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ABSTRACT 

Future space telescopes will contain lightweight, flexible, segmented mirrors.  

Traditional control approaches for mirror alignment and shape control may be inadequate 

due to flexibilities and low natural frequencies.  Using adaptive optics for space 

telescopes presents a possible solution.  This research proposes innovative H∞  robust 

control techniques for these types of systems.  An H∞  controller is synthesized for a 

complex analytical model with 997 inputs, 936 outputs, and 332 states.  To accomplish 

this, a new technique for model reduction using Zernike polynomials was developed.  

The H∞  controller was able to achieve a minimum 15 Hz control bandwidth.  The 

previous integral controller was unable to meet the 10 Hz bandwidth requirement.  The 

H∞  design process used was validated on a simpler adaptive optics testbed.  The 

experimental verification also showed that the robust control techniques outperformed the 

classical control techniques in the presence of disturbances. 

The significant contributions are a Zernike polynomial method for model 

reduction, robust controller synthesis for a complex adaptive optics analytical model, and 

experimental verification on an AO testbed.  Although the robust control design is more 

complex, it provides improved performance in the presence of uncertainty in the 

disturbances and modeling. 
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I. INTRODUCTION 

A. MOTIVATION 

Optical systems have long been used for imagery and intelligence gathering for 

both civilian and military purposes.  Since the first recorded use of telescopes in the early 

17th century, the goal has been to improve the technology that would give the user the 

advantage of increased resolution at greater distance.  Some of the early pioneers in the 

field such as Galileo and Newton experimented with refractive (lens) and reflective 

(mirror) systems.  As the technologies allowing remote optical sensing evolved, military 

commanders on the battlefield, as well as naval commanders at sea, found new 

applications for them.  Naturally, the military application of these tactics evolved with the 

advent of air and space vehicles from which to conduct reconnaissance.  The trend has 

continually moved towards smaller angular resolution at increased distance.  

As shown in Equation (1.1), the diffraction limited angular resolution using 

Raleigh criterion, as denoted by Rα , is a function of the wavelength of the 

electromagnetic radiation, approximately 600 nanometers for visible light, and the 

diameter, D, of the light gathering aperture 

 1.22 /R Dα λ=  (1.1) 

The angular diffraction limited resolution is usually measured in radians, 

arcseconds, or some equivalent measure.  Since the wavelength being observed is usually 

fixed, the aperture diameter is the only remaining variable factor.  Obviously, there are 

physical size limitations to which the primary optic in a telescope can be manufactured. 

The most obvious limitation arises from the physical process of machining the 

lens or mirror.  Ideally, a reflective mirror would have a parabolic shape to minimize the 

amount of aberration resulting from the reflection process.  In practice, however, 

spherical mirrors are much easier to machine, giving rise to one of the most common 

optical aberrations, appropriately known as spherical.  Additional constraints on the 

diameter of the primary optic arise in the support structure used to encase or hold the 

optic stationary.  Large telescope optics will often be quite rigid, a design characteristic to 
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prevent sagging or warping of the optical surface due to gravitational or other inertial 

forces.  Mechanisms to support and move these heavy optics can themselves become 

quite large and cumbersome. 

This support structure problem has less consequence for ground-based observing 

platforms, but for airborne platforms, weight becomes more important.  This realization 

becomes immensely important when considering space-based platforms where the cost 

per pound to orbit is prohibitively high.  Space platforms are perhaps even more limited 

by size constraints than weight constraints.  The basic shape of every launch vehicle that 

launches spacecraft into orbit is cylindrical.  Even the space shuttle orbiter, whose 

exterior is not cylindrical, has a cylindrical payload bay that carries the spacecraft aloft.  

The diameter of the rocket body becomes a physical limitation for the size of the primary 

optic of a space-based telescope.  Considering the distance involved in orbital altitudes, 

this diameter is certainly less than that needed to achieve the angular resolution desired 

by image analysts. 

Despite these challenges, the attraction of space-based imagery, and in particular, 

high altitude imagery, is quite appealing.  Beyond the immediate advantages of a wider 

field of view and higher vantage point, a high altitude orbit also results in lower orbital 

speeds, which translates to increased dwell time over a given part of the earth.  This can 

be taken to the extreme of the geostationary orbit, which would maintain continual 

presence over a point above the equator and have nearly a third of the surface of the 

planet in its field of view at any time.  The tradeoff comes in the distance to geostationary 

altitude.  Whereas a low earth orbiting satellite might orbit a few hundred kilometers 

above the surface, geostationary spacecraft require an altitude of approximately 36,000 

km.  The effect of this distance is illustrated in Figure 1 and Equation (1.2), where the 

angular resolution is equal to that from Equation (1.1), and R represents, in this case, 

distance from the orbital altitude to the surface of the earth.  
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Figure 1 Angular Resolution Geometry. 

 

 RR GDα =  (1.2) 

where GD is the ground resolution. 

Although increasing altitude does not decrease the angular resolution per se, it 

does increase the minimum separation needed to differentiate two objects on the surface.  

Said another way, space telescopes at geostationary altitudes require much larger 

diameter primary optics to differentiate the same level of ground detail as low earth 

orbiting satellites.  Clearly, a way is needed to combine the benefits of better image 

quality obtained from lower orbits with that of improved dwell time from higher orbits.  

Multiple solutions exist and are not limited to individual spacecraft.  A concept of 

operations could be developed which utilizes a constellation of spacecraft at varying 

altitudes to maximize resolution and dwell time over particular areas of interest.  Another 

solution involves achieving primary optic diameters larger than would fit inside a 

conventional payload fairing, by segmenting, and deploying on orbit.  These 

segmentation techniques will be the topic of this dissertation. 

Traditional telescopes utilize a spherical, continuous face sheet mirror.  Its size is 

constrained, however, by the aforementioned limitations.  If instead of a continuous face 

sheet, the primary optic can be made of a series of smaller segments, these segments can 

be folded or packaged in some way that the segments are deployed or assembled into a 

large diameter mirror after the rocket’s payload fairings have been jettisoned and the 

spacecraft is on-orbit.  The concept is not unlike that which is done with spacecraft solar 

arrays, which are often folded like an accordion before launch and unfolded once in  
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space.  To be clear, though, the on-orbit assembly of mirror segments is vastly more 

complex than that of solar arrays, communications antennas, or any other spacecraft 

structures deployed on-orbit. 

The added complexity stems partly from the fact that mirror segments are 

extremely delicate components with sensitive optical coatings, but primarily from the 

precise alignment criteria required of the segments.  Recall that the wavelength of visible 

light is on the order of 600 nm.  With wavelengths this small, even a slight misalignment 

of mirror segments can cause aberrations to degrade image quality beyond what is useful.  

This problem is so daunting in fact, that a separate area of research is being devoted 

entirely to the problem of initial alignment for segmented optics [1].  Once the coarse 

initial alignment has been successfully accomplished, only fine adjustments will be 

necessary to account for remaining optical aberrations.  More on those aberrations will be 

discussed later.  This research will focus only on the finer surface corrections after initial 

alignment has been completed. 

Numerous folding and deploying scenarios could be considered for segmented 

optics.  One important design criterion is the electromagnetic radiation wavelength 

collected through the aperture.  The emphasis here will be on visible wavelengths.  A 

current example of a space telescope under construction that will utilize segmented optics 

is NASA’s James Webb Space Telescope, an infrared astronomy telescope planned for 

launch in 2013.  An artist’s concept of this spacecraft is shown in Figure 2.  Notice the 

gold-colored primary optic, which is comprised of 18 hexagonal segments.  The launch 

configuration of this spacecraft calls for the three leftmost and three rightmost segments 

to be folded back in order to fit within the payload fairings.  Two hinged motions will 

deploy those six segments along with a host of other deployments from the launch 

configuration involving, but not limited to, the struts supporting the secondary optic and 

the blue and red sun shield.  Although the primary optic deployment may seem rather 

simple, it is important to remember that the remaining twelve segments are still 

individual segments, and vibrations and stresses of the launch environment will make for 

a very challenging initial alignment problem. 
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Figure 2 James Webb Space Telescope From [2]. 

Another challenging aspect of the space telescope observation platform involves 

the structural properties of the primary optic.  Spacecraft designers are constantly 

attempting to decrease the mass of the onboard components to reduce the costs of placing 

them into orbit.  Large, rigid, monolithic optics work fine for most terrestrial 

applications, but their weight becomes prohibitive for spacecraft operations.  Whether 

segmented or a continuous face sheet, space telescope optics are most economical when 

lightweight.  Being lightweight causes particular challenges in the control and alignment 

of mirror segments or other means of mirror shape control.  The natural frequencies will 

be lower, resulting in control and structure interactions. 

Both segmented and continuous face sheet mirrors will have actuators attempting 

to correct the mirror shape due to measured aberrations.  If the bandwidth controlling 

these actuators overlaps, or even falls close to the natural frequencies of the structure, 

then the controller may actually exacerbate the aberrations.  Typically, large ground-

based mirrors have their lowest natural frequency well over 1000 Hz so control 

bandwidths below 100 Hz have no chance of exciting natural frequencies.  With 

segmented mirrors, such as the one researched in this dissertation, the lowest natural 
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frequency can be around 30 Hz, which becomes a concern for the control system 

designer.  Additionally, for space platforms, the natural frequencies are often tightly 

packed and have very little damping.  The robust control techniques researched 

demonstrate an innovative way to design controllers for these lightweight segmented 

space telescopes. 

B. ADAPTIVE OPTICS SYSTEMS 

The term adaptive optics refers to any optical system in which some optical 

component; be it a mirror, lens, or some other device, undergoes adaptation or 

modification to improve the resulting wavefront.  The preceding discussion on 

controlling the shape of the primary optic on space telescopes fits the general description 

of an adaptive optics (AO) system.  To be clear on the nomenclature, the adaptive optic is 

that component of the system such as the mirror, which is altered; whereas adaptive 

optics usually refers to the entire system. 

The optical wavefront is a perpendicular cross section or slice of a propagating 

beam of photons, which is measured by a wavefront sensing device such as a camera.  

For example, a beam of coherent light from a laser propagates along a cylindrical path.  

At that point, taking a sensor measurement at any location or at any instant of time yields 

a representation of the wavefront.  Ideally, the wavefront from a high-quality laser would 

be planar, or flat.  In reality, aberrations cause the wavefront to be non-planar and wavy. 

Aberrations in optical systems come from a variety of sources.  Light traveling 

through the vacuum of space would be the most un-aberrated light possible.  As the light 

propagates though a dynamic atmosphere, or any other medium, it becomes aberrated to 

an observer on the other side of that medium.  Other aberrations arise from imperfections 

in optical components.  Even the human eye is not immune to aberrations, hence the need 

for corrective lenses or eye surgery.  For machined optics, the imperfections result from 

uneven coatings, imperfect shapes, or impurities in glass among others.  Light passing  
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through even one optical component has become aberrated beyond its original form.  A 

moving or vibrating platform can also lead to wavefront aberrations, which is of 

particular concern for spacecraft. 

AO systems come in a variety of styles and designs, but there are usually three 

components common to all.  Those components are a wavefront sensor, an adaptive 

optical component, and a control computer.  This is not unlike a standard control system 

that consists of a sensor, control algorithm, and actuators influencing a plant.  Each of 

these portions will be discussed subsequently.  A generalized schematic is shown in 

Figure 3.  This research focuses exclusively on the design of new and innovative control 

algorithms.  The optical components and wavefront sensors used on the experimental 

testbed are commercially available, off-the-shelf pieces of hardware.  Although the 

emphasis here is on controls, adaptive optics is truly a multi-disciplinary field and draws 

on expertise in physics, structures, controls engineering, and electrical engineering to 

name a few. 

 

Figure 3 Generalized AO System From [3]. 
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1. Wavefront Sensors  

A wavefront sensor takes an optical measurement of some object of interest and 

represents that information as a set of discrete data points.  One of the most common 

wavefront sensors for AO systems is the Shack-Hartmann wavefront sensor.  It consists 

of two basic parts, a camera, and a lenslet array.  The camera operates like any CCD or 

CMOS camera.  Incident light excites pixels in an array and the light intensity is 

converted to voltages, which is output along with the location of pixels that were excited.  

The other main element of the Shack-Hartmann wavefront sensor is the lenslet array at 

the front entrance pupil of the camera.  To understand its purpose, first envision a card 

that is placed at the entrance pupil, blocking all light from reaching the camera sensor.  

Now poke a series of holes in the card in a geometric pattern, such as a square matrix.  

Light from the incident wavefront will pass through these holes, undergo diffraction, and 

strike the CCD sensor.  Now replace the holes with an equal number of small lenses 

(known as lenslets) which abut up against each other such that there is no remaining 

surface of the card.  The entire blockage now consists of a grid of lenslets.   

Each of these lenslets is identical and will focus the incoming light on the CCD 

behind it.  The distance from the lenslet array to the CCD is the focal length of the 

lenslets.  For a planar incoming wavefront, the location of the focused spots on the CCD 

will be evenly spaced in the same geometric pattern as the lenslet array. 

If, however, the incoming wavefront is not planar, then the resulting spots on the 

CCD will not be evenly spaced.  Whereas a planar wavefront will come to focus directly 

behind each lenslet, an aberrated wavefront will cause the spot to come to focus at some x 

and y displacement on the CCD.  Figure 4 shows an example of an x displacement from 

an aberrated wavefront; a y displacement would be normal to the surface of the page. 
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Figure 4 Lenslet Array Spot Formation From [3]. 

By measuring the actual location of the spots vs. the expected location for a planar 

wavefront, an estimate of the true shape of the incoming wavefront can be obtained.  This 

information is then used by the control computer to determine what action must be taken 

to correct the aberration. 

The Shack-Hartmann is only one example of a wavefront sensor for an AO 

system.  A phase diversity sensor is another common wavefront sensor that attempts to 

determine wavefront shape based on the difference in image intensity from typically two 

cameras placed at different locations in the beam path [4].  Both the analytical model and 

experimental testbed described in this research use Shack-Hartmann wavefront sensors. 

2. Adaptive Optical Components 

Once the actual shape of the wavefront has been determined, the control 

algorithms are needed to determine how best to make the wavefront as planar as possible.  

First, however, it is best to understand the actual methods available to apply a correction 
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to the wavefront.  This is accomplished through use of an adaptive optic.  Perhaps the 

simplest type of adaptive optic to start with would be a Fast Steering Mirror (FSM).  The 

reflecting surface of an FSM is a normal flat mirror.  The difference is in the mounting 

mechanism that supports the mirror in the system.  Imagine a pair of orthogonal axes 

along the surface of the mirror.  These axes are commonly referred to as tip and tilt axes.  

By making small rotations about these axes, the beam of light the mirror is reflecting can 

be steered.  This ability to alter the orientation of the mirror, and therefore the beam path, 

allows an FSM to be classified as an adaptive optic and an optical system containing an 

FSM is likewise classified an AO system.  An FSM, however, corrects only first order 

wave aberrations. 

One common source of such aberrations in an optical beam is jitter caused by 

structural vibrations.  Since these vibrations are somewhat oscillatory in nature, if the 

wavefront sensor is fast enough to identify their frequency, an FSM should be able to 

apply an appropriate phase difference to null out the jitter aberrations in the optical beam.  

In this example, the system’s actuators affect a change in the FSM’s tip/tilt orientation. 

For higher order wave aberrations, a more complex adaptive optic such as a 

deformable mirror is used.  Unlike the FSM, which has a continuous, flat, face sheet 

surface, the surface of a deformable mirror can be adjusted to take on other desired 

shapes that are not flat.  This is accomplished with a set of actuators on the back surface 

of the mirror.  Piezoelectric actuators are one type and can be bonded to the back surface 

such that the actuator can be lengthened or shortened to “push” and “pull” the surface of 

the mirror into the desired shape.  Another type consists of electrostatic actuators where a 

voltage potential creates a deformation of the mirror surface instead of the motion of a 

physically attached rod. 

The purpose behind deformable mirrors is to create a mirror shape that exactly 

matches the inverse of the measured wavefront.  Therefore, if the wavefront is 

determined to have a particular shape, then by inverting that shape and applying it to the 

mirror, the wavefront can be made planar.  The success of this approach will depend on 

several factors including having enough lenslets in the wavefront sensor to accurately 

characterize the wavefront, a control algorithm capable of quickly determining a solution 
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before the wavefront changes, and enough actuators to create the inverse wavefront with 

high enough fidelity.  Technology has increased to the point where a large number of 

lenslets and actuators can be packed into a relatively small space on their respective 

components.  This is advantageous in that it allows higher fidelity shapes to be measured 

and created.  The disadvantage lies in the next topic of discussion, the control laws 

governing the process. 

These two brief descriptions of adaptive optical components only scratch the 

surface of the level of complexity that can exist in AO systems.  Remember that for high 

altitude space based telescopes, the optics will most likely need to be segmented to 

provide the degree of resolution required.  A telescope comprised of even just two 

segments presents a significant challenge for the design engineer.  Future telescopes will 

be comprised of several individual segments requiring precise alignment, where each 

segment is its own deformable mirror requiring face sheet control.  The analytical model 

studied in this research is just such a system. 

3. Control Algorithms 

Adding lenslets and actuators to an AO system not only increases complexity but 

also lends itself to coupling between actuators.  Whereas historically, control laws treated 

AO systems as a static problem, and to date, adaptive optics has been a field of study 

largely belonging to the field of astronomy where AO systems are used to correct for 

ground based observatories peering at distant starlight through a turbulent atmosphere.  

Using either a naturally occurring or artificially created guide star, the control computer 

can determine the atmospheric aberration in the guide star’s wavefront and use that 

information to compensate for the atmosphere with the optics.  This can be done in either 

a real-time or in a post-processing manner.  For real-time correction, the computer has to 

compute and apply the corrections before the atmosphere above the telescope changes.  

This process is made much simpler by the telescope mirrors being large rigid structures 

where the control bandwidths are well below the natural frequencies, so the structural 

dynamics can be ignored in the control design.  For lightweight space based telescopes, 

besides having to contend with natural frequency concerns, there is increased probability 
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that a large piston motion by a particular actuator will have an unintended effect on the 

mirror surface in the neighboring actuator’s space.  This effect is magnified in light of the 

fact that on current deformable mirrors, large numbers of actuators are packed into 

relatively small areas.  If simply ignored, this coupling will have an adverse effect on 

system performance.  The structural flexibility also cannot be ignored in the control 

design. 

Since the design of robust control algorithms for AO systems is the purpose of 

this research, this brief introduction for AO control algorithms will be sufficient for now.  

For a more thorough treatment of AO systems, the reader is referenced to [5], considered 

a primary resource in the field.  Specifics of the exact challenges faced and the solutions 

to those challenges will be addressed throughout the remainder of this dissertation. 

C. OBJECTIVES 

1. Analytical 

The analytical research has the following objectives: 

1. Apply robust control techniques for fine surface control of a complex 

flexible space mirror to minimize wavefront aberrations. 

2. Develop improved model reduction techniques with the emphasis of 

minimizing wavefront aberration. 

3. Achieve the desirable control bandwidth. 

2. Experimental 

The experimental research has the following objectives: 

1. Apply robust control to an adaptive optics testbed. 

2. Compare the performance of robust control and currently used classical 

control techniques. 
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D. CURRENT STATE OF RESEARCH IN THE FIELD 

Although the majority of AO system controllers have been of a classical nature, 

there has been some initial research into advanced robust control techniques for AO 

systems.  To date, the author is not aware of any operational systems that employ a robust 

controller based on H∞  techniques.  The work of Frazier et al. has looked at 

incorporating some of these techniques onto testbed systems [6], [7], [8], [9].  Their work 

has been done on simple testbed setups quite similar to the Spacecraft Research and 

Design Center adaptive optics testbed at the Naval Postgraduate School used in this 

research.  The adaptive optic in their research was also a 37 channel deformable mirror. 

Kun Li et al. have investigated H∞  control techniques for segmented telescopes 

[10], but their approach involves using centralized, decentralized, and overlapping 

control architectures to handle the complexity of large numbers of states, inputs, and 

outputs.  The technique presented here will instead focus on model reduction techniques 

to synthesize the H∞  controller.  Other works have begun to apply H∞  techniques to 

large ground based telescopes that have more flexibility than previous generation 

telescopes, similar to what space based telescopes will experience [11], [12], [13]. 

The general theory of H∞  control techniques is much more developed than the 

application to AO systems.  Several papers and textbooks have been written that have 

advanced these techniques on benchmark problems [14], [15], [16], [17].  These works 

have not been specific to segmented space telescope applications, however.  This 

research will adapt these techniques for complex space telescope models. 

The most thorough work on H∞  control techniques for lightweight segmented 

optics has been done by Carrier [18].  His research looked at modeling and robust control 

techniques for the Advanced Structure/Control Integrated Experiment (ASCIE) testbed, a 

segmented optical system also used by [10].  In physical appearance, the ASCIE is quite 

similar to the space telescope model used in this research.  It contains hexagonal mirror 

segments for the primary optic and a lightweight truss support structure.  Unlike the 

model used for this dissertation, however, the ASCIE is not an adaptive optics system.  It 



 14

contains only 24 sensor inputs versus the 936 sensor measurements used here, and only 

18 actuators versus the 997 used here.  Also because of some of the computational 

limitations at the time, the control design was broken into subsystems.  Processor 

capabilities have matured enough to negate the need to form separate subsystems; 

however, a model reduction is still required.  Nonetheless, the modeling and advanced 

control techniques developed by Carrier form the foundation for much of the application 

in this dissertation. 

Specifically, the work on the ASCIE demonstrated that stochastic controller 

design methods were impractical due to sensitivities to unmodeled dynamics, modal 

frequency uncertainty, and modal damping uncertainty.  Worst case, or H∞ , methods 

yielded a 10% stability margin to modal frequency uncertainties.  Furthermore, the 

research developed the technique of using input and output multiplicative uncertainties 

for loopshaping purposes. 

This research will take the foundational work from these sources and adapt it for 

use on a significantly more complex segmented space telescope model.  Specifically, the 

techniques will be adapted for AO systems and the requirement to perform model 

reduction prior to controller synthesis.  The robust controller synthesis process used will 

be experimentally validated on an AO testbed.  A testbed for the analytical model was not 

available, however, so the control techniques will be demonstrated on a simpler setup and 

suite of equipment. 

E. DISSERTATION OUTLINE 

Chapter II of this dissertation will give detailed descriptions of the complex space 

telescope model along with the AO testbed and its components.  Chapter III will give an 

overview of robust control and the factors considered in the design of robust controllers.  

Chapter IV will describe the model reduction techniques necessary for the synthesis of 

the robust controller.  Chapter V will apply the model reduction and robust controller 

synthesis theory to the analytical model and show the performance when subjected to an 

input disturbance.  Chapter VI will describe the same process for the experimental results 

on the AO testbed.  Final analysis and conclusions will be given in Chapter VII. 
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F. CONTRIBUTIONS 

The present research has contributed to the state-of-the-art in the following areas: 

1. An H∞  robust control technique has been used for surface control of a 

flexible space telescope model including structural dynamics. 

2. Robust control techniques have been able to provide a desired control 

bandwidth that was not possible with classical control. 

3. A new model reduction technique using Zernike polynomials and singular 

value decomposition has been developed.  This technique has been found to 

provide better performance to reduce the wavefront aberration in the space 

telescope model. 

4. A robust control technique has been applied experimentally to the adaptive 

optics testbed of the Naval Postgraduate School Spacecraft Research and 

Design Center.  The robust control technique has been found to be superior to 

classical control in response time and disturbance rejection. 
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II. TESTBED AND MODEL OVERVIEW 

A. SEGMENTED SPACE TELESCOPE MODEL 

1. Model Purpose 

The analytical model researched in this dissertation is a state space model for a 

space telescope with a segmented primary optic.  It was developed and provided by an 

industry partner as part of a government program to test viability and technology 

readiness for future space-based telescopes.  The model represents an actual system built 

for test purposes, but not as a flight test model.  It involves the latest state-of-the-art 

technologies for space telescope systems.  The analytical research conducted in this 

dissertation does not involve the actual hardware, only the simulation model. 

The model is restricted to the optical payload, and does not include the supporting 

spacecraft bus.  At a basic level it is not unlike other space telescopes with a Cassegrain 

configuration in that it has a primary mirror that reflects the incoming light back to a 

secondary mirror, which in turn reflects the light back through a hole in the center of the 

primary mirror.  A suite of science and calibration sensors is located behind the primary 

optic.  The James Webb Space Telescope shown in Figure 2 also has this basic 

configuration. 

Due to the nature of government contracts and funding, this program was 

somewhat constrained in scope.  For example, the control system used standard classical 

control methods with notch filters.  The nature of the system, however, lends itself to 

research into the feasibility of robust controllers.  This is just one of several examples of 

additional research that could be accomplished on this model. 

2. Model Complexity 

The segmented space telescope model is extremely complex.  It contains 332 

states, 997 inputs, and 936 outputs.  This is the main reason that model reduction is 

necessary before a robust controller can be synthesized.  The 332 states come from 166 

modes identified in a Finite Element Analysis.  The inputs correspond to actuators for 
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mirror surface control and the outputs are sensor measurements.  Most, but not all, of the 

sensor measurements are of the wavefront.  By means of comparison, the segmented 

space telescope model investigated in [10], which is actually quite similar in appearance 

and function to the model investigated in this research, has 70 states, 18 inputs, and 18 

outputs.  The Giant Segmented Mirror Telescope in [12] has 200 states and 91 inputs.  

The AO testbed in [7] has 37 inputs and 162 outputs.  The benchmark problems in [14] 

and [15] typically have on the order of 10 states.  Therefore, as can be seen, the scope and 

complexity of this model is much greater than that of previous studies. 

For this model, the primary mirror is comprised of six identical hexagonal 

segments.  They are arranged in a circular pattern such that in the center is another 

similarly sized hexagon, only vacant, allowing the light reflected off the secondary optic 

to pass through to the science instruments.  The positioning of the individual segments is 

accomplished by six coarse control actuators and three fine control actuators per segment, 

for a total of 54 positioning actuator inputs.  Each segment also has a grid of 156 face 

sheet actuators, for a total of 936 shape control inputs, making each segment a 

deformable mirror.  Besides the adaptive primary optic, this model also has another 

adaptive optic, a Fast Steering Mirror (FSM), located in the vicinity of the science 

instruments, and is used to remove global tip and tilt jitter motions.  There are an 

additional seven inputs related to the operation of the FSM thus accounting for the 997 

total model inputs. 

The model outputs similarly come from several different sources.  The majority 

come from a Shack-Hartmann wavefront sensor.  Each of the six segments has 61 Shack-

Hartmann lenslets associated with it.  Each of these lenslets provides two output 

measurements, an x slope, and a y slope.  This results in 732 total Shack-Hartmann 

outputs.  Figure 5 shows a diagram of all six hexagonal segments and the individual 

lenslets associated with each segment.  The lenslets are numbered for one of the 

segments, which will be important for later discussion.  The other segments are numbered 

sequentially in a counter-clockwise wise direction and the individual lenslets in each 

segment are numbered similarly if each segment is rotated to the top position. 
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Figure 5 Mirror Segment and Lenslet Orientation. 

The model also has a phase diversity wavefront sensor providing 1 piston, 1 tip, 

and 1 tilt measurement per segment for 18 total, and a jitter sensor providing 2 total 

tip/tilt measurements.  The remaining sensors on the model are 18 gap sensors, three per 

segment, which measure the distance separating adjacent segments.  In sum, there are 770 

total sensor measurements.  The remaining 166 outputs are the position states.  Table 1 

provides a summary of the model inputs and outputs. 
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Inputs

Source Number per segment

Face Sheet Actuators 936 156
Fine Control Actuators 18 3
Coarse Control Actuators 36 6
Fast Steering Mirror Actuators 7

Total 997

Outputs

Source Number per segment

Shack-Hartmann Slopes 732 122
Phase Diversity Sensor 18 3
Gap Sensor 18 3
Jitter Sensor 2
Position States 166

Total 932  

Table 1 Segmented Space Telescope Input/Output Summary. 

B. ADAPTIVE OPTICS TESTBED 

1. Layout 

The Spacecraft Research and Design Center (SRDC) at the Naval Postgraduate 

School (NPS) has a high quality adaptive optics testbed, which was developed in 

conjunction with personnel from the Naval Research Laboratory (NRL) in Albuquerque, 

NM.  The purpose of the testbed is to apply control techniques to remove aberrations 

from an optical wavefront.  One application that demonstrates this purpose is an imagery 

application, where adaptive optics are used to improve the image quality of an object of 

interest.  Figure 6 and Figure 7 show an example of the improvement in image quality 

that can be obtained using this technique.  The four lights at the bottom are LEDs used to 

illuminate the object. 
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Figure 6 Uncorrected AO Testbed Image. 

 

 
Figure 7 Corrected AO Testbed Image. 

The primary components of the testbed include two deformable mirrors and two 

Shack-Hartmann wavefront sensors, two fast steering mirrors, a reference laser, a source 

object, and a science camera.  The reference and object light beams are conveyed around 
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the table by several lenses, mirrors, and beam splitters which relay the pupil plane to the 

different components.  A schematic of the testbed is shown in Figure 8 and a picture is 

shown in Figure 9. 

 

Figure 8 AO Testbed Schematic From [3]. 

 

 
Figure 9 AO Testbed Picture. 

Light from the reference laser beam and the object light are combined at the first 

beam splitter.  This combined light is then reflected off a Micromachined Deformable 

Mirror (MMDM).  A Shack-Hartmann wavefront sensor measures a portion of the 

reflected reference light source and the rest continues through the system.  The Shack-

Hartmann wavefront sensor sends its CMOS camera image to the control computer, 

which converts the CMOS image into a set of wavefront slopes.  A control algorithm is 

used to determine the correction necessary to make the wavefront planar, and a set of 
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voltages is sent to the deformable mirror to implement the correction.  This is the first 

closed loop control system on the testbed. 

A filter in front of the Shack-Hartmann wavefront sensor removes the white 

object light prior to hitting the lenslet array.  Therefore, any wavefront aberrations are 

measured on the reference beam, not the object light.  There are two important 

assumptions of this setup.  The first is that the same aberrations are present in the 

reference beam as the image beam.  Second, correcting the reference beam will also 

correct the object light.  It is possible that since the laser light is monochromatic while the 

object light contains all visible wavelengths, some of the optical elements on the table 

could cause chromatic aberrations in the object light that are not present in the laser 

beam.  These differences are assumed to be negligible. 

After the first closed loop wavefront correction process, the combined light beam 

next encounters two Fast Steering Mirrors (FSMs).  Including just one FSM allows tip/tilt 

jitter aberrations to be removed.  The presence of two FSMs allows the injection of a 

disturbance with the first FSM to simulate an on-board jitter, and the removal of the jitter 

with the second FSM.  Of course, in their nominal configuration, when no commands are 

sent to the actuators on the FSMs, they behave as ordinary planar mirrors.  The Position 

Sensing Detector (PSD) in the schematic is the wavefront sensor used to close the control 

loop with the second FSM. 

The combined light beam next encounters a second deformable mirror, this one 

having piezoelectric actuators (PDM).  Like the first DM, the light reflected off it is 

imaged by a Shack-Hartmann wavefront sensor and analyzed by a second control 

computer to determine the proper correction to be applied by the DM.  This completes the 

final closed loop system on the testbed.  Finally, the reference laser beam is filtered out 

and a science camera is able to take an image of the object light as seen in Figure 7. 

2. Hardware 
This section will give specifics on some of the AO testbed hardware.  The control 

laws developed involve only the components in the first closed loop system; the MMDM 

and one Shack-Hartmann wavefront sensor.  The other components did not have an active 

role in verifying the performance of the control laws. 



 24

a. Laser 
The laser on the testbed is a red HeNe laser with a wavelength of 632.8 

nm.  It is manufactured by JDS Uniphase and the model number is 1137P. 

b. Micromachined Deformable Mirror 
The MMDM is manufactured by OKO Technologies of Delft, the 

Netherlands.  The following information is taken from the user manual [19].  The 

aperture is 15 mm in diameter.  Thirty-seven actuators are located under a 12 mm 

diameter of the membrane with 1.8 mm center-to-center spacing between actuators.  A 

diagram is shown in Figure 10.  The mirror itself is a silicon chip coated with a silicon 

nitride membrane.  The numbering and two-dimensional positioning of the actuators is 

shown in Figure 11. 

 

Figure 10 MMDM Schematic Section From [19]. 
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Figure 11 MMDM Actuator Locations and Positioning From [19]. 

c. Shack-Hartmann Wavefront Sensor 

OKO Technologies [19] also provides the Shack-Hartmann wavefront 

sensor on the testbed.  It is a ½-inch CMOS A601f camera manufactured by the German 

company Basler with a Hartmann lenslet mask from OKO installed.  The sensor has 656 

x 491 pixels and a frame rate of 30 frames per second.  The lenslet mask has 127 lenslets 

laid out in a hexagonal array and coated with a fused silica coating.  The aperture size is 

3.5 mm and the subaperture of each lenslet is 100 μm.  The appearance of the array is 

similar to that of one of the segments in the segmented space telescope model array 

shown in Figure 5, only with 127 lenslets vs. 61. 

d. Control Computer 

The control algorithms are implemented on a standard desktop PC and 

Matlab software.  The computer is a Pentium D with a 2.8 GHz processor and 1.0 GB of 

RAM.  The operating system is Windows XP version 2002, service pack 2.  The Matlab 

version is R2007a.  The Basler camera is connected via fire wire to the computer, and 

two PCI cards connect the computer to the MMDM.  One card controls 19 actuators, the 

other, 18.  
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III. ROBUST CONTROL 

A. TRADITIONAL CONTROL APPROACH 

The purpose of any control system is to provide stability and achieve certain 

performance objectives.  For adaptive optics systems, classical control techniques have 

always been adequate.  Their simpler design process and more intuitive nature make them 

the controller of choice for most applications.  The following will give a brief overview 

of the traditional AO system control approach and identify the shortcomings that led to 

this research into more advanced control techniques. 

Traditionally, the adaptive optic in large ground based AO systems is treated as a 

static system with no dynamics.  In the case of a deformable mirror, it is assumed that the 

coupling between actuators is static.  Classical control approaches neglect the dynamics 

associated with this coupling thereby simplifying the control process [3], [5].  Obviously, 

as the optics for space telescopes become lighter as discussed in Chapter I, and as more 

actuators are packed into a given area to provide higher spatial correction, this 

simplifying assumption becomes less realistic.  For systems with a high degree of internal 

dynamics, instability can result from a controller designed from a static model. 

At the basis of the control algorithm, the reconstruction, or influence matrix, 

relates the actuators with the aberrations in the wavefront.  The reconstruction matrix is 

formed by starting with the mirror in a neutral position and then actuating or poking each 

actuator in turn while measuring the effect on the wavefront.  For this reason, the 

reconstruction matrix is often referred to as the poke matrix.  As an example, consider a 

deformable mirror with 10 actuators and a Shack-Hartmann wavefront sensor with 20 

lenslets.  Assume the neutral position of each actuator is represented by a 0, and it can be 

commanded to any value from -1 to +1.  Actuator 1 is given full positive stroke and an 

image is taken with the Shack-Hartmann wavefront sensor.  This measurement yields a 

vector of 40 measurements (20 x and 20 y.)  Actuator 1 is reset to 0, and the process is 

repeated for actuator 2.  The end result is a reconstruction matrix with dimensions of [40 

x 10] where each column represents the x and y pixel displacements on the camera sensor 
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for each individual actuator.  These x and y pixel displacements can be easily converted 

to x and y slopes by multiplying by the physical pixel width and dividing by the camera 

focal length. 

This process creates a map of how an actuator position or command affects the 

wavefront, but it neglects the structural dynamics of the mirror.  The mathematical 

expression of the reconstruction matrix, R, is given as 
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where S is the slope in the x or y direction, n is the number of lenslets, and m is the 

number of actuators.  The relationship between the actuator input vector, u , and the slope 

measurement vector, S , is given by 

 S Ru=  (3.2) 

Since the slope is the measured quantity, the pseudo-inverse of the reconstruction matrix 

is used to determine the control inputs.  One possible control approach is to subtract the 

product of the inverted reconstruction matrix (found with a pseudo-inverse technique) 

and measured slope from the previous control input as shown in Equation (3.3).  This will 

drive the control signal to a steady state value and the wavefront slope to zero, resulting 

in a planar wavefront. 

 †
new oldu u R S= −  (3.3) 

Variations on how the wavefront is determined from the slopes (e.g., modal or 

zonal) and variations on the feedback method (e.g., direct, indirect, iterative, etc.) can be 

employed to improve the performance for this traditional control law [3]. 

As stated before, the classical control approach ignores the structural dynamics of 

a system.  Even if a more complex multi-input, multi-output control approach was used 

that accounted for dynamics and coupling between actuators, it would still need to  
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perform satisfactorily in the presence of external disturbances and unmodeled dynamics.  

These uncertainties give credence to the idea of designing robust controllers for AO 

systems. 

B. JUSTIFICATION FOR ROBUST CONTROL 

Robust control addresses the problem of designing a control system that yields a 

desired performance in the presence of model uncertainties and external disturbances.  

For the purposes of this research, the plant to be controlled is a state space model of the 

following form 
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where x is the state, y is the measured output, and u is the control input.  The robust 

control synthesis process augments the plant, G, into a modified system, P, with two 

input vectors and two output vectors.  The process of constructing the modified plant, P, 

will be described later.  The robust controller, K, is then designed for this augmented 

plant shown in Figure 12 

 

Figure 12 Standard Robust Control System. 

where the plant, P, and controller, K, are both state space models, r is the external input 

(which contains a reference input, external disturbances, and noise), z is the performance 

measure, u is the control input, and e is the error between the reference input and 

measured output.  For the specific case of the segmented space telescope model used for 
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this research, the state space plant model describes both the actuators and the Shack-

Hartmann wavefront sensor outputs.  The external inputs, r, are all zero.  The reference 

input is usually zero for adaptive optics applications since a planar wavefront is desired; 

however, in some situations a non-zero reference input may be used if a particular 

aberration mode is desired.  Since the error signal, e, is the difference between the 

measured output, y, and the reference, r, and the reference is zero, the error becomes 

simply the negative of the measured output.  The control input, u, is a vector of actuator 

voltages.  For this research the performance measure, z, is comprised of two components, 

the first is the error signal, e, and the second is the measured output, y.  These two 

performance measures will be penalized or weighted differently for the controller 

synthesis process.  This weighting process will be discussed shortly.  The end goal then 

of the robust controller synthesis process is to minimize the ∞ -norm of the operators 

from r z→ . 

The overall goal of a robust controller is to provide stability for a system in the 

presence of uncertainty or unmodeled dynamics as discussed in Chapter I.  Ideally, a 

robust controller will be able to handle these uncertainties better than other controllers 

such as classical PID controllers or optimal linear quadratic regulators.  When speaking 

of robustness, there are two different performance criteria implied:  the ability to handle 

uncertainty in the model, and the ability to reject disturbances and noise.  What separates 

the robust control design process from a traditional control design process is that these 

uncertainties are explicitly accounted for in the design process to improve performance in 

the face of uncertainties that are poorly understood or modeled.  The H∞  robust control 

method minimizes the upper bound of the performance signal. 

What follows are some of the mathematical foundations that form the backbone of 

robust control theory.  Much of the material is general in nature and not specific to the 

research performed on the analytical segmented space telescope model.  The topics 

include system norms, sensitivity and complimentary sensitivity functions, uncertainty 

modeling, and some of the tools necessary for the formulation of the appropriate 

augmented system matrix, P, to which the controller is synthesized.  The application of 

these techniques to the analytical model will be covered in Chapter V. 
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C. MATHEMATICAL FOUNDATIONS 

1. Norms 

The basic premise of robust control involves minimizing a system norm.  The 

type of norm is dependent on the type of robust controller being designed.  A general 

overview of norms follows.  From a conceptual point of view, a norm is nothing more 

than a measure of how large something is, such as the size of a vector.  The general form 

of a vector norm in p�  as shown in [16] is given as 
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where p takes on the value of the desired norm.  The 1-norm and 2-norm (also known as 

the Euclidean norm) are common norms.  In the case of robust control, a common norm, 

and the one used in this research, is the infinity-norm, given as 
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The standard designation for this type of controller is H∞ , where the H refers to the 

Hardy space for stable systems. 

For matrix operations, the induced norm becomes more useful, where the norm 

can alternately be thought of as a gain.  Given the following simple transformation where 

A is the gain or amplification of the system 

 y Ax=  (3.7) 

the induced matrix norm is given as 
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2. Singular Values 

Singular values are used extensively for robust control synthesis.  Using a 

standard definition for linear algebra, singular values are the square root of the 

eigenvalues of a matrix times its adjoint (i.e., complex conjugate transpose) as shown by 

 ( )i i A Aσ λ ∗=  (3.9) 
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It can be shown that the largest gain for any input direction is equal to the 

maximum singular value, σ , and that the smallest gain for any input is equal to the 

minimum singular value, σ .  The H∞  norm can also be defined as the least upper bound 

on the maximum singular value.  The H∞  norm for a linear time invariant system, G, is 

given as 

 ( )( )supG G j
ω
σ ω

∞
�  (3.10) 

For multi-input, multi-output systems, a plot of the maximum singular values is 

analogous to the Bode magnitude plot for single-input, single-output systems. 

3. Small Gain Theorem 

One of the most fundamental concepts for robust control is the small gain 

theorem, which follows from the above discussion of norms.  For stability analysis, the 

small gain theorem replaces the traditional concepts of gain and phase margin.  Consider 

the system in Figure 12 with uncertain elements Δ  added as shown in Figure 13. 

 

Figure 13 System with Uncertainty. 
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Let the region inside the dashed line, which is identical to the system in Figure 12, 

be represented as M.  The small gain theorem requires than the gain (norm) of the 

uncertainty, Δ , multiplied by the gain of the system, M, must be less than 1 for the 

system to be robustly stable as shown by 

 * 1MΔ < ∀Δ  (3.11) 

where the * represents a multiplication. 

Another common form of the small gain theorem is given as 

 1 iff M γγ∞ ∞
Δ ≤ <  (3.12) 

where γ  is a bound and 0γ > . 

4. Sensitivity Functions 

Two other necessary concepts for robust control design are the sensitivity 

function and the complementary sensitivity function.  These functions allow the designer 

to shape the frequency response of the system in a manner similar to classical 

loopshaping techniques.  The sensitivity function is important for shaping the response of 

lower frequencies, while the complimentary sensitivity function helps shape the high 

frequency response [20].  Mathematically, for a system consisting of a plant, G, and a 

controller ,K, with negative feedback, the sensitivity function, S,  has the following form 

 1( )S I GK −= +  (3.13) 

From this, it follows that the complementary sensitivity function, T, has the following 

form 

 1( )T GK I GK −= +  (3.14) 

Due to their complimentary nature, the following is true 

 1S T+ =  (3.15) 

A control design process that incorporates loopshaping with both the sensitivity 

and complementary sensitivity functions is often referred to as a mixed-sensitivity 

problem [20].  In this instance, the sensitivity function influences the performance of the 

controller, and the complementary sensitivity function influences the stability of the 

system at higher frequencies.  Figure 14 gives a representation of how loopshaping of the 
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sensitivity and complementary sensitivity functions can affect the controller / plant 

system, represented by L ( L GK= ) in the figure. 

 

Figure 14 Robust Control Loopshaping From [20]. 

At low frequencies, the loop transfer function, L, is weighted to follow the inverse 

of the sensitivity function.  The sensitivity function of the system describes how well the 

controller does at providing for disturbance rejection, tracking errors, and negating any 

plant parametric variations.  Shaping the sensitivity function indirectly shapes the loop 

transfer function, and in some cases vice versa.  At higher frequencies, the shape of the 

complementary sensitivity function describes the transient response and stability.  The 

complementary sensitivity function is shaped by weighting functions in the same way as 

the sensitivity function. 

5. Weighting Functions 

At this point, it is necessary to introduce a set of weighting functions that will 

manipulate or shape the sensitivity and complementary sensitivity functions.  The 

weighting functions can take whatever form is appropriate for the system, but for the 

purpose of this research, first order transfer functions are satisfactory.  The first 

weighting function, introduced as W1, is a penalty on the error and affects the lower 

frequencies and shape of the sensitivity function.  A second weighting function, W2, is a 

penalty on the control signal but is not used in this research.  The final weighting 

function, W3, is a penalty on the measured output and affects the complementary 



 35

sensitivity function and higher frequencies.  Figure 15 shows a schematic of a nominal 

system with a plant, a controller, and weights W1 and W3.  Note that the transfer functions 

shown in the figure merely represents a generic transfer function and not the actual 

weights used. 

 

Figure 15 Schematic of System with Weighting Functions. 

The weighted error and measured output signals together form the performance 

measure previously identified in Figure 12 as z.  The error that is weighted by 1W  is 

minimized in order to achieve the desired performance by influencing the sensitivity 

function.  The output that is weighted by 3W  is minimized in order to achieve stability in 

the presence of higher frequency disturbances by influencing the complementary 

sensitivity function.  Satisfying both of these goals simultaneously may not be possible; 

thus an iterative approach to synthesizing the robust controller is used.  If the weights 

selected are too restrictive on the design, a robust controller meeting the design 

requirements cannot be synthesized. 

The closed loop system with weight W1 is said to have robust performance if the 

following condition of the small gain theorem is met 

 1 1W GK ω< + ∀  (3.16) 

Similarly, when considering W3 and the complementary sensitivity function, the system is 

robustly stable if the following condition is true 

 3 1W GK GK ω< + ∀  (3.17) 
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Combing equations (3.16) and (3.17), the system has both robust performance and 

stability if the following is true 

 1 3 1W S W T
∞

+ <  (3.18) 
Designs that employ a weight on both the sensitivity function and the 

complementary sensitivity function are referred to as weighted mixed sensitivity 

problems [20]. 

D. MODEL UNCERTAINTY 
The main advantage of designing a robust controller over other simpler classical 

techniques is the ability to handle model uncertainties.  While certain designs allow for 

wide latitude in handling uncertainties, it would be nearly impossible to design one 

controller for all possible uncertainties a system might encounter over its lifetime.  

Therefore, it is necessary to understand what kinds of uncertainty are likely, where they 

come from, and how to bound the uncertainties to simplify some of the design 

constraints.  Uncertainty can be added to a system in two different ways, an additive 

fashion or a multiplicative fashion.  The following two figures depict these two methods.  

Perturbations of these types can be added to any combination of inputs or outputs to the 

system. 

 

Figure 16 Additive Uncertainty From [20]. 

 
Figure 17 Multiplicative Uncertainty From [20]. 
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The first consideration in defining the uncertainty to be added to a model is to 

define it as structured or unstructured.  An unstructured uncertainty is a bounded 

perturbation that is included or added to the model, but where very little of the nature of 

the perturbation is known.  For example, there is no transfer function that describes the 

general behavior of an unstructured uncertainty. 

Structured uncertainties involve perturbations that are more understood than 

unstructured.  In general, there are more constraints on the nature of a structured 

uncertainty than an unstructured uncertainty.  Structured uncertainties can result from 

bounded variations in model parameters such as changes in the physical components of a 

system over time due to wear and tear.  They also result from combinations of multiple 

uncertainties, or both additive and multiplicative perturbations.  Figure 18 shows a 

diagram of typical structured and unstructured model uncertainties [17]. 

 

Figure 18 Structured and Unstructured Model Uncertainty Sources From [20]. 
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In addition to helping shape the sensitivity and complementary sensitivity 

functions, the weighting functions also bound the system uncertainty [20].  For this 

reason, proper selection of the weighting functions becomes a crucial part of robust 

control design. 

The segmented space telescope model used in this research does not contain any 

unstructured uncertainties.  On the other hand, uncertainties on some of the physical 

parameters such as modal frequencies and damping are assumed.  This affects the lower 

left quadrant where the squares of the natural frequencies are found in the following 

system A matrix 

 

2

0

2n n

I

A

ω ξω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟⎜ ⎟
⎝ ⎠

O O

O O

O O

O O

 (3.19) 

Uncertainty in the natural frequencies is a logical concern for a lightweight space 

telescope model such as this.  Therefore, a percentage of uncertainty can be added to the 

natural frequencies to allow for explicit design of a robust controller based on an 

uncertain model. 

E. CONTROLLER SYNTHESIS 

The robust controllers designed for this research were based on minimizing the 

closed loop system ∞ -norm.  Other robust control synthesis methods exist such as those 

based on a 2-norm, but they will not be discussed here.  The ∞ -norm method used here is 

a direct method denoted as H∞ .  This method designs a controller based on a nominal 

augmented plant as previously shown in Figure 12. 

The H∞  robust control design technique requires a properly constructed plant 

model to synthesize a robust controller.  In order to achieve the robust performance and 

stability design objectives, the plant must be augmented with the appropriate weighting 

functions.  A representation of this augmented nominal plant is shown in Figure 19. 
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Figure 19 Augmented Nominal 2-Input, 2-Output Plant. 

This augmented plant is often referred to as the 2-input, 2-output model.  The two 

vector inputs to the augmented plant are the reference input and the control input, which 

the controller to be designed will provide.  One of the vector outputs is the weighted error 

and weighted measured output signal combined, which is otherwise known as the 

performance measure.  The other vector output is the error signal that is used as the input 

for the controller. 

Once this 2-input, 2-output model has been constructed, the goal is to minimize 

the ∞ -norm of the error signal to the command or disturbance input.  A representation of 

how the weighting functions are included in the augmented model, P, is given as 

 
1 1

0 3
W W G

P W G
I G

⎛ ⎞−
⎜ ⎟

= ⎜ ⎟
⎜ ⎟−⎝ ⎠

 (3.20) 

 

Since the original plant, G, was a state space model, P is also a state space model 

and can be partitioned as 

 
1 2

1 11 12

2 21 22

A B B
P C D D

C D D

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.21) 

where the A, B, C, and D matrices are the augmented state space matrices.  The 

controllability and observability of the system can be determined using the submatrices 
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1 2,B B , etc.  As shown in [16], the following assumptions on the partitions of P are made 

before proceeding with the controller synthesis 

• ( )1,A B  is controllable 

• ( )1,C A  is observable 

• ( )2,A B  is stabilizable 

• ( )2 ,C A  is detectable 

• ( ) ( )12 1 12 0TD C D I=  

• 1
21

12

0TB
D

D I
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

An admissible controller exists if and only if the following conditions are met: 

• ( )H Ric∈  and : ( ) 0X Ric H= >  

• ( )J Ric∈  and : ( ) 0Y Ric J= >  

• 2( )XYρ γ<  

where H and J are the following Hamiltonian matrices 

 
2

1 1 2 2

1 1

:
T T

T T

A B B B B
H

C C A
γ −⎛ ⎞−

== ⎜ ⎟
− −⎝ ⎠

 (3.22) 

 

 
2

1 1 2 2

1 1

:
T T T

T

A C C C C
J

B B A
γ −⎛ ⎞−

= ⎜ ⎟
− −⎝ ⎠

 (3.23) 

γ  is a performance bound with 0γ > , Ric is the solution to an algebraic Riccati equation 

of the form 

 0TA X XA XBX C+ + + =  (3.24) 

and ρ  is the spectral radius with 

 ( )
1

: max ii n
Aρ λ

≤ ≤
=  (3.25) 

The robust control design algorithm iterates on the value of γ  between 0 and 

infinity with a bisection algorithm until such time as a solution to the Riccati equation 
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cannot be found.  Once the specified tolerance threshold has been reached the iteration 

stops and the controller, K, can be computed from the following equations 

 
2

2

0
0

fA ZL ZB
K M I

C I

−⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

 (3.26) 

where 

 2
TM B X= −  (3.27) 

 
 2

TL YC= −  (3.28) 
 
 ( ) 12Z I YXγ

−−= −  (3.29) 
 
 2

1 1 2 2
T

fA A B B X B M ZLCγ −= + + +  (3.30) 

Figure 20 shows the synthesized controller, K, attached to the augmented plant 

from Figure 19.  Figure 20 is now identical to the original system presented in Figure 12. 

 

Figure 20 Augmented Plant and Controller. 

The controller synthesis consists of designing the controller, K, such that the 

following cost function is minimized 
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 zrT γ
∞
<  (3.31) 

where T is the closed loop transfer function.  After this design process has generated the 

H∞  controller, it can be implemented as a continuous system, or discretized prior to 

implementation.  The application of these techniques to the segmented space telescope 

model will be discussed in Chapter V.  
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IV. MODEL REDUCTION TECHNIQUES 

A. INPUT/OUTPUT REDUCTION 

The robust controller synthesis process described in Chapter III can be rather 

computationally prohibitive.  In the case of the analytical segmented space telescope 

model, the 332 states, 997 inputs, and 936 outputs are more than an average desktop 

computer can process.  Therefore, some kind of model reduction is necessary.  This 

chapter will present an innovative method developed to reduce the inputs and outputs as 

well as a standard method of state reduction. 

1. Singular Value Decomposition 

The principle behind the reduction method developed is the projection of a vector 

into a subspace.  In this case, a large vector of input values is projected into a vector of 

many fewer values.  If the projection is chosen carefully, then the important or significant 

values of the original vector are preserved so that when the reduced vector is expanded 

back to the original number of values, it is still representative.  The Singular Value 

Decomposition (SVD) is one such technique that, by its very nature, preserves the 

significant values. 

In general, the SVD has the following form 

 ( ) TSVD H U V= Σ  (4.1) 

where H, U, Σ , and V are all matrices, and Σ  is a diagonal matrix with the singular 

values arranged in decreasing size.  The matrices U and V are also ordered such that the 

vector associated with the largest singular value is in column one and so on.  A plot of all 

the singular values helps to identify how many singular values have a sufficient impact 

on the final system so that a logical place to truncate the singular value matrix can be 

found.  For example, if there are 40 total singular values, but the last 25 are significantly 

smaller than the first 15, those last 25 values can be truncated and the most important 

aspects of the original system are still preserved.  Since the column vectors of the U and 

V matrices are also rank ordered into decreasing importance, only the first 15 column 

vectors of those matrices will be retained.  As will be shown in Chapter V, when H is 



 44

defined to be the transfer function of the inputs to the outputs for the analytical space 

telescope model, the large number of inputs or outputs of the original system can be 

projected into the column vectors of the truncated U and V matrices.  The inputs are 

projected via the V matrix and the outputs are projected via the U matrix. 

Once a controller has been synthesized for this reduced input/output model, the 

controller outputs can be projected back into the total number of original plant inputs 

through the truncated V matrix.  Similarly, the original plant outputs are projected into the 

truncated U matrix so that they may be inputs for the reduced controller. 

2. Zernike Polynomials 

An innovative approach developed in this dissertation is the use of Zernike 

polynomials for model output reduction.  Zernike polynomials are orthogonal and normal 

about a unit circle, making them especially applicable to optical applications where the 

optical components have circular apertures.  Their orthogonal and normal nature as 

described in [21] is shown by 

 ( ) ( ) ( )
1

0

1
2 1

m m
n n nnR R d

n
ρ ρ ρ ρ δ′ ′=

+∫  (4.2) 

where m
nR  is the radial polynomial and δ  is the Kronecker delta.  It is worth noting, 

however, that Zernike polynomials are but one of an infinite number of polynomial sets 

that are normal about a unit circle.  Furthermore, variations on the Zernike polynomials 

exist depending on their particular application and usage.  Derivations of the standard 

form of Zernike polynomials can be found in [22], [23].  A slightly modified form of 

Zernike polynomials known as the fringe Zernikes was developed at the University of 

Arizona and is used for this research [24].  The main difference is that the fringe Zernikes 

have been normalized to unity magnitude at the edge of the pupil.  The expansion series 

of the fringe Zernike polynomials is given by 

 ( ) ( ),m m im
n nZ R e θρ θ ρ=  (4.3) 

where  

 ( ) ( ) ( )
( ) ( )

2( )

0

2 !
1

! ! !

n m
sm n m s

n
s

n m s
R

s n s n m s
ρ ρ

−
− −

=

− −
= −

− − −∑  (4.4) 
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where m
nZ and m

nR  both represent the Zernike polynomial, n and m are both integers 

with n m≥ , 0n ≥ , and ρ  is a function of the aperture radii.  The index, n, defines the 

order of the radial power, and m is the meridional frequency.  The meridional frequency 

is in reference to the meridional or tangential plane of the aperture, which is a plane that 

contains both the optical axis and the chief ray.  The chief ray is the ray that passes 

through the center of the aperture.  Due to the alternating cosine and sine terms in the 

expansion, the polynomials can be defined somewhat differently based on how the index 

m is handled.  Figure 21 shows a pictorial representation of the first 20 Zernike modes 

using the standard form. 

 

Figure 21 Twenty Common Zernike Modes From [25]. 

 

Zernike polynomials are usually derived in polar form but can be converted to the 

Cartesian form used in this research through the following equations: 
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 ( )cosx ρ θ=  (4.5) 
 
 ( )siny ρ θ=  (4.6) 

Both the standard form and the fringe Zernikes have the same orthogonality 

properties.  The main factor that sets the Zernike polynomials apart from other 

polynomial sets is a group of invariance properties that guarantee the existence of a 

unique polynomial for all permissible combinations of n and m.  These invariance 

properties specify that the polynomial has the same form when the axes are rotated about 

the origin by a continuous function, F, with a period of 2π  and an angle of rotation of φ  

[22] 

 ( ) ( ) ( ), ,Z x y F Z x yφ ′ ′=  (4.7) 

where 

 
cos sin

sin cos
x x y
y x y

φ φ
φ φ

′ = +
′ = − +

 (4.8) 

It is important to note that as stated earlier, Zernike polynomials are normal about 

a continuous unit circle.  The aperture for the segmented space telescope shown in Figure 

5, or any Cassegrain configuration telescope for that matter, is not continuous due to the 

hole in the middle of the primary mirror where the light reflected from the secondary 

mirror passes through.  In order to account for this discontinuity, a set of Zernike 

polynomials has been modified to be more appropriate for use on a unit ring instead of a 

unit circle [26].  For this research, however, the fringe Zernike polynomials were used 

since the primary goal was to develop a general technique.  Modification to the annular 

polynomials as set forth in [26] is left for future work. 

For lower order terms, the aberrations described by the Zernike polynomials take 

on other familiar names, for example, focus, coma, astigmatism, and so on.  As with any 

series expansion, the more terms used, the more accurate the approximation will be.  For 

this research, 21 Zernike polynomials are used to represent the wavefront.  The selection 

of 21 Zernikes was based on an analysis of the singular values of the original system.  For 

comparison purposes, [12] uses 8 Zernike modes for wavefront estimation and [13] uses 

15 Zernikes.  Additional research could be performed using different numbers of 
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polynomials, however, that effort was outside the scope of this research.  Table 2 

contains a listing of these 21 polynomials in Cartesian form.  For completeness, the 

piston term is included, but it is a non-controllable mode in this application.  For those 

polynomials associated with a more common name, the common name is also given. 

# Polynomial Term

0 1 Piston

1 x X-tilt

2 y Y-tilt

3 -1+2(x2+y2) Focus

4 x2-y2 Astigmatism plus defocus

5 2xy Astigmatism plus defocus

6 -2x+3x(x2+y2) Coma plus tilt

7 -2y+3y(x2+y2) Coma plus tilt

8 1-6(x2+y2)+6(x2+y2)2 3rd order spherical plus focus

9 x3-3xy2 5th order aberration

10 3x2y-y3 5th order aberration

11 -3x2+3y2+4x2(x2+y2)-4y2(x2+y2) 5th order aberration

12 -6xy+8xy(x2+y2) 5th order aberration

13 3x-12x(x2+y2)+10x(x2+y2)2 5th order aberration

14 3y-12y(x2+y2)+10y(x2+y2)2 5th order aberration

15 1+12(x2+y2)-30(x2+y2)2+20(x2+y2)3 5th order aberration

16 x4-6x2y2+y4 7th order aberration

17 4x3y-4xy3 7th order aberration

18 -4x3+12xy2+5x3(x2+y2)-15xy2(x2+y2) 7th order aberration

19 -12x2y+4y3+15x2y(x2+y2)-5y3(x2+y2) 7th order aberration

20 6x2-6y2-20x2(x2+y2)+20y2(x2+y2)+15x2(x2+y2)-15y2(x2+y2)2 7th order aberration

21 12xy-40xy(x2+y2)+30xy(x2+y2)2 7th order aberration  

Table 2 Table of Zernike Polynomials From [24]. 

The innovative output reduction technique using Zernike polynomials is based on 

the fact that the majority of the outputs from the segmented space telescope model are 

slope measurements from a Shack-Hartmann wavefront sensor.  Based on the work of 

Southwell in [27], these slopes can be related to the partial derivatives of Zernike 

polynomials given by 
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 ( )
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,M
kx

k
k

Z x y
S a

x=

∂
=

∂∑  (4.9) 
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where xS  and yS  are the x and y slope measurements, kZ  are the Zernike polynomials 

from Table 2, ka  are the expansion coefficients in terms of the Zernike polynomials, and 

M is the number of polynomials used, in this case 21.  The Zernike polynomials are a 

function of x and y, so they must be evaluated at the actual lenslet locations.  The process 

for doing this will be described in Chapter V. 

Putting Equations (4.9) and (4.10) into matrix form yields 

 S dZa=  (4.11) 

Pre-multiplying both sides of Equation (4.11) by the pseudo-inverse of the matrix of 

Zernike partial derivatives yields the polynomial coefficient vector 

 †a dZ S=  (4.12) 

This technique is used for the first time in this research as a means of performing 

model reduction to facilitate the design of a robust controller.  Chapter V will show how 

this was accomplished on the analytical model.  The original system output of Shack-

Hartmann slopes has been replaced by an output of Zernike polynomial coefficients.  In 

the case of the segmented space telescope model, what was originally 732 slope 

measurements is reduced to 21 coefficient outputs.  Clearly, the amount of reduction is 

equal to the number of Zernike polynomials used. 

As will be discussed in Chapter V, the SVD method can be used to reduce both 

the inputs and the outputs of the model.  In this research, the Zernike polynomials were 

only used to reduce the number of outputs.  After the output reduction with Zernike 

polynomials, an SVD method was used to reduce the number of inputs.  Neither of these 

methods has any affect on the number of states of the system, which is addressed next. 
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B. STATE REDUCTION WITH HANKEL SINGULAR VALUES 

The Hankel singular value method of model reduction uses a balanced stochastic 

approach, described in [28], [29], [16], and [30].  It begins by assuming that the system 

model, G, is stable and can be partitioned as shown 

 
A B

G C D
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.13) 

From this model, the controllability and observability grammians, P and Q, are 

computed by the following equations 

 
TAt T A tP e BB e dt

∞

−∞

= ∫  (4.14) 

which satisfies the Lyapunov equation 

 0T TAP PA BB+ + =  (4.15) 

and 

 
TA t T AtQ e C Ce dt

∞

−∞

= ∫  (4.16) 

satisfying  

 0T TA Q QA C C+ + =  (4.17) 

where B and C come from the state space model.  The Hankel singular values are then the 

square root of the product of the largest eigenvalues and the controllability and 

observability grammians as shown by 

 ( )
iH i PQσ λ=  (4.18) 

Next, a balanced realization is created to balance the controllability and 

observability grammians.  A nonsingular transformation matrix, T, is introduced such that 

 
1

1

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ
A B TAT TB

G
C D CT D

−

−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4.19) 

which results in the following controllability and observability grammians 

 ˆ TP TPT=  (4.20) 
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 ( )1 1ˆ T
Q T QT− −= . (4.21) 

The transformation matrix, T, can be chosen such that P̂  and Q̂  are diagonal matrices 

with identical values as shown by 

 ˆ TP TPT= = Σ  (4.22) 

and 

 ( )1 1ˆ T
Q T QT− −= = Σ  (4.23) 

where Σ  are the Hankel singular values.  To determine T, the singular value 

decomposition is used. 

The Hankel singular values can be placed into a diagonal matrix such that 

( ) ( )min 1 max 2σ σΣ Σ�  

 1

2

0
0Hσ
Σ⎛ ⎞

= ⎜ ⎟Σ⎝ ⎠
 (4.24) 

These Hankel singular values can then be plotted to determine how many should be 

retained and how many should be truncated.  The states that are truncated are the least 

controllable and least observables states of the system, so truncating them will have 

minimal effect on the system.   

The reduced model, RG , can be shown to be bounded by the size of the truncated 

singular values through the following inequality 

 ( )22RG G tr
∞

− ≤ Σ  (4.25) 

The total number of system states is therefore reduced to the number of Hankel singular 

values retained.  
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V. APPLICATION TO SEGMENTED SPACE TELESCOPE 
MODEL 

A. MODEL REDUCTION 

As described in Chapter II, the segmented space telescope model is extremely 

large and complex.  Before a robust controller can be synthesized for the model, the 

number of inputs and outputs must be reduced to ease the computational burden.  The 

following discussion will explain two different model reduction techniques used to 

accomplish this.  The first is a Singular Value Decomposition reduction for both inputs 

and outputs.  The second technique first performs a Zernike polynomial reduction on the 

outputs followed by a Singular Value Decomposition reduction on the inputs.  The 

margins and performance of both controllers are compared against each other. 

1. SVD Only Reduction 

Recall that the space telescope model is a state space model.  It is essentially 

comprised of four separate matrices, which define a standard state space model as shown 

by 

 
x Ax Bu
y Cx Du
= +
= +

&
 (5.1) 

A Singular Value Decomposition cannot be performed on a state space model but 

must be performed on an individual matrix.  Therefore, a single matrix representation of 

the output is defined as 

 ( )y H s u=  (5.2) 

where 

 1( ) ( )H s C sI A B D−= − +  (5.3) 

By letting s go to zero, the steady state value of this transfer function is obtained which 

neglects any dynamics of the system 

 1(0)H CA B D−= − +  (5.4) 
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Since no dynamics are present, this transfer function can also be thought of as a 

reconstruction matrix.  As discussed in Chapter IV, the SVD of H yields U, Σ , and V 

matrices.  A plot of the singular values from H is shown in Figure 22. 

 

Figure 22 Singular Values from Original System. 

The number of rows in the U matrix corresponds to the total number of sensor 

outputs in the system.  The column vectors represent coefficients of the entire output 

vector.  To reduce the number of system outputs, the columns of U can be truncated to 

the desired number of outputs.  In this research, 21 outputs were desired, so only the first 

21 columns of U were retained.  The reduced size of U is therefore [936 x 21].  Now, 

define a matrix P to be the transpose of the reduced U matrix 

 1 21[ ... ]TP U U=  (5.5) 

At this point a reduced system output vector, y , can be defined as 

 y Py=  (5.6) 

In the same way that the U matrix from the SVD of H was used to reduce the 

number of system outputs, the V matrix from the SVD of H can be used to reduce the  
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system inputs.  V has 997 rows, corresponding to the system inputs.  By again selecting 

the first 21 columns of V and truncating the rest, we can define a matrix M with 

dimensions [997 x 21] as 

 1 21[ ... ]M V V=  (5.7) 

The total system input vector, u, can therefore be defined as 

 u Mu=  (5.8) 

where u  is the reduced input vector.  Substituting u  and y  into the original state space 

model in Equation (5.1) yields the following input/output reduced state space model 

 
x Ax BMu
y PCx PDMu
= +
= +

&
 (5.9) 

 

This model is rewritten with new B , C , and D  matrices 

 

 
x Ax Bu
y Cx Du
= +

= +

&
 (5.10) 

where 

 
B BM
C PC
D PDM

=

=

=

 (5.11) 

At this point, the number of inputs and outputs in the system have been 

sufficiently reduced such that a robust controller can be synthesized.  The only thing that 

remains is to reduce the number of states of the system.  The segmented space telescope 

model has 332 states.  It is possible to generate a robust controller based on a system with 

this many states; however, decreasing the number of states will facilitate real time 

implementation.  For this research, a state reduction was performed and the procedure for 

that reduction will be discussed after first applying the innovative method for 

input/output reduction using Zernike polynomials. 
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2. Zernike Reduction 

The process of performing an input/output reduction with Zernike polynomials is 

actually quite similar to the SVD reduction process previously discussed; however, to 

avoid confusion and to highlight the subtle differences the entire process will be 

presented.  As before, the original system is given in the state space model shown in 

Equation (5.1).  The key difference in this reduction method occurs at this point.  Before 

anything else is done, the output from the model is reduced into Zernike polynomial 

coefficients as described in Chapter IV. 

The output slopes from the Shack-Hartmann wavefront sensor are equated to the 

partial derivatives of the Zernike polynomials.  Any number of Zernike polynomials may 

be used; 21 were used for this research.  The matrix of Zernike partial derivatives, dZ, is 

formed with dimensions of [732 x 21] where the number of rows corresponds to the 

number of Shack-Hartmann slope measurements and 21 is the number of Zernike 

polynomials used.  In order to populate the dZ matrix with actual values, the physical 

locations of the lenslets in the model are used.  Refer to Figure 23, which shows the 

lenslet locations and numbering scheme. 
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O

60°

 

Figure 23 Mirror Segment and Lenslet Orientation. 

First, assuming the physical diameter of each lenslet to be 1, the x y coordinates 

for the center of each lenslet in segment 1 are computed in relation to the center of lenslet 

5, which is at the center of the segment.  For example, lenslet 4 has coordinates of 

( )1 0−  and lenslet 15 has coordinates of 31.5 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

.  The y coordinates for the 

lenslets in this segment are then translated a distance of 39* 2  from the center of the 

entire array, O.  Next, the coordinates for the remaining five segments are computed by 

rotating about a circle, each segment being displaced -60° from the previous in the 

segment numbering scheme.  Finally, all coordinates are scaled to the actual lenslet 

diameter and normalized about a unit circle.  Then they are substituted into the Cartesian 
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Zernike polynomial partial derivative equations, which populate the dZ matrix.  The 

normalized distance from the center of the array is the same as that for lenslets 52 and 56. 

The pseudo-inverse of the matrix dZ is then used to define a new output vector y′  

 †y dZ y′ =  (5.12) 

The dZ matrix formed from the x and y coordinates of the analytical model has a 

favorable condition number of 9.98.  Recall, however, from Chapter II, that the original 

system model contains more outputs than the 732 Shack-Hartmann slopes.  There are 936 

total outputs, which include measurements from other sensors as well as the system 

states.  Therefore, a slight modification is made to the pseudo-inverse of the dZ matrix by 

adding a block of zeros at the end so that the matrix dimensions match those of the 

original system.  The modified †dZ  is shown by 

 ( )† 0Zernike reduction matrix dZ=  (5.13) 

where the dimensions of the †dZ  matrix are [21 x 732] and the block of zeros has 

dimensions of [21 x 204] yielding a final dimension of [21 x 936] for the Zernike 

reduction matrix. 

At this point the output reduced system model has the following form 

 † †

x Ax Bu
y dZ Cx dZ Du
= +

′ = +

&
 (5.14) 

which can be rewritten as 

 
x Ax Bu
y C x D u
= +
′ ′ ′= +

&
 (5.15) 

where 

 †C dZ C′ =  (5.16) 
 
 †D dZ D′ =  (5.17) 

Now the process for reducing the system inputs follows very closely to that used in the 

SVD reduction. 

A transfer function matrix, H, is now defined as 

 1( ) ( )H s C sI A B D−′ ′= − +  (5.18) 
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Letting 0s →  

 1(0)H C A B D−′ ′= − +  (5.19) 

The SVD for this transfer function of the output reduced system model is taken, 

which yields the U, Σ , and V matrices as before.  Figure 24 shows the singular values 

from this matrix. 

 

Figure 24 Singular Values from Zernike Output Reduced System. 

Since the system has already been output reduced, the U matrix is not needed this 

time, and only the V matrix is used to reduce the inputs.  As before, 21 columns of V are 

retained so that V has dimensions of [997 x 21].  Defining M ′  to be 

 1 21[ ... ]M V V′ =  (5.20) 

the total system input vector, u, can therefore be defined as 

 u M u′ ′=  (5.21) 

Substituting this into the Zernike reduced system model yields 

 
x Ax BM u
y C x D M u

′ ′= +
′ ′ ′ ′ ′= +

&
 (5.22) 
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This model can be simplified as before to 

 
x Ax B u
y C x D u

′ ′= +
′ ′ ′ ′= +

&
 (5.23) 

where 

 B BM′ ′=  (5.24) 

and D′  is modified from Equation (5.17) to be 

 †D dZ DM′ ′=  (5.25) 

At this point, the original system state space model has had its inputs and outputs 

reduced by two different methods:  an SVD only method to reduce both inputs and 

outputs; and a Zernike polynomial method to reduce the outputs, followed by an SVD 

method to reduce the inputs.  From this point, the remaining steps in designing a robust 

controller are identical. 

3. State Reduction 

The original system state space model contains 332 states.  Neither of the 

input/output reduction techniques discussed has changed or altered the number of states.  

As mentioned above, a state reduction is not needed to generate a controller; however, the 

designed controller will have the same number of states as the system it is designed to 

control.  Therefore, it may be advantageous to reduce the number of system states prior to 

generating the controller in order to facilitate real time implementation on a system. 

Equations (5.10) and (5.23) both represent input/output reduced state space 

models, one for each reduction technique used.  From this point on, the discussion will 

use the nomenclature used in Equation (5.10), although nomenclature from either 

equation would be suitable. 

The number of system states is reduced using the Hankel Singular Value state 

reduction techniques discussed in Chapter IV.  A plot of the Hankel Singular Values from 

the input/output reduced system model is shown in Figure 25. 
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Figure 25 Hankel Singular Values. 

Based on this graph, the decision was made to reduce the number of system states 

to 240, thereby retaining the most significant singular values.  By defining x  as the 

Hankel reduced state, the new system state space model can be written as 

 R

x A x B u
G

y C x Du

′ ′⎧ = +⎪= ⎨
′ ′= +⎪⎩

&
 (5.26) 

where , , ,A B C′ ′ ′  and y′  all reflect the reduced number of states.  This system contains 

240 states, 21 inputs, and 21 outputs.  From here it is possible to proceed with the robust 

controller synthesis. 

B. ROBUST CONTROLLER SYNTHESIS 

After the model is sufficiently reduced to allow synthesis of a robust controller, 

the next step in the process is to generate the 2-input, 2-output construct as shown in 

Figure 19.  Part of this process involves incorporating the weights, W1 and W3.  W1 is the 

weight on the error between the reference signal and measured output; W3 is the weight  
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on the measured output.  For this design, first order transfer functions were chosen for 

each and are shown in Equation (5.27) and Equation (5.28).  Figure 26 shows a Bode plot 

of W1 and the inverse of W3. 

 1
0.5 17.32

0.3465
sW

s
+

=
+

 (5.27) 

 

 3
10 2095

2116
sW

s
+

=
+

 (5.28) 

 
Figure 26 Model Weighting Function Bode Plot. 

Each weighting function specifies a low frequency gain, a crossover frequency, 

and a high frequency gain.  The effect is analogous to classical loopshaping techniques.  

These transfer functions were determined based on their ability to achieve the desired 

bandwidth for the closed loop system, while at the same time not being so restrictive as to 

preclude the synthesis of a robust controller.  The desired control bandwidth for the space 

telescope model was 10 Hz.  The classical controller designed for the model was unable 

to achieve this bandwidth, which was a driving motivation for this research into robust 

control techniques. 
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The result of augmenting the reduced system model with these weighting 

functions is a system in the form shown in Figure 19.  The total number in inputs in this 

augmented system is 42, resulting from 21 inputs from the reference signal and 21 inputs 

from the control signal.  There are 63 total outputs in the augmented system resulting 

from 21 error signal outputs multiplied by W1, 21 measured outputs multiplied by W3, and 

21 error signal outputs sent to the controller.  The augmented model has 440 states.  The 

H∞  robust controller that is synthesized for this system has 21 inputs, 21 outputs, and 

440 states regardless of whether the model reduction is performed with the SVD only 

method or the Zernike polynomial / SVD combination.  This controller can now be used 

to check the performance on the original plant model.  The results from these simulations 

are given in Chapter VI. 

C. PERFORMANCE AND STABILITY MARGINS 

The first analysis of the quality of the two robust controllers designed is 

accomplished by examining the poles of the controllers.  Figure 27 and Figure 28 show 

the location of the poles for the closed loop system from each controller.  The closed loop 

system combines the H∞  controller with the full plant and assumes negative unity 

feedback.  The poles for each controller are plotted on the same scale. 



 62

 

Figure 27 Closed Loop Poles for SVD only Reduced Model. 

 
Figure 28 Closed Loop Poles for Zernike Polynomial Reduced Model. 

 



 63

The following show the same results zoomed in on the area near the imaginary axis. 

 

Figure 29 Imaginary Axis Vicinity for SVD Reduction Closed Loop Poles. 

 
Figure 30 Imaginary Axis Vicinity for Zernike Polynomial Reduction Closed Loop 

Poles. 
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As can be seen in the plots, the controller for the Zernike polynomial reduced 

model has poles much closer to the imaginary axis; however, in both cases all poles are in 

the left half-plane, indicating the stability of the closed loop systems.  Table 3 

summarizes the poles that are closest to the imaginary axis for each of the model 

reduction techniques for both closed loops systems. 

SVD Reduced Model Zernike Reduced Model

-0.7118 ± 268.69i -0.0327 ± 406.1887i
-0.8729 ± 4545.6023i -0.0623 ± 1098.7036i
-0.9149 ± 182.9182i -0.6178 ± 588.1804i  

Table 3 Closed Loop Poles Closest to jω  Axis. 

The next level of analysis looks at the singular values of the plant, the controllers, 

and the closed loop systems.  Recall that a singular value plot is the MIMO equivalent to 

the Bode magnitude plot of a SISO system.  Figure 31 shows the singular values for the 

input/output reduced plant with all 332 states.  Computing the singular values on the full 

plant with all inputs and outputs was too computationally intensive. 

 

Figure 31 Singular Values for Original System Model, redG . 
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As evident in this plot, the main natural frequencies of the plant occur between 31 

and 760 Hz.  A properly designed controller will provide stability and negate any adverse 

effects due to these resonances in achieving the desired closed loop performance. 

The singular values for the controller from the SVD only reduced model and from 

the Zernike polynomial reduced model are shown in Figure 32 and Figure 33.  The 

controller is represented by SVDK  or ZernK  depending on how the model reduction was 

performed.  In both cases, the plots have been zoomed in on the applicable range of 

frequencies between 31 and 760 Hz where the controllers have been designed to handle 

the resonances.  Based on a visual comparison, it appears that both controllers should be 

able to compensate for the resonances in the system and provide stability.  This 

observation will be verified for the closed loop system. 

 
Figure 32 Singular Values for H∞  Controller, SVDK . 
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Figure 33 Singular Values for H∞  Controller, ZernK . 

The next analysis is to examine the open loop singular values shown in Figure 34 

and Figure 35.  The open loop system is calculated as either SVDGK  or ZernGK .  Notice in 

these two plots that the curve is smoother for the controller based on the Zernike reduced 

model.  There are fewer residual peaks left from the natural frequencies of the system.  

This is an indication that the controller for the Zernike reduced model more closely 

matches the original system.  It is better able to compensate for the plant’s natural 

frequencies.  While not an indication of performance or robustness, this is an indication 

that the controller should be stable. 
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Figure 34 Open Loop System Singular Values for SVDGK . 

 
Figure 35 Open Loop System Singular Values for ZernGK . 
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Next, the closed loop system is formed by providing a unity negative feedback 

loop to the open loop systems SVDGK  and ZernGK  as shown by 

 
1

SVD

SVD

GKy r
GK

=
+

 (5.29) 

 

 
1

Zern

Zern

GKy r
GK

=
+

 (5.30) 

The singular value plots from both closed loop systems are shown in Figure 36 and 

Figure 37. 

 
Figure 36 Closed Loop System Singular Values for SVDGK . 
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Figure 37 Closed Loop System Singular Values for ZernGK . 

As with the open loop singular value plots, the smoother shape of the Zernike 

reduced controller closed loop singular value plot indicates that it more closely matches 

the natural frequencies of the original plant.  This observation will be checked in the 

simulation analyses. 

The shape of the open and closed loop singular value plots for both controllers 

matches the desired shape specified by the weighting functions shown in Figure 26.  The 

weighting functions specified a low frequency performance requirement with a gain no 

larger than 5 dB at 10 Hz.  It also satisfies the high frequency robustness requirement of 

no more than -15 dB at 1000 Hz. 

Also evident in the singular value plots is the control bandwidth for each 

controller.  The bandwidth was determined by identifying where the singular value plots 

crossed the -3dB line for the closed loop system.  The SVD reduced model controller has 

a control bandwidth in the range of 20-24 Hz, whereas the Zernike reduced model 

controller bandwidth resides from 15-19 Hz.  Both of these bandwidths are higher than  
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that obtained using classical control methods leading to the conclusion that the robust 

control techniques employed in the design process provide better performance and are 

better able to accomplish disturbance rejection. 

D. ANALYTICAL RESULTS 

This chapter will present simulation results for the two different robust controllers 

developed for the segmented telescope model.  One controller was designed based on a 

model whose inputs and outputs were both reduced by the SVD technique; the model for 

the other controller had its outputs reduced with Zernike polynomials and inputs reduced 

with the SVD technique.  The Hankel singular value state reduction and all other aspects 

of controller design were identical. 

A simple Simulink model shown in Figure 38 was used to validate the 

performance of both controllers. 

 

Figure 38 Segmented Space Telescope Controller Validation Model. 

The full plant used for both cases was the original 997 input, 936 output, 332 state 

model.  The controller for both cases had 21 inputs and 21 outputs.  The number of states 

in the controller does not have to match the number of states in the original plant as long 

as the inputs and outputs go through the appropriate projection.  The full output that was 

sent to the workspace for plotting consisted of only Shack-Hartmann slope data.  The 

phase diversity and other outputs were discarded and not plotted.  The actuator projection 

is the SVD reduction of the inputs, which consists of the first 21 columns of the V matrix 
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obtained from the SVD.  This recreates the full control, u, from the modified control, u , 

generated from the reduced controller.  Equation (5.8) describes this process. 

For the case of the Zernike polynomial reduced model, the following conditions 

apply.  The reference input vector and the reduced output sent to the workspace were 

both the Zernike polynomial coefficients.  The sensor projection is the pseudo-inverse of 

the dZ matrix formed from the partial derivatives of the Zernike polynomials.  The 

reduced output becomes that as shown in Equation (5.12). 

For the case of the SVD only reduced model, the following conditions apply.  The 

reference input vector and the reduced output sent to the workspace were both the 

coefficients of the full output vector.  The sensor projection is the transpose of the first 21 

columns of the U matrix formed from the SVD of the model.  The reduced output 

becomes that as shown in Equation (5.6). 

The band-limited white noise was used to add disturbances to the simulation.  In 

some cases no disturbance was added, but when it was added, it provided a random step 

to all control inputs at a specified time interval.  Figure 39 shows what this would look 

like.  This type of disturbance can be thought of as a changing initial condition as would 

be encountered if the space telescope performed a slewing maneuver to acquire a new 

target. 
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Figure 39 Disturbance Input Representation. 

1. System Performance 

The first test of the controller performance was how well the system could track a 

step input of 0.2 on all reference inputs.  Figure 40 and Figure 41 show the results for 

both controllers. 
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Figure 40 Step Input for SVD Only Reduced Model. 

 
Figure 41 Step Input for Zernike Polynomial Reduced Model. 
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These plots were only used to verify that each controller is capable of achieving a 

desired steady state response to a specified reference input.  In this case, both controllers 

are capable of accomplishing this.  No attempt was made at comparing the performance 

of the two controllers based on these plots, however, since the output is different in each 

case.  For the SVD reduced controller, the output is a coefficient of a total output vector, 

whereas the output of the Zernike reduced controller is a Zernike polynomial expansion 

coefficient. 

2. Disturbance Rejection 

Now that both controllers have been shown to be stable and can achieve a desired 

steady state, it is time to compare their performance.  The performance criterion is to 

achieve a planar wavefront, or in other words, the slopes from the Shack-Hartmann 

wavefront sensor should approach zero.  An equivalent statement is that the expansion 

coefficients of the Zernike polynomials all become zero.  If the Zernike polynomial 

expansion coefficients are zero then there are no aberrations in the wavefront with the 

possible exception of a piston component, which is not measurable in this setup.  All 

other aberrations should be zero. 

In order to make a valid comparison, the output from each controller needs to 

represent the same data.  Recall, however, that the output from the SVD reduced 

controller was not a Zernike polynomial expansion coefficient, but rather a coefficient on 

the total output.  This difference can be remedied by converting the full slope output from 

the SVD reduced controller in a Zernike polynomial expansion coefficient.  This is done 

by multiplying the full output by the pseudo-inverse of the dZ matrix from Equation 

(5.12).  In the simulation block diagram, this is represented by the extra block in green in 

Figure 42. 
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Figure 42 Simulation Model with Zernike Coefficient Conversion. 

The simulation was run for 4.1 seconds with a reference input of zero.  The band 

limited white noise disturbance represented in Figure 39 was set to provide a new random 

step disturbance every second.  The output from the SVD reduced controller, converted 

to Zernike polynomial expansion coefficients, is shown in Figure 43. 

 

Figure 43 Zernike Polynomial Coefficients in Presence of Random Disturbance for SVD 
Reduced Controller. 
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Notice how the controller does a good job of bringing the disturbance back close 

to zero in about 0.5 seconds.  However, some of the coefficients asymptotically go to 

other non-zero values and exhibit oscillatory behavior around those values.  In some 

cases, the coefficients are off by as much as ± 0.04.  This result can be compared with 

that of the Zernike reduced controller shown in Figure 44. 

 

Figure 44 Zernike Polynomial Coefficients in Presence of Random Disturbance for 
Zernike Reduced Controller. 

Notice here that in roughly the same amount of time the Zernike reduced 

controller drives all Zernike polynomial coefficients to a zero value with negligible 

deviation from zero and negligible oscillatory behavior in the steady state.  The 

conclusion from this simulation is that the H∞  robust controller synthesized for the 

Zernike polynomial reduced model is better at achieving a planar wavefront in the 

presence of disturbances.  This is not an unexpected conclusion, since the Zernike 

polynomial reduction was theorized to be uniquely suited to reduce the Shack-Hartmann 

wavefront sensor outputs of the segmented space telescope model.  
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VI. EXPERIMENTAL APPLICATION TO ADAPTIVE OPTICS 
TESTBED 

A. SYSTEM IDENTIFICATION 

This chapter will describe the work to adapt the robust control techniques for use 

on the Spacecraft Research and Design Center’s adaptive optics testbed, as described in 

Chapter II.  As noted in the literature [9], this is not the first use of a robust controller 

designed for a laboratory testbed.  The intent here is not to replicate the previous work 

done, but to validate the design process used for the analytical model on testbed 

hardware. 

To do this, a robust controller was designed for the first deformable mirror / 

wavefront sensor closed loop system on the SRDC testbed.  It was originally thought that 

since the first deformable mirror was an extremely thin membrane mirror, it would be 

lightweight and prone to have low natural frequencies just as a lightweight segmented 

space telescope mirror would.  This would allow verification of the robust control 

techniques on systems with unmodeled system dynamics. 

The difficulty is that no model of the actual hardware exists.  Therefore, it was 

necessary to perform a system identification on the mirror to determine its natural 

frequencies.  Using a position sensing device it was determined that the lowest natural 

frequency was around 918 Hz, much higher than originally thought.  It is believed that 

the electrostatic actuators provide a degree of rigidity to the system, thus reducing the 

amount of dynamics that might be present in the system.  In the design of actual flight 

systems, this would actually be a benefit as there would be less uncertainty in the system 

that the controller must be able to handle.  For the purposes of this research, however, it 

meant that a new approach had to be developed. 

B. ROBUST CONTROLLER SYNTHESIS 

Since the natural frequencies of the membrane deformable mirror were around 

918 Hz, it was decided that the mirror could be modeled as a static system and a robust 

controller designed for this static system.  During real time wavefront correction, 
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disturbance inputs could be injected into the system and the robust controller 

performance measured in the presence of these disturbances. 

The best choice for a static system model is the reconstruction or influence matrix 

of the system.  Recall that the reconstruction matrix is obtained by actuating (poking) 

each of the mirror actuators in turn, allowing sufficient settling time, and measuring the 

resulting effect on the wavefront with the Shack-Hartmann wavefront sensor.  In classical 

control applications, the wavefront, φ , is measured and multiplied by the inverse (or in 

this case the pseudo-inverse) of the reconstruction matrix, R, to determine the control 

input, u 

 †u R φ=  (6.1) 

In the case of the membrane deformable mirror on the Spacecraft Research and 

Design Center AO testbed, the control input is a vector of 37 actuator voltages, one for 

each actuator.  The wavefront measurement is a vector of 254 slopes, two for each Shack-

Hartmann lenslet.  The reconstruction matrix therefore has dimensions of [254 x 37].  

The large difference between the number of rows and columns in this matrix is one factor 

that increases the condition number to the rather high value of 33,628.  This can lead to 

numerical error when taking the pseudo-inverse of this matrix by the Moore-Penrose 

method as given by 

 ( ) 1† T TX X XX
−

=  (6.2) 

What is needed then is a way to reduce the number of measurements.  The 

previously discussed method of model reduction with Zernike polynomials is quite 

appropriate for this task.  By using the Zernike polynomial output reduction method 

employed on the analytical model and projecting the 254 slope measurements into 21 

Zernike polynomials, the resulting vector has only 21 coefficients.  This reduced 

reconstruction matrix now has dimensions of [21 x 37], with a reduced condition number 

of 257 and a less complex model on which to design a robust controller.  This reduced 

reconstruction matrix is used with the following weighting functions to generate the 

robust controller 
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A plot of these weighting functions is show in Figure 45. 

 
Figure 45 AO Testbed Robust Controller Weighting Functions. 

The resulting H∞ controller is a state space model with 21 inputs, which are the 

Zernike polynomial expansion coefficients, 37 outputs, which are translated into actuator 

voltages, and 42 states.  When the controller is implemented on the testbed, these 42 

states must be integrated for each iteration through the control loop.  In order to minimize 

the computational effort associated with all these integrations, the continuous H∞  

controller is discretized for implementation according to the following set of equations 

 
( ) ( ) ( )
( ) ( ) ( )

1x k Ax k Bu k

y k Cx k Du k

+ = +

= +
 (6.5) 

The singular value plot of the AO testbed controller is shown in Figure 46. 
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Figure 46 AO Testbed Controller Singular Values. 

Figure 47 and Figure 48 show the testbed open loop and closed loop singular values. 

 
Figure 47 AO Testbed Open Loop Singular Values. 
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Figure 48 AO Testbed Closed Loop Singular Values. 

The smoothness of these plots is attributable to the fact that there are no dynamics 

or resonances in the model used.  There is nothing in these plots to indicate that the H∞  

controller designed for the testbed will be ineffective at correcting the wavefront 

aberrations.  The experimental results will show this to be the case. 

C. EXPERIMENTAL RESULTS 

1. System Performance 

The results of the AO testbed controller will be compared with the results 

obtained using a classical reconstruction matrix approach.  The wavefront estimation was 

performed by relating the Shack-Hartmann wavefront sensor slope measurements to the 

partial derivatives of the Zernike polynomials as shown in Equations (4.9) and (4.10).  

The control law used an iterative feedback loop based on the reconstruction matrix as 

developed in [3] and given as 

 †
1n n nu u gR a+ = −  (6.6) 
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where g is a gain, and a  is the vector of Zernike polynomial expansion coefficients for 

each iteration, n.  Before describing the performance, it is necessary to describe the 

evaluation criteria used. 

The first performance measure used is the peak-to-valley wavefront aberration.  

This figure of merit is a sum of the absolute values of the minimum and maximum 

deviation from a planar wavefront.  The resulting number is a representation of the 

number of waves of aberrations present.  The piston, tip, and tilt aberrations present in the 

wavefront are neglected in order to allow examination of the underlying higher order 

aberrations.  The peak-to-valley wavefront error is then represented in a three-

dimensional circular plot. 

The second performance measure is the root mean square (RMS) error.  This 

figure of merit is the square root of the wavefront variance and is given as 

 ( ) ( )
2

2

2
1 1

2
0

1 1

1 , ,
x

x

x y x y dxdyφσ φ φ
π

−

− − −

= −⎡ ⎤⎣ ⎦∫ ∫  (6.7) 

This variance is related to the Zernike polynomial coefficients through the 

following relationship, where the reference wavefront, 0φ , is assumed to be planar 
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The RMS error can then be written as 
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where ka  has been pulled in front of the integral because it is a constant. 

The control loop was run for 100 iterations with each controller.  At the end of 

each run, the wavefront was sampled with a science camera to determine the final 

wavefront peak-to-valley error.  A representation of the wavefront for each simulation 

was plotted.  The RMS error for each iteration was also plotted.  The results of the 

classical controller are shown in Figure 49 and Figure 50.  A gain value of 0.1 was used. 
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Figure 49 Classical Controller Peak-to-Valley Wavefront Error. 
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Figure 50 Classical Controller RMS Wavefront Error. 



 84

As can be seen, a steady state wavefront error was obtained after about 25 iterations. 

Next, the robust controller was used with all the same settings and parameters.  

The only change was the replacement of the line of code representing the classical 

controller in Equation (6.6) with the code to represent the discrete robust controller in 

Equation (6.5).  The wavefront estimation algorithms were identical.  The peak-to-valley 

and RMS results from 100 iterations with the robust controller are shown in Figure 51 

and Figure 52. 

 
Figure 51 Robust Controller Peak-to-Valley Wavefront Error. 
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Figure 52 Robust Controller RMS Wavefront Error. 

As seen in the plots, the robust controller outperforms the classical controller in 

peak-to-valley wavefront aberration, final RMS value, and the number of iterations 

required.  Increasing the gain on the classical controller can improve the response time, 

but this also leads to instability.  Other attempts to design robust controllers for AO 

testbeds have yielded lower absolute peak-to-valley and RMS values [9].  The purpose 

here, however, was not to achieve the lowest absolute error, but rather to experimentally 

verify the robust control synthesis procedures used on the analytical model.  The 

improved performance of the robust controller over the classical controller is taken as 

verification of this approach.  The higher error values obtained here are most likely the 

result of a rudimentary wavefront estimation algorithm.  Improving the centroiding 

algorithm used for wavefront estimation is left for future work, but that work was outside 

the scope of this research. 

2. Disturbance Rejection 

Additional comparison simulations were run on the AO testbed with a disturbance 

on the control voltages applied to the deformable mirror.  The disturbance used was a 
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sinusoidal input at varying frequencies.  In each test case, the robust controller proved 

superior at suppressing the disturbance input while achieving the results obtained from 

the simulation with no sinusoidal disturbance.  The following set of figures show results 

for each controller for two different disturbance frequencies, 1.3963 Hz and 6.2832 Hz.  

The final error results from the simulations are summarized in Table 4. 

 

Figure 53 Classical Controller Peak-to-Valley Wavefront Error with 1.3963 Hz 
Disturbance. 
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Figure 54 Classical Controller RMS Wavefront Error with 1.3963 Hz Disturbance. 

 
Figure 55 Robust Controller Peak-to-Valley Wavefront Error with 1.3963 Hz 

Disturbance. 
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Figure 56 Robust Controller RMS Wavefront Error with 1.3963 Hz Disturbance. 

 
Figure 57 Classical Controller Peak-to-Valley Wavefront Error with 6.2832 Hz 

Disturbance. 
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Figure 58 Classical Controller RMS Wavefront Error with 6.2832 Hz Disturbance. 

 
Figure 59 Robust Controller Peak-to-Valley Wavefront Error with 6.2832 Hz 

Disturbance. 
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Figure 60 Robust Controller RMS Wavefront Error with 6.2832 Hz Disturbance. 

Peak-to-Valley Wavefront Error RMS Error (σ) Iterations
1.3963 Hz Disturbance
Classical Controller 8.5044 4.6837 8
Robust Controller 4.5052 3.9232 4

6.2832 Hz Disturbance
Classical Controller 5.5255 4.3112 20
Robust Controller 4.4815 3.9349 4  

Table 4 AO Testbed Disturbance Rejection Simulations. 

Clearly, the robust controller is better able to handle disturbances than the 

classical controller is.  This is accomplished in fewer iterations as well.  In each case, the 

robust controller achieved its steady state wavefront error in 4 iterations, whereas the 

classical controller took approximately 10 iterations and even then was not able to 

completely dampen the disturbance input.  Similar results were obtained for other test 

frequencies.  The additional benefit of the robust controller is that no a priori knowledge 

of the disturbance frequency was necessary.  It handled all tested frequencies equally 

well.  It is this ability of the robust controller to provide robust performance in the 

presence of uncertainty that makes it desirable for these applications. 
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VII. SUMMARY, FUTURE WORK, AND CONCLUSIONS  

A. SUMMARY 

This research has provided an important contribution to the field of control 

systems for adaptive optics systems.  It has demonstrated the design of a robust controller 

for a complex AO system.  While not the first use of H∞  control for AO systems, it is the 

first analytical work for a space based AO telescope with a high degree of complexity 

due to the number of actuators, sensors, and states.  To accomplish this, an innovative use 

of Zernike polynomials was used to perform model reduction.  Zernike polynomials had 

previously not been used in this fashion with the intent of facilitating the design of a 

robust controller.  This application was possible due to the fact that the sensor outputs for 

the AO system model consisted largely of Shack-Hartmann wavefront sensor slopes.  

Zernike polynomials are uniquely suited to describe this type of data. 

An analytical model that originally had 997 inputs and 936 outputs was reduced 

to 21 inputs and 21 outputs.  The reduction was performed by a Singular Value 

Decomposition approach and the Zernike polynomial approach, and the results were 

compared.  Additionally, a Hankel singular value reduction was performed to reduce the 

number of states in the system from 332 to 240.  Both input/output reduction approaches 

allowed the successful synthesis of a robust controller.  The controller from the SVD 

reduced model had a closed loop control bandwidth between 20 and 24 Hz, while the 

controller from the Zernike reduced model had a closed loop control bandwidth between 

15 and 19 Hz.  Both of these bandwidths exceeded the required 10 Hz bandwidth that the 

existing classical control techniques were unable to achieve. 

While classical controllers have many advantages and are much simpler to design 

and implement, the ever increasing complexity of AO systems and growing number of 

sensors and actuators means that alternative methods need to be developed.  The work 

presented here has demonstrated that robust control techniques are worthy of further 

research for implementation in these types of systems. 
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Finally, the robust controller synthesis design techniques used for the complex 

analytical model were experimentally verified on an AO testbed.  While the AO testbed 

system was much simpler than the analytical space telescope model, the same techniques 

and algorithms used for the analytical model were used for the testbed. 

Both controllers achieved similar absolute wavefront correction results; however, 

the robust controller was able to achieve the steady state wavefront error in only 4 

iterations, whereas the classical controller took approximately 25 iterations.  The real 

advantage of the robust controller was seen in the rejection of a disturbance input.  The 

robust controller was essentially impervious to the disturbance input in the test cases.  

This was possible for any desired sinusoidal disturbance frequency without any a priori 

knowledge of the disturbance frequency.  For classical control, a notch filter can be used 

for disturbance rejection.  However, to design the filter, the disturbance frequency has to 

be known accurately.  The superior performance of the robust controller on the testbed 

versus the classical controller is further verification that the techniques implemented in 

this research are valid. 

B. FUTURE WORK 

A number of issues arose during this research, demonstrating areas where further 

work could be accomplished.  The first suggestion for additional research would be to 

experiment with different numbers of Zernike polynomials.  Twenty-one polynomials 

were used in this research, which go to seventh order aberrations.  Using more 

polynomials could improve accuracy of the wavefront estimation.  The tradeoff would 

come in increased complexity and possibly longer calculation times due to the larger 

number of polynomials.  Additionally, the Zernike polynomials could be modified for an 

annular ring as set forth in [26] to account for the central hole in the primary mirror. 

Another possibility would be to experiment with performing a state reduction at 

different stages in the process.  In this work, a state reduction was performed immediately 

after the inputs and outputs were reduced.  Alternative approaches would be to perform 

state reductions on the original full plant, the augmented 2-input, 2-output system model, 

the synthesized robust controller, or any combination of multiple state reductions at these 
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stages.  An important consideration for the segmented space telescope model is that it 

was originally given in modal form where the A matrix had a convenient block diagonal 

structure.  A state reduction destroys this structure, so easy identification of the natural 

frequencies is no longer possible. 

Additionally, the robust controller synthesized in the research was calculated 

based on a direct H∞  method.  Other robust controller synthesis techniques exist such as 

the μ -synthesis method, which might yield promising results.  This would also allow 

further research into ways of introducing uncertainty into the segmented space telescope 

model. 

On the adaptive optics testbed, refinement of the wavefront estimation algorithms 

would most likely provide lower absolute error measurements.  There are also a number 

of other classical and optimal control algorithms that could be implemented and 

compared on the testbed.  Upgrading the Basler camera on the testbed used for wavefront 

sensing to a higher frames per second rate would also improve the system performance. 

Eventually, the techniques presented here could be implemented on a testbed with 

a segmented primary optic.  The Spacecraft Research and Design Center has such a 

mirror for future work.  Implementing robust control techniques on this mirror could be 

done in conjunction with the research currently being performed at the SRDC on an 

improved wavefront sensing technique know as Redundant Spacings Calibration [1]. 

C. CONCLUSIONS 

This research has contributed to the state-of-the-art in the following areas: 

1. An H∞  robust control technique has been used for surface control of a 

flexible space telescope model including structural dynamics. 

2. Robust control techniques have been able to provide a desired control 

bandwidth that was not possible with classical control. 
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3. A new model reduction technique using Zernike polynomials and singular 

value decomposition has been developed.  This technique has been found to 

provide better performance to reduce the wavefront aberration in the space 

telescope model. 

4. A robust control technique has been applied experimentally to the adaptive 

optics testbed of the Naval Postgraduate School Spacecraft Research and 

Design Center.  The robust control technique has been found to be superior to 

classical control in response time and disturbance rejection. 

H∞  robust control techniques offer many advantages for complex AO systems, 

particularly those that are subject to high amounts of model uncertainty, such as 

lightweight segmented space telescopes.  As future system become more complex, and 

performance requirements become more stringent, the techniques discussed in this 

dissertation will become increasingly important. 

It is important to note that just because a robust controller can be designed for a 

particular system, this does not necessarily mean that it should.  Classical control 

methods, optimal control techniques, and even adaptive controllers all offer certain 

benefits.  The ultimate solution will most likely be a combination of approaches to reduce 

overall system risk, guarantee stability, and maximize performance.  In the case of space 

systems, the extremely high development and launch costs require multiple levels of 

redundancy to prevent loss.  The techniques explored in this research will undoubtedly be 

applicable to future designs. 
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