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ABSTRACT 

In order to connect a composite structure to a metallic structure, a hybrid 

composite/metal-wire laminate has been considered. Such a hybrid laminate raises a 

question of interface strength between the composite layer and metal-wire layer, and 

what kind of lay-up configuration would be best. In order to answer the question, the 

following three joints were considered: butt joint, overlap joint, and modified-wire-end- 

shape joint. The goal of this research was to numerically determine which joint would be 

the strongest based on its components of fracture toughness under various loading 

conditions such as tension, shear and bending. A defect was included between and 

parallel to the interfaces to simulate a crack in the critical regions of the models. The 

crack growth, due to interlaminar tension and/or sliding, is analyzed using the crack 

closure technique. Finite element formulations in this research are carried out by using 

ANSYS finite element software.  
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I. INTRODUCTION  

A. BACKGROUND 

Composite materials are increasingly being used in aerospace, underwater, and 

automotive structures. The application of composite materials to engineering components 

has spurred a major effort to analyze structural components made from them. Composite 

materials provide unique advantages over their metallic counterpart, but they also present 

complex and challenging problems to analysts and designers [1]. 

Composite materials are those that consist of two or more constituent materials 

that together produce desirable properties for a given application. Fiber-reinforced 

composite materials are the most commonly used modern composite material that consist 

of high strength and high modulus fibers in a binding matrix material. In these 

composites, fibers are the principal load-carrying members, and the matrix material keeps 

the fibers together, acts as a load-transfer medium between fibers, and protects the fibers 

from being exposed to the environment [1]. 

Fiber-reinforced composite materials for structural applications are often made in 

the form of a thin layer, called lamina. Structural elements are then formed by stacking 

the layers to desired thickness and properties. Fiber orientation in each lamina and 

stacking sequence of the layer can be chosen to achieve desired strength and stiffness for 

a specific application [1]. 

 

IIIG

delam
1

ination onset or growth for two-dimensional problems, these  com

The most common failure mode for composite structures is delamination. The 

remote loadings applied to composites components are typically resolved into 

interlaminar tension and shear stresses at discontinuities, which create mixed-mode I, II, 

III delaminations. To characterize the onset and growth of these delaminations the use of 

fracture mechanics has become common practice over the past two decades. The total 

strain energy release rate , the mode I component due to interlaminar tension, , the 

mode II components due to interlaminar sliding shear, , and the mode III component, 

, due to interlaminar scissoring shear need to be calculated. In order to predict the 

TG IG

ponents are 

IIG

G



compared to interlaminar fracture toughness properties measured over a range from pure 

mode I loading to pure mode II loading [2]. Failure is expected when, for a given energy 

release rate iG  exceeds the interlaminar fracture toughness icG , where i  is either mode I, 

mode II or m ed mode. The virtual crack closure technique (VCCT) is widely used for 

computing energy release rates based on results from continuum (2D) and solid (3D) 

finite element analyses to supply mode separation required when using the mixed-mode 

fracture criterion [2]. 

ix
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B. SIMPLEST FORM OF JOINTS 

minate structures, several configurations were 

made t

In connecting separate sections of la

o improve the effectiveness of joints for certain design criteria. Some of the joint 

designs commonly used in manufacturing are the symmetric step/butted joint and step 

overlap joint as shown in Figure 1. 

 

Figure 1.   Symmetric Step/Butted Joint and S ep Overlap Jointt . 
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To make a good comparison on how the joint geometry affects the fracture 

toughness of these joints, the analysis will be performed on the building blocks of these 

joint designs, such as its simplest form shown in Figure 1. An analysis of modifying the 

wire end shape, in the case of the butt joint, will also be made to determine how it affects 

the fracture toughness. 
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II. FINITE ELEMENT FORMULATION 

A. MODEL GEOMETRY 

The composite materials considered in for the models are the standard 24 oz. E-

glass woven roving, 3SX unidirectional plies, and Vinyl-ester resin. The constituent 

model of the joint was created using fiber thicknesses of 1.27 mm (0.050 in) for both 

glass and steel fibers [6] and a resin layer thickness of 0.05mm (0.002 in) between fibers. 

The glass fibers, steel fibers, and resin were each modeled as isotropic using individual 

constituent properties given in Table 1 through Table 3 from reference [6].  

Table 1.   Properties of Steel Fiber 

Property  Value Units 
Modulus E 207 GPa 

Poisson’s Ratio  0.3  
Shear Modulus G 79.3 GPa 

 

Table 2.   Properties of E-Glass Fiber 

Property  Value Units 
Modulus E 72.4 GPa 

Poisson’s Ratio  0.22  
Shear Modulus G 30.0 GPa 

 

Table 3.   Properties of Dow Derakane 510A Vinyl-ester Resin  

Property  Value Units 
Modulus E 3.50 GPa 

Poisson’s Ratio  0.32  
Shear Modulus G 1.33 GPa 

 

For the different types of joints, shown in Figure 2, in the case of the butt joint 

and the modified-wire-end-shape joint the distance  was assume to be 0.05 mm (.002 

in). For the overlap joint the distance  was assumed to be 1.32 mm (0.052 in), creating 

an overlap angle of 45 degrees. 

d

d
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Figure 2.   Model Dimensions. 

 

B. LOADING AND CRITICAL CRACK LOCATIONS 

Different load configurations, as shown in Figure 3, were applied to the three 

types of joint models. The left ends of the specimens were structurally fixed while right 

ends were subjected to the following loads: tension (uniform displacement load 

normalized to 1MPa), shear (1 KN) and bending (1KN-m). It has been observed in many 

experimental testing that the failure due to delamination initiates and propagates through 

the resin. Since the resin strength is very low compared to the e-glass and metal-wire, in 

this case it acts like an adhesive layer between the fibers. Under a certain load when 
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localized strain in the resin causes the fracture toughness to exceed the critical fracture 

toughness, the crack will propagate; thus, particular attention was given the strain of the 

resin in determining the critical locations. 

 

Figure 3.   Load Configurations. 

 

In finding the energy release rate components, the critical locations where 

delamination is most likely to occur was first determined. This was done by determining 

the locations that had the highest total mechanical strain in the resin layer of the model 

without defects. Then, at the region where the resin was subjected to high strain, crack 

inclusions in the model were placed inside the resin, metal-wire/resin interface and e-

glass/resin interface.  

C. CRACK GEOMETRY 

  The crack closure method requires an assumed initial flaw to be built into the 

finite element model. The length of this flaw is typically not known, so often the flaw is 

assumed to be less than what is detectable by inspection. “Undetectable” lengths 

commonly vary from 0.127 mm (0.005 inch) to 0.254 mm (0.01 inch) [4]. For this 

research, the assumed length was set at 0.254 mm (0.01 inch) and the element crack 
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extension  was set to 0.0127 mm (5% of crack length) for all models. Figure 4, in the 

case of the butt joint, shows the crack dimensions included in the model. The split 

interface, crack length of 0.254 mm plus the crack extension , represents a 

discontinuity by a line of nodes, as shown in Figure 4. The crack tips, on both ends of the 

crack, each have a single node that connects the upper and lower elements. Nodes at the 

top surface and bottom surface of the split interface have identical coordinates, however, 

are not connected with each other.  This discontinuity allows the elements connected to 

the top surface of the crack deform independently from those connected to the bottom 

surface. The tip on the right side was extended to serve as the element crack 

extension . 

a

a

a

 

Figure 4.   Crack Geometry. 
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D. VIRTUAL CRACK CLOSURE TECHNIQUE (VCCT) 

An overview of the virtual crack closure technique (VCCT) and the modified 

VCCT, as published in reference [2], are presented in this research to show the different 

methods used in determining the components of fracture toughness. In this research the 

one step approach, modified VCCT, was employed using the two-dimensional, six-noded 

elements. 

1. Virtual Crack Closure Technique 

In this two step method, also called crack closure technique, the crack in the 

model is physically extended, or closed, during two complete finite element analyses as 

shown in Figure 5, where four-noded quadrilateral elements are used. The crack closure 

method is based on Irwin’s crack closure integral. The method is based the assumption 

that the energy released when the crack is extended by a from a (Figure 5a) to a a 



 

(Figure 5b) is identical to the energy required to close the crack between location and 

(Figure 5a) [2]. i

The modes I and II energy release rates,  and , are calculated using the 

following equations: 

IG IIG

   *

1

2IG Z w
a

 
   lw   (1) 

   *

1

2IIG X u
a


    u   (2) 

As shown in Figure 5, the forces are obtained from the first finite element analysis 

where the crack is closed. The displacements are obtained from the second finite element 

analysis where the crack is extended to one full element length. 
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Figure 5.   Two Step Virtual Crack Closure Technique for Four-Noded Element. 
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2. Modified Virtual Crack Closure Technique  

The modified VCCT is based on the same assumptions as the two-step VCCT. 

Additionally, however, it is assumed that a crack extension of a  from (node i) to 

(node k) does not significantly alter the state at the crack tip (Figure 6). 

Therefore the displacements behind the crack tip at node i  are approximately equal to the 

displacements behind the original crack tip at node . Reference [2] outlines the details 

for a crack modeled with two-dimensional, four-noded and eight-noded elements.  Figure 

6 show the modified VCCT using the two-dimensional, six-noded elements. 

a  a

a2a  



The modes I and II energy release rates,  and , are calculated using the 

following equations: 

IG IIG

    *

1

2I i j mG Z w w Z w w
a

*m          (1) 

    * *

1

2II i l j m mG X u u X u u
a

         (2) 

 

In addition to the forces iX  and iZ  at the crack tip, the forces jX  and jZ at the 

mid-side node in front of the crack are required. Also, in addition to the relative sliding 

and opening at nodal points   and , the relative displacements at nodal points m  and 

 are required. 

*

*m
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Figure 6.   Virtual Crack Closure Technique for Six-Noded Element (One step). 
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III. ANALYSIS AND RESULTS FOR LOADING IN TENSION 

A. RESULTS AND DISCUSSION 

1. Critical Locations 

The resulting effective mechanical strain plots of the models, without defects, 

under tension, are shown in Figure 7 through 9.  The regions of high strain for the butt 

joint are located around the left edge corners of the metal-wire mat. Since the upper and 

lower strain fields are symmetrical about its centerline, the upper half (Figure 7) of the 

model was considered for the analysis. For the overlap joint, three critical crack locations 

were considered since the resulting plot (Figure 8) shows three regions of high strain. In 

the case of the modified-wire-end-shape joint, the regions of high strain are located at the 

apex and corners of the wire tip (Figure 9). Similar to the butt joint, the upper half of the 

model was considered for the analysis since the strain fields are also symmetrical about 

its centerline.  

 

Figure 7.   Butt Joint Critical Location. 
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Figure 8.   Overlap Joint Critical Location. 

 

Figure 9.   Modified-Wire-End-Shape Joint Critical Location. 
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In this load case, the outer composite layers carry most of the load at the joint due 

to the discontinuity of the middle layers. Because of the discontinuity, the load transfer 

from the left to middle composite layer to the right middle metal-layer occurs though 

shear stress between the middle metal layers and the surrounding resin layer. In addition, 

the resin between the two discontinuous composite and metal layers is under tensile 

stress. Thus, the onset of crack growth in the resin may occur due to interlaminar shear 

stress between the middle metal layer and the outer composite layers as well as due to 

tensile stress between the two middle layer tips. Thus, particular attention was given 

separately to the resin cracks between the middle and outer layers, and between the two 

middle layer tips (Figure 10). 

 

Figure 10.   Description of Resin Sections. 

 

2. Energy Release Rate Results 

a. Butt Joint 

In Location 1 through 3 in Figure 11, it was observed that the forces acting 

on the crack are closing in nature. This means that the mode I energy release rate 

component is non-existent and the energy release rate is purely mode II for resin cracks 

located between the fibers. The energy release rate results shows that the crack inside the 

resin, Location 2 in Figure 11, is the most critical case.  
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Figure 11.   Butt Joint: Energy Release Rate of Resin Cracks between the Fibers. 

 
In Location 4 through 6 in Figure 12, it was observed that the forces acting 

on the crack are tensile in nature and the forces due shearing are negligible. Thus, the 

mode I energy release rate component characterizes the failure of cracks existing between 

the fiber tips. Figure 12 shows Location 5, which is the crack located inside the resin, is 

the most critical case. 

 

 

Figure 12.   Butt Joint: Energy Release Rate of Resin Cracks between the Fibers Tips. 

 

b. Overlap Joint 

In Location 1 through 9 in Figure 13, it was observed that the interlaminar 

forces acting on the crack are sliding in nature. This means that the mode II characterizes 

the delamination failure for resin cracks located between the fibers. The energy release 

rate results shows that the crack inside the resin, Location 8 in Figure 13, is the most 

critical case.  
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Figure 13.   Overlap Joint: Energy Release Rate of Resin Cracks between the Fibers. 

  

Figure 14.   Overlap Joint: Energy Release Rate of Resin Cracks between Fibers Tips. 

 
In Location 10 and 11 in Figure 14, it was observed that the forces acting 

on the crack are dominantly tensile in nature; therefore mode I component is the more 

significant component of failure for the cracks located between the fiber tips. The results 
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for the crack in Location 12 show that the mode I and II components are both significant, 

however, since mode I failure has usually a lower threshold than mode II, mode I results 

were considered as the determining factor for the most critical location. Thus, Location 

11 was considered the most critical case.   

c. Modified-Wire-End-Shape Joint 

In Location 1 through 3 in Figure 15, similar to the butt joint, the mode II 

component characterizes the delamination failure for resin cracks located between the 

fibers. The energy release rate results shows that the crack along the e-glass interface, 

Location 3 in Figure 15, is the most critical case. 

  

Figure 15.   Modified-Wire-End-Shape Joint: Energy Release Rate of Resin Cracks 
between the Fibers. 

 

In Location 4 through 6 in Figure 16, the forces acting on the crack are 

dominantly tensile in nature; thus, the mode I energy release rate component 

characterizes the delamination failure of cracks existing between the fiber tips. Location 

6, which is the resin crack located along the e-glass interface, is the most critical case. 
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Figure 16.   Modified-Wire-End-Shape Joint: Energy Release Rate of Resin Cracks 
between the Fiber Tips. 

 

B. SUMMARY  

Figure 17 and 18 shows the comparison of the energy release rate for each joint 

design. It was observed that the overlap joint has the highest energy release rate results 

for resin cracks between the fibers and in between the two fiber tips. For resin cracks 

between the fibers, the butt joint gave lower energy release rate results than the modified- 

wire-end-shape joint. However, for the resin cracks between the fiber tips, the modified-

wire-end shape joint gave lower results. In the crack locations investigated, the most 

critical case for the butt joint and overlap joint are the cracks inside the resin. For the 

modified-wire-end-shape joint, cracks along the e-glass interface was the most critical 

case. 

 

Figure 17.   Energy Release Rate of Resin Cracks between the Fibers for Each Joint 
Design.     
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Figure 18.   Most Critical Energy Release Rate of Resin Cracks between the Fibers 
Tips for each Joint. 

 
Based on these results, in cases where high stresses exist between the fibers, the 

butt joint is the best design to be considered. And in cases where high stresses exist in 

between the fiber tips, the modified-wire-end-shape joint is proposed. For the overlap 

joint, this design can be considered under small tension loading. 

C. INFLUENCE OF WIRE END GEOMETRY AND MIDDLE LAYER GAP 

Further investigation was made to determine the influence of the resin area 

between the fiber tips and the wire end geometry: between the butt joint and modified- 

wire-end-shape joint. This was done by applying a tensile load to the models and 

extending the gap  between the middle layers, as shown in Figure 19, to the point 

where the middle fiber tips has no significant interaction; and thus will have no effect on 

the energy release rate of an existing crack place between the metal wire and e-glass 

fiber. The numerical results revealed that tip geometry has minimal effect on the energy 

release rate of the crack at a very wide gap.  

d
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Figure 19.   Butt Joint and Modified-Wire-End-Shape joint with Middle Gap 
Extended. 

 

Another analysis made was extending the gap  incrementally and comparing the 

shear stress in the resin between the fibers near the discontinuity. The results showed that 

as the resin area in between the fiber tips was increased, the shear stresses between the 

fibers near the discontinuity also increased. This means that with greater resin area 

between the fiber tips, the resin deforms more freely, thereby shifting some of the load to 

the resin between the fibers near the discontinuity; carried in the form of shear stress.   

d

 

Figure 20.   Middle Fiber Interaction of the Butt Joint and Modified-Wire-End-Shape 
Joint. 

 

Figure 20 shows the strain between the tips represented by the field lines, for the 

same gap d .  In the case of the butt joint there is a very small area filled by the resin,  the 
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strain fields are more concentrated at the tip edges, thereby having less influence on the 

crack Locations 1  through  3 (Figure 11),  while  having greater influence for the cracks 

in Locations 4 through 6 (Figure 12). In the case of the modified-wire-end-shape joint, 

which have a larger resin area between the tips, the strain fields are not as concentrated 

compared to the butt joint. This allows the resin between the tips to deform more freely, 

which influences the cracks in Locations 1 through 3 in Figure 15 and less influence on 

the crack Locations 4 through 6 in Figure 16 by shifting some of the load to the resin 

between the fiber tips near the discontinuity. Figures 21 and 22 shows the comparison of 

the butt joint and modified-wire-end-shape joint. 

 

Figure 21.   Comparison of the Resin Cracks between the Fibers for the Butt Joint and 
Modified-Wire-End-Shape Joint. 

 

Figure 22.   Comparison of the Resin Cracks between the Tips of the Fibers for the 
Butt Joint and Modified-Wire-End-Shape Joint. 
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For the overlap joint, varying the overlap angle changes the area filled by the 

resin between the inclined edge and the metal wire tip as shown in Figure 23. This 

influences the energy release rate of the cracks in the same way.  

 

Figure 23.   Metal Wire Tip and Inclined edge Interaction of the Overlap Joint. 
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IV. ANALYSIS AND RESULTS FOR LOADING IN SHEAR 

A. RESULTS AND DISCUSSION 

1. Critical Locations 

The resulting effective mechanical strain plots of the models, without defects, 

under shear in the –y direction are shown in Figure 24 through 26.  The regions of high 

strain for the butt joint are located around the left edge corners of the metal wire mat. 

Although opposite in direction, the magnitude of the upper and lower strain fields are 

equal; thus the upper half (Figure 24) of the model was considered for the analysis. For 

the overlap joint, three critical crack locations were considered since the resulting plot 

(Figure 25) shows three regions of high strain. In the case of the modified-wire-end-shape 

joint, the regions of high strain are located at the corners of the wire tip (Figure 26). The 

upper half of the model was considered for the analysis, since the strain fields are equal 

in magnitude, although opposite in direction.  

 

Figure 24.   Butt Joint Critical Location. 
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Figure 25.   Overlap Joint Critical Location 

 

Figure 26.   Modified-Wire-End-Shape Joint Critical Location 

 

For this load case, shear loading in the +y direction was also investigated to 

determine the tensile and compressive effects on the crack locations that were previously 
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analyzed. The onset of crack growth in the resin may occur between the fibers or between 

the middle fiber tips. In this analysis, particular attention was given separately to the resin 

cracks between the fibers and between the middle fiber tips. 

2. Energy Release Rate Results 

a. Butt Joint 

In Location 1 through 3 in Figure 27, it was observed that the forces acting 

on the crack are closing in nature. With the upper half under tension, the mode I energy 

release rate component is non-existent and the energy release rate is purely mode II for 

resin cracks located between the fibers. The energy release rate results shows that the 

crack inside the resin, Location 2 in Figure 27, is the most critical case.  

 

  
 

Figure 27.   Butt Joint: Energy Release Rate of Resin Cracks between the Fibers 
(Shear Loading in the –y direction). 

 
With the shear load reversed, now in the +y direction, Figure 28 shows the 

existence of mode I and II. This means that the forces acting on the crack are opening in 

nature when the upper part of the model is under compression. Results yield the same 

mode II values, except in this case mode I components are present. 
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Figure 28.   Butt Joint: Energy Release Rate of Resin Cracks between the Fibers 
(Shear Loading in the +y direction). 

 
Figure 29 shows the results for shear loading in the –y direction.  Shear 

loading in the +y directions revealed similar mode II results; however, mode I 

components are non-existent due to forces are closing in nature.  Although there is no 

significant difference between the energy release rate results of Location 4 through 6, 

Location 5, which is the crack inside the resin, is the most critical case. 

 

  
 

Figure 29.   Butt Joint: Energy Release Rate of Resin Cracks between the Fibers Tips 
(Shear Loading in the -y direction). 
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b. Overlap Joint 

Figure 30a, shear load in the –y direction, shows that Location 8 is the 

most critical case; while in  Figure 30c, shear load in +y direction, shows that Location 2 

is the most critical case. Since Location 2 in Figure 30c have a higher mode I energy 

release rate results, which is more critical than mode II; Location 2 under shear loading in 

the +y direction was considered to be the most critical case.  

 
      (a) –y shear load. 

 
    (b) Crack Locations. 

 

 (c) +y shear loading. 

Figure 30.   Overlap Joint: Energy Release Rate of Resin Cracks between the Fibers. 
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Figure 31 shows the results for shear loading in the –y direction. Shear 

loading in the + y direction yield the same mode II results except that the mode I 

components are non-existent. Results show that Location 12 is the most critical case. 

   

Figure 31.   Overlap Joint: Energy Release Rate of Resin Cracks between the Fibers. 

 

c. Modified-Wire-End-Shape Joint 

In Location 1 through 3 in Figure 32, it was observed that the forces acting 

on the crack are closing in nature. With the upper half under tension, the mode I energy 

release rate component is non-existent and the energy release rate is purely mode II for 

resin cracks located between the fibers. The energy release rate results shows that the 

crack inside the resin, Location 2 in Figure 32, is the most critical case.  

 

Figure 32.   Modified-Wire-End-Shape Joint: Energy Release Rate of Resin Cracks 
between the Fibers (Shear Loading in the –y direction). 
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With the shear load reversed, +y direction, Figure 33 shows the existence 

of mode I and II. This means that the forces acting on the crack are opening in nature 

when the upper part of the model is under compression. Results yield the same mode II 

values, except in this case mode I components are present. 

 

Figure 33.   Modified-Wire-End-Shape Joint: Energy Release Rate of Resin Cracks 
between the Fibers (Shear Loading in the +y direction). 

 

B. SUMMARY  

Figure 34 (shear load in the +y direction) and Figure 35 (shear load in the –y 

direction) shows the comparison of the energy release rate for each joint design. It was 

observed that the overlap joint has the highest energy release rate results for resin cracks 

between the fibers and in between the fiber tips.  For resin cracks between the fibers, the 

butt joint gave lower energy release rate results than the modified-wire-end-shape joint. 

However, for the resin cracks between the fiber tips the modified-wire-end-shape joint 

gave lower results. For the crack locations investigated the most critical case for each 

joint are the cracks inside the resin. 
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Figure 34.   Energy Release Rate of Resin Crack between the Fibers for each Joint. 

 

Figure 35.   Release Rate of Resin Crack between the Fiber Tips for each Joint. 

 
Based on these results, in cases where high stresses exist between the fibers, the 

butt joint is the best design to be considered. In cases where high stresses exist in 

between the fiber tips, the modified-wire-end-shape joint is proposed. For the overlap 

joint, this design can be considered under small shear loading. 
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V. ANALYSIS AND RESULTS FOR BENDING LOAD  

A. RESULTS AND DISCUSSION 

1. Critical Locations 

The resulting effective mechanical strain plots of the models, without defects, 

under clockwise (CW) bending are shown in Figure 36 through 38.  The regions of high 

strain for the butt joint are located around the left edge corners of the metal wire mat. 

Although opposite in direction, the upper and lower strain fields are equal in magnitude, 

the upper half (Figure 36) of the model was considered for the analysis. For the overlap 

joint, three critical crack locations were considered since the resulting strain plot (Figure 

37) shows three regions of high strain. In the case of the modified-wire-end-shape joint, 

the regions of high strain are located at the corners of the wire tip (Figure 38). The upper 

half of the model was considered for the analysis, since the strain fields are symmetrical 

about its centerline, although opposite in direction.  

 

 

Figure 36.   Butt Joint Critical Location. 
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Figure 37.   Overlap Joint Critical Location. 

 

Figure 38.   Modified-Wire-End-Shape Joint Critical Location. 

 

For this load case, clockwise (CW) and counter clockwise (CCW) bending were 

investigated to determine the tensile and compressive effects on the crack locations that 
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were previously analyzed. The onset of crack growth in the resin may occur between the 

fibers or between the middle fiber tips. Once again in this analysis, particular attention 

was given separately to the resin cracks between the fibers and between the middle fiber 

tips. 

2. Energy Release Rate Results 

a. Butt Joint 

CCW bending was considered for the analysis since mode I component for 

CW loading is non-existent. Figure 39 shows Location 2, which is the crack inside the 

resin, to be the most critical case. 

 

Figure 39.   Butt Joint: Energy Release Rate of Resin Cracks between the Fibers 
(CCW Bending). 

 
In Figure 40, although there is no significant difference between the 

energy release rate results of Location 4 through 6; Location 5, which is slightly highest, 

is the most critical case. 

 

Figure 40.   Butt Joint: Energy Release Rate of Resin Cracks between the Fibers Tips 
(CW Bending). 
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b. Overlap Joint 

Figure 41a, with CW bending, shows that Location 8 is the most critical; 

while in Figure 41c, CCW bending, shows that Location 5 is the most critical case. Since 

Location 5 in Figure 41c have a higher mixed mode energy release rate results, Location 

5 under CCW bending was considered to be the most critical crack case.  

 
(a) CW bending. 

 
    (b) Crack Locations. 

 

 (c) CCW bending. 

Figure 41.   Overlap Joint: Energy Release Rate of Resin Cracks between the Fibers. 
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Figure 42 show the results for CW bending. Results show that Location 11 

is the most critical case. 

 

Figure 42.   Overlap Joint: Energy Release Rate of Resin Cracks between the Fibers. 

 

c. Modified-Wire-End-Shape Joint 

Under CW bending mode I and II components are present while in CCW 

bending mode I are non-existent due to the closing nature of the forces acting on the 

crack locations shown in Figure 43. The energy release rate results of the cracks between 

the fibers shows that the crack inside the resin, Location 2 in Figure 43, is the most 

critical case.  

 

Figure 43.   Modified-Wire-End-Shape Joint: Energy Release Rate of Resin Cracks 
between the Fibers (CW Bending). 
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Figure 44.   Modified-Wire-End-Shape Joint: Energy Release Rate of Resin Cracks 
between the Fibers (CW Bending). 

 

B. SUMMARY  

Figure 45 (CCW bending) and Figure 46 (CW bending) shows the comparison of 

the energy release rate for each joint design. It was observed that the overlap joint has the 

highest energy release rate results for resin cracks between the fibers and in between the 

fiber tips. For resin cracks between the fibers, the butt joint gave lower energy release 

rate results than the modified-wire-end-shape joint. However, for the resin cracks 

between the fiber tips, the modified-wire-end-shape joint gave lower results. In all the 

crack locations investigated the most critical case for each joint are the cracks inside the 

resin.  

 

Figure 45.   Energy Release Rate of Resin Cracks between the Fibers for Each Joint. 
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Figure 46.   Energy Release Rate of Resin Cracks between the Fiber Tips for each 
Joint. 

 
Based on these results, in cases where high stresses exist between the fibers, the 

butt joint is the best design to be considered. In cases where high stresses exist in 

between the fiber tips, the modified-wire-end-shape joint is proposed. For the overlap 

joint, this design can be considered under small bending loads. 
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VI. CONCLUSION AND RECOMMENDATION 

In all the load cases that were investigated, the butt joint proved to be the best 

joint to be considered in situations where the stresses at the butted ends are relatively 

low; while the modified-wire-end-shape proved to be the joint to be considered in 

situations where the stresses between the fiber tips are high. An example where these 

situations apply is the symmetric stepped-lap joint under tension shown in Figure 47. 

Previous numerical analysis of this type of joint showed that the resin between the butted 

ends of the center ply carries higher stresses than the resin between the butted ends of the 

outer plies.  

 

Figure 47.   Symmetric Stepped-Lap Joint. 

 

From what has been determined in this research, one way of improving the joint 

in terms of fracture toughness is to increase the gap between the butted ends of the center 

ply. Performing this step increases the resin area between the tips which allows the resin 

to deform more freely thus shifting the load. The load that is shifted is carried by shear 

stress developed in the resin between the fibers near the discontinuity. However, 

increasing the gap can require careful spacing of the fibers and can be time consuming in 

the manufacturing process. An alternative is to modify the wire end. This step increases 

the resin area between the fiber tips and it can eliminate the time spent in spacing the 

fibers since it can easily be pushed together with the e-glass fiber mat. Figure 48 show a 

proposed joint configuration for the symmetric stepped-lap Joint. 
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Figure 48.   Design Modification for Symmetric Stepped-Lap Joint. 

 

In the case of the overlap joint, it showed poor results relative to the other two 

joints analyzed.  Although it is the best choice in terms of lesser material used in 

manufacturing, the overlap joint can be considered provided that the load is not large 

enough to exceed the critical fracture toughness. 

To determine the significance of altering the wire end, testing and numerical 

modeling is recommended for future work in comparing butted joints and where the 

modified-wire-end-shape joint is incorporated. 
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