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ABSTRACT 

Validation of safety-critical software requirements is a difficult and 

frequently misunderstood task. It answers the question of “are we building the 

right product?” and is essential to Software Engineering. However, validation is 

often confused with verification activities, or simply left as a final tick-in-the-box 

just prior to delivery. Current models for validation cannot satisfy the unique 

aspects of safety-critical software where “building the right safety product” is 

paramount. Software safety requires a new model for validation of safety 

requirements by proxy. The need for a proxy model becomes evident in the 

software safety process, where customer input for safety is reduced to the 

requirement of “a safe system.” 

This thesis defines a new proactive model for validation of safety-critical 

software requirements. Continuous assessment of validity of safety requirements 

is indicated by metrics as part of the Validation Metrics Framework. The generic 

framework combines the Goal/Question/Metric Approach with Goal Structuring 

Notation and then specializes in validation of safety-critical software. The metrics 

are measurements of safety products typical to safety-critical software 

development programs. A fictitious case study of a Rapid Action Surface to Air 

Missile is used to apply the framework, identifying the benefits of a proactive, 

indicative, validation technique utilizing a metrics framework. 
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I. INTRODUCTION 

Not everything that can be counted counts, and not everything that 
counts can be counted.  

    — Albert Einstein 

A. OVERVIEW 

As software engineers endeavor to design and build increasingly complex 

software systems, development and management techniques require 

commensurate levels of research to sufficiently cater for these increases. The 

role of software in safety-critical systems continues to grow in varying industries 

and applications; however, the tools used for necessary risk mitigation and 

management are lacking. Safe software is paramount in the defense industry, as 

large-scale weapon systems have the most potential for catastrophic unintended 

consequences. Ensuring that software functions do not contribute to system 

hazards in an unintended manner is largely an exercise of validation—identifying 

correct requirements to sufficiently mitigate hazardous situations. The problem 

addressed by this research is that of identifying invalid requirements for software 

safety. Metrics acting as indicators for validity of software safety requirements 

engender a proactive approach to investigation and identification of potentially 

invalid requirements. 

Measuring the safety of software-intensive systems has only recently been 

investigated. There are currently no tools in existence for measuring the validity 

of software safety requirements. Metrics that indicate the validity of software 

safety are needed to cope with modern day safety-critical systems. 

Validation of software safety requirements necessitates a new model of 

validation. Chapter III proposes a new model for validation of safety 

requirements, focussing on sufficiency of hazard identification, hazard analysis, 
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and software safety requirements traceability, as a proxy for validation. This 

model forms the core of the proposed Validation Metrics Framework. 

At present very little information exists on the use of metrics for the 

purpose of measuring safety. Even less, if any, information can be obtained on 

metrics for validation. Discussion on what validation metrics are, and how best to 

use them, is given throughout this thesis. By combining two popular software 

development tools (GQM and GSN) we have created a goal-based framework 

identifying a core set of metrics to aid in validating software safety requirements 

of safety-critical software-intensive systems.  

The research and development of this thesis has resulted in a metric 

framework for validation of safety-critical software-intensive systems. There is 

currently no notion of validation metrics in open literature, much less a framework 

identifying purpose, application, and boundaries of the metric set. 

Chapter II provides background information necessary to understand the 

context and overall direction of this thesis. It analyzes the current environment of 

software validation and identifies the gaps that exist when considering safety-

critical software. This chapter defines the problem to be resolved. 

Chapter III further explores the concept of validation of software safety 

requirements, identifying a new validation model. This chapter introduces a 

framework for validation metrics. It also introduces the core building-block of the 

framework—the Goal/Question/Metric (GQM) process for systematically 

identifying metrics. 

Chapter IV details the development of the metric framework. The 

combination of GQM and Goal Structuring Notation (GSN) results in a hybrid 

goal-driven metric derivation specification language. Discussion of the purpose 

and boundaries of the framework is also given. The framework goal structure is 

developed along with questions and subsequent metrics. This chapter presents 

the proposed Validation Metrics Framework. 
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Chapter V investigates application of the Validation Metrics Framework 

through case study. The case study uses the Rapid Action Surface-to-Air Missile 

System (RASAM) as a representative fictitious safety-critical software-intensive 

system.  

Chapter VI discusses the results of the Validation Metrics Framework and 

future work needing to be undertaken to further its utility and application. 
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II. BACKGROUND 

A. INTRODUCTION 

As software complexity continues to increase in major defense systems, 

conveyance of stakeholder requirements, development to these requirements, 

and validation of these requirements has become exceedingly more difficult. This 

rate of growth in difficulty seems to be disproportionate to the techniques and 

methods that are used to ensure that the systems are developed to customer 

requirements and expectation. Safety-critical software-intensive systems require 

significant verification to ensure that they function as per requirements. 

Verification is only one portion of ensuring systems function correctly and is 

typically a well defined activity for software development. Validation is the other 

portion of ensuring that software is developed to the customer’s satisfaction; 

however, is not so well defined. In the U.S. more software projects are cancelled 

due to incomplete requirements than any other factor.1 Verification does not 

address this shortfall. Validation is the key tool to ensuring stakeholder 

requirements are sufficiently explored and met by the developed product. 

Software metrics have typically been applied in the verification dimension 

because software validation was not well defined or understood. As software 

validation grows in maturity, so does its definition, tools, and techniques, 

including means for measuring the validation activity, its outputs, and impact on 

development. Software metrics are measurements of quality in product, project 

or process. They are used to make informed decisions about a particular aspect 

of a software project. Without measurement, there is no control. To effectively 

control software validation, it needs to be measured and presented through 

metrics. 

                                            
1 The Standish Group CHAOS Report, 1995. 
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This chapter provides the background information necessary for the 

following research. It identifies key definitions for safety-critical software-intensive 

systems, metrics, validation, and validation metrics, all necessary for 

understanding the context of this thesis. The current problem with validation will 

be described and the focus of this thesis will be defined. 

B. SAFETY-CRITICAL SOFTWARE-INTENSIVE SYSTEM 

1. Definition 

MIL-STD-882D [1] defines safety as “Freedom from those conditions that 

can cause death, injury, occupational illness, damage to or loss of equipment or 

property, or damage to the environment.” 

Further, it also defines safety-critical as “A term applied to a condition, 

event, operation, process, or item of whose proper recognition, control, 

performance or tolerance is essential to safe system operation or use.” 

The Joint Services Software System Safety Handbook [2] defines safety-

critical computer software components as “Those computer software 

components and units whose errors can result in a potential hazard or loss of 

predictability or control of a system.” 

In general terms, safety-critical software is software whose function either 

directly or indirectly influences a hazard or hazardous situation. 

A software-intensive system is “a system where software represents a 

significant segment in system functionality, cost, development risk, or 

development time.” [3] 

Safety-critical software-intensive systems are those software-based 

systems that control, or provide input to, safety-critical (hazardous) applications.  
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2. Overview 

Safety-critical software-intensive systems are becoming ubiquitous. Most 

modern aircraft are safety-critical software-intensive systems, as are many 

nuclear power stations, modern automotive systems, and even pre-tensioners on 

seatbelts. They rely on software for safe operation. Software systems are also 

continually growing in complexity at an increasing rate. Examples of this 

increasing complexity can be found in many modern day weapon systems that 

rely on a system-of-systems implementation to function. The web of relationships 

between individual systems comprising the complete system-of-systems 

becomes difficult to understand and analyze and will result in emergent behavior 

not considered in the stand-alone system. The safety-criticality of the software 

used in these systems can be overlooked, because software itself is not 

hazardous. Software is virtual—it cannot cause death, injury, occupational 

illness, damage to or loss of equipment or property, or damage to the 

environment. However, software is often directly responsible for the actions of 

hardware that can have unsafe effects. 

Safety is a system property. Software cannot be analyzed for safety 

independent of the physical system it will control or influence. Even in the case of 

a pure software system, safety-critical decisions could be made based on the 

data it presents. Safety still remains a property of the system. Therefore, safety-

critical software must be analyzed in the context of a software-intensive system.  

C. VALIDATION 

1. Definition 

IEEE Std 1012-2004 [4] defines validation as: 

the process of providing evidence that the software and its 
associated products satisfy system requirements allocated to 
software at the end of each life-cycle activity, solve the right  
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problem (e.g., correctly model physical laws, implement business 
rules, use proper system assumptions), and satisfy intended use 
and user needs. 

A more generic definition of validation is “the steps and the process 

needed to ensure that the system configuration, as designed, meets all 

requirements initially specified by the customer.” [5] 

The latter definition allows for more flexibility in the interpretation of 

validation; it answers the question of “Are we providing what the customer 

wants?” However, both definitions assume the existence of correct requirements 

and focus on the concept of building the right product as defined by these 

requirements. 

2. Overview 

Software validation has always been problematic in software engineering. 

Unlike many other engineered products, software often cannot be visualized, 

thus, in many cases, resulting in software validation being a reactive last minute 

process. It is hard for validation to be a continuous process throughout 

development as with many physical systems when there is no physical product to 

monitor. The ultimate validation of software systems is effectively the operational 

evaluation of the system by the user, and often this is where validation of the 

system is relegated. The IEEE definition lends itself to this approach as it focuses 

on the satisfaction of requirements through testing. Quite simply, validation of 

software has not had the same rigorous research and development of processes 

as other areas of software engineering, particularly verification. A simple search2 

of the IEEE Xplore database for articles with software and validation in the 

abstract reveals sixty articles. The same search for software and verification 

shows 110 articles. Validation is a relatively misunderstood process. As a result 

of this, of the sixty articles found, roughly 30% address the essence of validation 

                                            
2 IEEE Xplore Database, accessed 07 Jun 2008. 
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as discussed below.3 Most of the articles mistakenly combine verification and 

validation as one element, term verification as validation, or confuse assurance 

and quality activities as validation. Although this is a very simplified example, it 

does help to portray the seriousness of what is a critical aspect of software 

engineering.  

The software engineering discipline has become competent in the area of 

verification. We can build portions of systems to their applicable specifications 

with relative success. However, we still build systems that do not meet 

customer’s expectations and requirements. One of the key tools to address this 

situation is validation. Significant efforts afforded to software validation are now a 

priority for software engineering. More proactive, rather than the typical reactive, 

solutions are being sought. The IEEE definition of validation indicates that it is a 

process to be carried out at the end of each phase (or lifecycle activity); however, 

this should only be the finalization, or completion, of validation. The validation 

process should be a proactive and continuous process to be carried out prior to, 

and in parallel with, the development and verification activities with closure at the 

end of each phase. 

Although validation focuses on ensuring that initial customer requirements 

are met, there is more to validation than meets the eye. Validation is required 

whenever a requirements derivation process occurs (i.e., a translation of 

requirements from one domain to another). An example of this is taking a 

customer’s requirements in their natural language and translating them into a 

specification. The specification needs to be validated to ensure that it maps back 

to the cognitive understanding of the stakeholders who originally supplied the 

requirements [6]. To ensure the traceability of products for validation, the 

validation process is ongoing throughout the development cycle whenever this 

translation of requirements takes place. Any higher-level requirement being 

                                            
3 Thirty percent is an optimistic estimate. Roughly 10 of the 60 articles did not concern 

validation of software; rather they addressed validation of hardware systems through the use of 
software models. 
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translated to a lower-level requirement requires a validation process to ensure 

that the products of the lower-level requirements are indeed valid. In contrast, 

verification is defined as “The process of evaluating a system or component to 

determine whether the products of a given development phase satisfy the 

conditions imposed at the start of that phase. [7] 

The key difference between validation and verification is that verification 

simply ensures that requirements for a given phase are met. Validation ensures 

that overall customer requirements (i.e., customer expectations) are met. There 

is somewhat of an overlap in validation and verification processes, particularly 

when considering either process in the “middle-levels” of abstraction. They are in 

fact processes orthogonal to one another. In its purest form, validation ensures 

that customer expectations are met; failure to meet these expectations 

(assuming they are constant throughout the project) indicates a failure in the 

validation process. Figure 1 shows graphically how verification and validation 

contrast. 

 
Figure 1.   The Verification and Validation Process 
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The end-result of any validation process should be actionable data 

presented as feedback to the many different customers, or stakeholders, of the 

system. This effectively creates a feedback loop from any stage in the 

development process that allows the customer to clarify their expectation of 

system behavior. 

D. METRICS 

1. Definition 

IEEE Std 610.12-1990 [7] defines a metric as “a quantitative measure of 

the degree to which a system, component or process possesses a given 

attribute.” 

Further, a software quality metric is “A function whose inputs are software 

data and whose output is a single numerical value that can be interpreted as the 

degree to which the software possesses a given quality attribute. [7] 

Software metrics are therefore quantitative measurements of either 

product (system or component), process, or even project (in this case software 

projects) indicating the quality of a desired attribute. However, software metrics 

can be concerned with more than just quantitative measurements. Since we are 

measuring quality of product, process, or project, qualitative aspects must be 

considered. Metrics can also be qualitative in nature. 

2. Overview 

For the purpose of this thesis, metrics are measurements of quality. In 

most well established engineering disciplines candidate measurement attributes 

are well understood. Software engineering is one of the disciplines outside of the 

“most” category. Software engineering is a young engineering discipline and as 

such does not have the hundreds of years of empirical scientific foundation as 

other core engineering disciplines. Partly due to this fact, many measures of 

software are not well understood or are ill-defined.  
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Measurement: 

in the most general sense, is the mapping of numbers to attributes 
of objects in accordance with some prescribed rule… The mapping 
must preserve intuitive and empirical observations about the 
attributes and entities [8]. 

Empirical observation requires experimentation. Therefore, strictly 

speaking, for a software metric to be valid it must be based on empirical 

observation through experimentation, whether qualitative or quantitative. 

Often with software development, the single best metric is sought. Given 

the above definitions, such an approach comes across as foolish. An engineered 

product cannot be properly understood purely through the application of one 

measurement. A single software metric can only present a single view of a 

software product. Multiple metrics are required to sufficiently understand a 

product or process. Knowing a car’s weight gives no indication of overall 

performance, it is only one piece of the picture. It is also possible that the 

gathered metric does not answer a question of interest or provide any decision-

support value. The same is true for software. 

Many definitions of metrics require them to be quantitative. However, 

many qualitative measures of product, process, or project are also valid. 

Consider a fast car. The “fast” attribute indicates its relative quality. It is a 

qualitative metric, understood in a qualitative manner. Qualitative metrics are 

relative to some quantitative measure; however, exact position on the 

quantitative scale may not be possible with the given data due to the use of a 

weak ordering. A qualitative metric still provides relevant indication of quality. 

This is an important aspect of metrics for software since the abstract nature of 

software can often preclude quantitative measures of certain quality attributes. 
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E. VALIDATION METRICS 

1. Overview 

Many of the metrics currently used in software engineering focus on 

verification aspects of the software process or product. These metrics are 

concerned with measurements that ensure requirements for particular phases 

are met. Metrics such as fault density, test coverage, etc., are typically used for 

verification purposes as they focus on given requirements. Just as there are 

measurements for all different aspects of a physical machine—metal density, 

fatigue rating, size, safe working load, etc.—software products need to be 

described through different types of metrics. Validation metrics are 

measurements of product from the aspect of fulfilling customer requirements and 

expectations. 

Validation metrics must focus on measurements that can be used for the 

validation process. Since validation is concerned with ensuring that the 

customers requirements and expectations are met (building the right product), 

validation metrics should tie back to the most abstract requirements in some way. 

In essence, validation metrics should provide measures of software quality, 

indicating the fulfillment of customer requirements, to the customer as actionable 

data. Verification metrics and validation metrics should be complimentary, i.e., 

they should both contribute to the overall understanding of the system, but they 

will focus on distinctly different aspects of the system. 

According to Munson [8], measurements can be divided into two 

categories for software engineering: primitive and derived. Primitive metrics are 

presupposed by no other, they are direct measurements of product attributes. 

There are no assumptions made by primitive metrics to arrive at their result. On 

the other hand, derived metrics are those that are not direct measurements. They 

are derived from assumptions or a combination of metrics. McCabe’s Cyclomatic 

Complexity is an example of a derived metric. Although the underlying attributes 

of Cyclomatic Complexity (number of edges, nodes and connected components) 
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are primitive metrics (although in a virtual sense), the end result (Cyclomatic 

Complexity) is a derived metric. Caution must be taken when dealing with 

derived metrics. In a sense, the adage of “adding apples to oranges” is of 

concern. Because many primitive metrics of software will be based on something 

that is not physical, it can be quite tempting to combine primitive metrics that may 

in fact have no relationship. As validation metrics will typically be more abstract 

than verification metrics, in the sense that the validation of the metric itself relies 

on abstract software artifacts, this issue must be sufficiently managed. Derived 

validation metrics require significant forethought and analysis to ensure that they 

do not portray invalid measurements. 

F. RELATED WORK 

As discussed above, software validation has not been afforded the same 

levels of research and development as many other aspects of software 

engineering. As such, there is little literature addressing the concept of validation 

metrics. In fact, an extensive search of the ACM and IEEE Xplore databases 

revealed no published literature on metrics for the purpose of validation. The 

following paragraphs, however, detail some of the more recent advances on 

metrics and validation that aid in the formation of a validation metrics framework. 

1. Metrics 

Whalen, Rajan, Heimdahl, and Miller [9] present a new coverage metric 

for requirements-based testing. They define the Unique First Cause (UFC) metric 

that determines coverage of high-level formal requirements. The method utilized 

allows for automatic generation of test cases based on high-level requirements, 

and a by-product of these test cases is the coverage metric. Whalen et al. claim 

that the UFC metric provides “objective, implementation-independent measures 

of how well a black box test suite exercises a set of requirements.” 

The results of the case study are encouraging, and the independence of 

implementation would aid in the overall independent verification aspect of many 
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safety-critical systems. However, Whalen et al. claim that the metric “integrates 

and crosschecks several of the verification and validation activities.” 

Although the metric is certainly useful for verification, there is no indication 

that it provides actionable data back to the customers and stakeholders based on 

their requirements. It does link back to the highest-level formal requirements, 

remaining independent of any implementation-specific requirements, but does 

not make the necessary link back to customer requirements for it to be 

considered validation at the highest level. The translation from user 

documentation detailing their requirements and expectations to the formal 

requirements indicates that there is still a gap to be bridged back to the highest-

level requirements. 

Tasiran and Keutzer [10] detail a number of different coverage metrics for 

the use of functional validation of hardware design. They provide an extensive list 

of coverage metrics that can be used for software simulation models of hardware 

designs. By utilizing software simulations Tasiran and Keutzer claim that 

“Coverage metrics ensure the optimal use of simulation resources, measure the 

completeness of validation, and direct simulations toward unexplored areas of 

the design.” 

The context of this “validation” needs to be explained to fully understand 

why this form of validation may be applicable to hardware design in this domain, 

but generally not for software-intensive systems. There is a distinct difference 

between most customers of commercially developed hardware and safety-critical 

software-intensive systems. Essentially, for the hardware systems that Tasiran 

and Keutzer are dealing with, the customers are the developers. There may be a 

level of independence within their organization, however the organization as a 

collective ultimately decides upon the behavior of the hardware and how it will be 

designed. The domain barrier between customer and developer is somewhat 

blurred and it is likely that the customer, in this context, is able to “speak” in the 

language of the developer. There is no major language translation; therefore, 

formal software models of the hardware products do provide actionable data 
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back to the customer when utilizing common software verification metrics. The 

same is not true for most safety-critical software-intensive systems. Any models 

of the software-intensive systems that are to be used for validation must be 

sufficiently abstract such that the customers and stakeholders are able to 

understand and act upon data directly from that model. 

The metrics that Tasiran and Keutzer present are in fact the typical 

verification metrics used throughout the software development process. As with 

the Whalen et al. paper, these metrics do not provide customers and 

stakeholders of safety-critical software-intensive systems with actionable data 

based on their requirements. 

2. Validation Models 

Pingree et al. [11] expand on current software modeling techniques for the 

validation of mission-critical software design and implementation by focusing on 

software models consisting of statecharts.  The process provides an independent 

understanding of the system being designed by creating a statechart 

specification from which all “validation” steps are taken. In effect, the statechart 

specification acts as a reference model for the remaining development. Through 

this method, Pingree et al. claim, “we are now able to specify and validate 

portions of mission critical software design and implementation using exhaustive 

exploration techniques.” 

However, there is no mention of feedback to the customers and 

stakeholders. Statecharts provide a necessary higher layer of abstraction for 

complex systems, but the focus on this technique is model correctness, not 

customer feedback, (i.e., validation). It serves as a model for validation in the 

following phases of development, and does aid in presenting a model that 

customers and stakeholders are more easily able to comprehend; however, the 

customer feedback portion is still not clearly identified. Rather than using 

traditional testing techniques to verify the design once the product is complete, a 

pro-active approach is being taken to ensure that the developer’s understanding 
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of the design is correctly implemented (essentially building the right product from 

the designer’s point of view through to the implementation) and that no critical 

design errors are made. Design errors in this sense focus on correctness through 

exhaustive model exploration, not necessarily building “the right product.” This 

technique still has a high level of focus on building “the product right,” i.e., 

verification. 

Drusinsky et al. [6] present a framework for computer-aided validation for 

use by Independent Validation and Verification (IV&V) teams. This technique 

focuses on an executable System Reference Model (SRM) using formal 

assertions to specify mission and safety-critical behaviors. The SRM is 

independent of the actual system under development and the focus of the paper 

is on the IV&V team as the customer, or stakeholder, for validation purposes. It is 

a pro-active approach to ensuring the IV&V team has a firm understanding of the 

desired system behavior both prior to and during development of the system. 

Drusinsky et al. state:  

The IV&V team’s independent requirements effort should develop a 
description of the necessary attributes, characteristics, and qualities 
of any system developed to solve the problem and satisfy the 
intended use and user needs. The IV&V team must ensure that 
their cognitive understanding of the problem and the requirements 
for any system solving the problem are correct before performing 
IV&V on developer-produced systems. 

Hence, the focus of this technique is on customer and stakeholder 

requirements. The SRM consists of use cases, Unified Modeling Language 

(UML) artifacts and formal assertions derived from the user requirements to 

describe the behaviors of the system. By focusing on the UML artifacts and high-

level use cases, the IV&V team is ensuring that customer requirements are 

central to developing their understanding of the system through statechart 

assertions. The assertions are created from reified high-level user requirements 

and implemented in code to assess predictions of how the system should and 

should not behave. Thus, there is a one-to-one mapping between each reified 
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user requirement and its corresponding assertion. This approach allows not only 

the IV&V team to validate the model of requirements, but also the requirements 

posed by the stakeholders. 

This technique assists in validation primarily from the perspective of the 

IV&V team. Validation from the different customer and stakeholder perspectives 

can vary depending on their level of involvement in development and 

understanding of different techniques used. However, the framework does form a 

firm grounding for subsequent validation metrics for IV&V and will also contribute 

for validation metrics for other customer and stakeholder domains. Providing 

metric data back to the customers and stakeholders through use of the SRM 

approach will further ensure that the validation loop is correctly carried out. 

G. THE PROBLEM 

Safety-critical software-intensive systems are becoming increasingly 

complex as technical boundaries are overcome and each prior level of 

complexity (in terms of functional dependencies, relationships and difficulty of 

requirements validation) is better understood. However, with each increase in 

engineering ability comes further complexity and potential ambiguity between 

customers/stakeholders and developers, which is currently not being sufficiently 

dealt with. Validation is the key tool for ensuring that systems are developed in 

accordance with the requirements of customers and stakeholders. Validation is 

only one tool for battling the complexity issue by ensuring that “the right product 

is built.” However, how do we measure the effectiveness of validation, or provide 

metrics to aid in the validation process? Very little, if any, research exists for the 

application of metrics for validation purposes. Without metrics for validation, 

estimates of success are very subjective. Software engineering requires that as 

little subjectivity as possible be introduced when dealing with the validation of 

safety-critical software-intensive systems—validation metrics are one tool for 

reducing that subjectivity. Metrics as feedback to customers and stakeholders 

are essential in ensuring that the system is correctly understood, particularly in 
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hazardous applications. Combined with proactive validation techniques (rather 

than using operational evaluation as the “tick-in-the-box”), such as the SRM 

approach, validation metrics will aid in the validation process to increase the 

likelihood of successful development of the right software-intensive systems. 

Software safety in itself is highly subjective in nature when considering 

validation. Often the safety of a system cannot be tied back to customer 

expectations or requirements, other than the fact that they wish to have a safe 

system. Traceability and validity of software safety requirements requires a 

different approach to validation than the traditional matching of system 

specification to customer expectations and requirements. 

The following chapters will detail measurable characteristics of the 

validation process for safety-critical software-intensive systems and present 

guidelines for a validation metrics framework. The goal of this framework will be 

to provide actionable data to customers and stakeholders for the purpose of 

validating safety artifacts. 
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III. VALIDATION METRICS FRAMEWORK ANALYSIS 

A. INTRODUCTION 

The previous chapter introduced the concept of validation metrics and 

provided the background information necessary to understand the scope of this 

thesis. This chapter will further analyze the validation metric concept to 

determine required characteristics and define the objectives of a framework 

necessary to identify applicable existing metrics or the characteristics of new 

metrics. Artifacts suitable for feedback to the necessary stakeholders will also be 

examined as part of the framework. The chapter will focus on safety-critical 

software-intensive systems. However, development of a framework for validation 

metrics is not limited to this scope. 

B. VALIDATION AUDIENCE 

To successfully analyze and define the characteristics that a validation 

metrics framework must possess, a more in-depth look at validation is required. 

The previous chapter detailed the broad concept of validation; however, there is 

again more to be realized, particularly when considering the intended validation 

audience. 

1. Relevance of Data 

As mentioned previously, validation is mandatory whenever a 

requirements translation process takes place. A validation process is successful 

when a reverse-translation of requirements occurs, and the originator of the 

requirements can validate the subsequent artifact(s). This typically takes place by 

the originator testing the resulting product of the translation and observing 

system behavior. An important key aspect of validation is that it is not restricted 

to the highest level of stakeholders. Indeed a validation process can, and should, 

be applied for every level of translation. However, as the requirements and 
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design are translated further and further from the original stakeholders’ domain, 

the more perplexing and foreign they become. This is one of the key difficulties in 

using formal methods4 as the sole vehicle for conducting validation. The intended 

users and high-level stakeholders cannot understand the language in which the 

system is being portrayed. Instead, relevant data needs to be extracted and 

presented to the users and high-level stakeholders in simple terms and in the 

language of their domain. Therefore, for any validation technique, relevance of 

data must be determined. The output of a validation metrics framework must 

allow for data to be presented to the intended audience in a meaningful and 

relevant manner. 

2. Users and Stakeholders 

In the previous chapter, validation was presented in terms of customers 

and stakeholders. In reality, customers and stakeholders can be more clearly 

defined as users and stakeholders. Users concerned with the validation of a 

safety-critical software-intensive system are primarily the recipient of the system, 

with pre-determined expectations based on their conveyed requirements. They 

are usually easily identifiable and are the ultimate “validator” of the system. 

However, the realm of stakeholders can be difficult to bound and can be involved 

at many levels of system development. In this thesis, stakeholders can be 

defined as “other than user.” Essentially every person involved in the 

development of the system is a stakeholder. Therefore, stakeholder requirements 

and expectations will also have a validation aspect to them, which will not 

necessarily be the same as that of the user. Based on this, an addition to Figure 

1 is required to more accurately reflect validation. This line of thought is 

equivalent to that used in Barry Boehm’s WinWin Spiral Process Model [13], 

whereby different stakeholders are identified for different levels of development. 

Particularly in the case of contractor developed software-intensive systems, a 

                                            
4 Mathematically based techniques for describing system properties. For more information 

see [12].  
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validation process is required from one development domain to another. Users 

will often be involved at the lower levels of development, with corresponding 

relevant data, but to ensure traceability of high-level requirements to design and 

validation of these requirements, validation steps must be carried out against 

each intermediate level of requirements. Figure 2 shows the additional validation 

pathways that can occur throughout the development of a software-intensive 

system. In this figure, it is shown that users/stakeholders are not always 

concerned with the “middle” levels of development; instead, this is left to the 

domain of developers (whom are also stakeholders as per the WinWin model). 

Speci-
fication

Requirements 
Process

Validation Process

Users/
Stakeholders

Lower-
Level 
Speci-
fication

Product

Validation Process

Verification ProcessVerification Process

Development Development

Validation Process Validation Process

Engineer Engineer

 
Figure 2.   Modified Verification and Validation Process 

 
From the above diagram, it is clear that validation metrics must not only be 

applicable to the users of the system, they must also be relevant to the 

stakeholders of the system. One metric cannot satisfy all the requirements of 

users, auditors, project managers, developers, regulatory bodies, etc. Different 

aspects of product, process and project will be relevant to different people. As 

per the previous section, relevance of data is a key attribute for developing 
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validation metrics. Now armed with a more thorough understanding of validation, 

where it exists, how it can be used, and who uses it, a framework for identifying 

and developing suitable metrics can be more readily defined.  

3. Intended Audience 

The validation audience does not necessarily include all stakeholders of a 

system. Instead, the validation audience is comprised of those stakeholders 

concerned with ensuring that requirements are correct, according to user 

expectations. This statement in itself is subjective, and often the definition of 

stakeholder can become unbounded as everybody attempts to obtain a stake in 

the system design. However, to bound the scope to a somewhat realistic 

manner, Figure 3 shows a use case diagram for the possible users of a validation 

metrics framework. The Mission Assurance team displayed below is a broader 

group than simply the V&V team as it includes all stakeholders concerned with 

assurance of the system (V&V, IV&V, Auditors, etc.). Operators and owners are 

those referred to as users or customers in previous sections. 
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Figure 3.   Validation Metrics Framework Users 

 

The target audience of this Validation Metrics Framework will be the 

Safety Engineering team (shown in bold). Although the framework will be 

applicable to the other users and stakeholders shown, it will be tailored in this 

instance to the safety engineering team’s domain. Actionable data arising from 

the framework will be primarily specific to the safety engineering team’s scope, 

based on user and stakeholder input in the form of use cases, high-level 

requirements documents, and potentially user feedback on the artifacts produced 

from the framework. However, ultimately validation ends with the operators and 

owners of the system; therefore the safety engineering team will effectively act as 

a proxy for the framework—the metric data must also reveal safety aspects of the 

system to the owners and operators. Developing a framework to a much broader 

application of validation could result in inadequate explanation for application to 

real world scenarios, and therefore will be pursued as future work after 
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successful definition and application in the safety engineering domain. The 

Mission Assurance team (also shown in bold) will effectively be the appliers of 

the framework. They will be responsible for obtaining the metrics data on behalf 

of the safety engineering team. 

C. THE REALITY OF VALIDATION 

Up to this point, validation has been described in idealistic terms. In 

reality, validation cannot exist as an isolated entity. To validate a system requires 

more than just carrying out a “validation” procedure. Validation is essentially the 

culmination of many other development processes. Although it is possible to 

perform these other processes (verification, requirements analyses, etc.) without 

addressing validation, the reverse is not true. Essentially all of these processes, 

including validation, comprise software assurance. By showing that best 

practices for the development of software have been used, and safety of the 

system can be sufficiently argued, the confidence that can be placed in validation 

is increased. A higher level of software assurance assumes a higher integration 

of validation; however, it is often not addressed to the same level as other 

development procedures. Verification is simply required for any system, but in 

terms of validation, verification is an underlying assurance. If requirements can 

be verified through testing at each level of development, there can be more 

confidence placed in the validation process carried out, as it can be assumed 

that stakeholder requirements and expectations are more closely matched to the 

actual developed product.  

Therefore, in the following paragraphs and chapters, validation will not be 

treated as a completely separate entity. Some metrics identified through the 

framework may be considered verification or project metrics (there may not be 

any characteristic that could be identified as “validation”), but they form a crucial 

part in understanding the system from the validation perspective. In this manner, 

it will be possible to leverage metrics that may be collected even without applying 
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a validation metrics framework. However, by applying this framework the existing 

metrics are given more meaning when trying to conduct validation. 

D. SOFTWARE SAFETY 

Safe software, contrary to various opinions and understandings, cannot be 

achieved through software reliability practices [14]. Software reliability is defined 

as “the ability of a system or component to perform its required functions under 

stated conditions for a specified period of time.” [7] 

The focus on reliability is performance according to requirements in terms 

of failure to meet those requirements. Although reliability can be used as an 

indirect indicator of safety, lack of hazard analysis and subsequent safety 

requirements can render this a moot point, as reliability does not mandate safety 

requirements. As discussed by Leveson [14], most safety-critical failures can be 

traced back to incorrect requirements, i.e., a lack of understanding as to what the 

software should do under hazardous conditions. In essence, this falls under the 

validation domain based on stakeholder expectation. Stakeholders expect the 

system to be safe without necessarily providing specifications for safety. As 

further evidence to the validation case Leveson [14] states that, “although coding 

errors often get the most attention, they have more of an effect on reliability and 

other qualities than on safety.” This statement indicates a reliance on verification 

according to requirements, rather than validation according to expectation, as 

being a key quality improvement technique. Validation, again, is not afforded the 

attention it requires. 

Therefore, safety-critical software-intensive systems require a systematic 

metric framework to aid in validation. Although much effort has been afforded to 

developing hazard analysis techniques and hazard reduction techniques (such 

as Failure Modes and Effects Criticality Analysis, Event Tree Analysis, Fault Tree 

Analysis, etc.), there is little to no evidence that measurements of these 

processes and products are being conducted to aid in answering the question of 

“are we building the right safety product?” (i.e., validation of system safety). 
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Safety requirements can be divided into two categories: generic 

requirements and system specific (or derived) requirements. Generic 

requirements are those recommended in standards, contained in workplace 

procedures, or identified in “lessons learned,” etc. They are essentially good 

practice, based on previously identified common causes leading to known 

hazards, to aid in developing a safer system. Derived requirements are those 

that are realized through the undertaking of hazard analysis and association of 

software functions that may contribute to identified hazards. These derived safety 

requirements may be more specific to the validation of safety-critical software-

intensive systems than any other artifact or product, as high-level user 

documentation often does not provide such detail. 

There are many products and procedures involved in the engineering of a 

safety-critical software-intensive system. Hazard identification, hazard analysis, 

safety-critical software function identification, and verification of safety 

requirements are some of the areas that will need to be considered in the 

development of a validation metrics framework. These products and processes 

will be some of the major foci of the Validation Metrics Framework for safety-

critical software-intensive systems. 

1. Software Hazard Risk Assessment 

Unlike risk assessment for hardware, software risk assessment has 

unique qualities that inhibit the traditional assignment of consequence/severity 

and likelihood/probability. Determining the probabilistic nature of software is a 

hotly debated topic in the software engineering discipline; however, for the 

purpose of this thesis the assumption is made that software failures are 

systematic. That is to say, they are caused by incorrect requirements (design 

errors) or development errors, therefore are systematic in nature and cannot be 

assigned probabilistic failure rates. Although this is contrary to much of the field 

of software reliability, it does allow for the use of many pre-conceived software 

safety tools. 
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Determining the safety risk associated with software requires a different 

approach to hardware. A typical approach5 to determining software risk is to 

determine the software’s level of control over the associated hazard or hazard 

causal factor rather than determining the probability (or likelihood) of a 

hazard/hazard causal factor occurring. Figure 4 shows a Software Hazard 

Criticality Matrix (SHCM) for assessing the risk of software contributing to system 

hazards. 

 
Figure 4.   Software Hazard Criticality Matrix [From [2]] 

 

Figure 4 utilizes the Control Category scheme given by MIL-STD-882C. 

With regards to the Control Category schemes, The Joint Software System 

Safety Handbook [2] states that, “The SSS [Software System Safety] team must 

                                            
5 As given in MIL-STD-882C and RTCA DO-178B. 
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review these lists and tailor them to meet the objectives of the SSP [System 

Safety Program] and software development program.” For the purpose of this 

thesis, the Control Category scheme of MIL-STD-882C, as presented in Figure 4, 

will be assumed. 

The Joint Software System Safety Handbook [2] emphasizes the fact that 

the SHCM is not intended to be used directly as a Hazard Risk Index (HRI) 

matrix. Because it is not possible to assign a probability of occurrence, the risk 

assessment provided by the SHCM is not entirely compatible with the risk 

assessment of a HRI. Instead, the SHCM reflects risk in the unique terms of 

software, indicating a level of rigor required to address the risk level. In some 

cases, the risk level may warrant an alternative solution that does not utilize 

software control. Therefore, when determining hazard risk that includes software 

causal factors, engineering judgment must be applied to determine a level of 

probability, taking into consideration the SHCM rating, the level of rigor applied, 

and the resultant safety measures developed.  

2. Hazard Causal Factors 

Software hazards are in and of themselves causal factors to system 

hazards. As discussed earlier, software cannot create a mishap by itself. 

However, software is often responsible for system functionality that can create 

mishaps. The linkage of system hazards to software hazards (causal factors) 

requires an in-depth understanding of system functionality. Software functionality 

contributing to system hazards is identified as a first-order causal factor. They 

are in themselves hazards, but with further analysis second and even third-order 

causal factors can be revealed. Analysis of software causal-factors beyond first-

order is typically only required for medium- and high-level risks as identified in 

the SHCM. Although this is a generally accepted rule of thumb, and in this thesis 

assumed to be the norm, it may be the case that certain industries, or 

applications of software have determined a different level of analysis. Therefore, 
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any metric framework measuring the depth of software causal factor analysis 

must be tailorable to the different standards of measurement of sufficiency. 

For the purpose of this thesis software hazard causal factors, since they 

are in fact hazards themselves, will be referred to as software hazards. Any 

reference to software hazards must be taken in context, but generically they will 

always be causal factors. It is also assumed that medium- and high-level 

software hazards require analysis to the level of third-order causal factors, unless 

justified otherwise. 

E. VALIDATION OF SOFTWARE SAFETY REQUIREMENTS 

Validation of safety requirements is not achieved through metrics alone. 

Metrics, applied through this framework, will aid to validate software safety (and 

hence, system safety). However, an understanding of validation in the software 

safety context is required.  

Validation is largely dependent on the audience. Since we have defined 

the subject audience, determining the scope of validation is now possible. The 

primary audience is the safety engineering team; however, their focus on 

validation is two-fold. They wish to ensure that safety requirements are valid from 

their perspective, but also that validation is performed in accordance with high-

level stakeholder requirements and expectations. Expectation is derived from 

stakeholder requirements (through documents such as statement of needs, use 

cases, concept of operations, operation requirements documents, etc.) as a 

foundational starting point; however, stakeholder feedback clarifies our 

understanding of this foundation. Therefore, validation of safety requirements 

needs to provide actionable data to not only the safety engineering team, but 

also to stakeholders. The following paragraphs will break down the different 

elements of validation that this framework will address. 

From the safety engineering team’s point of view, requirements validation 

is key—that is, software safety requirements validation. According to Weaver 
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[15], “Requirements Validation—Demonstration that the set of Safety 

Requirements is complete [sufficient] and accurate.” 

Although safety requirements completeness is desirable, determining the 

completeness of the set of safety requirements is not realistic as pointed out by 

Gödel [16]. Therefore, where Weaver describes “complete” requirements, it will 

be considered as “sufficiency” of requirements. He further explains the concept 

as, “Requirements validity is demonstrated through the thoroughness of the 

approaches used for hazard identification.” [15] 

Using the above definitions, it can be derived that validation of software 

safety (for the safety engineering team) is primarily concerned with software 

safety requirements validation. Although Weaver’s statements above indicate 

that requirements validation simply requires that hazards identified are sufficient 

and accurate, software safety validation requires that: system hazards identified 

are sufficient, the software interaction with these hazards is known and accurate, 

and the subsequent derived software safety requirements are also sufficient and 

accurate. In reference to determining how sufficient and accurate these safety 

requirements are, Weaver [15] states, “It [requirements validation] necessitates 

demonstration that a suitable level of effort, expertise and knowledge has been 

applied to the failure mode identification.” 

Essentially, the above definition means that evidence for the validity of 

software safety requirements can be shown through the thoroughness of the 

safety process. For software safety requirements to be valid, hazard identification 

must be measured and hazard analysis must be measured. 

In his thesis, Weaver separates requirements validation from requirements 

traceability. However, traceability of software safety requirements is an important 

component of validation. Traceability is a pre-requisite of a valid requirement. 

Therefore, traceability from software safety requirements must also be 

measured. Traceability of software safety requirements is not as simple as 

traditional traceability of system requirements. Traceability of all safety 
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requirements subsequent to the initial derived safety requirements must be 

ensured, but traceability from derived safety requirements to system 

requirements must also be complete. In this case completeness means that there 

are no “orphan” safety requirements, i.e., there are no safety requirements that 

cannot be traced back to a hazard or, through a level of indirection, to another 

safety requirement. This is accomplished by tracing upward from derived safety 

requirements through the hazard analysis process to identified hazards, which 

are based on system requirements. Essentially, every software safety 

requirement must be traceable to an identified system level hazard (often through 

intermediary hazard causal factors). This process ensures traceability to the 

highest-level stakeholder requirements. One way this could be achieved is 

through dependency graphs in Configuration Management (CM) tools—

automating this process would provide a simple and efficient solution to 

traceability of safety requirements. Figure 5 shows how traceability of safety 

requirements is achieved. 
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Figure 5.   Traceability of Safety Requirements 

 

Weaver describes another aspect of arguing the safety of safety-critical 

software—Requirements Satisfaction. He states: 

Demonstrating Requirements Satisfaction is based upon showing 
that the behavior of the components of the system, i.e., hardware, 
software and other (e.g., human interaction) is acceptable with 
respect to the system level hazards. [15] 

Per Weaver’s definition, requirements satisfaction also contributes to the 

validation of safety requirements when considering “building the right safety 

product.” It also has an element of verification—ensuring that the requirements 

themselves are satisfied—but based on Weaver’s [15] description and 

subsequent analysis requirements satisfaction is primarily concerned with the 
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behavior of the system against the identified hazards (i.e., the right safety 

product). Weaver has effectively separated hazard identification and hazard 

analysis into requirements validation and requirements satisfaction, respectively. 

However, both hazard identification and hazard analysis have validation aspects. 

Valid software safety requirements are derived from valid system hazards, 

therefore the hazard analysis process and products require validation 

measurements.  

One tool for identifying system hazards is the misuse case. A misuse case 

is similar to a use case but it indicates possible misuse of the system, rather than 

normal, expected, operation by users. Another element of validity of identified 

hazards is their identification through misuse cases. All hazards identified 

through, or derived from, misuse cases must be documented as part of hazard 

identification. Conversely, any hazards identified other than through misuse 

cases should have a corresponding misuse case—this may require an iterative 

process whereby new misuse cases are created, furthering the safety 

engineering team’s understanding of system operation under hazardous 

conditions. 

Based on the above discussion, validation of software safety requirements 

through metrics, from the perspective of the safety engineering team and 

stakeholders, can be broken into three areas of concern: 

- Hazard Identification. 

- Hazard Analysis. 

- Software Safety Requirements Traceability. 
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Figure 6.   Elements of Validation of Software Safety Requirements  

 

As discussed in Chapter II, the traditional concept of validation (ensuring 

system specifications meet stakeholder requirements and expectations) is not 

suited for validation of safety requirements. Apart from generic (usually industry 

specific) safety requirements, stakeholders will often have one requirement 

concerning safety: the system must be safe. This requirement will often be an 

expectation, rather than conveyed through stakeholder documentation. The 

above paragraphs have identified the different areas of the safety process where 

validation plays a significant role. However, Figure 7 requires the addition of 

safety requirements for it to more clearly explain the validation connection. 

 

 
Figure 7.   Modified Elements of Validation of Software Safety Requirements 
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The ultimate goal of validation of software safety is to validate the safety 

requirements. However, because of the lack of stakeholder definition of what 

constitutes a safe system, an alternative validation model to the traditional model 

is proposed. Validation of safety requires a proxy through which to validate safety 

requirements. This proxy is the combination of software safety techniques used 

to derive the software safety requirements. Effectively, the software safety team 

acts as an advocate for safety on behalf of the stakeholders, determining system 

safety requirements based on the requirements of the system. Measurements to 

aid in the validation of safety-critical systems must be derived from the hazard 

identification, hazard analysis, and requirements traceability artifacts. Figure 8 

displays a simplified version of the traditional method of validation and the 

proposed model for validation of software safety requirements. 
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Figure 8.   Traditional Validation vs. Validation of Safety 

 

F. GOAL QUESTION METRIC APPROACH 

The Goal/Question/Metric (GQM) Approach [17] is a generic framework 

for defining and organizing software metrics according to organizational 

objectives. GQM was initially developed by Victor Basili and David Weiss [18] in 

1984 for NASA, and since then it has been used by a number of large software 

engineering corporations [19] (Philips, Siemens, and continued with NASA), 

resulting in a “de facto” standard for defining measurement frameworks. It 

employs a top-down definition by focusing on organizational goals and working 

down to applicable metrics that are used to realize these goals. Although 
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originally developed for defining and evaluating goals in a specific environment, 

the concept can be employed for nearly any environment where evaluating goals 

with empirical measurement is required. GQM uses a three-tiered approach for 

defining appropriate metrics: 

- The conceptual level (the Goal) defines measurement goals for 

product, process, or project. 

- The operational level (the Question) defines a set of questions to 

characterize the object of measurement with respect to a specific 

quality issue. 

- The quantitative level (the Metric) defines a collection of metrics 

selected to answer the questions in a quantitative way. 

Figure 9 presents a graphical model of the three-tiered GQM approach. 

 

GOAL A

METRIC A

QUESTION A

GOAL B

QUESTION DQUESTION CQUESTION B

METRIC EMETRIC DMETRIC CMETRIC B

 
Figure 9.   GQM Hierarchy 

 
The resulting metrics are not restricted to any one question. As Figure 9 shows, 

questions can be answered through a number of metrics. 
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The organizational aspect of the GQM approach is not restricted to 

“business” objectives, but rather it is a way of bounding the scope of the goals 

that can be identified. In the case of this thesis, the organization will be restricted 

to the safety engineering team.  

According to Basili et al. [17], “Measurement is a mechanism for creating a 

corporate memory and an aid in answering a variety of questions associated with 

the enactment of any software process.” 

Basili et al. [17] also state that, “Measurement, in order to be effective 

must be: 

- Focused on specific goals; 

- Applied to all lifecycle products, processes, and resources; 

- Interpreted based on characterization and understanding of the 

organizational context, environment, and goals.” 

Basili et al. stress the importance of a top-down methodology with a focus 

on goals and models. Hence the resulting GQM approach—allowing for goals to 

be realized through a top-down selection and organization of metrics based on 

goal-driven questions. 

Because of its malleable goal-focused approach, GQM is a perfect 

candidate for defining a validation metrics framework. As such, the GQM 

approach will be the cornerstone of the framework that will follow over the next 

few chapters. Validation is simply another aspect of lifecycle products, processes 

and resources, therefore lending itself to the application of the GQM approach to 

select, organize, and define applicable metrics. Goals will be tailored to the 

validation environment, as discussed in previous sections, with the focus on 

safety products.  

A GQM model is in itself extensible to other GQM models. Goals, 

questions and metrics from the model can all be utilized by other GQM models 

throughout the wider organization to satisfy measurement objectives. It is more 

likely that the metrics themselves will be shared amongst different GQM models. 
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However, if the goals and questions are applicable to other models, reuse of this 

information should be capitalized. Therefore, the creation of a validation GQM 

model should utilize metrics that are already collected (if they aid in answering 

the questions of the model). Conversely, other GQM models can reap the 

benefits of already established metrics, such as those under the validation GQM 

model. 

Basili et al. [20] define a set of templates and guidelines for the application 

of the GQM framework. The conceptual level (goal) template addresses three 

aspects: 

- Purpose. 

- Perspective. 

- Environment. 

The operational level (question) is divided into guidelines for product 

related questions and for process related questions, each addressing: 

- Definition (of product or process). 

- Quality perspectives of interest. 

- Feedback (relative to the quality perspective). 

Guidelines for the quantitative level (metric) are purely dependent on the 

quantification of the operational level. Basili et al. acknowledge the need for more 

than one metric to satisfy a question and that both objective (quantitative) and 

subjective (qualitative) metrics are valid. 

The GQM templates and guidelines will be used as a starting point for 

defining the framework based on the GQM approach. As identified by Basili et al. 

[20] regarding the templates and guidelines, “they will most likely change over 

time as our experience grows.” 

In this instance, the generalized templates and guidelines will be the initial 

foundation of the framework. However, specialization will occur to focus on 

validation of safety-critical software-intensive systems. 
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Lack of resources often plays havoc with development of software 

systems. Paucity of resources when applied to the metrics framework is also a 

possibility. It may be the case that a suitable framework is defined; however, 

realistically obtaining and analyzing the metrics data is beyond the reach of the 

safety engineering team due to lack of resources. Therefore, a prioritization 

scheme should be explored that covers all three levels of the framework (i.e., 

goals, questions, and metrics). Berander and Jönsson define an Extended GQM 

Approach [19] to address this issue. The approach utilizes surveys completed by 

stakeholders leading to the weighting of the goals and questions based on the 

responses. In the safety-critical environment, prioritization and weighting should 

also be determined based on such things as hazard levels and residual mishap 

risk levels. The Extended GQM Approach identified by Berander and Jönsson 

could be a realistic prioritization method for a validation metrics framework. 

G. SOFTWARE DEVELOPMENT LIFECYCLE PROCESS 

Software Development Lifecycle Processes (SDLPs) come in many 

flavors and assortments. Understanding the basic characteristics of each major 

SDLP is necessary to define a validation metrics framework that is: 

a. Independent of the SDLP used, or 

b. Tailorable to the SDLP used. 

Although there are many other SDLPs used throughout the software 

engineering community, four major (and currently in use) methods are: 

1. Waterfall, 

2. V-Model, 

3. Spiral, and 

4. Iterative and Incremental Development (IID). 

These SDLPs can be classified as either sequential or evolutionary. The 

Waterfall, V-Model, and Spiral SDLPs are all sequential (typically), meaning that 

each phase in the lifecycle is performed upon completion of the previous phase. 
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Evolutionary SDLPs (IID) are not necessarily sequential in nature—concurrent 

engineering is a focus and repetition of the lifecycle is planned for. 

The Waterfall model is a sequential development strategy based on the 

major elements of any system development. It was originally proposed by 

Winston Royce [21] in 1970 as a method for developing large (or complex) 

software systems. Although Royce intended for his proposed model to be an 

iterative approach, this was largely ignored and instead the sequential “waterfall” 

model was adopted. Regardless of whether an iterative or sequential waterfall 

model is used, the following characteristics are typical: 

- Big Design Up Front (BDUF). The model requires a thorough 

understanding of requirements and large up front effort to ensure 

expectations are met. 

- Does not deal well with risk. Risk is not a focus of the process. 

Risky elements of the project may be afforded more resources, but 

there is no avenue for minimizing risk by breaking the large risk 

down into smaller more manageable risks. 

- Does not deal well with complexity. The process is typically 

monolithic in nature and complex systems become unwieldy and 

very difficult to understand under such a process. 

- Simplest and most efficient method for small projects. Resources 

are not wasted as the process includes only the “bare-essentials” to 

get the job done. 

- Validation is a product of user acceptance testing, falling under the 

Testing or Operations activities. 

The waterfall model, as described by Royce [21], is shown in Figure 10.  
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Figure 10.   The Waterfall SDLP 

 

The V-Model is an extension, or modification, of the Waterfall SDLP. 

Instead of relying on a purely hierarchical sequential structure, it realizes that 

verification occurs (or should occur) at more intervals than just during the Testing 

phase. It is still a sequential method—development occurs on the way down the 

left side of the V, and verification occurs against each element on the right side of 

the V. Testing is still performed sequentially from the bottom up, and validation 

effectively occurs as verification tests are carried out. The V-Model has the 

following characteristics: 

- Incorporates all the characteristics as the Waterfall model. 

- Verification occurs at multiple levels. Verification is the focus of this 

model. It ensures that each level of development, from 

requirements analysis through to implemented code, is verified 

against applicable requirements. 
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- Validation is obtained through verification activities. Although not 

designed to occur this way, any verification activities will have some 

influence on validation by revelation of the system capabilities to 

stakeholders through testing. This validation technique builds upon 

the Waterfall model by breaking testing into identified elements and 

testing from the lowest level to the highest requirements. 

Figure 11 shows the V-Model SDLP. 

Requirements 
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Unit Testing

Code

Module Design

Architecture 
Design

System Design

Acceptance 
Testing

System 
Testing

 
Figure 11.   The V-Model SDLP 

 
The Spiral Model was introduced by Boehm in 1988 to address many of 

the shortfalls experienced with the typical Waterfall SDLP. Boehm [22] proposed 

a risk-driven approach to software development, consisting of a series of spirals 

with clear objectives, alternate means of implementation, and constraints 

imposed. Essentially the model is the Waterfall model with a focus on risk 

analysis. Each spiral ends with a prototype product, dependent on the 
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progression through the development process, which is then verified through 

simulations, models, or benchmarks. The Spiral Model does enhance the 

Waterfall Model to a large degree; however, it also carries over many of the 

same characteristics. The following are the characteristics of the Spiral Model: 

- The BDUF concept is broken down. Because the Spiral Model has 

a focus on progressive spirals of requirements definition and 

analysis, the BDUF concept is broken into more manageable 

chunks. Although this is an advantage, detailed specification is still 

a prerequisite to implementation. 

- Design alternatives through reuse or reworks are incorporated. This 

allows for analysis of possible reuse candidates, or if mistakes are 

made (usually in understanding users expectations—validation) 

rework can be performed. 

- Risk analysis as a mandated step results in careful planning. 

- Validation is a more realistic concept through the development of 

prototypes (whether they be requirements specification, detailed 

requirements, module design, etc.). This allows for language 

translation to occur through regular reviews and testing at the end 

of each spiral; however, it does not specifically address validation. 

The Spiral Model is shown in Figure 12. 
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Figure 12.   The Spiral SDLP [From [22]] 

 

The Iterative and Incremental Development (IID) model is the most recent 

SDLP of the four. IID is an evolutionary and progressive method. According to 

Larman [23]: 

The iterative lifecycle is based on the successive enlargement of a 
system through multiple iterations, with cyclic feedback and 
adaption as core drivers to converge upon a suitable system. The 
system grows incrementally over time, iteration by iteration. 

IID aims to address the issue of complexity. As systems become 

increasingly complex, sequential development methods (all previously mentioned 
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SDLPs) become exceedingly difficult to implement. IID allows for the 

development effort to be broken into more manageable portions of logic and 

customer feedback is welcomed throughout the process. The following are 

characteristics of the IID SDLP: 

- The BDUF concept is non-existent. Fully defining all system 

capabilities is often challenging or near impossible for many large 

systems. IID embraces this problem, and therefore does not 

mandate complete specification prior to development. 

- Risks are identified, or become self evident, incrementally. Rather 

than discovering integration issues late in development, or safety 

hazards upon deployment, risks are identified as a more thorough 

understanding of the system is gained through each increment of 

design and development. 

- Validation is a core focus of IID. Although typically not explicitly 

identified as validation, user/customer feedback as the system is 

incrementally delivered allows for expectations to be more closely 

met. 

- Requirements instability is a reality. Requirements are often not 

stable until the final iteration of development. This in itself can 

become subjective, e.g., when is the final iteration if requirements 

are not stable? 

- “Scope-creep” is a very real threat. IID requires sufficient bounding 

over its complete lifecycle to prevent excessive requirements 

change (this characteristic closely ties with the previous). 

- Difficult to contractually manage. Due to the fact that IID does not 

mandate complete specification prior to design and development 

(rather it encourages exploration of system requirements and 

understanding), it can often be difficult to implement for large, 

complex systems under contract. 
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Figure 13 shows the IID SDLP. Each vertical line represents an 

incremental build of software (although the headings detail Inception, 

Elaboration, Construction, and Transition, each of these activities are undertaken 

for each iteration). They are, however, iteratively revisited through Business 

Modeling, Requirements, Analysis and Design, Implementation, Test, and 

Deployment throughout the entire SDLP.  

 
Figure 13.   The Iterative and Incremental Development (IID) SDLP 

 
The above SDLPs are typical of those currently used in the software 

engineering discipline. Their characteristics differ significantly, and therefore 

consideration of these characteristics is required for developing a validation 

metrics framework. As the framework is developed throughout the following 

chapter, these SDLPs will influence the possible solution(s). To cater to each 

SDLP, the framework will either be tailorable to the specific SDLP or be 

independent of the SDLP. 

When considering the above SDLPs from the safety engineering team’s 

perspective, there are also large impacts on the way safety is achieved. Much of 

the software safety process (as defined by Leveson [14]) relies on definition and 
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design of the subject system to relate hazardous conditions to software, hence 

defining what is safety-critical software and what is not. Therefore, depending on 

the SDLP used, the framework will behave differently due to the fact that 

development is carried out differently. For the SDLPs that focus on the BDUF 

principle, complete design data will be available sooner (theoretically) than an 

evolutionary SDLP. In the case of the IID SDLP, requirements and design 

artifacts will be incrementally produced. Thus, identification of new safety-critical 

software, and most likely new hazards, will occur throughout the process. This 

will also occur on many BDUF SDLPs, though not to the same order of 

magnitude that would be expected of an evolutionary type of development. This 

is another aspect that the Validation Metrics Framework needs to account for 

when considering the type of SDLP used. 

H. FRAMEWORK OBJECTIVES 

Safety-critical software-intensive systems are subjected to the highest 

levels of scrutiny and quality assurance in software engineering. A holistic, 

systematic approach to the validation of these systems is required. Currently 

none exist. Validation metrics can be used to ensure user and stakeholder 

requirements and expectations are closely matched. However, due to the 

possibly vast number of domains that users and stakeholders can represent, 

there is no “silver bullet” that will be applicable at all levels within all domains. 

Therefore, the intent of this thesis is to establish a framework for validation 

metrics applicable to safety engineering teams. The safety engineering team is 

typically responsible for constructing a safety argument supported by a collection 

of evidence on the application of safety engineering for a system’s development. 

Validation metrics data will aid in forming this argument as it is presented to 

stakeholders concerned with determining the validity of system safety 

requirements—addressing the key elements of Hazard Identification, Hazard 

Analysis and Safety Requirements Traceability. 
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The framework must cater for the unique aspects of software safety. 

Reliability is not a key indicator of safety and therefore will not be the focus of 

software safety. The software safety process, as described by Leveson [14], is to 

be central to the development of the Validation Metrics Framework. Therefore, 

measurement data will arise from products associated with the software safety 

process. 

The Validation Metrics Framework must be able to identify existing metrics 

(should there be any that are suitable) that may be used in the validation context 

(or at least define their characteristics) and define the characteristics of those 

metrics that do not exist (to aid in their development). The key focus of the 

framework will be that of providing the users of the framework with actionable 

data (from metrics) based on the requirements and expectations of stakeholders 

with a focus on system safety. The safety engineering team will develop their 

own understanding of system safety based on high-level user documents from 

the users and stakeholders (which can consist of any user or stakeholder 

document describing how they expect to use the system), system specification, 

and subsequent documentation by the development team. 

Traceability of requirements is one of the key concerns of modern systems 

engineering, as has top-down approaches to system design becoming a common 

practice in all engineering disciplines. The framework for validation metrics 

should be congruent with requirements traceability and top-down design. A goal-

driven approach will ensure that every metric has a purpose, reducing wasted 

collection of data, and ensuring that the rationale behind measurements is 

justifiable. Traceability from goals to metrics and metrics to goals will be a key 

objective of the framework. For this thesis, the GQM approach will be the 

cornerstone of the framework, allowing for development of metrics in a controlled 

and purposeful approach for validating the safety of a system. 

The validation activity is not restricted to simply the safety engineering 

team. Although the focus of this thesis is safety, the framework must be 

sufficiently open to other aspects of validation and metrics gathering on a 
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system. Therefore, prioritization of validation metrics within the framework should 

be possible, and also prioritization through external influences. Metrics may be 

gathered by many different stakeholders of the system. Thus, the Validation 

Metrics Framework should be able to become part of a hierarchically prioritized 

overarching framework (i.e., the sum of the system concerns), influencing overall 

prioritization of measurements. 

The framework must cater for major SDLPs (identified through the four 

described previously, however characterized as sequential or evolutionary) 

characteristics either through tailoring to suit each specific instance, or by 

independence from the SDLPs. 

In summary, the Validation Metrics Framework objectives are: 

- Scope is restricted to validation metrics applicable to the safety 

engineering team in the sense that they will be the users of the 

framework. The resulting data aiding in validation of safety will be 

presented to users and stakeholders through safety 

arguments/cases. 

- Cater for the unique aspects of the software safety process (based 

on products and artifacts). 

- Identify existing metrics (or at least characteristics required) and 

define characteristics of non-existent metrics (to aid in their 

development). 

- Utilize a top-down goal-driven approach (GQM) to ensure 

relevance of data, identify the applicable environment/audience, 

and provide traceability. 

- Explore the possibility of allowing for prioritization of measurements 

based on safety aspects (e.g., hazard levels and residual mishap 

risk) and be amenable to prioritization influence from overarching 

metrics frameworks. 

- Cater for a range of SDLPs (focusing on the four described 

previously) by either tailorability or independence from the SDLPs. 
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These objectives will flow through as inputs to the development of the 

Validation Metrics Framework in the following chapter. 
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IV. DEVELOPMENT OF THE FRAMEWORK 

A. INTRODUCTION 

The framework objectives detailed in Chapter III serve as the primary 

focus for the development of a validation metrics framework. This chapter will 

further analyze specific attributes of the framework to describe how it will be 

composed, as well as the process for application. The following chapter will 

demonstrate application of the framework through a case study. 

B. FRAMEWORK GOAL STRUCTURE 

The GQM approach as defined by Basili et al. [17] proposes a single level 

of goals in the GQM hierarchy. However, to aid in defining clear goals for the 

Validation Metrics Framework, it is prudent to determine an overarching 

framework goal (in the format that Basili and Rombach [20] provide) prior to 

these lower-level goals. By developing a hierarchy of goals from the highest 

level, sufficient depth will result so that the formulation of subsequent questions 

will be an achievable task. This concept will also ensure that a truly top-down 

validation focus is maintained throughout. Figure 14 demonstrates the proposed 

architecture. 
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Figure 14.   Validation Metrics Framework Goal Hierarchy 

 
The Framework Goal is the highest level goal defined. For the purposes of 

this thesis, it restricts application as per the objectives of Chapter III. That is, it 

focuses on the safety engineering team as the user of the framework within a 

validation environment. The dashed lines between the Framework Goal and 

goals A and B indicate that there may be intermediate levels of goal definition as 

goals are broken up in a top-down fashion to a suitable level for formulating 

applicable questions. Influencing these intermediate goals (or even the resultant 

low-level goals if no intermediate goals exist) are framework inputs. These inputs 

consist of many of the objectives mentioned in Chapter III. The following section 

will provide detail on framework inputs. 

Using Basili and Rombach’s [20] templates for goal definition, the 

Framework Goal definition is: 

- Purpose: To measure the products of the software safety process 

throughout development and implementation in order to aid in 

validating software safety requirements. 
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- Perspective: Examine the metrics from the safety engineering 

team’s point of view, with a focus on validating software safety 

requirements by proxy—in accordance with the proposed model for 

validation of software safety requirements. 

- Environment: The system has safety-critical elements that will be 

bound by the software safety process. 

This Framework Goal will carry over to any application of the Validation 

Metrics Framework within the scope of this thesis, i.e., use by the safety 

engineering team for safety-critical software-intensive systems, as goals are 

identified in a top-down fashion, ensuring context is maintained. Given another 

area of application, the Framework Goal could be changed to suit. 

Determining subsequent levels of goals is dependent on the framework 

inputs as discussed below. Following identification of these inputs, guidance will 

be given on the formulation of the remaining goals and questions. 

C. FRAMEWORK INPUTS 

The inputs to the framework are of significant importance. These inputs 

will influence how the lower-level goals are defined. Inputs to the framework will 

be identified by their influence on the framework goals; that is, for an element to 

be considered an input, it must have some relevance to the goals. As stated 

earlier, goals are defined in terms of purpose, perspective, and environment. 

These three aspects will be the focus of any input to the framework. 

1. SDLP Input 

The SDLP chosen will have a significant affect on the types of goals that 

can be formulated, particularly when considering the environment aspect of the 

goal. Following the Framework Goal, the SDLP needs to be noted as an 

environment factor for the subsequent goals to clarify what is realistic, or even 

possible. For example, a goal of maintaining safety requirements stability to 

within 5% (i.e., change of number of safety requirements over the lifecycle, or 
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similar) while using an evolutionary SDLP is not a realistic goal since 

requirements in an evolutionary SDLP are inherently unstable.  

Another factor that needs to be considered is when safety products (the 

results of the system software safety process) will be available for measurement 

and how the chosen SDLP affects these measurements. The system software 

safety process described by Leveson [14] is portrayed in a “Waterfall” fashion 

(however, it does not imply that the process must be carried out sequentially). 

Therefore, when employed in an SDLP other than sequential, care must be taken 

to realize that the process itself will be iterative in nature. Safety requirements will 

change as the system matures either iteratively, incrementally, or both. New 

safety-critical software components will be identified as the design matures in 

each pass through the evolutionary process. Even in the V-model SDLP, 

verification of safety requirements will occur at different stages. 

The SDLP framework input will influence the environment factor of goals 

identified. This will shape subsequent goals, questions, and metrics to ensure 

that data being gathered is tailored to the SDLP chosen, and that data presented 

to the framework user is applicable to their situation. The following SDLP 

characteristics need to be considered as environmental factors when developing 

intermediary goals: 

- SDLP method. Is it evolutionary or sequential? This will be the 

major characteristic that will influence many of the following 

characteristics. 

- Safety stability. Will the system software safety process products 

be continuously changing because of the type of SDLP? This will 

be a key influencing factor on metrics gathered. 

- Current validation methods. How is validation of the system 

currently carried out in the chosen SDLP? An SDLP that supports 

operator and customer feedback throughout will provide for more 

opportunity to clarify validation of safety through metrics. One that  

 



 59

does not support this interaction will need to consider the 

appropriate goals for ensuring that there is sufficient feedback from 

the user community. 

- Safety process execution. How is the safety process carried out in 

the chosen SDLP? Will all safety products be available up front, or 

will they become available as the system matures? Hazards, for 

example, identified early on in the project may become redundant 

as the system matures, or there may be new ones identified. The 

goals of the framework need to be amenable to these changes. 

Generally, the SDLP chosen will not directly determine the goals identified 

for the generic Validation Metric Framework. It will be an influencing factor on the 

environment component of the goals; however, this is simply a contextual impact. 

Interpretation of any actionable metric data will need to be undertaken in the 

context of the SDLP. 

2. Safety Input 

The software safety process used will influence framework goals. This 

process will be the driving factor behind what products will be available for 

measurement throughout development. 

Safety products that are available for measurement will vary depending on 

the exact software safety process used. A safety product reference list should be 

compiled to ensure that all safety products are known and can be planned for 

inclusion as input to the framework. This list will need to be identified for each 

application of the framework and will serve as a reference list for the specific 

goals, questions and metrics. It will serve as a “sanity” check for what is 

obviously possible and not possible, according to the types of products available, 

but also serve the same purpose for those goals that may not be so obviously 

possible or not. For example, if a goal is identified, question derived, but then no  
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product available to obtain a metric from, the goal either needs to be revised or 

revoked. The safety product reference list is a simple method for identifying 

appropriate product metrics. 

Some typical system software safety products are: 

- Preliminary Hazard List (PHL), 

- Preliminary Hazard Analysis (PHA), 

- Hazard analysis reports: Fault Tree Analysis (FTA), Failure Modes 

Effects and Criticality Analysis (FMECA), Event Tree Analysis 

(ETA), Hazard and Operability Studies (HAZOP), etc., 

- Independent Safety Audit Reports, 

- Safety Requirements Specification, 

- System Safety Requirements Traceability Matrix (SSRTM), and 

- System Software Safety Requirements Traceability Matrix 

(SSSRTM). 

An exhaustive list is not provided, as each project will define their own 

version of the system safety process, therefore tailoring the products that will 

result. The above list serves as an example of possible products that may 

comprise the safety product reference list.  

3. Stakeholder Feedback 

To ensure a truly effective and efficient Validation Metrics Framework, the 

framework needs to allow for inputs of stakeholder feedback. Primarily this will be 

through clarification of high-level user requirements, but could also be as a direct 

result of the metrics being presented. Initially the metrics would be available to 

the safety engineering team, but this same information would also be presented 

to necessary stakeholders, particularly the operators and owners. The results of 

the metrics may influence composition of goals, or directly the goals themselves. 

It may also have an impact on prioritization. Therefore, any stakeholder feedback 

needs to be combined as part of the framework inputs. 
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The identified framework inputs are shown graphically in Figure 15. 

 
Figure 15.   Framework Inputs 

 

D. IDENTIFYING GOALS, QUESTIONS AND METRICS 

Following on from the Framework Goal definition, intermediary goals must 

be identified to a sufficient level as to enable the creation of questions. Because 

of the hierarchical nature of the framework, intermediary goals will be influenced 

by the Framework Goal and framework inputs.  

Goals may or may not continue to be described through purpose, 

perspective, and environment as proposed by Basili and Rombach. This will 

depend on the clarity of the goals in a few words, dependent on the personnel 

involved. Although the Framework Goal is given in this format, the following 
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derived goals (for this thesis) will simply be presented in a few words. Further 

clarification can be given if required. The use of a hierarchical top-down goal 

derivation structure will aid in reducing complexity of defining goals, and ensure 

that the scope and focus for metric identification is maintained.  

Each intermediary goal must measure products from all stages of the 

system software safety process including: 

- Conceptual development. 

- System design. 

- Full-scale development. 

- System production and deployment. 

- System operation. 

The framework results, or measurements, will change, develop, and 

mature as the system itself matures. Depending on the SDLP used, these will 

either be slight changes or continual development. Although a generic framework 

will initially be given, it is expected that goals may be added, removed, or 

improved; framework inputs will be added, removed, or improved; or stakeholder 

feedback will influence the goal structure. 

To aid in the goal derivation process, the Goal Structuring Notation (GSN) 

method proposed by Weaver et al. [24] will be used. Weaver et al. [24] state that, 

“The Goal Structuring Notation (GSN)… is a graphical notation for constructing 

complex safety arguments for safety cases.” 

Although specifically designed for constructing safety arguments, the 

method also lends itself to rational development of hierarchical goal structures 

while ensuring that context, justification, assumptions, strategies, and solutions 

are all included. 

Briefly, the GSN method consists of elements shown in Figure 16. 



 63

 
Figure 16.   Principle Elements of GSN [From [24]] 

 

Using these elements, the goal hierarchy of the Validation Metric 

Framework can be composed in a rational and justified manner, whilst still 

maintaining a top-down approach within the appropriate context. An example of 

how the GSN method could be used to determine a goal structure is shown in 

Figure 17. 
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FG
Validate system safety 
through safety metrics

C1
Safety Engineering team 
POV

C2
Validating high level user 
requirements

G2
Hazards are identified 
and managed

S1
Identify applicable 

metrics relating to user 
requirements from safety 

products

Q3
What is the current 
number of Hazards

Q4
What is the reduction 
rate of unacceptable 

hazards

G1
All safety requirements 
are traceable to high 
level user requirements

C4
System Safety 
Requirements Traceability 
Matrix

C5
System Requirements 
Traceability Matrix

Q1
How many safety 

requirements cannot be 
traced to high level 

requirements

Q2
What is the reduction 
rate of untraceable 
safety requirements

M1
# Untraceable 
Safety Req.

M2
Diff in 

Untraceable 
Safety Req. / 

Time

M3 
# Hazards

G3
Unacceptable Hazard 
risks reduced to zero

J1
Unacceptable 

hazard to 
stakeholders

M4
Diff in Unacc. 

Hazards / Time

C3
Products of software safety 
process

 
Figure 17.    GSN Example 

 

In the above example, GSN is combined with the GQM framework 

creating a hybrid solution. GSN is used to develop and convey the goal structure, 

taking into account any necessary purpose, perspective, and environment 

attributes that benefit from being displayed. These are indicated through the goal 

itself and the context notation. As with the originally proposed Validation Metrics 

Framework depicted in Figure 14, goals can be decomposed into subsequent 

lower-level goals to allow for easier derivation and more precise definition of the 

following question. Not shown in the GSN notation proposed by Weaver et al. is 

the inclusion of questions. Since the Validation Metrics Framework specifically 

treats metrics, applying the GQM process allows questions to be derived from  
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the goals. Questions are indicated by hexagons in Figure 17. In the GSN 

diagram solutions are shown by circles. In the case of the Validation Metrics 

Framework, the solutions are in fact metrics.  

In the above example, the following text notation is used: 

- FG: Framework Goal 

- C1, C2, Cn: Context 

- S1: Strategy 

- G1, G2, Gn: Goals 

- Q1, Q2, Qn: Questions 

- J1: Justification 

- M1, M2, Mn: Metric. 

In many cases the visual representation will not be sufficient to clearly 

articulate all aspects of the goals, context, justification, strategy, or questions. 

Therefore, accompanying the visual GSN/GQM-based representation of the 

framework should be documentation expanding on these aspects. Specifically, 

where a goal is identified, in keeping with the purpose, perspective, and 

environment attributes, only those attributes that are required to ensure that 

context is clearly understood in the visual representation will be shown. 

Otherwise, the attributes (should they be required for clarity) will be noted in the 

documentation such that it is accessible for reference. The primary reason for 

this is to reduce clutter and maintain simplicity in the GSN diagram. 

As discussed in the previous chapter, the three elements of validation of 

software safety will be: Hazard Identification, Hazard Analysis, and Software 

Safety Requirements Traceability. Therefore, these elements need to be 

incorporated into the goals of the framework. Utilizing GSN, the most applicable 

place for these elements will be to reflect them in strategies and/or goals. 

Based on the three elements of validation of software safety, the GQM 

framework, and GSN—Figure 18 shows the top level goal structure for the 

Validation Metrics Framework. 
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FG
Validate system safety 
through safety metrics

C1
Safety Engineering team 
POV

C2
Validating software safety 
by proxy

C3
Products of software safety 
process

G1 G2

G3

G5

S1
Measure Hazard 

Identification sufficiency

S2
Measure Hazard 

Analysis sufficiency

G1
Number of Software 
Hazards identified is 
sufficient

G2
Depth of analysis is 
measured

G3
Software Safety 
Requirements are 
measured

S3
Measure Software 

Safety Requirement 
Traceability

G5
Traceability of software 
safety requirements is 
maintained

G4
Software Hazards are 
sufficiently mitigated

G4

 
Figure 18.   Framework Top-Level Goal Structure 

 

The top-level goals will flow into either intermediary goals or questions as 

the framework continues to be developed. Each goal has a red arrow with a 

corresponding identifier that will be used in the following GSN structures. Each of 

the identified goals have been identified as generic to any safety-critical software-

intensive system, but are specifically based on the understanding of validation of 

software safety developed thus far. The following paragraphs will provide more 

explanation on each goal. 
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G1: Number of software hazards identified is sufficient. This goal 

directly addresses the Hazard Identification element of validation of software 

safety requirements. The aim of this goal is to ensure that a sufficient number of 

software hazards are identified for a particular system. If the number of identified 

hazards is outside of a pre-determined upper or lower boundary, it can indicate 

that the Hazard Identification is not sufficient, therefore resulting in potential for 

invalid or incomplete software safety requirements. 

G2: Depth of analysis is measured. This goal partially addresses the 

Hazard Analysis element of validation of software safety. Depth of analysis is 

associated with the inherent risk associated with identified software hazards. By 

ensuring that the hazard analysis is performed to a sufficient level of depth 

(second- and third-order causal factors) for appropriate software hazards, the 

validity of the analysis is strengthened. 

G3: Software safety requirements are measured. This goal also 

partially addresses the Hazard Analysis element of validation of software safety. 

The result of hazard analysis is that requirements are identified to sufficiently 

mitigate the software hazards. By measuring the number of software safety 

requirements against a pre-determined model, the sufficiency of hazard analysis 

(and therefore validity of subsequent requirements), can be obtained. 

G4: Software hazards are sufficiently mitigated. This goal also partially 

addresses the Hazard Analysis element of validation of software safety. 

Measurements that show hazards have associated mitigating safety 

requirements will aid to strengthen the validation case. 

G5: Traceability of software safety requirements is maintained. This 

goal directly addresses the Software Safety Requirements Traceability element 

of validation of software safety. Ensuring that all safety requirements can be 

traced through hazard analysis to hazards, which are then traceable to system 

requirements, aids in ensuring valid software safety requirements. 
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Following on from the top-level goal structure, questions and metrics are 

then identified to fulfill each goal. The following GSN structures show the lower 

half of the Validation Metrics Framework. 

G2
G1

Q1
Are there a sufficient 
number of Software 
Hazards identified?

M1
Percent 
Software 
Hazards

Q2
Are second or third 

order software causal 
factors appropriately 

identified?

M2
Software 
Hazard 

Analysis Depth

C4
Risk Rating obtained 
through Software Hazard 
Criticality Matrix

 
Figure 19.   Framework Lower-Half Part 1 
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G4G3

Q4
Are all hazards 

addressed through 
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Requirements
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Risk Software 
Hazards with 

Safety 
Requirements

Q3
Are there a sufficient 

number of safety 
requirements?

M6
% Moderate 

Risk Software 
Hazards with 

Safety 
Requirements

C5
Risk context as per SHCM

G5

Q5
Are all Software Safety 

Requirements 
traceable?

M7
Percent 
Software 

Safety 
Requirements 
Traceable to 

Hazards

M3
Percent 
Software 
Safety 

Requirements

 
Figure 20.   Framework Lower-Half Part 2 

 

The derivation of the lower-half of the Validation Metrics Framework 

shown in Figure 19 and Figure 20 result in a generic set of validation metrics for 

use on any safety-critical software-intensive system. Some of the above metrics 

are self explanatory while others are not. The following paragraphs detail each of 

the validation metrics. 

M16: Percent Software Hazards. M1 (PSH) is a direct indicator of the 

sufficiency of Hazard Identification. By comparing the number of software 

hazards identified against historical data, it indicates the validity of the software 

safety requirements through identified hazards. Interpretation of M1 requires a 

model to determine whether a sufficient number of hazards have been identified. 

 

                                            
6 M1 is an adaptation of M3–Percent Software Safety Requirements, developed by Victor 

Basili et al. at [36]. 
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PSH = (#Software Hazards / #System Hazards) * 100 

Equation 1.   Percent Software Hazards 

The model for M1 requires an Estimated PSH (EPSH) based on 

previously developed similar systems (e.g., similar levels of software control, 

safety-criticality, and risk levels). 

If |PSH – EPSH| < σ, then a sufficient number of software hazards have 

been identified in hazard identification, where EPSH is the average of the PSHs 

for all other similar systems, and σ is the standard deviation of the PSHs. 

M2: Software Hazard Analysis Depth. Hazardous software, or safety-

critical software, allocated as high- or medium-risk, according to the SHCM, 

requires analysis of second- and third-order causal factors (should they exist). 

The depth of hazard analysis, indicated by this metric, will contribute to the 

sufficiency of overall software hazard analysis and hence validity of derived 

requirements. M2 will be an indicator of whether hazards have been analyzed to 

a sufficient depth. 

To determine the depth of hazard analysis a Hazard Analysis Space 

(HAS) must be identified. Complete coverage of the HAS indicates complete 

hazard causal factor analysis (down to third-order causal factors). Table 1 

depicts an example of HAS. 

 

H1 Hn Med1 Medn Mod1 Modn L1 Ln 

1 1 1 1 1 1 1 1 

2 2 2 2     

3 3 3 3     

Table 1.   Hazard Analysis Space 
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In Table 1 Hn, Medn, Modn, and Ln indicate n number of hazards within the 

same risk category. The numbers reflect levels of analysis. For example, a 3 

indicates third-order analysis. As indicated, moderate- and low-level risk hazards 

do not typically require analysis beyond first-order causal factors. For moderate-

risk hazards, other metrics identified in the framework indicate first-order analysis 

as a matter of course. Low-risk hazards are those which are perceived to be of 

acceptable nature. Therefore, this metric will only consider high- and medium-risk 

hazards. When developing the metric it is important to ensure that high- and 

medium-risk hazards (according to the SHCM) are initially reported separately to 

allow for subsequent investigation activities. 

Calculating the total HAS for each category of hazards (high or medium) is 

shown in the following formulas. 

HASH = # High-Risk Software Hazards * 3 

Equation 2.   Hazard Analysis Space—High-Risk 

HASM = # Medium Risk Software Hazards * 3 

Equation 3.   Hazard Analysis Space—Medium Risk 

In each equation, the constant 3 reflects the three possible levels of causal factor 

analysis. 

Determining the coverage of hazard analysis (in terms of coverage of the 

HAS) for each category requires a Hazard Analysis Achieved (HAA) figure 

expressed as a percentage of total HAS.  Equations for high- and medium-risk 

are given below. 

CH = [(∑HAAn) / HASH] * 100% 

Equation 4.   Hazard Analysis Space Coverage—High-Risk 

CM = [(∑HAAn) / HASMED] * 100% 

Equation 5.   Hazard Analysis Space Coverage – Medium Risk 
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In both equations above, C is the coverage of the HAS, and HAAn is the hazard 

analysis achieved for each risk applicable to their specific categories. HAAn is 

determined for each hazard by adding one for each level of analysis. For 

example, second-order analysis corresponds to a HAA of 2 for a single risk. 

The coverage metric identified above provides an indication of depth of 

hazard analysis for each category of hazards. However, a single overall metric 

should be provided as an initial indicator of validity of safety requirements. 

Software Hazard Analysis Depth (SHAD) is determined by averaging the 

coverage metrics, CH and CM. 

SHAD = (CH + CM)/2 

Equation 6.   Software Hazard Analysis Depth 

As with other metrics used in this framework, growth or reduction can be 

best presented through a graph shown over time. However, care must be taken 

in interpreting the results of this metric. Contrary to other identified metrics, 

SHAD is not expected to reach 100%. This is because it is highly unlikely that 

every high- or medium-level risk hazard will have up to third-order causal factors. 

Hazard analysis may reveal only second-order causal factors in many cases. 

Another factor that will contribute to reduction of coverage is when new high- or 

medium-risk hazards are initially identified without immediate hazard causal 

factor analysis. This will lower the SHAD in the first instance. 

Therefore, SHAD is only intended to be an indicator (as are all other 

metrics) to sufficiency of software hazard analysis, and hence an indicator of 

validity of software safety requirements. Once a baseline is established in the 

early stages of development, preferably at a point where hazards are well 

understood, changes in SHAD will require investigation to determine if the depth 

of analysis is sufficient, is expected to become sufficient, or is not sufficient. 

SHAD in itself cannot directly determine sufficiency; rather, it is an indicator of 

sufficiency. 
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M3: Percent Software Safety Requirements [36]. M3 (PSSR7) is an 

indicator of how sufficient hazard analysis has been performed, and hence the 

validity of the derived safety requirements. It is similar in format to M1. 

Interpreting PSSR requires a model that indicates sufficiency, providing upper 

and lower boundaries. The model for PSSR relies on the previous results of 

similar systems to determine what is sufficient. 

PSSR = (#Software Safety Requirements / #Software Requirements) * 100 

Equation 7.   Percent Software Safety Requirements 

The model for PSSR requires an Estimated PSSR (EPSSR) based on 

previously developed similar systems. If |PSSR – EPSSR| < σ, then a sufficient 

number of software safety requirements have resulted from the hazard analysis, 

where EPSSR is the average of the PSSRs for all other similar systems, and σ is 

the standard deviation of the PSSRs. 

Another possibility for the model is by using a proxy: EPSSR = (#system 

safety requirements / #system requirements)*100, and σ = X% of EPSSR. X% 

will require engineering judgment to determine an acceptable deviation from the 

mean. Success of previous systems, particularly where there has not been a 

sufficient sample size to determine a standard deviation, should also be taken 

into account to give an EPSSR. Basili et al. [25] recommend a deviation of 20% 

EPSSR. 

M4: Percent high-risk software hazards with safety requirements. M4 

reveals whether any high-risk software hazards have not resulted in applicable 

safety requirements through hazard analysis. This indicates sufficiency of the 

process (through artifacts), and hence validity of the requirements. 

M4 = (# SHHR-SR / # SHHR) * 100 

Equation 8.   Metric 4 

                                            
7 Original PSSR metric uses e = σ. For clarity, only σ is used to indicate deviation. 
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In Equation 8, # SHHR-SR is the number of high-risk software hazards with 

associated safety requirements, and # SHHR is the total number of high-risk 

software hazards. 

As development of the system progresses, it is expected that this metric 

will approach, and reach, 100%. This metric will benefit from being graphed over 

time. 

M5: Percent medium risk software hazards with safety requirements. 
M5 is simply an extension to M4 by considering medium risk software hazards. 

M5 = (# SHMR-SR / # SHMR) * 100 

Equation 9.   Metric 5 

In Equation 9, # SHMR-SR is the number of medium risk software hazards with 

associated safety requirements, and # SHMR is the total number of medium risk 

software hazards. 

M6: Percent moderate risk software hazards with safety 
requirements. M6 again is an extension to M4 by considering moderate risk 

software hazards. 

M6 = (# SHMoR-SR / # SHMoR) * 100 

Equation 10.   Metric 6 

In Equation 10, # SHMoR-SR is the number of moderate risk software hazards with 

associated safety requirements, and # SHMoR is the total number of moderate risk 

software hazards. 

M7: Percent software safety requirements traceable to hazards. 
Ensuring traceability to system hazards increases the validation case. M7 is 

simply a percentage indicator of traceability of requirements. All derived software 

safety requirements must be traceable to system hazards. 
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M7 = (# SSRTR / # SSR) * 100 

Equation 11.   Metric 7 

In Equation 11, # SSRTR is the number of traceable software safety 

requirements, and # SSR is the total number of software safety requirements. 

This metric should approach, and reach, 100% over time, and will benefit from 

being graphed. 

In total, seven metrics have been identified in the development of the 

Validation Metrics Framework. Discussed throughout this chapter is the notion of 

metrics only being an indicator of validity of software safety requirements. This is 

further discussed in a more concrete example in the following chapter. The key to 

the Validation Metrics Framework is that the metrics will only act as indicators for 

further investigation. The investigation itself will determine the actual validity of 

the software safety requirements, with metrics acting as initiators. 

In the following chapter, application of the framework is explored through a 

case study, with the aim of clarifying the framework and the metrics. 
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V. APPLICATION OF THE FRAMEWORK THROUGH CASE 
STUDY 

A. INTRODUCTION 

The proposed Validation Metrics Framework developed in Chapter IV is at 

this stage a theoretical academic exercise. Although it employs some relatively 

proven and successful methods as its foundation, further analysis is necessary to 

demonstrate its validity and the benefits to be accrued from its application. This 

chapter presents a case study of a fictitious surface-to-air missile system as a 

safety-critical software-intensive system. The system will be based on 

unrestricted information available in open literature representative of typical 

surface-to-air missile systems. The case study will work through parts of the 

system development lifecycle; however, it will not be a complete case study 

addressing every aspect. Instead it will simply provide a brief look at how the 

Validation Metrics Framework can be applied throughout the software 

development process and some of the associated benefits. 

B. RASAM8 

The Rapid Action Surface-to-Air Missile (RASAM) system—a Shipboard 

Self-Defense Missile System—will be the subject of this case study. The 

following system description and operational requirements are not intended to be 

as complete as a “real” system would be. The RASAM will only be defined and 

analyzed to a sufficient level to allow the Validation Metrics Framework to be 

exercised. In many cases only representative examples will be called upon, 

rather than a complete analysis or design. 

The RASAM will be followed through a rudimentary tailored waterfall 

software development lifecycle process. Since this is only a fictional system, we 

                                            
8 The RASAM example is taken from the Naval Postgraduate School’s course on Weapon 

System Software Safety. 
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are able to employ such a design approach, particularly as we are not fully 

defining or developing the system. In the sense that requirements for the system 

shall be known and complete throughout the development process (i.e., there will 

be no iterative development), the RASAM development will be of waterfall 

fashion. 

Accompanying the development lifecycle will be the system and software 

safety process as presented by Leveson [14]. It will be the products of this 

process that will be candidate for measurement by the Validation Metrics 

Framework. 

The aim of this case study is not an in-depth analysis of system design or 

lifecycle process. Rather, it is simply to show how the framework is applied to a 

system and how results can be interpreted. Therefore, the complete lifecycle will 

not be explored. 

C. SYSTEM CONTEXT AND ARTIFACTS 

The RASAM is initially presented through operational requirements (high-

level customer/stakeholder requirements), a series of use cases, misuse cases, 

and accompanying safety artifacts. The artifacts shown are representative of 

actual artifacts. They are not intended to be complete or entirely accurate. 

Metrics used throughout the case study may not correlate with artifacts shown 

Appendix A. The primary goal of the artifacts is simply to provide context for the 

system and to represent what should be expected of a real safety-critical system. 

1. Operational Requirements 

The RASAM system is a Shipboard Self-Defense Missile System. The 

basic high-level operational requirements for the system are given below. These 

requirements are equivalent to high-level customer/stakeholder requirements, 

describing their expectations and desires of the system. Although these 

requirements will not be utilized in the framework itself, they are given to aid in 

providing context of the safety-critical software-intensive system to the reader. 
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The Validation Metrics Framework will only provide indications to validity, 

identifying critical areas that may require further investigation to ascertain validity 

of the requirements. 

OR.1. RASAM shall be installed on surface combatants, aircraft carriers, 

and amphibious ships, 8K tons and up. 

OR.2. RASAM shall have an effective range of 15km. 

OR.3. RASAM shall be an anti-ship missile and anti-aircraft weapon for 

current and postulated threats. 

OR.4. RASAM shall achieve a Pk (probability of kill) not less than .975 for 

dual salvo. 

OR.5. RASAM shall achieve a Pa (availability) not less than .98 

OR.6. The Launching System shall: 

o Be capable of a minimum of ten 2-missile salvos without 

reloading, 

o Have a shipboard reload capability,  

o Be fully reloaded in less than thirty seconds by no more than 

three trained weapons technicians, and 

o Minimize ship alterations required for installation. 

OR.7. The Control System shall: 

o Interface to existing and future C&C systems and shipboard 

sensors, 

o Provide a stand-alone operation capability, and 

o Provide an organic training capability. 

OR.8. The launcher subsystem shall have a No-Point/No-Fire design 

toward the ship’s superstructure, equipment, or other places where a 

missile could impact. It must accommodate moveable equipment: 

o The RASAM shall have automatic detection of equipment 

movement. 
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It must also accommodate ancillary equipment such as aircraft and 

helicopters: 

o The RASAM shall preclude firing in the direction when deck 

areas are occupied. 

2. System Use Cases 

The system use cases further describe how the customer/stakeholders 

intend to interact with the RASAM and the expected operations and results. Each 

use case is described from the users’ perspective at the early stages of 

development, and is therefore not “fully-dressed.” These use cases will provide 

sufficient depth for the purpose of this case study. The use cases can be found in 

Appendix A. 

3. System Misuse Cases 

The system misuse cases describe how the system shall react to 

situations whereby the system is used incorrectly. In terms of safety, a system 

misuse case will typically focus on incorrect unintentional operation rather than 

malicious operation. However, depending on the type of system, malicious 

system misuse cases concerning safety will also be generated. Like the system 

use cases, they are not “fully-dressed,” but are sufficient for understanding the 

context in the case study. The system misuse cases can be found in Appendix A 

following the system use cases. 

4. System Description 

Based on the high-level user requirements, use cases and other user 

documentation, a basic description of the RASAM system can be found at 

Appendix A. The description covers the system components that enable required 

functionality. The system description is essentially the product of the conceptual  
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design phase. Typically, this would be accommodated by system requirements, 

or simply described through these requirements. However, for the purpose of this 

thesis, a simple description will suffice. 

5. Safety Artifacts 

During the conceptual/preliminary design, a Preliminary Hazard List 

(PHL), Preliminary Hazard Analysis (PHA), generic safety requirements, derived 

safety requirements, and System Software Safety Requirements Traceability 

Matrix (SSSRTM) are each developed. These safety products can also be found 

in Appendix A. Each safety product would be expanded upon in subsequent 

design phases and, although they will technically not be “preliminary” following 

preliminary design, they will retain their nomenclature throughout the case study. 

These artifacts will be the subject of measurement throughout the system 

development, and, where necessary, will be updated throughout the 

development process. 

D. VALIDATION METRICS FRAMEWORK APPLICATION 

The application of the Validation Metrics Framework will vary depending 

on different factors influencing the goal structure. The safety team may enhance 

or change the core goal structure as presented in this thesis to suit the team’s 

particular application—it is extensible by nature. However, by at least using the 

framework as-is, a much more complete coverage of validation, aided by metrics, 

will be achieved than with current validation methods. During the conceptual 

design phase, most safety artifacts will focus on hazard identification. Some 

hazard analysis can be performed, and safety requirements derived, but lack of a 

full system design will prevent complete safety design. As the system matures 

throughout the lifecycle, a better understanding of system functionality, and 

subsequent safety analysis, is obtained. 

The safety product reference list consists of: 

1. RASAM Preliminary Hazard List. 
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2. RASAM Preliminary Hazard Analysis. 

3. RASAM Generic Safety Requirements. 

4. RASAM Derived Safety Requirements. 

5. RASAM SSSRTM. 

In accordance with the Validation Metrics Framework goal hierarchy 

shown in Figure 14, the following framework inputs can be identified for the 

RASAM system: 

- SDLP: Waterfall—requirements stability means that understanding 

of system functionality, and hence safety measures, will be 

obtained early in the development lifecycle. 

- Safety Inputs: As per safety product reference list above. 

- Stakeholder Feedback: Minimal due to SDLP; however, will still be 

an extremely important aspect of validation. Stakeholder feedback 

should be requested whenever metrics lead to investigations of 

validity. 

To reiterate, the overarching Framework Goal is: 

- Purpose: To measure the products of the software safety process 

throughout development and implementation in order to aid in 

validating software safety requirements. 

- Perspective: Examine the metrics from the safety engineering 

team’s point of view, with a focus on validating software safety 

requirements by proxy—in accordance with the proposed validation 

of safety requirements model. 

- Environment: The system has safety-critical elements that will be 

bound by the software safety process. 

1. Metric 1: Percent Software Hazards 

Utilizing the framework metrics identified in the previous chapter, we begin 

with Percent Software Hazards—ensuring that a sufficient number of hazards 

have been identified. The following table provides historical metric data from 
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previously developed similar systems.9 It includes the number of hazards 

identified for each and the number of software hazards derived. It is assumed 

that only “successful” systems (i.e., those perceived to be successful in the eyes 

of both the developer and customer) will be used for determining the model for 

M1. It must also be noted that the data presented here is obtained from the 

finalized system, not from early development phases. 

 

System # System Hazards # Software Hazards PSH 

RASAM v0.5 145 70 48.3% 

ISAM (Integrated 
SAM) 

110 50 45.5% 

SAMDS (SAM 
Defense 
System) 

95 34 35.8% 

AAMS10 (Air-Air 
Missile System)  

165 105 63.6% 

RAAMS (Rapid 
AAMS) 

198 104 52.5% 

Table 2.   Case Study PSH 

Based on the PSH for each system given in Table 2, the mean and 

standard deviation can be calculated. The standard deviation is given by using 

the root-mean-square (RMS) method assuming a complete population rather 

than a “sample” population. This results in a smaller deviation and therefore, 

according to previous definitions, a more sufficient number of identified hazards 

                                            
9 The data presented for the “similar” systems is representative of real systems, however, is 

fictitious. 
10 For the purpose of this thesis it is assumed that the Air-Air Missile System and the Rapid 

AAMS both have a similar level of software control, similar software safety development process, 
and similar hazard design space. 
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due to tighter boundaries.11 Also, it can be assumed that, where data is 

available, the entire population of available similar safety-critical software-

intensive systems would be used, rather than just a sample of the data. 

Metric 1 (M1) data is as follows: 

- EPSH = 49.1% 
- σ = 9.1%. 

At the end of the system design phase (final metric sample) the hazard 

identification process resulted in 180 system hazards being identified and 

recorded in the preliminary hazard identification document. Out of this 180 total 

hazards, 68 are directly associated with software control. Arriving at the number 

of 68 requires that Preliminary Hazard Analysis (PHA) be performed, identifying 

which system hazards are directly influenced by software control. This figure 

does not look at lower-level software causal-factor hazards; rather, it is intended 

to ensure that a sufficient number of hazards are associated to software based 

on levels of software control and safety-criticality of similar systems. 

PSH = (68/180) * 100 = 37.8%. 

Using the data above, it can be shown that the RASAM PSH is outside of 

one standard deviation from the EPSH: 

|PSH – EPSH| = |37.8 – 49.1| = 11.3% > σ. 

Throughout the system development, the following data, summarized in 

Table 3, was collected regarding the RASAM PSH. 

 

 

 

 

                                            
11 The standard deviation is smaller, thus reducing the error allowed within the model for 

sufficiency. 
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M1 

Sample12 

# System Hazards # Software Hazards PSH 

1 140 20 14.3% 

2 164 45 27.4% 

3 171 67 39.2% 

4 180 68 37.8% 

Table 3.   RASAM PSH Samples 

Tracking M1 is best achieved by graphing each sample to monitor the 

growth, or reduction, of PSH.  

 
Figure 21.   RASAM PSH Growth 

 

Figure 21 indicates that the PSH has grown13 significantly as the system 

has progressed through the development lifecycle. This type of growth is 

                                            
12 The sample numbers represent samples taken at various stages of development as time 

progresses, i.e., sample 1 is taken before sample 2, etc. These sample numbers, and assumed 
positions in time, remain constant throughout the case study. 

13 Any reference to “growth” or “growth model” in this thesis refers to growth or reduction 
based directly on observed data. It does not consider predictive growth models. 
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expected as initially hazard identification will not identify which hazards are 

associated with software. After PHA we can expect the PSH to grow. Often the 

conceptual phase will not result in mature system data as the design is not well 

understood. This could be the reason for an initially insufficient number of 

software hazards being identified. However, growth from samples 1 through 3 

indicates that PSH is “on track.” Sample 4 shows a reduction in PSH, which is 

not expected. As it stands, the results of M1 indicate that further investigation 

needs to be made to determine the sufficiency of hazard identification, and hence 

the validity of the resulting requirements. The result may not be a cause for 

concern as it would be expected that the system would be better understood as it 

continues through the development lifecycle. Therefore the PSH may increase to 

a sufficient level. Regardless, an investigation must be conducted to determine 

the cause of the reduction and plan for the necessary action to guarantee growth 

into the sufficiency band (i.e., between minimum and maximum EPSH). 

2. Metric 2: Software Hazard Analysis Depth 

The data given in Table 3 provides a starting point for SHAD. This data 

indicates the total number of software hazards (causal factors) from which high- 

and medium- risk hazards must be obtained. Table 4 provides representative 

data for the first portion of calculating the SHAD. 
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Hazard Analysis Depth Hazard Analysis Space (HAS) 

H1 (High) 3 

H2 2 

H3 3 

H4 3 

H5 2 

H6 1 

HASH = # High-Risk Software Hazards * 3 

HASH = 6 * 3 = 18 

M1 (Medium) 2 

M2 3 

M3 2 

M4 2 

M5 3 

 

HASM = # Medium Risk Software Hazards * 

3 

HASM = 5 * 3 = 15 

Table 4.   SHAD Data 

Utilizing the Hazard Analysis Achieved (HAA) data in the above table, the 

sum of HAA is shown below: 

High-Risk:   ∑HAA = 3 + 2 + 3 + 3 + 2 + 1 = 14. 
Medium Risk: ∑HAA = 2 + 3 + 2 + 2 + 3 = 12. 

Given HAA for each category, CH and CM can now be calculated: 

CH = [(∑HAAn) / HASH] * 100% = [14/18] * 100% = 78%. 
CM = [(∑HAAn) / HASMED] = [12/15] * 100% = 80%. 

SHAD can then be determined as the average of the two coverage metrics 

to give an overall coverage of the entire HAS (without a biased weighting to the 

high-risk category as it has a larger number of hazards): 

SHAD = (CH + CM)/2 = (78% + 80%) / 2 = 79%. 



 88

The first instance of SHAD is found to be 79%. As stated previously, 100% 

is an unrealistic figure (although possible). Therefore, 79% may prove to be a 

sufficient baseline. However, to prove sufficiency of this baseline figure, the 

safety team must ensure that the depth of analysis on each hazard has been 

performed adequately through investigation. 

Table 5 provides sample data for SHAD throughout the development of 

the RASAM system. 

M2 Sample # High-Risk # Med Risk CH CM SHAD 

1 6 5 78% 80% 79% 

2 10 12 73% 92% 82.5% 

3 15 20 67% 83% 75% 

4 18 21 89% 87% 88% 

Table 5.   SHAD Data Samples 

A combined graph of CH, CM and SHAD is shown in Figure 22 detailing the 

fluctuation in hazard analysis depth. 

 
Figure 22.   RASAM SHAD Growth 
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The above figure shows a distinct decline in SHAD at sample 3. At this 

same sample point there is a decline in both CH and CM. However, investigation 

into the cause of this decline would require determining the cause. From the 

graph, it can be assumed that correction took place prior to sample 4, resulting in 

an increase in SHAD. As discussed earlier, the SHAD metric will only provide 

indication of sufficiency for further investigation. 

3. Metric 3: Percent Software Safety Requirements 

Utilizing the same set of similar safety-critical software-intensive systems 

found at Metric 1, Table 6 shows data for the PSSR model. 

 

System # Software Requirements # Software Safety 
Requirements 

PSSR 

RASAM v0.5 94 25 26.6% 

ISAM (Integrated 
SAM) 

78 31 39.7% 

SAMDS (SAM 
Defense 
System) 

109 43 39.4% 

AAMS (Air-Air 
Missile System)  

120 56 46.7% 

RAAMS (Rapid 
AAMS) 

132 51 38.6% 

Table 6.   Case Study PSSR 
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Based on the same assumptions made for M1 (complete population vs. 

sample of population), PSSR (M3) data is as follows: 

EPSSR = 38.2%. 
σ = 6.5%. 

At the end of the system design phase, the hazard identification and 

hazard analysis resulted in a total of 44 software safety requirements being 

derived. The total software requirements completed at the same time was 105. 

PSSR can be calculated as follows: 

PSSR = (44/105) * 100 = 41.9%. 

Analyzing the PSSR through the sufficiency model, it can be shown that, 

for the current number of software requirements, there are a sufficient number of 

software safety requirements: 

|PSSR – EPSSR| = |41.9 – 38.2| = 3.7% < σ. 

From the above data it can be assumed with reasonable confidence that a 

sufficient number of software safety requirements have been derived based on 

the current number of software requirements. Thus, this strengthens the 

validation case for the derived software safety requirements. 

In the same fashion as M1, a number of samples were taken throughout 

the conceptual design phase as shown in Table 7.  

 

M4 Sample # Software Requirements # Software Safety 
Requirements 

PSSR 

1 83 15 18% 

2 94 37 39.4% 

3 101 40 39.6% 

4 105 44 41.9% 

Table 7.   RASAM PSSR – Conceptual Phase 
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As with M1, tracking the growth or reduction of M3 is best achieved by 

graphing the results over time. This will aid in indicating maturing (or otherwise) 

valid software safety requirements. 

 
Figure 23.   RASAM PSSR Growth 

 
Figure 23 and the calculated PSSR, indicate a sufficient number of 

software safety requirements are being developed. Thus, instilling confidence 

that the safety requirements are indeed valid. 

4. Metric 4: Percent High-Risk Software Hazards with Safety 
Requirements 

It is assumed that M4 will be 100% throughout the development cycle; that 

is, every identified high-risk software hazard will be mitigated through appropriate 

software safety requirements. However, it is possible that certain elements of the 

design are forgotten, or postponed for later development. Therefore, it is 

important to ensure that every high-risk software hazard is associated with 

derived software safety requirements. The following table is the metric data used 

for M4, M5, and M6. 
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Sample # # SHHR-SR # SHHR # SHMR-SR # SHMR # SHMoR-SR # SHMoR 

1 2 4 5 14 7 8 

2 6 9 12 18 14 14 

3 10 11 23 24 19 20 

4 12 12 24 24 20 22 

Table 8.   Software Hazards with Safety Requirements Data 

Using the data given in Table 8, M4 can be calculated for the final sample 

as: 

M4 = (# SHHR-SR / # SHHR)*100 = (12/12)*100 = 100%. 

This result indicates that, at the end of the system design, all high-risk software 

hazards are associated with software safety requirements, indicating partial 

validity of the derived requirements. 

5. Metrics 5 & 6: Percent Medium Risk Software Hazards with 
Safety Requirements, and Percent Moderate Risk Software 
Hazards with Safety Requirements 

Following on from M4, M5 and M6 are simply extensions. Therefore, it will 

be more beneficial, and efficient, to combine all three metrics (M4, M5, and M6) 

into a single graphic. Using the metric data in Table 8, the following table shows 

the results of M4, M5, and M6 throughout development. 

Sample # M4 M5 M6 

1 50% 36% 88% 

2 67% 67% 100% 

3 91% 96% 95% 

4 100% 100% 91% 

Table 9.   Percent Software Hazards with Safety Requirements 
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Graphing the sample sets gives a more clear depiction of growth over time 

and indicates in one simple diagram which area (high-, medium-, or moderate- 

risk) of software safety requirements are sufficiently mitigated, and which areas 

of identified software hazards may be invalid. Overall, the metrics give an insight 

into the sufficiency of the artifacts resulting from the safety process, and hence 

the validity of the requirements. 

 
Figure 24.   M4, M5, and M6 Growth 

 
Figure 24 above indicates that all high- and medium-risk software hazards 

have associated software safety requirements. However, there are some 

moderate-risk software hazards that are not mitigated through software safety 

requirements. Therefore, investigation is required to determine either the validity 

of the software hazard, or the validity of the set of software safety requirements. 

6. Metric 7: Percent Software Safety Requirements Traceable to 
Hazards 

As with the previous three metrics (M4, M5 and M6), it is expected that all 

software requirements are traceable to hazards. In essence, the combination of 

M4, M5, M6, and M7 ensures forward and backward traceability. It may be the 

case that all software hazards have associated software safety requirements; 
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however, there is no guarantee that the complete set of derived software safety 

requirements is traceable to software hazards. At the end of system design it was 

found that, as with M3, the total number of software safety requirements was 44. 

Each of these software safety requirements was traceable to identified software 

hazards. Metric 7 calculations are as follows: 

M7 = (# SSRTR / # SSR)*100 = (44/44)*100 = 100%. 

Table 10 provides the metric data for M7 with the same four collection 

sample points as previous metrics. 

 

Sample # # SSRTR # SSR M7 

1 15 15 100% 

2 36 37 97.3% 

3 38 40 95% 

4 44 44 100% 

Table 10.   Traceable Software Safety Requirements Data 

 
Again, graphing over time gives us an indication of stability, or growth, or 

otherwise. In the case of M7, stability at 100% is the goal. Anything other than 

this would indicate the need for investigation. 
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Figure 25.   Percent Software Safety Requirements Traceability 

 
From the above metric data it is shown that, at the end of the system 

design, all software safety requirements are traceable to software hazards. This, 

again, strengthens the case that the derived software safety requirements are 

valid. 

E. CASE STUDY CONCLUSION 

In the above sections, the application of the Validation Metrics Framework 

has been demonstrated. As has been discussed, the metrics themselves cannot 

determine validity of the resultant safety artifacts (ultimately focusing on software 

safety requirements), but they do provide an indication of validity in a proactive 

manner. Instead of relying on final testing to reveal any validity issues with 

software safety requirements, application of the framework helps to identify 

potential problems early on in the development lifecycle. 

Upon finalization of system design in the case study, some metrics (M1, 

M2, and M6) indicate that further investigation must be made to determine the 

source of insufficiency, and the possibility of invalid software safety requirements. 

Throughout the development process, up to the final sample set, a number of 

investigations would have taken place to remedy, or understand, metrics 
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indicating poor performance of the assessed entity. Stakeholder feedback is 

necessary during these investigations, providing a closed-loop process for 

determining validity of software safety requirements. The case study only 

presents four sample sets of measurement data up to finalization of the system 

design. There is no “standard” number of samples that should be considered for 

system development; rather, it should be determined according to a number of 

factors, including but not limited to the following: 

- System complexity 

- Workforce 

- Metric performance (poor performance indicates the need for close 

monitoring and more regular samples) 

- Metric gathering burden 

- Progress through SDLP (up front effort usually outweighs trailing 

effort). 
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VI. CONCLUSION 

A. KEY FINDINGS AND ACCOMPLISHMENTS 

Validation as a concept is often misunderstood. Too often it is confused 

with verification activities, or left as a final box to tick just prior to delivery. Adding 

to this is the difficulty of validating software safety requirements. Validation of 

software safety requirements cannot be performed in the usual sense, which 

relies heavily on stakeholder input, because of the disconnect that exists 

between stakeholders specifying that they want a safe system and stakeholders 

understanding how to make a system safe. Ensuring that the right safety product 

is built is vital to the successful deployment and acceptance of a software 

system. When considering the possible impacts of a safety-critical software-

intensive system, validation of safety requirements is paramount. 

Validation of software safety requirements necessitates a new model of 

validation. Chapter III of this thesis proposed a new model for validation of safety 

requirements, focussing on sufficiency of hazard identification, hazard analysis, 

and software safety requirements traceability as a proxy for validation. This 

model forms the core of the proposed Validation Metrics Framework. 

At present very little information exists on the use of metrics for the 

purpose of measuring safety. Even less, if any, information can be obtained on 

metrics for validation. Discussion on what validation metrics are, and how best to 

use them, is given throughout this thesis. By combining two popular software 

development tools (GQM and GSN) we have created a goal-based framework 

identifying a core set of metrics to aid in validating safety requirements of safety-

critical software-intensive systems.  

The framework cannot be claimed to be complete. It is an initial step into a 

more mature software engineering environment utilizing measurement 

techniques. Rather than completeness, the framework should be considered in 
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terms of sufficiency. Sufficiency of the framework will depend on the application 

and surrounding organizational environment. Each organization will determine 

different levels of sufficiency based on a number of contributing factors, such as: 

- Experience with validation of software safety requirements 

- Experience with the framework itself 

- Organizational acceptance of a metrics framework 

- Overhead burden of gathering metrics 

- Complexity of the system under design 

- Relative success of previous designs. 

The Validation Metrics Framework has been designed in an extensible 

manner. Addition of new goals, questions, or metrics is not limited. Should better 

methods of measuring sufficiency of any one of the three elements of validation 

(i.e., hazard identification, hazard analysis, and software safety requirements 

traceability) be determined, the framework will allow for modification. Tailoring to 

suit any organization’s requirements is possible, but keep in mind that it is 

expected that in most cases this would involve an addition to the set of metrics. 

The metric set presented in the Validation Metrics Framework is given as a core 

set—they have been developed to be the minimum measures of sufficiency. 

However, this does not prevent partial application of the framework where 

benefits can be obtained. 

The research and development of this thesis resulted in a metric 

framework for validation of safety-critical software-intensive systems. There is 

currently no notion of validation metrics in the open literature, much less a 

framework identifying purpose, application, and boundaries of the metric set. 

Application of the framework to a representative safety-critical software-

intensive system (i.e., the RASAM) in Chapter V shows how the resulting metric 

data from the framework can engender a proactive approach to ensuring validity 

of software safety requirements. The Validation Metrics Framework identifies a 

number of areas that require investigation throughout the case study. Moreover 

the results of the case study demonstrated that the framework provides early 
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warnings of the invalidity of software safety requirements. As noted throughout 

the case study, the metrics cannot determine validity of the safety requirements 

themselves. Instead they serve as indicators (in some cases early indicators) of 

software safety requirements validity. Only subsequent investigation, triggered by 

the metrics in the framework, can determine if the software safety requirements 

are in fact valid. 

B. FUTURE WORK 

The primary avenue of future work is to apply the Validation Metrics 

Framework to a number of real systems under development. Although a metric 

for effectiveness of applying the framework has not been identified, a survey 

could be used to determine effectiveness as perceived by both developers and 

stakeholders. Establishing effectiveness via perception would provide justification 

for application and provide a firm grounding for continued use and development 

of the Validation Metrics Framework. 

As mentioned in the previous paragraph, a metric to measure the 

effectiveness of the framework has not been identified. Initially a qualitative 

metric should be developed with an aim to move to an automated quantitative 

metric. Effectively, a Return On Investment (ROI) style quantitative metric is 

required to provide even further justification for the framework. The ROI metric 

may only consider resources as measures of success. Thus, a qualitative metric 

is still required to determine effectiveness in terms of validity (as per the previous 

paragraph). Therefore, a two-part metric is required to measure effectiveness of 

the framework—a quantitative ROI portion (concerned with resources) and a 

qualitative portion rating the perceived effectiveness. 

At present, the framework determines validity of safety requirements 

through sufficiency measures. Although carefully researched, it is expected that 

more appropriate and effective sufficiency measures may be identified that still 

maintain the core goal-set as identified through this thesis. Application of the 

framework to real systems will most likely result in improvements to the current 
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core metric set, or identify new metrics. There are likely to be many other ways to 

measure sufficiency than those proposed in this thesis. 

The current Validation Metrics Framework specifically addresses safety-

critical software-intensive systems. Many safety-critical system developers are 

now moving toward system-of-systems solutions. The aim of these solutions is to 

leverage off previous development (in many cases) while creating an overall 

system that has capability beyond the “sum of its parts” (i.e., synergy of 

systems). Designing safety into a system-of-systems can be a much more 

complex task than that of standard systems. Until recently, hazard identification 

and hazard analysis methods were unable to deal with system-of-systems (see 

[26] for a detailed analysis of the system-of-systems problem when identifying 

and analyzing safety hazards). Redmond proposes an interface hazard analysis 

technique for systems-of-systems and identifies a number of other hazard 

identification and analysis areas as future work. The Validation Metrics 

Framework is highly reliant on the methods of identifying and analyzing hazards. 

Therefore, a complete hazard analysis method is required for systems-of-

systems before applying the framework to systems-of-systems. Because these 

types of systems are only recent advances in software engineering, success of 

design has been varied. For many of the metrics identified in the Validation 

Metrics Framework, historic data is required from successful systems to ensure 

valid metric interpretation. Presently, this historical data is not readily available. 

Therefore, when dealing with system-of-systems solutions, two hurdles must be 

cleared: 

- Maturing of hazard identification and analysis 

- Compilation of historical metric data. 

Once the above objectives are met, there is no foreseeable reason why 

the Validation Metrics Framework cannot be applied with the current metric set. 

This application will require further investigation to define clear-cut processes 

and definitions (e.g., there may be two different system specifications resulting in 

a complex web of requirements traceability, but still needs to be maintained). 
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The Validation Metrics Framework is specific for safety-critical software-

intensive systems. Through the development of this framework, a hybrid generic 

metrics model has also been identified through the combination of GQM and 

GSN. This hybrid model provides all the advantages of a goal-based metric 

framework, while extending the GQM structure to include more descriptive 

elements from GSN. The Validation Metrics Framework for safety-critical 

software-intensive systems is one example of a validation metrics framework. 

Future derivatives of the proposed framework could result in validation metrics 

frameworks for nearly any requirement type or validation aspect. The basic 

hybrid model is extensible and therefore could also be used for metric 

frameworks even beyond the realms of validation, for instance verification. 

Discussed during the objectives section for the Validation Metrics 

Framework is the concept of providing a goal ranking system. Because 

resources are not always plentiful, a realistic view of goal ranking (and 

subsequent metric ranking) is required. A number of possible solutions exist for 

goal ranking; however, the method of Berander and Jönsson [19] seems 

promising. Allowing for surveyed prioritization could be an initial implementation, 

while working toward a more complete solution that takes into account severity of 

risks and other factors. In fact, any ranking surveys undertaken need to clearly 

explain the consequences of rating a certain goal too low. Neglect on any metric 

that deals directly with high-risk software could result in severely invalid software 

safety requirements. Future development and research on the Validation Metrics 

Framework needs to consider prioritization as an integral part of the framework, 

otherwise the risk of rejecting the framework due to lack of resources is 

heightened. 

Software reuse is another hotly debated topic in the software engineering 

community. Although it has not been discussed in depth, the reality is that 

software reuse can deliver benefits to developers of software-intensive systems. 

It can also result in severe complications during design and failures after delivery. 

However, given that there is much to be gained from software reuse, it makes 
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sense that any metric framework for modern software-intensive systems should 

consider its impact. Future development of the Validation Metrics Framework 

should include analysis of the impact that software reuse can potentially have. 

Given that the framework is used for validation of software safety requirements, 

the impact on requirements due to software reuse will be the focus. As part of 

this analysis, a sufficient method of managing software reuse should be 

recommended to bound the possibilities of design artifacts and procedures. 

Warren presents a suitable framework for software reuse in safety-critical system 

of systems called C5RA [27]. 

Automation of the Validation Metrics Framework is also an important 

aspect. To reduce the burden on metric gathering, tools should be developed to 

gather, monitor, and regularly report on the framework metrics. To a great extent, 

automation of the framework can be achieved. However, the intellectual 

activities—tailoring the framework and conducting investigations into validity of 

requirements—cannot be automated. 
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APPENDIX A. RASAM DESIGN ARTIFACTS 

A. INTRODUCTION 

The documentation compiled in this section is only intended to be 

representative of an actual system. It is not a complete representation. Sufficient 

data is provided so that the context is clear; however, when the metrics are 

presented for the RASAM, the results will not correlate directly with the 

information below. For example, there are only seven safety requirements 

identified and fourteen hazards. Not every hazard will be addressed through the 

shown requirements, though the metrics shown will assume representative data. 

The purpose is to show how the framework is used, not to fully define a software-

intensive system. 

Format and content of the following design artifacts will vary depending on 

the application and/or originator. However, the purpose and context of the 

documentation will be similar to that given below. 

Obtaining metric data, where possible, should be an automated process. 

This will reduce the overhead burden on any metric program. In most cases, 

some form of CM tool would be used to obtain this information, and therefore 

would be in a much more organized fashion than the form below. 

B. SYSTEM USE CASES 

1. UC1 – Command & Control (C&C) Interfaced RASAM Launch 

Scope: RASAM System. 

Level: User-Goal. 

Primary Actor: C&C Operator (referred to as “User” in Main Success 

Scenario). 
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Stakeholders and Interests:  

- C&C Operator – Wants successful launch and kill of target. 

- Weapon crew – Does not want to engage with RASAM unless 

ammunition depleted. 

Preconditions:  

- RASAM interfaced with C&C system. 

- Built In Tests (BITs) passed. 

- RASAM in tactical mode. 

- C&C recognized air/surface picture valid. 

- RASAM loader contains sufficient munitions. 

Success Guarantee: RASAM launches without incident and achieves Pk 

of > 0.975 for dual salvo against designated threat within designed 

capabilities. 

Main Success Scenario: 
1. User identifies enemy target on C&C system. 

2. User initiates RASAM launch through C&C system on identified 

enemy target. 

3. RASAM receives launch command and initiates launch. 

4. RASAM deploys dual-salvo attack. 

5. C&C system continuously updates target position to RASAM 

system. 

6. RASAM system relays target position to launched munitions. 

7. Munitions match position and lock to detected vessels when within 

range of detection. 

8. Munitions impact and destroy target. 

Extensions (Alternates): 

*.  User may, at any stage throughout Main Success Scenario, abort 

attack: 

a. User issues abort command through C&C system. 
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b. RASAM receives abort command and initiates abort 

procedure. 

c. If safe to do so, munitions are destroyed in flight. 

d. If flight path does not allow for safe self-destruct, RASAM 

issues new coordinates and enables self-destruct of 

munitions. 

6. Should communication to munitions fail, missile will disarm, de-

energize propulsion, and ground. 

7. Should position mismatch occur (i.e., relayed position not match 

detected vessels) from detection range to 1km from detected 

vessels or C&C target (whichever is closer), error shall be sent to 

RASAM and missile shall disarm, de-energize propulsion, and 

ground. 

8. Should missiles fail to impact target (only if neither missile impacts):  

a. Missile shall attempt to re-track and engage target until 

onboard fuel < 5% but not < 4%.  

b. Missile shall self destruct if fuel load between 4% and 5% if 

no impact and if safe to do. 

c. If not safe to self-destruct, RASAM issues new coordinates 

and enables self-destruct of munitions. 

8. Should one missile impact and not the other, non-impacting missile 

shall detonate within 50m of other missiles impact. 

2. UC2 – Launcher Reload 

Scope: RASAM System. 

Level: User-Goal. 

Primary Actor: Weapon Crew. 

Stakeholders and Interests:  
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- C&C Operator – Wants fast reload of munitions, initiates reload 

request. 

- Weapon crew – Wants easy and simple reload procedure to allow 

for coordinated reload. 

Preconditions:  

- RASAM interfaced with C&C system. 

- Munitions depleted and signaled to C&C Operator. 

- RASAM in standby mode. 

- Spare launcher sub-assembly positioned for reload. 

- Spare launcher sub-assembly BITs passed. 

Success Guarantee: Weapon crew (consisting of at least three 

members) is able to reload RASAM (twenty missiles) in less than thirty 

seconds and signal for return to required mode. 

Main Success Scenario: 

1. C&C Operator requests munitions reload. 

2. Weapon crew receives reload request. 

3. Weapon crew checks RASAM in standby mode and initiate reload. 

4. RASAM lowers depleted launcher sub-assembly. 

5. Weapon crew extracts depleted launcher and insert new launcher. 

6. Weapon crew activates reload insert. 

7. RASAM loads new launcher and initiates reload BITs. 

8. RASAM signals C&C operator that reload BITs passed. 

Extensions (Alternates): 

8. Should the reload BITs not pass, the RASAM should signal the 

C&C operator and prevent from entering tactical mode. 

*. The RASAM shall not change from standby mode throughout the 

whole reload procedure, and should not change mode until 

explicitly called upon completion of the procedure. 
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C. SYSTEM MISUSE CASES 

The following misuse case details a sequence of actions that could lead to 

incorrect target designation. This example of misuse case would be created in 

the conceptual design of the system, identifying many of the potential system 

hazards that need to occur to allow such a safety incident. Misuse cases are the 

primary identifier of system hazards (then recorded in PHL), and also a form of 

Preliminary Hazard Analysis. However, they are intended to be rudimentary 

starting points, not detailed analysis tools. 

1. MUC1—Incorrect Target Designation 

Scope: RASAM System. 

Level: User-Goal. 

Primary Actor: C&C Operator (referred to as “User” in Main Success 

Scenario), C&C System. 

Stakeholders and Disinterests:  

- C&C Operator – Does not identify incorrect designation. 

- C&C System – Identifies incorrect target. 

Preconditions:  

- RASAM interfaced with C&C system. 

- BITs passed. 

- RASAM in tactical mode. 

- C&C recognized air/surface picture valid. 

- RASAM loader contains sufficient munitions. 

Failure Guarantee: RASAM identifies target according to C&C 

identification without rejection of incorrect designation. 

Main Success Scenario: 
1. User incorrectly identifies friendly as enemy target on C&C system. 

2. C&C system allows incorrect designation: 
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a. C&C does not retain Identification Friend or Foe (IFF) coding 

for target, or 

b. If C&C does not have IFF coding, does not interrogate for 

update. 

3. User initiates RASAM launch through C&C system on incorrectly 

identified enemy target. 

4. RASAM receives launch command and initiates launch. 

5. RASAM does not perform any IFF interrogation on target 

throughout launch procedure. 

Extensions (Alternates): 

*.  User may, at any stage throughout main success scenario, abort 

attack: 

a. User issues abort command through C&C system. 

b. RASAM receives abort command and initiates abort 

procedure. 

*a.  User may, at any stage throughout main success scenario, re-identify 

the target: 

a. User issues re-identification. 

b. C&C passes to RASAM. 

c. RASAM receives update and re-identifies, whilst maintaining 

history of target. 

D. SYSTEM DESCRIPTION 

The following system description serves as background information to 

provide further context to the RASAM example.  

The RASAM design consists of three major subsystems: 

- Launcher Subsystem, 

- RASAM Missile, and 

- Weapon Control System (WCS). 
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The RASAM also consists of three major ancillary equipment subsystems: 

- Loader, 

- Launcher Interface Test Kit, and 

- Missile Interface Test Kit. 

1. WCS 

The WCS interfaces to the host command and control system via optical 

fiber: 

- The C&C type can vary according to ship class. 

- Accepts target designations and engagement orders from C&C. 

- Issues commands to Launcher Subsystem to prepare and launch 

missile 

The major subsystems of the WCS are: 

- Interface Adapter Panel (IAP) 

o Interfaces to host combat system 

o Interfaces to shipboard sensors 

o Formats message traffic for SCU. 

- Weapon Control Panel (WCP) 

o Operator interface 

o Select operational mode (off, standby, test, training, tactical) 

o Weapon Control for stand-alone operations. 

- Launcher Interface Unit (LIU) 

o Interfaces WCS to Launcher. 

- System Control Unit (SCU) 

o Monitors and controls all system functions 

o Provides feedback to the operator on system status. 

2. Launcher 

The launcher subsystem has ready-service stowage for twenty missiles: 
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- Restrain missiles in launcher against ship’s motion up to sea-state 

6 

- Prepare, point, and fire missiles in direction of threat 

- Protect missiles from effects of shipboard environment. 

The major subsystems of the Launcher subsystem are: 

- Launcher 

o Stores and protects missiles 

o Positions missiles for firing. 

- Launcher Control System (LCS) 

o Controls train and elevation of launcher. 

- Missile Interface Assembly (MIA) 

o Interface between WCS and missiles. 

3. RASAM Missile 

The RASAM Missile is not a unique component, therefore can be 

considered typical of a shipboard Surface-to-Air Missile. 
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E. SAFETY PRODUCT REFERENCE LIST 

Date Name Version

10Apr2004 RASAM Preliminary Hazard List V1 

15Jul2004 RASAM Preliminary Hazard List V2 

15Jul2004 RASAM Preliminary Hazard Analysis V1 

12Oct2004 RASAM Preliminary Hazard Analysis V2 

30Nov2004 RASAM Generic Safety Requirements V1 

10Jan2005 RASAM Derived Safety Requirements V1 

15Feb2005 RASAM Software Safety Requirements Traceability 

Matrix 

V1 

Table 11.   RASAM Safety Product Reference List 

F. RASAM PHL 

Identifier Date Hazard Comments 

H1 10Apr2004 Detonation or deflagration of 

warhead 

Becomes mishap 

if unintentional 

loss occurs 

H2 10Apr2004 Explosion or deflagration of 

rocket motor 

 

H3 10Apr2004 Loss of control of launched 

missile 

 

H4 10Apr2004 Loss of control of launcher 

movement 

 

H5 10Apr2004 Exposed high voltages on 

launcher 
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Identifier Date Hazard Comments 

H6 10Apr2004 High pressure liquid / gas escape 

on launcher 

Hydraulics / 

Pneumatics 

H7 10Apr2004 Exposed toxic materials  

H8 10Apr2004 Launch debris Ejected 

components 

H9 20May2004 Unintentional launch  

H10 20May2004 RASAM / C&C position 

discrepancy 

 

H11 15Jun2004 Loss of communication with 

launched missile 

 

H12 23Jun2004 Loss of communication between 

C&C and RASAM 

 

H13 15Jul2004 RASAM launcher reposition for 

reload 

Maintenance 

personnel around 

lowered launcher 

H14 15Jul2004 Incorrect target designation Highly dependent 

on C&C system, 

but not entirely 

Table 12.   RASAM Preliminary Hazard List 

G. RASAM PHA 

For the purpose of this thesis, the PHA will only be presented in terms of 

mishap risk associated with each of the hazards. In a full PHA, a much deeper 

analysis of each potential mishap would be performed—including mishap risk, 

determination of causal factors (in themselves hazards), and suggested 
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mitigation techniques—all leading to derived safety requirements. For this thesis, 

these underlying steps are assumed to have contributed to the mishap risk table 

below and subsequent safety requirements. The mishap risk is determined 

according to the resultant mishap and then carried over to the associated 

hazard(s). Mishap risk will be determined in accordance with the Joint Software 

System Safety Committee Software System Safety Handbook [2], utilizing the 

hazard severity and hazard probability to determine a Hazard Risk Index (HRI) 

rating whilst using engineering judgment to combine risk elements of software 

using the Software Hazard Criticality Matrix (SHCM). 

 

ID Date Severity Probability HRI Comments 

15Jul04 Catastrophic Frequent 1 Unacceptable risk. 

Safety requirements to 

lower risk.  

H1 

30Sep04 Catastrophic Probable 2 Risk lowered after 

review by SME, 

software control level 

lower than anticipated. 

15Jul04 Catastrophic Remote 8 Marginal risk. Based on 

current rocket motor 

success. 

H2 

10Oct04 Catastrophic Improbable 10 Minimum risk. Risk 

lowered after review by 

SME. 
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ID Date Severity Probability HRI Comments 

15Jul04 Catastrophic Occasional 4 Unacceptable risk. 

Current SAM systems 

not as software-

intensive as RASAM. 

Safety requirements to 

lower risk. 

H3 

08Oct04 Catastrophic Probable 2 Risk raised after 

comparison to current 

non-software-intensive 

systems. Safety 

requirements not yet 

sufficient. 

H4 15Jul04 Critical Occasional 6 Marginal risk. Based on 

current launcher 

technology. RASAM 

involves more software 

control. 

H5 15Jul04 Critical Remote 12 Minimum risk. Based on 

current electrical safety 

technologies. 

H6 15Jul04 Critical Improbable 15 Minimum risk. Assumes 

trained maintenance 

personnel. 

H7 15Jul04 Catastrophic Remote 8 Marginal risk. Based on 

current toxic material 

containment. 



 115

ID Date Severity Probability HRI Comments 

H8 15Jul04 Critical Remote 12 Minimum risk. Remote 

possibility that 

personnel will be near 

debris. Equipment and 

environment not 

affected. 

15Jul04 Catastrophic Probable 2 Unacceptable risk. 

Safety requirements to 

reduce risk. 

H9 

09Aug04 Catastrophic Occasional 4 Risk lowered after 

preliminary safety 

requirements reviewed. 

15Jul04 Catastrophic Occasional 4 Unacceptable risk. 

Safety requirements to 

reduce risk. 

H1
0 

25Jul04 Catastrophic Probable 2 Risk raised due to 

review by SME. 

H1
1 

15Jul04 Catastrophic Probable 2 Unacceptable risk. 

Safety requirements to 

reduce risk. 

H1
2 

15Jul04 Catastrophic Probable 2 Unacceptable risk. 

Safety requirements to 

reduce risk. 

H1
3 

15Jul04 Marginal Occasional 13 Minimum risk. Assumes 

trained maintenance 

personnel. 
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ID Date Severity Probability HRI Comments 

H1
4 

15Jul04 Catastrophic Probable 2 Unacceptable risk. 

Based on current SAM 

systems. 

Table 13.   RASAM Preliminary Hazard Analysis 

H. RASAM SOFTWARE SAFETY REQUIREMENTS 

The results of the PHA typically identify the preliminary system 

components that can contribute to mishaps/hazards. It has been assumed that, 

without explicitly undertaking an analysis method (Failure Modes and Effects 

Analysis, Fault Tree Analysis, Event Tree Analysis, etc.) in this thesis, the results 

of such a method are available. Therefore, the safety-critical system components 

have been identified and the following safety requirements are developed to 

reduce the probability of causal factors contributing to the mishap. Again, this will 

not be a “complete” exercise, it will only illustrate a portion of safety 

requirements. As this documentation is being formed in the conceptual design 

phase, sufficient design knowledge is not present to sufficiently identify software 

safety requirements. This will be conducted during the following design phases. 

The following requirements are derived safety requirements (Safety 

Derived – SDn) identified to directly address hazard H9 and partially H14: 

SD.1. WCS shall maintain positive control of launch-related commands. 

SD.2. The design of the interfaces shall reduce the probability of 

erroneous target designation and launch-related messages due to one-, two-, or 

three-bit errors to <1x10-9. 

SD.3. The LSC design shall verify the correct sequence of launch related 

commands. 

SD.4. The WCS shall validate target designation commands from C&C. 
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SD.5. The LSC shall verify safety-related interlocks prior to complying with 

launch related orders. 

In order to address the probability of hazard H1 occurring unintentionally, 

the following generic safety requirement (Safety Generic – SGn) is identified:  

SG.1. Warhead fuze design shall be in accordance with MIL-STD-1316: 

Safety Criteria for Fuze Design. 

Addressing the probability of hazard H2, the following generic safety 

requirement is identified: 

SG.2. Rocket propulsion system shall be designed in accordance with 

MIL-STD-1901A: Safety Criteria for Munition Rocket and Missile Motor Ignition 

System Design. 

I. RASAM SSRTM 

Although the above requirements are not yet specific “software” 

requirements, they will form the basis of the SSRTM. In fact, these requirements 

will form the System Safety Requirements Traceability Matrix from which the 

Software Safety Requirements Traceability Matrix will be defined. The following 

matrix will be in the same form as the SSRTM, it will simply not yet address 

specific software components. 
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Safety Rq. ID Hazard ID Op. Rq. ID 

SD1 H9 OR4, OR6, OR8 

SD2 H9 OR3, OR4, OR7, OR8 

SD3 H9 OR6, OR8 

SD4 H9, H14 OR3, OR4, OR7, OR8 

SD5 H9 OR7, OR8 

SG1 H9 ORn 

SG2 H9 ORn 

Table 14.   RASAM SSRTM 

The above SSRTM is only a rudimentary example. The key element is that 

traceability from any given safety requirement can be made back to identified 

hazards. At this stage of development, it can usually be assumed that the 

identified hazards are valid themselves. The processes (misuse cases, previous 

experience) used to identify the hazards, along with application of this 

framework, will contribute to validity of the hazards. Traceability in the safety 

sense primarily considers traceability to an identified hazard which is then 

traceable (through the analysis and identification methods) to system 

functionality. 
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