

or (Beef, Beef) which results in a utility of 0, which means they cannot unilaterally

improve their utility. These equilibriums are used to predict the results of the game

as the greedy behavior of the agents will lead them to choose better solutions for

themselves until they are unable to do so. A NE for a sequential or one shot game is

formally defined as an action vector a ∈ A where for any player i and any alternate

strategy a′i:

ui(a) ≥ ui(a
′
i, a−i) (2.2)

In another sense, if we consider the game to be a function with the players’ decisions

as inputs, the NE are local maxima of the function. NE do not answer the question

of how the game arrived at one particular NE over another, nor does predict if a NE

exists, if it is unique, and in the case which it’s not, which one will be arrived at.

This can present system designers with challenges as they attempt to create efficient

systems from autonomous agents.

Pareto Optimality. Ideally, we would like our equilibria to be Pareto Optimal

(PO), which is a solution where there is no other outcome in A where one player can

improve their utility while the other players do no worse [20]. In other words in a PO

solution nobody can improve without making the other players suffer. Formally, we

define an action vector a ∈ A as PO if:

@b ∈ A, ui(b) ≥ ui(a)∀i ∧ ∃j, uj(b) > uj(a) (2.3)

Unfortunately, we cannot guarantee that a NE solution is PO, nor can we guarantee

that a PO solution is a NE. Pareto optimality is often used as a measurement for the

quality or efficiency of an outcome, and particularly a NE. However, just because a

solution is PO does not guarantee that it is fair. Although the players do their best to
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individually improve their utility, there might be game or system-wide goals of Pareto

optimality that can require coordination to be achieved.

Coordination Game. In a coordination game, the players must work together

to achieve their maximum utility. These games are some of the more popular games

for evaluation as they often used for studying economics. An classic example of a

coordination game is known as the Stag Hunt. In this game, the players can either

choose to hunt for a stag or a rabbit. Stags make a much more satisfying meal than a

rabbit does. However, stags are very difficult to hunt and require two people to hunt

successfully.

Table 2.2: Stag Hunt

P2
Stag Rabbit

P1
Stag (10, 10) (0, 3)

Rabbit (3, 0) (3, 3)

Zero-Sum Game. A zero-sum game is a class of non-cooperative games where

the total utility for the system remains at zero regardless of the actions chosen by the

players. In these games, players can only increase their utility at the expense of the

other players. By the zero-sum property, all solutions to a zero-sum game are PO.

Pursuit and Evasion Game. A pursuit-evasion game is a specific type of zero-

sum game with a variable termination time. Depending on how the game is set up,

the pursuer gains utility as its strategy gets closer in the action space to the evaders.

Similarly, the evader gains utility by being sufficiently far away from the pursuer.

In pursuit-evasion games, it’s important to define whether the evader can be

“captured” or not. For the purpose of considering rendezvous with cognitive radios,

we think of the pursuer as a jammer rather than a captor. Therefore, radios cannot

be captured and are free to change their frequencies to evade jamming, however they
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suffer a heavy penalty for having been jammed through lost time during the jamming

along with lost time finding another channel to communicate on with the distant end.

Rendezvous Pursuit-Evasion Game

W. Lim’s paper [12] models the rendezvous problem as a multi-stage pursuit-

evasion game with three players. R is a set of two rendezvousing agents {R1, R2},
and S is the capturer. These three players can exist in any one of m locations. The

payoff of the game for S is 1 and 0 for {R1, R2} if S and either R1 or R2 occupy

the same playing space at the same time. In other words, the evading agents can be

“captured” in this game. If R1 and R2 occupy the same space first, the payoff for S

is 0 and the payoff for {R1, R2} is 1. If neither occupy the same space, the game is a

draw and the utility for S,R1, R2 is 0.

Table 2.3: Partial Three Player Pursuit-Evasion Game Utility Table for m = 3

R2 chooses location 2 S
Location 1 Location 2 Location 3

Location 1 (0, 0, 1) (0, 0, 1) (0, 0, 0)
R1 Location 2 (1, 1, 0) (0, 0, 1) (1, 1, 0)

Location 3 (0, 0, 0) (0, 0, 1) (0, 0, 1)

Table 2.3 presents a normal form representation of Lim’s game. Note that the

respective payoffs tuplets represent the payoffs for (R1,R2,S) respectively. By giving

draws a utility of .5, we preserve the agents’ and capturer’s motivations to find more

optimal solutions.

Therefore, we consider this game as non-cooperative between the agents R and

the capturer S. Lim notes that if a random strategy were used by all players, all

meetings are equally likely and the expected utility for S is 2
3
∀m.

Lim begins the game by starting R1, R2, and S in random but separate locations,

which they locally designate as R1(1), R2(1), S(1). Since no two players occupy the

same space, u = (0, 0, 0). For a simple game where n = 3, knowing that they begin
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in separate locations is important because every room is occupied at the start. The

agents (R1, R2) use the following asymmetric multi-stage mixed strategy:

• Stage 0. R1 is in location R1(1) and R2 is in location R2(1). R1(1) 6= R2(1).

• Stage 1. R1 moves to R1(2), randomly choosing between the two locations it

hasn’t visited, while R2 stays in its starting room R2(1).

• Stage 2.

Type 1: With probability 7
19

, R1 goes to the only location it hasn’t visited

while R2 stays put.

Type 2: With probability 6
19

, R1 returns to its starting location R1(1) while

R2 moves to one of the two locations it hasn’t visited R2(2).

Type 3: With probability 6
19

, R1 stays at its current location, R1(2), while

R2 moves to one of the two locations it hasn’t visited, designated R2(2).

• Stage 3+. Randomly choose from the three locations with probability 1
3
.

Furthermore, the capturer S chooses the following multi-stage mixed strategy:

• Stage 0. S is in location S(1). S(1) 6= R1(1), S(1) 6= R2(1).

• Stage 1. Move to a new location S(2).

• Stage 2.

Type 1: With probability 5
19

, return to location S(1).

Type 2: With probability 5
19

, stay at location S(2).

Type 3: With probability 9
19

, move to the last location S(3).

• Stage 3+. Visit each location with probability 1
3
.

Note that the only way the initial game is not over after Stage 1 is the case

in which R1 and S trade places, which will occur 1
4

of the time. Utilizing the mixed

strategies previously outlined, Lim proves that the expected utility for S has an upper
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bound of 47
76

, which is approximately 93% of 2
3
, the expected utility for S if {R1, R2}

employ a random strategy.

For n > 3, Lim assumes that the asymmetric WFM approach from Anderson

and Weber is followed by {R1, R2}. Under the WFM approach, one agent will remain

in place (R1) while the other agent (R2) follows a randomized permutation of all n

locations. Lim states that S cannot do better than to use the same strategy as R2. He

then proceeds to demonstrate that 1− e−1 is the upper bound for S’s expected utility

with a large n. He demonstrates this by examining the randomized permutations of R2

and S and calculating the probability that R1’s location is earlier in S’s permutation

than in R2’s permutation. The probability of S finding R1 first combined with the

probability of S finding R2 while searching gives us the expected utility for S. Lim

also states that the WFM strategy is not optimal for {R1, R2}, but offers only a very

minor revision.

Lim’s paper is useful because it defines a game which can be used to analyze

the rendezvous process when agents can be captured. The limitation of the approach

is that it relies on information from the number of channels being small. It also relies

on an asymmetric approach to solve the problem, which requires coordination from

the agents ahead of time. The paper also does not give the reader any insight as to

how the mixed strategy for m = 3 was derived, or any analysis into whether it might

be optimal.
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III. Modeling the Blind Rendezvous

In considering how to solve the Blind Rendezvous problem, it’s important to define

the environment that the solution will operate in. This chapter enumerates many

common factors in DSA cognitive networks which can affect the process of rendezvous.

It also lists the assumptions made by this thesis to analyze algorithm performance,

and the goals of the endeavor. Furthermore, the chapter will outline and describe the

model used to create the modular clock algorithm.

Problem Variables

Along with the factors which define the rendezvous methods introduced in Fig-

ure 2.1, this thesis introduces a taxonomy for cognitive network models and how they

relate to the rendezvous problem. The following is a non-exhaustive list of variables

and system requirements which can be used to define the rendezvous model:

1. Timing between radios (i.e. slotting)

Radio synchronization affects the ability to initialize communication. Cer-

tain models require in-depth strategies to deal with any level of synchronization.

2. Symmetric or asymmetric (role based) strategies

As mentioned in Chapter 2, the use of roles in a model can reduce expected

TTR. However, the assignment of roles can be difficult.

3. Number of radios

The number of radios can affect whether a rendezvous solution is complete

or incomplete after initial rendezvous. In the case of only two radios, any

rendezvous solution is complete.

4. Presence of common spectrum naming

For any unique physical frequency channel, the identification of the channel

for each radio may be dissimilar. This is problematic when considering order

based rendezvous schemes as the naming affects the mathematical model used.
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5. Ability to perform wide-band sensing

The ability for a single radio to sense and/or transmit in multiple frequen-

cies. Being able to do so simplifies rendezvous, but there are complications with

hardware costs and noise.

6. Policy of frequency fairness

Fairness is to consider every available channel with some probability for

rendezvous.

7. Existence of one or more control channels

Control channels are reserved channels that are only used to facilitate ren-

dezvous.

8. Presence of a master controller

Master controllers are central agents which can control spectrum allocation

for the radios in a cognitive network.

9. Amount of common spectrum

Increasing the amount of common spectrum improves the radios’ ability to

find common spectrum and therefore rendezvous.

10. False Detection of Primary User

In DSA networks, the arrival of a primary user causes the secondary users

to vacate the channel. If radios falsely detect a primary user, it can affect their

ability to rendezvous and decrease the amount of common spectrum.

11. Jamming/Malicious Activity

Malicious activity can resemble a primary user or otherwise make less spec-

trum available to the radios for rendezvous.

Considering these factors, we categorize models as used in rendezvous literature.

We use the names of the authors who described the model as nomenclature for the

model.
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In Table 3.1, we introduce the common model. This model represents one of the

more traditional methods of implementing a DSA cognitive network. It combines the

use of a control channel with a master controller to handle all connection rendezvous.

The following model does not represent a situation where a blind rendezvous algorithm

is necessary.

Table 3.1: Common Model Assumptions

Variable Model Assumption
Radio Timing No slotting

Roles Asymmetrical
Number of Radios Any number

Common Spectrum Naming Channels are commonly named
Wide-band No wide-band sensing or broadcasting available

Fairness Available spectrum analyzed and assigned by mas-
ter controller rather than radios

Control Channels Control Channel
Master Controller Master controller

Common Spectrum All radios sense the same available spectrum as the
master controller or some subset

False Detection No false detection
Malicious Activity No malicious activity

Table 3.2 describes Jeong and Yoo’s model [10], which is very similar to the

common model except the set of pre-defined control channels is removed.

The Silvius model in Table 3.3 was designed to be more agile and robust for

first responders at an emergency scene. As such, the model is one of the first to

formally abandon the approach of using any reserved infrastructure. In comparison

to the Jeong model of Table 3.2, the Silvius model abandons the master controller

altogether. Instead, rendezvous is facilitated through asymmetric means.

In his work in [6] and [7], DaSilva makes a strong case for moving away from the

common model towards a more dynamic model. Noting the lack of scalability in the

Common model and the Silvius model, DaSilva proposes one of the first models which

uses a symmetric rendezvous approach with no infrastructure to achieve rendezvous.
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Table 3.2: Jeong Model Assumptions

Variable Model Assumption
Radio Timing No slotting

Roles Symmetrical
Number of Radios Any

Common Spectrum Naming Channels are commonly named
Wide-band Wide-band sensing necessary for the master con-

troller
Fairness Fairness determined by master controller

Control Channels No control channels
Master Controller Master controller directs all rendezvous

Common Spectrum All radios sense the same available spectrum as the
master controller

False Detection No false detection
Malicious Activity No malicious activity

Table 3.3: Silvius Model Assumptions

Variable Model Assumption
Radio Timing Radios are loosely slotted

Roles Asymmetrical
Number of Radios Two

Common Spectrum Naming No common naming
Wide-band No wide-band sensing or broadcasting available

Fairness All channels must be considered equally for ren-
dezvous

Control Channels No control channels
Master Controller No master controller

Common Spectrum All radios sense the same available spectrum
False Detection No false detection

Malicious Activity No malicious activity

The symmetric approach in table 3.4 removes the need to facilitate the roles from the

Silvius model.

The model proposed by DaSilva in [7] very closely resembles the model used by

Anderson and Weber in [2], shown in Table 3.5. The major distinctions between the

two are their assumptions of synchronization and common channel names. Although

they come from the field of Applied Statistics, Anderson and Weber wrote one of the

first papers on rendezvous in discrete locations. In the paper, the problem is phrased
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Table 3.4: DaSilva Model Assumptions

Variable Model Assumption
Radio Timing Radios are loosely slotted

Roles Symmetrical
Number of Radios Two

Common Spectrum Naming Channels are commonly named
Wide-band No wide-band sensing or broadcasting available

Fairness All observed channels must be considered for ren-
dezvous

Control Channels No control channels
Master Controller No master controller

Common Spectrum All radios sense the same available spectrum
False Detection No false detection

Malicious Activity No malicious activity

as two players seeking to meet in m unique discrete locations which can be traveled

between instantaneously. Alpern [1] modified the problem description without chang-

ing the model by calling it the “telephone game.” Under Alpern’s problem description,

two players in two separate locations have m telephones directly connected to each

other. At specific time intervals, both players choose a telephone, pick it up, and say

“hello.” The game ends when the players choose the same phone in the same time

slot and can have a conversation. Although the papers were phrased in more general

game theoretic terms, their players have been renamed radios for the purpose of the

model. Many of the assumptions made were for the simplification of mathematical

analysis.

Finally, Table 3.6 introduces a model that makes the fewest assumptions about

the environment, known as the free-for-all model (FFA). Under this model, there exists

no infrastructure to assist the radio in finding other radios, nor do we know anything

about the availability of spectrum or the hostility of the environment. Rendezvous in

this environment can be very difficult.
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Table 3.5: Anderson and Weber Model Assumptions

Variable Model Assumption
Radio Timing Radios strictly slotted

Roles No assumption of roles, but different solutions for
symmetric and asymmetric

Number of Radios Two
Common Spectrum Naming Channels are commonly named

Wide-band No wide-band sensing or broadcasting available
Fairness All channels considered with equal probability

Control Channels No control channels
Master Controller No master controller

Common Spectrum All radios sense the same available spectrum
False Detection No false detection

Malicious Activity No malicious activity

Table 3.6: Free-for-all Model Assumptions

Variable Model Assumption
Radio Timing No slotting

Roles Symmetrical
Number of Radios Any number

Common Spectrum Naming No common naming
Wide-band No wide-band sensing or broadcasting available

Fairness No rule for fairness
Control Channels No control channels
Master Controller No master controller

Common Spectrum No amount of common spectrum assumed except
that some exists

False Detection False detection of primary user possible and likely
Malicious Activity Malicious nodes interfere with radios, spoofing pri-

mary users

Assumptions

Table 3.7 describes the assumptions made in this thesis in researching and de-

veloping a process for BR in cognitive networks. The model assumed by Anderson

and Weber most closely represents the model used, except that the modular clock

model makes only the assumption that there exists some common spectrum.
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Table 3.7: Modular Clock Model Assumptions

Variable Model Assumption
Radio Timing Loosely slotted so that two radios which choose the

same spectrum at the same time step are guaran-
teed to rendezvous

Roles Symmetrical, as the use of asymmetric rendezvous
could create radio pairings which are unable to ren-
dezvous

Number of Radios Two
Common Spectrum Naming No common naming

Wide-band No wide-band sensing or broadcasting available
Fairness All channels must be considered equally for ren-

dezvous
Control Channels No control channels available, as control channels

serve as a bottleneck for the cognitive network
Master Controller No master controller available. Similar to control

channels, master controllers serve as a bottleneck
for the network both in bandwidth, size, and dis-
tance

Common Spectrum The amount or percentage of common spectrum is
not assumed except that some common spectrum
between the two radios must exist

False Detection No assumption made. If communication between
two radios is interrupted for any reason, the ren-
dezvous process must begin

Malicious Activity No malicious activity considered for algorithm de-
velopment and analysis

Goals. The following are the goals outlined in the creation and analysis of a

Blind Rendezvous algorithm.

1. If all spectrum is common, achieve rendezvous in guaranteed fewer than m2 iter-

ations. The metric of m2 was chosen due the upper bound of O(m2) convergence

time by DaSilva [7].

2. Perform rendezvous without any prior communication or central architecture.

Only the algorithm or process need be known by each radio.

3. Achieve rendezvous in finite time with non-zero probability so long as C̄ 6= ∅.
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Model Difficulty

Discussing difficulties of models can be very subjective. The more a priori

knowledge we have about the environment, the easier the problem becomes. Lack

of knowledge or assumptions can make the problem very difficult. The amount of

simplifying assumptions made reduces the amount of variation in the rendezvous

problem. The following figure is a qualitative estimation of the relative difficulty of

the models. Models are labeled as easier or more difficult depending on the amount

of a priori knowledge and simplifying assumptions made regarding the environment.

Figure 3.1: Synopsis of model difficulties
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IV. The Modular Clock Algorithm and Other Analysis

This chapter will take a deeper look at the flexibility of the rendezvous process

described by DaSilva in [7]. It will take a cursory look at some simple Blind

Rendezvous games and compare them to the game proposed by Lim in [12]. It in-

troduces and analyzes the modular clock algorithm to solve the Blind Rendezvous

problem under the DaSilva model, proposes an alternate implementation of the algo-

rithm under the modular clock model, and then provides statistical analysis of both

algorithms against random rendezvous.

Analysis of Generated Non-orthogonal Sequences

In considering the best option for choosing methods for frequency rendezvous,

the generated non-orthogonal sequences proposed by DaSilva in [7] currently provide

the best known absolute guarantee of maximum rendezvous time. However, a number

of assumptions presented must be evaluated further to truly understand whether the

algorithm is robust enough for implementation.

Rendezvous under different labeling. As a first attempt to break the generated

non-orthogonal sequences, consider running them under the modular clock model, in

which two radios share a common space for the channels, but do not refer to the

same channels by the same name. In this example, consider a set of 5 channels with

universal labels A through E. For first radio, it will locally label A as 1, B as 2, C as

3, D as 4, and E as 5. For the second radio, it will locally label A as 5, B as 1, C as

2, D as 3, and E as 4. The shared permutation provided is 3, 2, 1, 4, 5. Therefore, the

first radio’s permutation under the universal labels is C,B,A, D, E, while the second

radio’s permutation is D, C, B, E, A.

It is easy to see the sequences can become orthogonal. Take the case in which

the sequences start at the same time: there is no point at which both radios are on

the same channel in the same slot. At every point, both radios will choose the same

local label, which map to different physical channels.
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Figure 4.1: Rendezvous failure under different channel names

More generally, this problem arises when both sequences are on their super-

sequence at the same time, as shown in Figure 4.1. Figure 4.1 demonstrates the

scenario in which we begin the second radio’s sequence 12 time steps after the first

radio begins. Note that at time 42, we’ve gone m(m + 1) = 30 time steps without

rendezvous.

However, if we consider the situation in which the second sequence begins in the

middle of the subsequence of the first radio, we find that rendezvous will still occur by

m(m + 1) time steps. If the supersequence of Radio 2 begins during the subsequence

of Radio 1, there exists an crossover point in which the channel for Radio 1 remains

the same while the channel for Radio 2 rotates, as shown by the highlighted areas in

Figure 4.2.

The result of this analysis is that while the sequence is still likely to converge,

it is not guaranteed to. If a generated non-orthogonal sequence is implemented and

channel names are non-global, there would need to be some sort of timeout mechanism

or “hiccup” factor introduced to jar orthogonal sequences out of alignment. This may

be handled by introducing a randomized wait factor after each sequence.
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Figure 4.2: Rendezvous still guaranteed sometimes under different channel names

Analysis under channel addition. In the original paper, DaSilva proves that

the algorithm can handle the dynamic arrival of primary users. In a DSA scheme, this

is very important for our cognitive radios. However we must consider whether the

algorithm can handle the dynamic departure of primary users which adds available

channels. Unfortunately the paper does not indicate how the departure of a primary

user would be handled, so here some methods are suggested.

First we consider this under the DaSilva model, in which the channel sets ob-

served by the radios are the same. As channels become available, we begin the gener-

ated sequence based on the new set of available channels. Since we have no controller

to direct us to a new permutation as the available channels change, we will need to

know the permutation for every number of channels we could observe. This imple-

mentation could have a very large overhead, require a large lookup table of sequences

and could hinder rendezvous if arrival and departure occur frequently. Alternatively,

a general ordered sequence could be used, or the sequence could contain all possible

channels in a master permutation.

Consider the implementation of the latter option – a master permutation which

contains the exhaustive list of all possible channels, and the radios remove the channels

they do not see available. The master permutation would have length m, where
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m = max(|Ci|). Consider when m = 10 and the channels are given labels A through

J, and the master permutation E, J, I, C, G, A, D, B, H, F. Under the DaSilva model,

if both radios sense the availability of channels B through G and J, they would create

the sequence E, J, C, G, D, B, F. If the channel A suddenly became available, both

radios would know to add A between G and D. Since they would still be using the

same sequence, the guaranteed properties of rendezvous will still hold.

However, consider the situation in which a new channel would need to be added

to the master permutation. Without any outside knowledge, the radios would have

a 1
m+1

chance of adding the (m + 1)th channel in the same spot as the other radio.

In order to guarantee the channel lists remain the same, coordination between all

radios would be necessary. This would be very difficult to implement as the addition

of a channel to the exhaustive list would require reconfiguring all of the radios in the

network.

If the departure of a primary user is handled in a mutually agreed upon means,

the radios will wind up using the same permutation. As long as the radios are using

the same permutation on the same channel set, they are guaranteed rendezvous.

Analysis under modular clock model. Although the original DaSilva paper

makes no claim of being able to handle rendezvous when the two radios observe

different channel sets, its ability to do so must be evaluated when being considered

for implementation.

Using the modular clock model, guaranteed rendezvous by O(m2) time steps

can be shown to fail by example. In the case where both radios observe a different

set of channels, but the same number of channels (mi = mj, Ci 6= Cj), we have an

analogous scenario as rendezvous under different labels, previously discussed.

In the case where both radios observe a different number of channels (mi 6= mj),

we can demonstrate there will be no rendezvous in m(m + 1) time (even where m =

max{mi,mj}). Consider the case in which C1 = {1, 2, 3} and C2 = {3, 4, 5, 6, 7, 8, 9}
as represented in Figure 4.3. Assume a common labeling for channels and the per-
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mutations are in numerical order, m = max{3, 7} = 7. Beginning the sequences at

the same time, there is still no rendezvous after 7 · (7 + 1) or 56 time steps. This

demonstrates the loss of guaranteed rendezvous in m(m + 1) time steps.

Figure 4.3: Rendezvous failure with different channel sets

Generated non-orthogonal sequences provide the best guaranteed time of any

approach studied in this thesis and are guaranteed to work under the DaSilva model.

However, the properties of guaranteed rendezvous can fail under modular clock model

conditions, which can occur in cognitive networks.

Game Theory for Blind Rendezvous

As mentioned in chapter 2, game theory is a good mathematical basis for un-

derstanding the decision process that cognitive radios will go through. With that in

mind, we examine some game theoretic models for BR under models that do not use

infrastructure, such as the DaSilva model, the Anderson and Weber model, and the

Free-for-all model.

Simple Blind Rendezvous Game. The simplest representation of game theory

as a game is to break up the available spectrum into m numerically sequenced chan-
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nels, Ci = (ci1, ci2, ...cim) under the DaSilva model. If we consider the channels as the

action space for the radios, we have a coordination game in which each radio receives

utility if their action matches the other radio’s action, and none otherwise. For the

purposes of simplification, the model only considered two radios.

Table 4.1: Simple Blind Rendezvous Coordination Game

P2
Ch 1 Ch 2 Ch 3 ... Ch m

P1

Ch 1 (1, 1) (0, 0) (0, 0) ... (0, 0)
Ch 2 (0, 0) (1, 1) (0, 0) ... (0, 0)
Ch 3 (0, 0) (0, 0) (1, 1) ... (0, 0)
... ... ... ... ... ...

Ch m (0, 0) (0, 0) (0, 0) ... (1, 1)

As would be expected, the NE of the system are the points in which the radios

have rendezvoused, and all rendezvous solutions are PO. Given an arbitrary starting

channel, there’s no rendezvous which would be arrived at more often than others. If

the two players choose the same channel, their utility will be observed by initiating the

communication. If the two players choose different channels, they receive no utility as

they are unable to communicate. Furthermore, the radios cannot observe the action

(channel selected) of the other radio and utility gives no insight into the state of the

game. Therefore, players cannot gain knowledge in a repeated game by which to

improve their expected utility, making strategies that guide future actions is difficult.

For this formulation, a mixed strategy of selecting any channel with 1
m

probability is

a good strategy.

Proximity Blind Rendezvous Game. Next, the DaSilva model was slightly

tweaked, allowing radios to sense adjoining channels with some utility as an inverse

square to the distance from the other radios. The justification for this utility function

was to attempt to model inter-channel interference that might be detectable if radios

broadcast in neighboring channels to each other and filter roll-offs are not adequate.
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The utility function ui for this game was:

ui =
1

1 + (ai − a−i)2
(4.1)

This utility improves as the radio moves closer to other radios. Given a utility,

a radio can tell how close it is to its nearest neighbor. However, it does not know

which neighbor it is close to, or what spectrum the radio is in. Since there were two

radios, each will receive the same utility. As such, only one utility value is written in

each of the spaces. The utility table for m = 5 is shown in Table 4.2.

Table 4.2: Blind Rendezvous Proximity Coordination Game

P2

Ch 1 Ch 2 Ch 3 Ch 4 Ch 5

P1

Ch 1 1 1
2

1
5

1
10

1
17

Ch 2 1
2

1 1
2

1
5

1
10

Ch 3 1
5

1
2

1 1
2

1
5

Ch 4 1
10

1
5

1
2

1 1
2

Ch 5 1
17

1
10

1
5

1
2

1

An interesting facet of this game is that the average utility in the middle rows

and columns is greater than that of the outer rows and columns. This makes selecting

channels in the middle of the available spectrum more attractive as a strategy, because

the player can minimize the maximum distance to the opposite radios.

This game is not without its limitations. The precise allocation of channels

in spectrum prevents much physical bleedover into other channels. While it may be

physically possible to detect activity in a neighboring channel, any detection beyond

neighboring channels would be quite difficult. It’s possible that under the free-for-all

model, this approach can be more useful because the channels aren’t nearly as well

defined and monitoring weaker signals can be useful.

42



Proximity and Preference Blind Rendezvous Game. The previous game was

improved by considering a preference relationship between the radio and a particular

channel. Keeping in theme with the previous experiment, the model was modified

by providing two factors of utility: One for the distance from the other radio and

one for the distance from a channel of preference, ci∗. This preference might exist

because of a good signal-to-noise ratio, or because the radio perceives infrequent use

by a primary user. For the purpose of this game, the reasons behind the preference

are not considered. Again, only two radios were considered, the utility function is:

ui =
1

1 + (ai − a−i)2
+

1

1− (ai − ci∗)2
(4.2)

This utility represents the combined distance between the radio and other radios

and the radio’s distance from its channel of preference. As the radio gets closer to

other radios and closer to its channel of preference, its utility improves. This time,

each will receive different utilities as they balance preference and system goals. For

m = 4, c1∗ = 1 and c2∗ = 4, the utility is shown in Table 4.3.

Table 4.3: Blind Rendezvous Proximity and Preference Coordination Game

P2

Ch 1 Ch 2 Ch 3 Ch 4

P1

Ch 1 (20
20

, 11
20

) (15
20

, 7
20

) (12
20

, 7) (11
20

, 11
20

)

Ch 2 (10
20

, 6
20

) (15
20

, 12
20

) (10
20

, 7
20

) ( 7
20

, 12
20

)

Ch 3 ( 4
20

, 3
20

) ( 7
20

, 10
20

) (12
20

, 15
20

) ( 7
20

, 15
20

)

Ch 4 ( 2
20

, 2
20

) ( 3
20

, 4
20

) ( 6
20

, 10
20

) (11
20

, 20
20

)

Of particular interest in this table are the Nash Equilibria. Unlike the previous

scenario, there now exists a NE which is not a rendezvous point and is not PO

(a1 = 1, a2 = 4), which exists at the point in which both radios are on the channel

they prefer. In order to destabilize this NE, a time factor could be incorporated

that decreases the radio’s utility after repeatedly failing to rendezvous. The other
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alternative would be to put heavier emphasis in the rendezvous utility factor than the

channel preference utility factor.

Naturally, this model suffers from many of the same physical limitations as

the proximity game. Coupled with the physical limitations of sensing, the lack of

commonly named spectrum under the modular clock or free-for-all models would cause

problems with analyzing channel preferences. It would also be possible to construct

preference tables that would steer each radio towards non-common spectrum.

Symmetric Rendezvous Pursuit-evasion Game

As mentioned in Chapter 2, Lim [12] models an asymmetric rendezvous-evasion

game with two evading agents R1, R2 and a searcher S. Although asymmetric ren-

dezvous can produce more optimal solutions to this problem for the evaders, the

ability to facilitate the roles may not exist in an ad-hoc cognitive network. Therefore,

we examine rendezvous-evasion game in which the two rendezvousing agents must

employ the same strategy. For this game, we abandon Lim’s notation of using n as

the number of locations in favor of m.

For our game theoretic analysis, we use the Anderson model from Chapter 3

and the symmetric algorithm proposed by Anderson and Weber in [2] as the strategy.

For the ease of exposition, we assign a label to each of the m locations. The label is

unknown to the agents or the searcher, and R1, R2, and S begin in different locations.

By Anderson and Weber’s optimal algorithm parameters, with a 1
4

probability, the

agent will choose to remain in its current location for m time steps. With 3
4

probability

the agent will choose a randomized permutation of the list of locations to visit in order.

Lim alternatively defines this process as keeping track of all the locations visited and

visiting only unvisited locations until all locations have been visited. Similar to the

agents, for S we consider the strategy of waiting in location for m time steps and the

strategy of visiting every location using a randomized permutation.
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With 1
16

probability, both agents will choose to remain in their current locations

for m time steps. If S also chooses to wait, no rendezvous will exist by the mth

time step and the game will not end. However, if S chooses to use the randomized

permutation, S has a guaranteed utility of 1, i.e., he will jam one of them at some

point.

With 6
16

probability, exactly one of the agents will remain in their current lo-

cation while the other agent searches exhaustively. In this scenario, we can use the

analysis provided by Lim for his asymmetric rendezvous-evasion game. In doing this,

the expected utility for S is bounded by 1−e−1 = 0.632121 as the number of locations

m gets sufficiently large. If S chooses to wait instead, S will never find the stationary

agent. If the game has not ended, the R1 knows that S and R2 are in separate loca-

tions, and that R1 has not visited either of their locations so far in the permutation.

Since there is no common labeling of locations between the players, at every step R1

is as equally likely to find S as R2. Therefore, the expected utility for S if S waits is

0.5, which makes searching the more optimal strategy.

Finally, with 9
16

probability, both radios will be searching with a randomized

permutation. By the analysis from Anderson and Weber, we denote the probability

that the permutations of length m meet in k places as prob(m, k). If two permutations

meet in k places, Anderson also shows that the expected number of steps until the

first meeting occurs is m+1
k+1

. In order for R1 and R2 to achieve rendezvous, k > 0 and

therefore our expected time of meeting is:

m∑

k=1

prob(m, k) · m + 1

k + 1
(4.3)

If S chooses to wait in place for m time steps while R1 and R2 search, we know that

rendezvous with R1 and R2 is guaranteed by m time steps. Therefore prob(m, 1) = 1

between S and either R1 or R2 and prob(m, k) = 0, k > 1 because they can only

rendezvous once. The expected time of S meeting R1 and R2 is therefore 1·m+1
1+1

= m+1
2

.
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Anderson gives us the following two equations for the expected time of meeting

(E[TTR]) between the two searching agents R1 and R2

E[TTR] =
m∑

k=1

(
prob(m, k) · m + 1

k + 1

)
(4.4)

E[TTR] =

(
m

m− 1

)
· ((m + 1) · (1− prob((m + 1), 0)− prob(m, 0)− 1)) (4.5)

If the randomized permutations for R1 and R2 share no values in the same position,

they are a derangement of each other. Using the well-known result of derangements

[22], the probability that the sequences are a derangement is:

lim
m→∞

prob(m, 0) =
1

e
(4.6)

Using the fact that prob(m, 0) = 1
e
, for large m, (m + 1) ≈ m, prob((m + 1), 0) = 1

e
.

E[TTR] =

(
m

m− 1

)
·
(

(m + 1) · (1− 1

e
)− 1

e
− 1

)
(4.7)

After reduction, we see that

E[TTR] =
m(m · e−m− 2)

e(m− 1)
(4.8)

Therefore, the expected time for R1 and R2 to meet is E[TTR] ≈ m.

Therefore, if S waits for m time steps the expected time of S meeting R1 or R2

is m+1
2

and the expected time of R1 and R2 meeting is approximately m. If S chooses

to search while both R1 and R2 are searching, the expected time for S to meet R1

and the expected time for S to meet R2 would be m from the previous analysis. Since

S has a lower expected time to meet one of the evading agents when it remains still,

S should choose to wait.

With 7
16

probability, the optimal strategy for S is to search using a randomized

permutation of the m locations. With 9
16

probability, the optimal strategy for S is to
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remain in place for m locations. Therefore, given that R1 and R2 employ the mixed

strategy of waiting with 1
4

probability and searching with 3
4

probability, the optimal

mixed strategy for S is to wait with probability 9
16

and search with probability 7
16

. 1

In summary, the symmetric rendezvous pursuit-evasion game presents us with

a minor extension of the asymmetric rendezvous pursuit-evasion game. The game

provides some further insight into the difficulties faced when asymmetric strategies

cannot be facilitated*. However, this game makes no claim to finding the best mixed

strategy for R1 and R2 to minimize the expected utility for S. Also, the fact that

the game ends when two or more players choose the same location limits the game’s

usefulness. A game which models this interaction without the “capturing” effect

would be more useful to the field of cognitive radios and cognitive networks.

Modular Clock Blind Rendezvous Algorithm

The modular clock algorithm is a new rendezvous algorithm, designed to take

advantage of some of the guarantees in number theory often leveraged by cryptogra-

phy. By using prime number modulation, the algorithm is able to use some of these

guarantees inherent to the CRT and the modular inverse.

Notation. The notation is as follows for a single radio:

• r is the rate that the cognitive radio hops channels. Every time slot, the radio

hops forward this many channels in its set, and wraps around when it reaches

a channel greater than the maximum number (modulo arithmetic).

• t is the time slot of the system.

• τ is the starting channel index at some arbitrarily chosen common time reference.

Modular Clock Algorithm. Algorithm 1 outlines the pseudocode for the

modular clock (MC) algorithm. In order to leverage the power of prime numbers, we

1Note that this combination of strategy is has not been analyzed in terms of being a NE or being
PO
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must find a prime number p to use for our algorithm. For MC, we choose the lowest

prime greater than the number of channels m. Since there will be a gap between the

actual number of channels available and the number of channels that the radio could

attempt to use (i.e. between m and p), for all channel indices that the clock selects

between m and p, we tell the radio to choose a channel index randomly between 1

and m.

Note that all variables listed in Algorithm 1 are relative to the radio which is

executing the algorithm, and not global values. Also, the channel offset j is relative to

the first channel in its set of channels c1. The channel that the radio actually chooses

is c. For m channels, the channel indices range from 0 to m− 1.

Algorithm 1 Modular Clock Algorithm (MC)

1: observe m, the number of channels available
2: calculate p, the next largest prime to m
3: current channel c = cτ

4: current offset j = τ
5: while not rendezvous do
6: choose r from 1 to p− 1 randomly
7: for t = 0 to 2p do
8: j = (j + r) mod (p)
9: if j < m then

10: c = cj

11: else
12: c = crand([0,m−1])

13: end if
14: end for
15: end while

We begin the algorithm with our channel index j = τ . For every time step,

we increment our index j by r, then modulate j by p. If the resulting j is between

0 and m − 1, then the radio moves to channel cj. If the resulting j is greater than

m − 1, then the radio chooses a random index between 0 and m − 1 and moves to

that channel. Note that j is not changed when j > (m− 1). If we have not achieved

rendezvous after 2p time steps, we randomly choose a new r value between 1 and

p− 1. The algorithm terminates at any point in which rendezvous is achieved.
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Algorithm Analysis. Now that we know the means by which each radio will

attempt to achieve rendezvous, we analyze the interaction between the radios and the

sequences they execute. The channel index that radio i is on at a particular time step

t can be given as:

j = t · ri + τi mod (pi), pi ≥ mi (4.9)

It’s important to note that the term “convergence” refers to arriving to a com-

mon channel index. Depending on the model used and the amount of channels avail-

able, this may or may not correspond to rendezvous.

Theorem 1. Under the DaSilva model (where Ci = C, ∀i ∈ N , mi = mj, and pi = pj

since all radios perceive the same set of open channels), when ri 6= rj, convergence

occurs in t < p steps once both radios start the rendezvous process.

Proof. Define δr = rj − ri, δτ = τj − τi

Rendezvous occurs when t · rj + τj mod (p) ≡ t · ri + τi mod (p). We can

simplify the rendezvous equation to:

1. t · δr ≡ −δτ mod (p)

2. The modular multiplicative inverse of any number a mod (p) exists iff a and p

are co-prime. That is, the Greatest Common Divisor (GCD) of a and p is 1.

3. Since ri 6= rj, δr 6= 0

4. Since 1 < ri < p and 1 < ri < p, −p < δr < p.

5. Since −p < δr < p and p is prime, gcd(δr, p) = 1

6. Therefore there exists a modular multiplicative inverse of δr, δ−1
r

7. t · δr · δ−1
r ≡ −δτ · δ−1

r mod (p)

8. t ≡ −δτ · δ−1
r mod (p)
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9. Since −δτ · δ−1
r mod (p) is a value between 0 and p− 1, our t value is between

0 and p− 1 and we have proven rendezvous will occur in t ≤ p steps.

Radio Timing. By waiting until 2p time steps have occurred before timing

out and switching r values, the radios can ensure that they have had at least p time

without either radio changing r values. For example, if radio 1 begins a particular r

sequence at t = 0, while radio 2 begins theirs at t = p− ε. If radio 1 waits until t = 2p

to change r values, then they will have maintained static r values for 2p− (p− ε) or

p + ε time together, which guarantees rendezvous. If radio 2 begins their sequence at

t = p+ ε time, we can perform the same analysis by calling p+ ε time 0, which means

radio 1 will reset its r value at 2p− p + ε time, or t = p− ε, and the previous analysis

applies.

Figure 4.4: Using 2p reset timeout to guarantee p common time slots before reset

Algorithm Analysis With Same Rate.

Theorem 2. Under the DaSilva model (where ∀Ci, Ci = C, mi = mj, and pi = pj

since all radios perceive the same set of open channels), when ri = rj, and τi 6= τj,

rendezvous will not occur.

Proof. Recall that rj − ri = δr, τj − τi = δτ

Rendezvous occurs when t · rj + τj mod (p) ≡ t · ri + τi mod (p).
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Proof by contradiction:

1. Assume that t · δr ≡ −δτ mod (p)

2. Since 0 ≤ τi < p and 0 ≤ τj < p, −p < δτ < p

3. Also, since rj = ri, δr = 0

4. Therefore, t · 0 ≡ −δτ mod (p)

5. This reduces to 0 ≡ −δτ mod (p)

6. By our assumptions, τj 6= τi, δτ 6= 0

7. Since −p < δτ < p and δτ 6= 0, 0 6= −δτ mod (p)

Therefore, we have a contradiction, and t · δr 6= −δτ mod (p).

Since the δr value is 0, the sequences maintain the same difference in channel

value (δτ ) they began with. However, rendezvous may still occur when the sequence

chooses an index between m and p and the radio chooses a random index from 0 to

m − 1. The expected TTR is rather high in this case, so we introduce a timeout

feature at 2p.

By Theorem 1, if ri 6= rj convergence is guaranteed within p time steps. There-

fore, the radios can observe that they have failed to rendezvous within 2p time and

change their r values. This is what line 7 is doing in Algorithm 1. Note that with a

p−1
p

probability, they will select different r values and Theorem 1 will apply. However,

with 1
p

probability, they will select the same r value again. In case where we have hit

our 1
p

chance of an orthogonal sequence, the radio will observe failure to rendezvous

after 2p time steps. If we fail to rendezvous by the pth change of rate r, we will

have spent 2p · p time. The odds of failing to rendezvous for every 2p iteration is 1
p
.

The probability of failing to rendezvous after p changes of r values is 1
p
· 1

p
· 1

p
... = 1

pp .

Therefore, with 1− 1
pp probability, we will do no worse than O(p2) time.
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Since we know that with p−1
p

probability we will choose different r values and

rendezvous within 2p time, and with 1
p
· p−1

p
probability we will rendezvous in 2 · (2p)

time, we can use the following infinite series to find an upper bound on expected TTR

E[TTR] ≤ (2p · p− 1

p
) + (4p · 1

p
· p− 1

p
) + (6p · 1

p2
· p− 1

p
) + ... (4.10)

This series reduces to the closed form expression:

E[TTR] ≤ 2p +
2p

p− 1
(4.11)

Therefore, our upper bound on TTR is only slightly larger than 2p.

Theorem 3. Under the modular clock model, (Ci 6= Cj, C̄ = Ci

⋂
Cj 6= ∅) and

pi 6= pj, MC rendezvous will occur within pi · pj time steps.

Call the larger of the two p values pi and the smaller pj. The radio which uses

pi will be referred to as ri and use τi. Note that pi and pj approximate mi and

mj. To prove the Rendezvous exists, we need to be able to find out when t · ri + τi

mod (pi) = t · rj + τj mod (pj).

Proof. 1. Recall from the CRT, if gcd(p1, p2) = 1, then for any a1 and a2, there

exists a solution for

x ≡ a1 mod (p1)
x ≡ a2 mod (p2)

2. Since pi and pj are prime and not equal, they are also co-prime

3. Since pi and pj are co-prime, gcd(pi, pj) = 1

4. Substitute t · ri + τi for a1 and t · rj + τj for a2

x ≡ t · ri + τi mod (pi)
x ≡ t · rj + τj mod (pj)

5. By the CRT, there exists an x which solves that set of equations, and rendezvous

is guaranteed.

52



However, we can say even more about how frequently this rendezvous will occur.

If m̄ = mj, then within pi · pj time steps, rendezvous will occur mj times. We know

this because we can set x equal to any value in the range {0, 1, 2, ...(mj − 1)} and

solve the set of equations for a unique t < (pi · pj). Since we have mj rendezvous

points over the span of pi · pj time and pj ≈ mj, our E[TTR] ≈ pi.

We can extend this analysis to a more general conclusion about the expected

TTR. In the scenario provided above, we created the situation where two radios shared

an overlap of pj common rendezvous channels, mj of which translated to non-virtual

channel indexes. In a more general sense, the approximate TTR can be re-written as

m̄
m

. As long as C̄ 6= ∅, rendezvous will occur in at most
pi·pj

1
time steps (since pi and

pj are both factors of their m values), which is asymptotical to θ(m2) time.

Degenerative Case. The following is the analysis of the degenerative

case for the modular clock algorithm. Under the modular clock model, where ∃Ci 6= C

and not all radios share the same perception of the availability, assume that Ci 6= Cj,

Ci

⋂
Cj 6= ∅, and mi = mj. In other words, two radios have two different sets of

channels with some overlap but the same quantity of observed channels.

Since mi = mj, pi = pj. Under this case, the CRT cannot apply because

the moduli are factors of each other(not co-prime). Similarly, the analysis under

Theorem 1 cannot apply because the convergence point is not guaranteed to be in

Ci

⋂
Cj. Through simulation it has been observed that convergence may still occur

under these assumptions, but no guarantee is possible.

Random Strategy vs. Modular Clock Algorithm. Anderson and Weber proved

that the optimal rendezvous solution for m = 2 is random under the Anderson model,

although they were unable to prove it for anything larger. We also know that if we

use the modular clock algorithm under the DaSilva model and ri 6= rj, convergence

is guaranteed in fewer than p time steps. As noted in Chapter 3, the DaSilva model
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and the Anderson model are very similar. Therefore, there may be crossover point at

which the MC algorithm has a lower expected TTR than random.

Recall that if ri = rj, we are not likely to rendezvous and must wait 2p time

steps to reset r values. If this is not the case, we are guaranteed convergence in p time

steps. The probability that ri = rj is equal to 1
m

, and the probability that ri 6= rj is

1− 1
m

. Also recall that the expected TTR for the random approach is m.

To find the crossover point, we plot the probability that we can guarantee ren-

dezvous (ri 6= rj) under the MC algorithm against the probability of achieving ren-

dezvous in fewer than 2p time steps using a random approach. The probability that

random achieves rendezvous by 2p time steps is 1− (1− 1
p
)2p. In Figure 4.5, we plot

the two against each other and see that based on this model for m < 9, random

should perform better than the modular clock algorithm for this particular metric.

Therefore under the DaSilva model, if the radio observes fewer than nine channels, it

should implement a random search instead of the modular clock algorithm.

Modified Modular Clock Algorithm

To avoid the degenerate case in the MC algorithm where pi = pj but neither

Ci ⊆ Cj nor Cj ⊇ Ci, we randomize our primes within a certain range to avoid

having the same prime. This modified modular clock (MMC) algorithm is shown in

Algorithm 2. Under the MMC algorithm, we select a random prime number p from

the set of primes between m and 2m.

Again, for all action spaces between m and our chosen p, we tell the radio to

choose randomly. Since p is no larger than 2m, we will spend no more than half of our

time choosing randomly. If we can avoid having the same prime, we are guaranteed

solutions for rendezvous within pi · pj time by Theorem 3. Since our main concern

at this point is avoiding the same prime number, one strategy is to change our prime

numbers if we have failed to notice rendezvous in 2p2 time. This is not guaranteed to
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Figure 4.5: Probability of rendezvous in fewer than 2p slots

be the correct timeout. If there exists a large difference between pi and pj, the radio

with the smaller p value may reset too quickly.

By the Prime Number Theorem, the number of primes from 1 to x can be

approximated by x
ln(x)

. Therefore, the number of primes between m and 2m is ap-

proximately 2m
ln(2m)

− m
ln(m)

. The goal of the MMC algorithm is to avoid choosing the

same prime numbers (i.e. avoid pi = pj). Figure 4.6 evaluates the probability of

choosing the same prime number (pi, pj) based on the number of channels for each

radio (mi,mj). For example, since both radios choose their prime between m and

2m, if mj ≤ 1
2
·mi, the probability of choosing the same prime is 0. Consequently, if

mj = mi, then the probability of choosing the same prime is 2mi

ln(2mi)
− mi

ln(mi)
.

Figure 4.6 shows that it requires 10% of the channels to have a 10% probability

of choosing the same prime if mj = 0.55 ·mi than if mj = mi.
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Algorithm 2 Modified Modular Clock Algorithm (MMC)

1: observe m, the number of channels available
2: current channel c = cτ

3: current offset j = τ
4: while not rendezvous do
5: choose r from 1 to m− 1
6: choose p, a prime between m and 2m
7: for t = 0 to 2p2 do
8: j = (j + r) mod (p)
9: if j < m then

10: c = cj

11: else
12: c = crand([0,m−1])

13: end if
14: end for
15: end while

Figure 4.6: Evaluating the probability of choosing the same prime number
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Modular Clock and a Wait Factor

In Anderson and Weber’s paper [2], they propose the use of a wait factor θ. θ

represents the probability in which either radio will remain in its channel and wait for

the other radio to come find it for a prescribed period. For our purposes, θ would be

the probability in which the radio overrides its random step size selection of r in the

MC algorithm and sets r = 0. Assuming the radios are synchronized and decide their

wait factors θ at the same time, the radio would wait m time steps before finding a

new r.

In the paper, Anderson and Weber used random permutations of the m chan-

nels and the probability of derangement to consider whether the sequences would

converge at any point. Using this approach, the optimal wait factor θ was calculated

to approach 0.2475 as the number of channels m gets infinitely large.

Using a similar approach, we created a formulation to evaluate a wait period

for the original modular clock algorithm. Using the Anderson and Weber model, we

assume Ci = Cj. We also assume that the radios are synchronized and slotted. The

DaSilva model was not used due to the inability to assume synchronization. By the

MC algorithm, both radios choose the same p, and they choose the same rate r with

1
m

probability. However, we assume that r 6= 0, so there are only m − 1 different r

values to choose. Therefore, the radios choose the same r with 1
m−1

probability, and

choose different r with 1− 1
m−1

= m−2
m−1

probability.

• Case 1 – Both radios wait, neither finds the other in m time and must start

over. This occurs with θ2 probability.

• Case 2 – One radio waits and the other searches. E[TTR] = m
2
. This occurs

with 2θ − θ2 probability.

• Case 3 – Both radios search, and choose different rates, similar to Theorem 1.

E[TTR] = m
2
.
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• Case 4 – Both radios search, and choose the same rate, similar to Theorem 2.

Radios wait m time and must start over.

Since we have two cases in which we fail to rendezvous, the equation attempts

to solve for the optimal amount of time in which we favor Case 1 vs. Case 4. We

must find the optimal value of θ that minimizes t for any given number of channels

m.

t = θ2(m + t) + (2θ− θ2)
(m

2

)
+ (1− θ)2

(m

2

) (
m− 2

m− 1

)
+ (1− θ)2(m + t)

(
1

m− 1

)

(4.12)

Solving for t, this equation reduces to the following:

t =
2θ2m2 − θ2m− 2θm + m2

2m− 2θ2m + 4θ − 4
(4.13)

Plotting this equation as graph for a variety of m inputs, we see the optimal value

of θ for m > 2 is zero, according to Figure 4.7. This can be explained by considering

the fact that Anderson and Weber used randomized permutations of the channel set.

These permutations have probabilities of rendezvous but no guarantees, in contrast to

the MC algorithm. Anderson and Weber only had guaranteed rendezvous in the case

where one player waited while the other searched. Using the modular clock algorithm

where convergence is guaranteed when both players search using different rates r, we

lose our incentive to risk the scenario in which both players wait.

Simulation and Results

Due to the slotted and discrete nature of the modular clock model, simula-

tion of rendezvous algorithm can be performed in a number of environments such as

MATLAB or Maple. The platform chosen for developing the simulation was Cyg-

win running on Windows Vista. The programs were written in C++ and compiled

with g++ 3.4.4 with no flags. A copy of the source code used is provided in Ap-

pendix 1. Execution of experiments and collection of data was handled through a
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Figure 4.7: Effect of a Wait Factor

set of Bash shell scripts which parsed through the master output and collected the

rendezvous solution points in a tab delimited file. Once the results were collected for

the experiments, the results were imported into Minitab and analyzed.

Design of Experiments. In designing the experiments for the modular clock

algorithm and the modified modular clock algorithm, a number of hypotheses were

tested. In order to distinguish between the modular clock algorithm and the modified

modular clock algorithm, the modular clock algorithm is typically referred to as “MC”

and modified modular clock is referred to as “MMC.” To evaluate these statements

we evaluate the estimated TTR, or mean of the simulations. We’ll also look at some

other statistical information to evaluate performance, such as the value of percentiles.
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Hypothesis 1. When mi = mj < 9 and Ci = Cj, random performs better (lower

average TTR) than both MC and MMC. When mi = mj > 9 and Ci = Cj, MC will

perform better than random as m increases.

The information presented in Figure 4.5 is the basis for these hypotheses. Ac-

cording to Figure 4.5, a random approach has a better chance of achieving rendezvous

in fewer than 2p time slots if m < 9. Conversely, the information tells us that MC

has a better chance of achieving rendezvous in fewer than 2p slots for m > 9.

Hypothesis 2. For m1 > 9 and m2 > 9, if the prime value selected under MC by

radio 1 is equal to the prime value selected by radio 2 (p1 = p2) and neither C1 ⊆ C2

nor C2 ⊆ C1, then MMC performs better than MC.

While this scenario sounds far-fetched, it is actually fairly easy to construct.

Given that two radios observe a large set of common channels and have approximately

the same number of total channels, the same prime number will be chosen by MC.

Hypothesis 3. When there exists a large difference between mi and mj, random

should perform better than MC and MMC.

Because both MC and MMC are symmetric and have a timeout window, this

hypothesis highlights the case in which the timeout window would get abused. The

radio with the smaller number of channels would trigger a timeout prematurely.

Hypothesis 4. When m1 > 9, m2 > 9 and m1 ≈ m2, as C̄ gets smaller, MMC

should perform better than random and MC.

As the number of common channels decreases, MMC maintains a guarantee of

rendezvous in pi ·pj time. This guarantee should provide better results as the number

of common channels decreases.

Trials. The following is a quick listing of the parameters for the trials. All

trials were conducted using two radios with a random starting channel.

• Trial 1 - between 3 and 18 channels, all channels in common
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• Trial 2 - 25 channels, 25 in common

• Trial 3 - 50 channels, 50 in common

• Trial 4 - 25 and 20 channels, 20 in common

• Trial 5 - 25 and 5 channels, 5 in common

• Trial 6 - 25 channels each, 5 in common

• Trial 7 - 25 and 10 channels, 5 in common

• Trial 8 - 25 channels each, 1 in common

Trial 1. Trial 1 is designed to test Hypothesis 1. According to Hypothesis 1,

random should perform best for m < 9. For the trial, we have m values between 3

and 18, and C̄ = m.

Figure 4.8: Mean TTR for m from 3 to 18, C̄ = m

Figure 4.8 shows the mean TTR for each algorithm. As expected, the mean

TTR for random grows linearly with m. According to the figure, random performs

better than MC until m = 7, then a little better than MC until m > 10, where

MC performs better at every m value. Although the figure does not clearly show

a crossover point, it does support the hypothesis that the crossover point is in the

neighborhood of m = 9.
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Whereas MC began to perform better than random by m = 10, the mean TTR

for MMC was indistinguishable from random throughout most of the trial. Only at

m = 5 are the two means significantly different, which suggests an aberration.

Trial 2. Trial 2 is a further test of Hypothesis 1. For the trial, we have set

m1 = m2 = 25, and C̄ = 25. Trial 2 is designed to continue to observe the behavior

of the three algorithms as m begins to get larger.

Figure 4.9: 95% mean confidence interval for m1 = 25, m2 = 25, C̄ = 25

In Figure 4.9 we see that the mean value of MC is easily statistically smaller than

the mean of the random approach. In fact, the mean value of MC population is 13%

smaller than the mean values of the other two approaches. As we get further from our

crossover, the mean TTR for MC is becoming smaller than the mean TTR for random.

The means of random and MMC continue remain statistically indistinguishable.

By Figure 4.10, we see that the median value for MC is lower than the median

values of both random and MMC in Trial 2. Furthermore, the 25th percentile, 75th

percentile, and maximum values of MC are lower than equivalent values for the other

two approaches.
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Figure 4.10: Box plot for m1 = 25, m2 = 25, C̄ = 25

Trial 3. Trial 3 was designed to continue to observe the behavior of the algo-

rithms as m gets even larger. The behavior proposed by Hypothesis 1 and observed

in Trial 2 should be continued and exaggerated in this trial.

Figure 4.11: 95% mean confidence interval for m1 = 50, m2 = 50, C̄ = 50

Figure 4.11 shows that MC improves over random, as the mean for MC is nearly

33% lower than the random mean. As m gets larger, we expect the mean of MC to

trend towards m+1
2

, while the mean of random should remain at exactly m. If there
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were no probability of choosing the same r values, the mean of MC would equal m+1
2

.

Instead, as m gets larger the probability of choosing the same r value decreases, which

brings the mean closer to m+1
2

.

Figure 4.12: Box plot for m1 = 50, m2 = 50, C̄ = 50

Figure 4.12 further demonstrates the growing difference between MC and the

random approach. According to the figure, the 75th percentile result from MC is

about on par with the median of the random. Also, the maximum value of MC is half

the maximum value of the random solution. As the probability of choosing the same

rate decreases, the guarantees provided by the algorithm while under DaSilva model

become the dominant factor.

Trial 4. Trial 4 demonstrates one of the simplest cases for MC when mi 6= mj.

In this trial, m1 = 25, m2 = 20, C̄ = 20, and C2 ⊂ C1. In this trial, there exist 20

unique solutions which contain rendezvous out of 25 · 20 = 500 possible outcomes.

Therefore, our analysis indicates E[TTR] is approximately 25.

Figure 4.13 confirms that our E[TTR] analysis can be accepted with 95% confi-

dence for all three algorithms. We would also expect that the maximum value would

be less for MC and MMC compared to random. As we can see in Figure 4.14 however,
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Figure 4.13: 95% mean confidence interval for m1 = 25, m2 = 20, C̄ = 20

this does not occur. As a base case for Hypothesis 4, we see that when C̄ is large

compared to m1 and m2, MMC does not outperform the other algorithms.

Figure 4.14: Box plot for m1 = 25, m2 = 20, C̄ = 20

Trial 5. Trial 5 is intended to stress the timeout function of MC and MMC

and test Hypothesis 3. In this trial, we set m1 = (m2)
2. This case is problematic

for the CRT due to the fact that each radio times out and changes rate values based
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on their local p values (2p steps for MC, 2p2 steps for MMC). When the number of

channels differs greatly, the radio with a smaller number of channels will reset its

sequence quickly compared to the radio with a larger number of channels. By the

analysis performed in Theorem 2, the radios must remain in their sequence for pl · ps

time steps to guarantee rendezvous.

Figure 4.15: 95% mean confidence interval for m1 = 25, m2 = 5, C̄ = 5

Figure 4.15 strongly refutes Hypothesis 3. In particular, Figure 4.15 demon-

strates that the mean value of MMC is statistically smaller than the mean value of

the other two algorithms with 95% confidence. The success of MMC in this trial

can be explained by the algorithm’s use of prime numbers between m and 2m, which

provides a larger set of p values to choose from.

As we can see from Figure 4.16, the median results of all three algorithms is

approximately equivalent. The percentile values for MC and the random approach

are nearly equal at every level. However, the 75th percentile and 100th percentile

values for MMC are quite a bit lower than the previous two.
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Figure 4.16: Box plot for m1 = 25, m2 = 5, C̄ = 5

Trial 6. Trial 6 is designed to test Hypothesis 2. It is also designed to further

analyze the behavior of the algorithms under the scenario discussed in Hypothesis 4.

In this trial, m1 = m2 and |C̄| = √
m1.

Figure 4.17: 95% mean confidence interval for m1 = 25, m2 = 25, C̄ = 5

According to Figure 4.17, the mean value of the random algorithm is statistically

smaller than the mean value of MMC with 95% confidence. Trial 6 seems to refute,

rather than support Hypothesis 4.
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Figure 4.18: Box plot for m1 = 25, m2 = 25, C̄ = 5

Figure 4.18 tells us that MC is beginning to perform rather poorly under this

trial. This behavior is expected under the analysis provided in the MC’s degenerative

case. According to the box plot, MMC performs almost exactly like random for this

trial.

Trial 7. Trial 7 is designed to examine the behavior of MC and MMC under

a combination of Trials 4, 5, and 6. For this trial, we set m1 = 25, m2 = 10, and

C̄ = 5.

Figure 4.19 confirms that the mean values of MC and MMC are statistically

smaller than the mean of the random algorithm. The figure also demonstrates that

the mean value of MMC in the trial was 10% smaller than the mean for the random

approach. Between the two figures, this trial indicates that MC and MMC perform

quite well compared to random in these mixed environments where m values differ

and not all spectrum is common.

Figure 4.20 clearly indicates that the performance of MC and MMC is faster

than random. The 25th, 50th, 75th, and 100th percentile values of the modular

algorithms are lower than the random percentile values.
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Figure 4.19: 95% Confidence Interval for m1 = 25, m2 = 10, C̄ = 5

Figure 4.20: Box plot for m1 = 25, m2 = 10, C̄ = 5

Trial 8. Trial 8 provides the final examination of the scenario discussed in

Hypothesis 4. In this trial, m1 = m2 = 25 and C̄ = 1. Mathematically, the expected

value of the trial would be 25·25
1

, or 625.

Figure 4.21 only tells us that the mean value of MC is statistically greater than

the mean values for random and MMC. Within 95% confidence, there is a very large

overlap between the mean confidence interval of the random approach and MMC.
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Figure 4.21: 95% Confidence Interval for m1 = 25, m2 = 25, C̄ = 1

Figure 4.22: Box plot for m1 = 25, m2 = 25, C̄ = 1

Figure 4.22 provides some unexpected information. The median value of the

random approach is smaller than the median value of the MMC, but the 75th per-

centile and 100th percentile values are larger for random than for MMC. Since the

random approach lacks the guarantees of the CRT, this is somewhat to be expected.

However, it is unexpected that random would perform better more than 50% of the

time.
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Hypothesis Results After Experiments

After analyzing the results of the 8 trials, we now revisit the hypotheses created

before the experiments were conducted.

1. When m1 = m2 < 9 and Ci = Cj, random performs better than both MC and

MMC. When m1 = m2 > 9 and Ci = Cj, MC will perform better than random

as m increases.

Result: confirmed. Trial 1 demonstrates that random had a lower mean TTR

for m < 9, MC had a lower mean TTR for m > 10, and the crossover point is

in the neighborhood of m = 9. As m values got larger in Trials 2 and 3, MC

performed as much as 33% better than the random approach.

2. For m1 > 9 and m2 > 9, if the prime value selected under MC by radio 1 is

equal to the prime value selected by radio 2 (p1 = p2) and neither C1 ⊆ C2 nor

C2 ⊆ C1, then MMC performs better than MC.

Result: confirmed. Trial 6 and Trial 8 demonstrate the MMC algorithm’s supe-

rior performance when MC is likely to be in its degenerative case.

3. When there exists a large difference between mi and mj, random should perform

better than MC and MMC.

Result: refuted. Under Trials 5 and 7, there was a large difference between m1

and m2. However, in both trials MMC performed better than random, and MC

performed as well or better. This tells us that the timeout function implemented

by the algorithm is not likely to cause either algorithm to perform badly.

4. When m1 > 9, m2 > 9 and m1 ≈ m2, as C̄ gets smaller, MMC should perform

better than random and MC.

Result: refuted. The results from Trials 3, 4, 6, and 8 provide us with mixed

results regarding this hypothesis. In some cases, the percentile values for MMC

were lower than the other two. However, at no point in any of those three trials

did MMC demonstrate that it clearly performed better.
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V. Conclusions

This chapter summarizes the research presented in this thesis. It re-states the

goals that went into developing the algorithms, and presents the results from

the algorithm analysis and simulation. Finally, some ideas for follow-on research are

proposed.

Research Goal

The goal of this thesis was to provide an efficient means to achieve spectrum

rendezvous under hostile system models. The solution would analyze current ap-

proaches to rendezvous and provide a solution which improved upon the expected

and guaranteed TTR under those models.

Research Conclusions

In very stable environments with a high percentage of common spectrum, the

modular clock algorithm offers a 50% improvement in expected TTR over random

channel visitation. In less stable environments, the modified modular clock algorithm

provides the same expected TTR as random channel visitation while also guaranteeing

rendezvous in θ(m2) time with very high probability. These algorithms could be

implemented using a layered approach, whereby the radio uses the modular clock

algorithm earlier in its attempt to achieve rendezvous, then later using the modified

modular clock or random visitation in the event that the modular clock algorithm

fails to achieve rendezvous by a certain time.

Using game theory to analyze the Blind Rendezvous problem is very difficult

due to the inability to observe the actions of the other players. However, game theory

is very useful in the development of pursuit-evasion models and strategies to avoid

jamming or other malicious activity.
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Research Significance

This thesis presents the first wide reaching summary of rendezvous problems

and solutions from a number of different contexts. The algorithms developed in this

thesis are designed to perform well in environments that would be problematic for

previously developed rendezvous algorithms. This thesis also formally defined many

common problem models from cognitive network literature. By understanding the

variables that significantly affect the problem models, more optimal solutions can be

created for difficult problem models.

Future Research

The modified modular clock algorithm is one method to avoid and handle degen-

erative cases in the original modular clock implementation, but the large gap between

the real number of channels and the prime number used causes the algorithm to

choose randomly for a very large portion of the time. Further research into the opti-

mal amount of prime numbers that should be available to the modified modular clock

algorithm could improve performance.

Furthermore, more research should be done to apply concepts from designing

cryptographic systems to the rendezvous problem. The problems of cryptography

and rendezvous are not all that dissimilar. The modular clock algorithm leverages

fundamental number theory to provide mathematical guarantees, much in the same

manner cryptography relies on the number theory to provide guarantees about who

is able to decode the traffic. Cryptography can also be handled through a variety of

asymmetric or symmetric means, depending on the problem formulation.

Game theory is a good approach to observe the interactions between decision

makers, but under the modular clock model there is little information in the spectrum

for the radios to leverage to make decisions. The symmetric rendezvous-evasion game

in this thesis gave an optimal mixed strategy for the pursuing player given the evading

players’ mixed strategy. However, the game did not consider the evading players’
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optimal mixed strategy given the pursuing player’s mixed strategy. These strategies

should be analyzed until a Nash Equilibrium mixed strategy is found that is optimal

for both sets of players.
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Appendix A. Simulation Source Code

This appendix provides the code used in generating the simulation data presented

in chapter 4.

Simple Radio Class

Listing A.1:

1 #include <stdio.h>

class Radio {

public:

6 int rate;

int m;

int p;

int position;

int offset;

11 int startChannel;

int endChannel;

int timeStep ;

Radio(int , int , int);

16

int advance ();

};

Listing A.2:

#include "radio.h"

2 #include <math.h>

Radio ::Radio(int chanStart , int numChannels , int startPos) {

startChannel = chanStart;
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m = numChannels;

7 position = startPos;

offset = position - chanStart;

endChannel = startChannel + m - 1;

if (position > endChannel) {

printf("Channel bound error. Setting position to ...

%i\n",endChannel);

12 position = endChannel;

}

p = 0;

rate = 0;

timeStep = 0;

17 }

int Radio :: advance () {

offset = fmod(( offset+rate),p);

position = offset + startChannel;

22 timeStep ++;

return(position);

}

Random Rendezvous

Listing A.3:

1 #include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include "radio.h"

6

unsigned int getSeed () {
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FILE *file = fopen("/dev/random", "r");

unsigned int temp;

fread (&temp ,4,1,file);

11 fclose(file);

return(temp);

}

int gcd(int a,int b) {

16 int c;

while (1) {

c = a%b;

if (c == 0) return b;

a = b;

21 b = c;

}

}

bool primeCheck(int x) {

26 for (int i = 2; i <= int(sqrt(x)); i++) {

if (gcd(i, x) > 1) return false;

}

return true;

}

31

int primeFind(int x, int bound) {

while (x < bound) {

if (primeCheck(x)) return x;

x++;

36 }

return 0;

}

int getArg(char *message) {

41 char inString [80];

printf("%s",message);
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fgets(inString , 79, stdin);

return(atoi(inString));

}

46

int main() {

int startChannel , numChannel , position;

51 startChannel = getArg("Enter radio 1 channel start range\n...

");

numChannel = getArg("Enter radio 1 number of channels\n");

position = getArg("Enter radio 1 starting position\n");

Radio radio1(startChannel , numChannel , position);

56 startChannel = getArg("Enter radio 2 channel start range\n...

");

numChannel = getArg("Enter radio 2 number of channels\n");

position = getArg("Enter radio 2 starting position\n");

Radio radio2(startChannel , numChannel , position);

61 srand(getSeed ());

int i = 0;

while (1) {

printf("At time %i, Radio 1 is at %i, Radio 2 is ...

at %i\n",i, radio1.position , radio2.position);

if (radio1.position == radio2.position) { printf("...

Rendezvous at t = %i\n on channel %i and %i\n",...

i,radio1.position , radio2.position); exit (0); }

66 radio1.position = (rand() % radio1.m) + radio1....

startChannel;

radio2.position = (rand() % radio2.m) + radio2....

startChannel;

i++;

}

}
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Modular Clock Rendezvous

Listing A.4:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

5 #include "radio.h"

unsigned int getSeed () {

FILE *file = fopen("/dev/random", "r");

unsigned int temp;

10 fread (&temp ,4,1,file);

fclose(file);

return(temp);

}

15 int gcd(int a,int b) {

int c;

while (1) {

c = a%b;

if (c == 0) return b;

20 a = b;

b = c;

}

}

25 bool primeCheck(int x) {

for (int i = 2; i <= int(sqrt(x)); i++) {

if (gcd(i, x) > 1) return false;

}
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return true;

30 }

int primeFind(int x, int bound) {

while (x < bound) {

if (primeCheck(x)) return x;

35 x++;

}

return 0;

}

40 int getArg(char *message) {

char inString [80];

printf("%s",message);

fgets(inString , 79, stdin);

return(atoi(inString));

45 }

int main() {

int startChannel , numChannel , position;

50

startChannel = getArg("Enter radio 1 channel start range\n...

");

numChannel = getArg("Enter radio 1 number of channels\n");

position = getArg("Enter radio 1 starting position\n");

Radio radio1(startChannel , numChannel , position);

55

startChannel = getArg("Enter radio 2 channel start range\n...

");

numChannel = getArg("Enter radio 2 number of channels\n");

position = getArg("Enter radio 2 starting position\n");

Radio radio2(startChannel , numChannel , position);

60

srand(getSeed ());
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radio1.rate = (rand() % (radio1.m - 2)) + 2;

radio2.rate = (rand() % (radio2.m - 2)) + 2; // Rates ...

need to be between 2 and m-1

65 radio1.p = 0; radio2.p = 0;

while (radio1.p == 0) {

radio1.p = primeFind(radio1.m,radio1.m*2);

}

while (radio2.p == 0) {

70 radio2.p = primeFind(radio2.m,radio2.m*2);

}

printf("R1: %i, P1: %i, R2: %i, P2: %i\n",radio1.rate , ...

radio1.p, radio2.rate , radio2.p);

int i = 0;

75 while (1) {

printf("At time %i, Radio 1 is at %i, Radio 2 is ...

at %i\n",i, radio1.position , radio2.position);

if (radio1.position == radio2.position) { printf("...

Rendezvous at t = %i\n on channel %i and %i\n",...

i,radio1.position , radio2.position); exit (0); }

if (radio1.timeStep > 2* radio1.p) {

radio1.timeStep = 0;

80 radio1.p = 0;

while (radio1.p == 0) {

radio1.p = primeFind ((rand() % ...

radio1.m) + radio1.m, radio1.m...

*2);

}

radio1.rate = (rand() % (radio1.m - 2)) + ...

2;

85 printf("Radio 1 timed out. New p: %i and ...

r %i\n",radio1.p, radio1.rate);

}

if (radio2.timeStep > 2* radio2.p) {
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radio2.timeStep = 0;

radio2.p = 0;

90 while (radio2.p == 0) {

radio2.p = primeFind ((rand() % ...

radio2.m) + radio2.m, radio2.m...

*2);

}

radio2.rate = (rand() % (radio2.m - 2)) + ...

2;

printf("Radio 2 timed out. New p: %i and ...

r %i\n",radio2.p, radio2.rate);

95 }

radio1.advance ();

radio2.advance ();

if (radio1.position > radio1.endChannel) {

printf("First radio between real and prime...

at %i\n", radio1.position);

100 srand(getSeed ());

radio1.position = (rand() % radio1.m) + ...

radio1.startChannel;

}

if (radio2.position > radio2.endChannel) {

printf("Second radio between real and ...

prime at %i\n",radio2.position);

105 srand(getSeed ());

radio2.position = (rand() % radio2.m) + ...

radio2.startChannel;

}

i++;

110 }

}
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Modified Modular Clock

Listing A.5:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

4 #include <time.h>

#include "radio.h"

unsigned int getSeed () {

FILE *file = fopen("/dev/random", "r");

9 unsigned int temp;

fread (&temp ,4,1,file);

fclose(file);

return(temp);

}

14

int gcd(int a,int b) {

int c;

while (1) {

c = a%b;

19 if (c == 0) return b;

a = b;

b = c;

}

}

24

bool primeCheck(int x) {

for (int i = 2; i <= int(sqrt(x)); i++) {

if (gcd(i, x) > 1) return false;

}

29 return true;

}
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int primeFind(int m) {

int i = 0;

34 int primeArray[m];

for (int j = m; j < 2*m; j++) {

if (primeCheck(j)) {

primeArray[i] = j;

printf("Array %i is %i\n",i, j);

39 i++;

}

}

srand(getSeed ());

int randPrime = rand() % i;

44 printf("Chose element %i, or %i\n",randPrime ,primeArray[...

randPrime ]);

return primeArray[randPrime ];

}

int getArg(char *message) {

49 char inString [80];

printf("%s",message);

fgets(inString , 79, stdin);

return(atoi(inString));

}

54

int main() {

int startChannel , numChannel , position;

59 startChannel = getArg("Enter radio 1 channel start range\n...

");

numChannel = getArg("Enter radio 1 number of channels\n");

position = getArg("Enter radio 1 starting position\n");

Radio radio1(startChannel , numChannel , position);
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64 startChannel = getArg("Enter radio 2 channel start range\n...

");

numChannel = getArg("Enter radio 2 number of channels\n");

position = getArg("Enter radio 2 starting position\n");

Radio radio2(startChannel , numChannel , position);

69 srand(getSeed ());

radio1.rate = (rand() % (radio1.m - 2)) + 2;

radio2.rate = (rand() % (radio2.m - 2)) + 2; // Rates ...

need to be between 2 and m-1

radio1.p = 0; radio2.p = 0;

74 while (radio1.p == 0) {

radio1.p = primeFind(radio1.m);

}

while (radio2.p == 0) {

radio2.p = primeFind(radio2.m);

79 }

printf("R1: %i, P1: %i, R2: %i, P2: %i\n",radio1.rate , ...

radio1.p, radio2.rate , radio2.p);

int i = 0;

while (1) {

84 printf("At time %i, Radio 1 is at %i, Radio 2 is ...

at %i\n",i, radio1.position , radio2.position);

if (radio1.position == radio2.position) { printf("...

Rendezvous at t = %i\n on channel %i and %i\n",...

i,radio1.position , radio2.position); exit (0); }

if (radio1.timeStep > pow(radio1.p,2)) {

radio1.timeStep = 0;

radio1.p = 0;

89 while (radio1.p == 0) {

radio1.p = primeFind(radio1.m);

}
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radio1.rate = (rand() % (radio1.m - 2)) + ...

2;

printf("Radio 1 timed out. New p: %i and ...

r %i\n",radio1.p, radio1.rate);

94 }

if (radio2.timeStep > pow(radio2.p,2)) {

radio2.timeStep = 0;

radio2.p = 0;

while (radio2.p == 0) {

99 radio2.p = primeFind(radio2.m);

}

radio2.rate = (rand() % (radio2.m - 2)) + ...

2;

printf("Radio 2 timed out. New p: %i and ...

r %i\n",radio2.p, radio2.rate);

}

104 radio1.advance ();

radio2.advance ();

if (radio1.position > radio1.endChannel) {

printf("First radio between real and prime...

at %i\n", radio1.position);

srand(getSeed ());

109 radio1.position = (rand() % radio1.m) + ...

radio1.startChannel;

}

if (radio2.position > radio2.endChannel) {

printf("Second radio between real and ...

prime at %i\n",radio2.position);

srand(getSeed ());

114 radio2.position = (rand() % radio2.m) + ...

radio2.startChannel;

}

i++;

}
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119 }
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